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Waveforms for gravitational radiation from cosmic string loops
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We obtain general formulas for the plus- and cross-polarized waveforms of gravitational radiation emitted
by a cosmic string loop in a transverse, traceless~synchronous, harmonic! gauge. These equations are then
specialized to the case of piecewise linear loops, and it is shown that the general waveform for such a loop is
a piecewise linear function. We give several simple examples of the waveforms from such loops. We also
discuss the relation between the gravitational radiation by a smooth loop and by a piecewise linear approxi-
mation to it.
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I. INTRODUCTION

Cosmic strings are one dimensional topological defe
that may have formed if the vacuum underwent a phase t
sition at a very early time breaking a localU(1) symmetry
@1–4#. The resulting network of strings is of cosmologic
interest if the strings have a large enough mass per
length,m. If Gm/c2;1026, whereG is Newton’s constant
andc is the speed of light~i.e. m;1022 g/cm), then cosmic
strings may be massive enough to have provided the den
perturbations necessary to produce the large scale stru
we observe in the Universe today and could explain the
tern of anisotropies observed in the cosmic microwave ba
ground@5#.

The main constraints onm come from observationa
bounds on the amount of gravitational background radia
emitted by cosmic string loops~@4,6,7# and references
therein!. A loop of cosmic string is formed when two se
tions of a long string~a string with length greater than th
horizon length! meet and intercommute. Once formed, loo
begin to oscillate under their own tension, undergoing a p
cess of self-intersection~fragmentation! and eventually cre-
ating a family of non-self-intersecting oscillating loops. T
gravitational radiation emitted by each loop as it oscilla
contributes to the total background gravitational radiation

In a pair of papers, we introduced and tested a n
method for calculating the rates at which energy and mom
tum are radiated by cosmic strings@8,9#. Our investigation
found that many of the published radiation rates were
merically inaccurate~typically too low by a factor of two!.
Remarkably, we also found a lower bound~in the center-of-
mass frame! for the rate of gravitational radiation from
cosmic string loop@10#. Our method involved the use o
piecewise linear cosmic strings. In this paper we wish
provide greater insight into the behavior of such loops a
in particular, how they approximate smooth loops by exa
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ining the waveforms of the gravitational waveforms of su
loops.

It has long been known@6,11# that the first generation o
ground-based interferometric gravitational-wave detect
@for example, the Laser Interferometric Gravitational Wa
Observatory ~LIGO-I!# will not be able to detect the
gravitational-wave stochastic background produced by a
work of cosmic strings in the Universe. The amplitude of th
background is too weak to be detectable, except by a fu
generation of more advanced instruments. However, a re
paper by Damour and Vilenkin@12# has shown that the non
Gaussian bursts of radiation produced by cusps on the clo
loops of strings would be a detectable LIGO-I source. Wh
the specific examples studied here do not include these t
of cusps, the general method developed can be applie
such loops.

Our space-time conventions follow those of Misne
Thorne and Wheeler@13# so thathmn5diag(21,1,1,1)mn .
We also set\5c51, but we leaveG explicit.

II. GENERAL THEORY

In the center-of-mass frame, a cosmic string loop is spe
fied by the 3-vector positionx(t,s) of the string as a func-
tion of two variables: timet and a space-like parameters
that runs from 0 toL. ~The total energy of the loop ismL.)
When the gravitational back-reaction is neglected~a good
approximation ifGm2!1), the string loop satisfies equa
tions of motion whose most general solution in the cent
of-mass frame is

x~ t,s!5 1
2 @a~u!1b~v !#, ~2.1!

where

u5t1s, v5t2s. ~2.2!

Herea(u)[a(u1L) andb(v)[b(v1L) are a pair of peri-
odic functions, satisfying the gauge conditionua8(u)u
5ub8(v)u51, where the prime denotes differentiation wi
respect to the function’s argument. Because the functiona
©2001 The American Physical Society07-1
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andb are periodic in their arguments, the string loop is p
riodic in time. The period of the loop isL/2 since

xS t1
L

2
,s1

L

2D5
1

2
@a~ t1s1L !1b~ t2s!#

5
1

2
@a~ t1s!1b~ t2s!#5x~ t,s!.

~2.3!

With our choice of coordinates and gauge, the ener
momentum tensorTmn for the string loop is given by

Tmn~ t,y!5m E E
0<u2v<2L

du dv Gmn~u,v !

3dXt2 1

2
~u1v !Cd (3)

„y2x~u,v !…, ~2.4!

whereGmn is defined by

Gmn~u,v !5]uxm]vxn1]vxm]uxn, ~2.5!

with xm5„t,x(t,s)…. In terms ofa andb,

G005 1
2 , G0i5 1

4 @ai81bi8#, Gi j 5 1
4 @ai8bj81aj8bi8#,

~2.6!

and the trace is

Gl
l5 1

2 @211a8•b8#. ~2.7!

Alternatively we may introduce the four-vectorsAm(u)
5„u,a(u)… andBm(v)5„v,b(v)… so that

Gmn5 1
4 ~A8mB8n1B8mA8n!. ~2.8!

The gauge conditions are satisfied if and only ifA8m(u) and
B8m(v) are null vectors.

As a consequence of the time periodicity of the loop
stress tensor can be expressed as a Fourier series

Tmn~ t,y!5 (
n52`

`

eivntT̃mn~vn ,y!, ~2.9!

wherevn54pn/L and

T̃mn~vn ,y!5
2

LE0

L/2

dt e2 ivntTmn~ t,y!

5
2m

L E
0

L

duE
0

L

dv e2 ivn(u1v)/2

3Gmn~u,v !d (3)
„y2x~u,v !…. ~2.10!

The retarded solution for the linear metric perturbati
due to this source in harmonic gauge is@14#
06350
-

-

e

hmn~ t,x!54G (
n52`

` E d3y

ux2yu

3F T̃mn~vn ,y!2
1

2
hmnT̃l

l~vn ,y!Geivn(t2ux2yu).

~2.11!

Far from the string loop center-of-mass the dominant beh
ior is that of an outgoing spherical wave given by

hmn~ t,x!54G (
n52`

`
eivn(t2r )

r E d3y

3F T̃mn~vn ,y!2
1

2
hmnT̃l

l~vn ,y!GeivnV̂•y,

~2.12!

wherer 5uxu andV̂5x/r is a unit vector pointing away from
the source. Inserting Eq.~2.10! into Eq. ~2.12!, we find the
field far from a cosmic string loop is

hmn~ t,x!5
8Gm

L (
n52`

`
eivn(t2r )

r E
0

L

duE
0

L

dv

3F G̃mn~u,v !2
1

2
hmnG̃l

l~u,v !G
3e2 ivn[(u1v)/22V̂•x(u,v)] . ~2.13!

The n50 term in this sum corresponds to the static field

hmn
static~ t,x!5

8Gm

rL E
0

L

duE
0

L

dv

3FGmn~u,v !2
1

2
hmnGl

l~u,v !G , ~2.14!

5
2GmL

r
~hmn12 t̂m t̂ n!5

2GM

r
dmn ,

~2.15!

as appropriately to an object with massM as may be seen by
comparison with the Schwarzschild metric in isotropic co
dinates~see, for example, Eq.~31.22! of Ref. @13#!. We de-
note the radiative part of the field by

hmn
rad5hmn2hmn

static. ~2.16!

We may rewrite Eq.~2.13! as

hmn~ t,x!5 (
n52`

`

e2 ivnkmxm
e(n)

mn~V̂! ~2.17!

wherekm5(1,V̂) is a null vector in the direction of propa
gation and
7-2
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e(n)
mn5

8GM

rL 2 E
0

L

duE
0

L

dv

3FGmn~u,v !2
1

2
hmnGl

l~u,v !G
3eivn/2[kmAm(u)1kmBm(v)] ~2.18!

are polarization tensors. From Eq.~2.8!, it is clear that the
polarization tensors may be written in terms of the fund
mental integrals

I (n)m5
1

LE0

L

du A8m~u!eivnkmAm(u)/2 ~2.19!

and

J(n)m5
1

LE0

L

dv B8m~v !eivnkmBm(v)/2. ~2.20!

In terms of these integrals,

e005
2GM

r
@ I 0J01I•J# ~2.21a!

e0i5
2GM

r
@ I 0Ji1J0I i # ~2.21b!

ei j 5
2GM

r
$@ I iJj1Ji I j #

1d i j @ I 0J02I•J#%, ~2.21c!

where we have dropped the superscriptn for clarity.
The harmonic gauge condition requires that the polar

tion tensors satisfykmemn5 1
2 knem

m . This is easily verified
by noting thatI 05V̂•I andJ05V̂•J. These equations fol
low from the identity

E
0

L

du kmA8m~u!e2 ivnknAn(u)/2

5
2i

v E
0

L

du
d

du
e2 ivnknAn(u)/250, ~2.22!

which is a consequence of periodicity, and the correspond
equation forBm. The harmonic gauge condition does n
determine the gauge completely and we are left with
freedom to make transformations of the form

emn8 5emn1km«n1kn«m . ~2.23!

If we make the choice

«05
GM

r
@ I 0J01I•J# ~2.24a!

and
06350
-

-

g
t
e

« i5
GM

r
$@ I 0J01I•J#V i12@ I 0Ji1J0I i #% ~2.24b!

then

e0m8 50. ~2.25!

The spatial components are given by

ei j8 5
2GM

r
$@ I iJj1I jJi #1d i j @ I 0J02I•J#

1V iV j@ I 0J01I•J#1I 0@JiV j1V iJj #

1J0@ I iV j1V i I j #%, ~2.26!

and these satisfy the gauge conditions

em8
m5ei8

i50 ~2.27!

and

ej8
iV i50. ~2.28!

If we perform a spatial rotation to coordinates (x8,y8,z8)
whereV̂ points along thez8-axis, then we can write

ei 8 j 8
8 5S e1 e3 0

e3 2e1 0

0 0 0
D , ~2.29!

where

e15
2GM

r
@ I 18J182I 28J28# ~2.30a!

and

e35
2GM

r
@ I 18J281I 28J18# ~2.30b!

define two modes of linear polarization.
In terms of the original basis we can write

e15
2GM

r
~cos 2cA11sin 2cA3! ~2.31a!

and

e35
2GM

r
~2sin 2cA11cos 2cA3! ~2.31b!

with
7-3
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A15$~cos2u cos2f2sin2f!I 1J1

1~cos2u sin2f2cos2f!I 2J21sin2uI 3J3

1~11cos2u!cosf sinf~ I 2J11I 1J2!

2sinu cosu cosf~ I 3J11I 1J3!

2sinu cosu sinf~ I 2J31I 3J2!% ~2.32a!

A35$22 cosu sinf cosfI 1J1

12 cosu sinf cosfI 2J2

1cosu~2 cos2f21!~ I 2J11I 1J2!

1sinu sinf~ I 3J11I 1J3!

2sinu cosf~ I 2J31I 3J2!% ~2.32b!

whereu, f andc are the Euler angles defining the orient
tion of the frame (x8,y8,z8) relative to the original frame
~our conventions follow those of Ref.@15#!. The correspond-
ing linearly polarized waveforms are then defined by

h1/3
rad ~ t,x!5 (

n51

`

$ei4pn(t2r )/Le1/3
(n) 1e2 i4pn(t2r )/Le1/3

(n)* %.

~2.33!

Recall thathrad is obtained from the full metric perturbatio
h by dropping then50 term, which corresponds to the stat
~non-radiative! part of the field.

The power emitted to infinity per solid angle may be wr
ten as

dP

dV
5 lim

r→`

r 2

32pG
^hab,th

ab
,r& ~2.34!

5
GM2

2p (
n51

`

vn
2$^uA1

(n)u2&1^uA3
(n)u2&%.

~2.35!

III. EXAMPLES

For convenience we shall now set the length of the lo
L51, and takec50.

A. Piecewise linear loops

These are the loops for which the functionsa(u) andb(v)
are piecewise linear functions. The functionsa(u) andb(v)
may be pictured as a pair of closed loops which consis
joined straight segments. The segments join together at k
wherea8(u) andb8(v) are discontinuous.

Following the notation of Ref.@8# we take thea- and
b-loops to haveNa andNb linear segments, respectively. Th
coordinateu on thea-loop is chosen to take the value zero
one of the kinks and increases along the loop. The kinks
labeled by the indexi, wherei 50,1, . . . ,Na21. The value
of u at the i th kink is denoted byui and without loss of
generality we setu050.The segments on the loop are al
labeled byi, with the i th segment being the one lying be
06350
p

f
ks

t
re

tween thei th and (i 11)th kink. The kink atu5uNa
is the

same as the first kink atu5u050 but, even thoughu0 and
uNa

are at the same position on the loop,u050 while uNa

51. The loop is extended to all values ofu by periodicity
~with period 1!. We denoteai5a(ui), and the constant uni
vector tangent to thei th segment byai8 . Then we have

a~u!5ai1ai8~u2ui ! for uP@ui ,ui 11#, ~3.1!

and for consistency,

ai 115ai1ai8~ui 112ui !. ~3.2!

We have corresponding definitions for theb-loop, and we
follow the convention of Ref.@8# by labeling the kinks by the
index j.

It is now elementary to calculate that, fornÞ0,

I (n)5
1

2p in (
i 50

Na21 ai8

12V̂•ai8

3$e22p in(ui 112V̂•ai 11)2e22p in(ui2V̂•ai )%

5
i

2pn (
i 50

Na21 H ai8

12V̂•ai8
2

ai 218

12V̂•ai 218
J

3e22p in(ui2V̂•ai ), ~3.3!

with a similar equation forJ. If we insert these expression
into Eq. ~2.32! and then into Eq.~2.33! the sum overn for
hR/L

rad consists of terms of the form

(
n51

`
1

n2 cos 2pn@2~ t2r !1~ui2V̂•ai !1~v j2V̂•bj !#

~3.4!

which may be performed exactly using the identity

(
n51

`
1

n2 cos 2pnx5p2S x22x1
1

6D xP@0,1!. ~3.5!

This function is extended to other values by periodicity, f
example, forxP@1,2) we merely replacex by x21 in Eq.
~3.5!. Such transformations leave the coefficient ofx2 un-
changed and can only change the coefficient ofx by a mul-
tiple of 2. As a result, when the sum in Eq.~3.3! is performed
for the coefficient ofx2 the sum telescopes and gives ze
Thus, the wave form of a piecewise linear loop will be
piecewise linear function. In addition, considering the co
ficient of x all slopes of the waveform must be a multiple
some fundamental slope. The slope only changes whe
~4-dimensional! kink crosses the past light cone of the o
server at (t,x). These properties are illustrated in the e
amples below.

B. Garfinkle-Vachaspati loops

As our first set of loops we study the loops considered
Garfinkle and Vachaspati@16#. The vectorsa(u) andb(v) lie
7-4
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in a plane and make a constant angle 2a with each other
where aP(0,p/2). To be specific, we may takea(u) and
b(v) to be given by

a~u!5H u~cosa i1sina j !, uPS 0,
1

2D ,

~12u!~cosa i1sina j !, uPS 1

2
,1D ,

~3.6a!

b~v !5H v~cosa i2sina j !, vPS 0,
1

2D ,

~12v !~cosa i2sina j !, vPS 1

2
,1D .

~3.6b!

It is then straightforward to calculate that, fornÞ0,

I (n)5
eipn„12sin u cos(f2a)…21

ipn„12sin2u cos2~f2a!…
~cosa i1sina j !

~3.7a!

J(n)5
eipn„12sin u cos(f1a)…21

ipn„12sin2u cos2~f1a!…
~cosa i2sina j !

~3.7b!
06350
and correspondingly

A1
(n)5

sin2u cos~f1a!cos~f2a!2cos 2f

„12sin2u cos2~f2a!…„12sin2u cos2~f1a!…

3
1

n2p2~eipn„12sin u cos(f2a)…21!

3~eipn„12sin u cos(f1a)…21! ~3.8a!

A3
(n)5

cosu sin2f

„12sin2u cos2~f2a!…„12sin2u cos2~f1a!…

3
1

n2p2~eipn„12sin u cos(f2a)…21!

3~eipn„12sin u cos(f1a)…21!. ~3.8b!

As described above, the sum overn in Eq. ~2.33! may be
performed explicitly to yield a piecewise linear function. F
example,fP@0,p/2), h1 is given explicitly by
e which
h15
2GM

r

sin2u cos~f1a!cos~f2a!2cos 2f

„12sin2u cos2~f2a!…„12sin2u cos2~f1a!…

3

¦

„12sinu cos~f2a!…„12sinu cos~f1a!…,

0<~ t2r !,
1

4
sinu„cos~f2a!1cos~f1a!…

28~ t2r !1„11sinu cos~f1a!…„11sinu cos~f2a!…,

1

4
sinu„cos~f2a!1cos~f1a!…<~ t2r !,

1

4
„11sinu cos~f1a!…

2„12sinu cos~f2a!…„11sinu cos~f1a!…,

1

4
„11sinu cos~f1a!…<~ t2r !,

1

4
„11sinu cos~f2a!…

8S t2r 2
1

2D1„12sinu cos~f2a!…„12sinu cos~f1a!…,

1

4
„11sinu cos~f2a!…<~ t2r !,

1

2
,

~3.9!

and the waveforms are periodic int with period 1
2 . The intervals are ordered in the given way for our choice off

P@0,p/2). h3 is obtained simply by replacing the prefactor by one appropriate toA3 , as is clear from Eq.~3.8!. To obtain
the waveforms for other angles we may note that the transformationf→f1p is equivalent to changing the sign of (t
2r ), while the transformationf→p2f is equivalent to changing the sign of (t2r ) and the sign in front of the sin 2f term
in the prefactor inh3 .

Note that the apparent singularity in the waveforms in the plane of the loop (u5p/2) atf56a andf5p6a is spurious.
This may be seen by noting that the waveform is bounded by the two constant sections of the piecewise linear curv
7-5
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take on a value which tends to zero in this limit. In fact, the numerator of the prefactor also vanishes in this limit,
ensures that the amplitude tends to zero at these points and hence that even the time derivatives~which determine the power!
are finite. Along the axisu50, Eq. ~3.9! reduces to

h1/3~u50!52
2GM

r
cos 2f/sin 2fH 28~ t2r !11, 0<t2r ,

1

4

8S t2r 2
1

2D11,
1

4
<t2r ,

1

2
.

~3.10!
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Waveforms for various angles are plotted in Fig. 1 for t
case ofa5p/4, corresponding to two lines at right angle
This is the configuration which radiates minimum gravi
tional radiation for this class of loops,P564 ln 2Gm2

'44.3614Gm2.

C. Plane-line loops

As our next set of examples we study the set of loops
which a(u) lies along thez-axis andb(v) is always in the
x-y plane. This class of loops was studied by us in Ref.@17#,
where we gave an analytic result for the power lost in gra
tational radiation by such loops. Explicitlya(u) is given by

a~u!5H uk uPS 0,
1

2D
~12u!k uPS 1

2
,1D .

~3.11!

It follows that

I (n)5
eipn(12cosu)21

ipnsin2u
k. ~3.12!

FIG. 1. Plus-polarized waveforms for the Garfinkle-Vachasp
loops witha5p/4. The solid line corresponds to the wave trav
ling up thez-axis (u50). The dotted line corresponds to a directio
at elevationu5p/3 alongf50. The dashed line corresponds to
wave travelling in the plane of the loopu5p/2 at anglef5p/5.
The cross-polarized waveforms differ only in that their amplitu
has a different dependece onu andf.
06350
-

n

i-

Also J3
(n)50, so we have

A152sinu cosu~cosfJ11sinfJ2!I 3 ~3.13a!

A35sinu~sinfJ12cosfJ2!I 3 . ~3.13b!

It follows immediately that the waveforms vanish along t
z-axis.

In Ref. @17# we proved that the minimum gravitationa
radiation emitted by any loop in this class is given by taki
the b-loop to be a circle:

b~v !5
1

2p
„cos~2pv !i1sin~2pv !j …. ~3.14!

The power emitted in gravitational radiation by this loop

P516E
0

2p~12cosx!

x
dx Gm2'39.0025Gm2.

~3.15!

J(n) may be determined explicitly as

J1
(n)5

i

2
@ei (n11)(f2

p
2)Jn11~nsinu!

2ei (n21)(f2
p
2)Jn21~nsinu!# ~3.16a!

J2
(n)5

1

2
@ei (n11)(f2

p
2)Jn11~nsinu!

1ei (n21)(f2
p
2)Jn21~nsinu!#. ~3.16b!

This gives the equivalent forms

A1
(n)52

sin„pn sin2~u/2!…cosu

sinu
@Jn11~n sinu!

1Jn21~nsinu!#
1

pn
eipnsin2(u/2)1 in(f2p/2)

522
sin„pnsin2~u/2!…cos~u!

sin2u
Jn~nsinu!

3
1

pn
einf2 in(p/2)cosu ~3.17!

ti
7-6
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and

A3
(n)5 isin„pnsin2~u/2!…sinu@Jn11~nsinu!

2Jn21~n sinu!#
1

pn
eipn sin2(u/2)1 in(f2p/2)

52i
sin„pnsin2~u/2!…

sinu
Jn8~nsinu!

3
1

pn
einf2 in(p/2)cosu. ~3.18!

The corresponding waveforms for various choices ofu are
plotted in Figs. 2 and 3.~As the system simply rotates cylin
drically, with time the choice off is irrelevant, correspond
ing simply to a shift int2r .)

FIG. 2. Plus-polarized waveforms for the circle-line loop. Plo
ted is h1 /sinu for u5p/2 ~solid line!, u5p/4 ~dashed line! and
u5p/20 ~dotted line!. The choice of scaling is chosen on the ba
of the asymptotic form Eq.~3.19!.

FIG. 3. Cross-polarized waveforms for the circle-line loop. Pl
ted is h3 /sinu for u5p/2 ~solid line!, u5p/4 ~dashed line! and
u5p/20 ~dotted line!. The choice of scaling is chosen on the ba
of the asymptotic form Eq.~3.20!.
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In the plane of theb-loop h1 vanishes so that the wav
becomes linearly polarized. On the other hand, as we
proach the axisu50 the fundamental mode (n51 term!
dominates and we have

h1;2
GM

r
sinu sin„4p~ t2r !1f… ~3.19!

and

h3;
GM

r
sinu cos„4p~ t2r !1f….

~3.20!

Thus the wave approaches circular polarization but its a
plitude vanishes as sinu.

As in Ref. @17# we may also consider the case where t
b-loop forms a regularN-sided polygon. In Figs. 4 and 5 w

-

FIG. 4. The solid lines are the plus-polarized waveforms for
hexagon-line loop withu5p/4 and withf50 ~left through! and
f55p/6 ~right through!. The dotted lines are the correspondin
waveforms for the circle-line loop.

FIG. 5. The solid lines are the cross-polarized waveforms for
hexagon-line loop withu5p/4 and withf50 ~left peak! and f
55p/6 ~right peak!. The dotted lines are the corresponding wav
forms for the circle-line loop.
7-7
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compare the waveform for the circle with that for
regular hexagon for which P5(40 ln 5232 ln 2)Gm2

'42.1968Gm2. As mentioned above a change inf for the
circle-line loop corresponds simply to a shift int; however,
this is no longer the case for the polygon for which the wa
form will only repeat every 2p/N. Hence in Figs. 4 and 5
we include hexagon-line waveforms for bothf50 and f
55p/6 ~this choice was made simply to disentangle the t
graphs as far as possible!. It is remarkable that even for suc
a crude approximation to the circle as a hexagon, the wa
form of the hexagon-line loop provides remarkably go
piecewise linear approximations to the circle-line wav
forms.

IV. CONCLUSION

Given the remarkable agreement of the waveforms it is
interest to compare the instantaneous power defined by

P1/35
GM2

2p (
n51

`

vn
2uA1/3

(n) u2 ~4.1!

in the different polarizations. While this quantity is n
gauge invariant its time average is and gives the total po
radiated in each polarization. By comparing the function
the polygon-line loops with the circle-line loop we can ce
tainly see that their time averages agree well. As the wa
form for a piecewise linear loop is a piecewise linear fun
r
e,

S

al

06350
-

o

e-

-

f

er
r

e-
-

tion, the instantaneous power, which is the square of
derivative, will be piecewise constant. For example, in Fig
we compare the instantaneous power in the plus-polariza
between the circle-line loop and a regular 24-sided polyg
line loop. The very close agreement between the two cur
provides further evidence for the validity of the piecewi
linear approximation of string loops used by@8#.

FIG. 6. Comparison of the instantaneous power in pl
polarized waves for the 24-sided polygon-line loop~dotted line! and
for the circle-line loop~solid line! with u5p/4 andf50.
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