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Waveforms for gravitational radiation from cosmic string loops
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We obtain general formulas for the plus- and cross-polarized waveforms of gravitational radiation emitted
by a cosmic string loop in a transverse, tracelessmchronous, harmonigauge. These equations are then
specialized to the case of piecewise linear loops, and it is shown that the general waveform for such a loop is
a piecewise linear function. We give several simple examples of the waveforms from such loops. We also
discuss the relation between the gravitational radiation by a smooth loop and by a piecewise linear approxi-

mation to it.
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[. INTRODUCTION ining the waveforms of the gravitational waveforms of such

loops.

Cosmic strings are one dimensional topological defects It has long been knowf6,11] that the first generation of
that may have formed if the vacuum underwent a phase trarground-based interferometric gravitational-wave detectors
sition at a very early time breaking a lodd((1) symmetry [for example, the Laser I.nterferometric Gravitational Wave
[1-4]. The resulting network of strings is of cosmological Observatory (LIGO-I)] will not be able to detect the
interest if the strings have a large enough mass per unfiravitational-wave stochastic background produced by a net-
length, u. If Gu/c?~1075, whereG is Newton’s constant WOrk of cosmic strings in the Universe. The amplitude of this
andc is the speed of lighti.e. u~ 10?2 g/cm), then cosmic background is too weak to be detectable, except by a future

strings may be massive enough to have provided the densi n:;agloBg;@ﬁ:i?g‘@?ecfﬂ[{ngs]tﬁuargesrﬂ]tg{,v':?ﬁvaetvtiré z;(;?]c_:ent
perturbations necessary to produce the large scale structu per by -

) . . aussian bursts of radiation produced by cusps on the closest
we observe in the Universe today and could explain the patl—O

i f anisotrobi b dinth o b ops of strings would be a detectable LIGO-I source. While
gerronu(rjmd?g]lso ropies observed in the cosmic microvave athhe specific examples studied here do not include these types

) ) . of cusps, the general method developed can be applied to
The main constraints o come from observational ¢ ch loops.
bounds on the amount of gravitational background radiation @, space-time conventions follow those of Misner

emitted by cosmic string loop$[4,6,7 and references Thome and Wheelef13] so that nu,=diag(-1,1,1,1),,.
therein. A loop of cosmic string is formed when two sec- e also sefi=c=1, but we leaveG explicit.

tions of a long stringa string with length greater than the
horizon length meet and intercommute. Once formed, loops
begin to oscillate under their own tension, undergoing a pro-
cess of self-intersectioffragmentation and eventually cre- In the center-of-mass frame, a cosmic string loop is speci-
ating a family of non-self-intersecting oscillating loops. Thefied by the 3-vector positioR(t,o) of the string as a func-
gravitational radiation emitted by each loop as it oscillategion of two variables: timet and a space-like parameter
contributes to the total background gravitational radiation. that runs from 0 td_. (The total energy of the loop iaL.)

In a pair of papers, we introduced and tested a nev\y\/hen the gravitational back-reaction is negleC(angOd
method for calculating the rates at which energy and momer@Pproximation ifGu?<1), the string loop satisfies equa-
tum are radiated by cosmic strin§8,9]. Our investigation tions of motlon_whose most general solution in the center-
found that many of the published radiation rates were nuof-mass frame is
merically inaccuratdtypically too low by a factor of twh
Remarkably, we also found a lower boutid the center-of- x(t,0)= 3[a(u)+b(v)], (2.1
mass framg for the rate of gravitational radiation from a
cosmic string loop[10]. Our method involved the use of where
piecewise linear cosmic strings. In this paper we wish to
provide greater insight into the behavior of such loops and, u=t+o, v=t—o. (2.2
in particular, how they approximate smooth loops by exam-

Herea(u)=a(u+L) andb(v)=b(v+L) are a pair of peri-

odic functions, satisfying the gauge conditida’(u)]
*Email address: ballen@dirac.phys.uwm.edu =|b’(v)|=1, where the prime denotes differentiation with
"Email address: ottewill@relativity.ucd.ie respect to the function’s argument. Because the functions
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andb are periodic in their arguments, the string loop is pe-

riodic in time. The period of the loop i/2 since

- ;[a(t+a+ L)+b(t—a)]

= %[a(t+ o) +b(t—o)]=x(t,0).

(2.3

With our choice of coordinates and gauge, the energy-

momentum tensof #” for the string loop is given by

TEY(t,y) = p f f du dv G**(u,v)

Os<u—-v=2L
1
X 5(t— E(u+u))5<3>(y—x(u,v)), (2.9

whereG*” is defined by
G*¥(u,v) = X X"+ d,x* 9 X",

(2.9

with x*= (t,x(t,o)). In terms ofa andb,

G®¥=3, G¥=i[a/+b], G'=i[af bj +ajby],
(2.6
and the trace is
=i[-1+a'-b']. 2.7

Alternatively we may introduce the four-vecto&s*(u)
=(u,a(u)) andB*(v)=(v,b(v)) so that
GH'=; (A'*B'"+B'*A’"). (2.9

The gauge conditions are satisfied if and onlAif*(u) and
B’#(v) are null vectors.

As a consequence of the time periodicity of the loop the

stress tensor can be expressed as a Fourier series

©

2 eontT,(wn.y), (2.9

Tu(ty)=
wherew,=4mn/L and

~ 2 (L2 {ot
TMV(wnvy):Efo dte_"”nT’uV(t,y)

_ Z—MJLdqudv e iop(utv)/2
L Jo 0

X G*¥(u,v) 83 (y—x(u,v)).(2.10
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n—wf|x yl

h(tX)=4G X

"”n(tf‘xfﬂ)_

,uv(wnly) 7],uv )\(wn!y)

(2.11

Far from the string loop center-of-mass the dominant behav-
ior is that of an outgoing spherical wave given by

|wn(t r)
f Py

T,uv(wr'liy) 7];1,11

h,,(t,x)=4G >

n=—o

)\(wn!y) Iwnﬂ-y,

(2.12

wherer = |x| andQ=x/r is a unit vector pointing away from
the source. Inserting Eq2.10 into Eq. (2.12), we find the
field far from a cosmic string loop is

SG,LL *° eiwn(t—r) L L
o= 3 [ au a

X

- 1
G,(uv)— nw M(u,v)

% e—iwn[(u+u)/2—f2~x(u,v)] _

(2.13

Then=0 term in this sum corresponds to the static field

) 8Gu (L L
stati _
h%e c(t,x)——rL fodufodv

1
X GMV(u,v)—EnWG)‘x(u,v) , (2.19
2G,uL i 7, 28M
= (77/1,1/ 2t tv):T(S/LVl
(2.15

as appropriately to an object with madsas may be seen by
comparison with the Schwarzschild metric in isotropic coor-
dinates(see, for example, Eq31.22 of Ref.[13]). We de-
note the radiative part of the field by

0 .
h:f‘,,— h,,— hstate, (2.1

We may rewrite Eq(2.13 as
hu(tx)= > e lenlkwe™ (Q) (2.17)

n=—o

The retarded solution for the linear metric perturbationwherek®=(1,0) is a null vector in the direction of propa-

due to this source in harmonic gauge 1<

gation and
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8GM (L L GM
e(n)w:TZ_J duf dv gi=——{[1oJo+1- 310 +2[16Ji+ ol ]} (2.24D
0 0
1 A then
X G,U,V(uvv)_zn,u,VG )\(U,U)
@l @n/2[K A% (U) +k,BH(v)] 2.18 €,=0. (2.2
are polarization tensors. From E@.8), it is clear that the The spatial components are given by
polarization tensors may be written in terms of the funda-
mental integrals , 2GM
e =——A[hJ+13i]+ 8[lodo—1-J]
1L .
(D) — ! wnk  A¥(U)/2
e Jod““(”)e' e 219 Q0 [16doH+1- 31+ (30 + 03]
and + 3o 1iQ;+ Q113 (2.26
1L , and these satisfy the gauge conditions
J<“>M=Ef dv B'#(v)e'onkuB ()72, (2.20
0 ol —
e, =¢'=0 (2.27
In terms of these integrals,
and
_2GM lodo+1-J 2.21
&0~ Lodo® 1] (2213 e 'Q;=0. (2.28
2GM : ; i -
ey = [1odi+Jol ] (2.210 If we perform a spatial rota_tlon to coordlnates’_(y ,Z")
r where Q) points along the'-axis, then we can write
2GM
&= ——{[1i3;+3i1;] & e 0
ell/j/: e>< _e+ 0 ) (229
+ 6ij[1odo— 131}, (2.219 0 0 0
where we have dropped the superscrigor clarity.
. " X .__where
The harmonic gauge condition requires that the polariza-
tion tensors satisf;k”“eﬂfé k,e,”. This is easily verified 2GM
. 0__ A 0__ A .
by noting tha_tl —Q~I andJ”=€Q-J. These equations fol- e =——[11dy —135] (2.30a
low from the identity r
deu kAT E(U)e ok A W12 and
0 2
i 2GM 1/ ds+15:d 2.30
L = ’ ’ ’ ’ .
2 duie—iwnkVA”(U)/zzo (2.22 ex=—[l1da+1231/] (2.30b
w Jo du '
which i n N f periodicity. and th " ndindefine two modes of linear polarization.
ch IS a consequence ot periodicity, a © Correspo 9 In terms of the original basis we can write
equation forB#. The harmonic gauge condition does not
determine the gauge completely and we are left with the
freedom to make transformations of the form e+:2C:M (COS 2JA., +5sin 20A,.) (2.313
€,=€., 1k, tKe,. (2.23
. and
If we make the choice
GM 2GM i
SO:T[IOJO+I’J] (224a eX=T(—S|n 2¢A++0052¢AX) (231[:)

and with
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A+={(c0520 cogp—sirt¢)l J; tween theith and {+ 1)th kink. The kink atu=uy_ is the
same as the first kink at=uy=0 but, even thoughi, and
uy, are at the same position on the loap,=0 while Un,
+(1+cog)cose sing(1,d,+1,J5) =1. The loop is extended to all values ofby periodicity
(with period 1. We denoteg;=a(u;), and the constant unit
vector tangent to théth segment bya' . Then we have

+(coggsirt¢p—cop)l,J,+sinf bl 35

—sinfcosé cose(lzd+11J3)

—sinfcosdsing(l,J3+133,)} (2.323 aU)=a+a/(u—u) for uelu u,y] 3.0

Ax={=2cosfsing cos¢l,J; and for consistency

+2 cosé sin ¢ cosel »J,

+c0s0(2 cofp—1)(1,d,+1,35)

ai1=a+a (U1~ Uup). (3.2

We have corresponding definitions for theloop, and we

+sindsing(l3Jdy+11J3) follow the convention of Ref.8] by labeling the kinks by the
o indexj.
sind cosg(l2J3+133)} (2.32 It is now elementary to calculate that, for= 0,
wheref, ¢ and are the Euler angles defining the orienta- Ny—1 ,
tion of the frame X’,y’,z") relative to the original frame [ = 1 4
(our conventions follow those of Rdfl5]). The correspond- 27in <0 1- 0. a/

ing linearly polarized waveforms are then defined by A .
X{e*Zﬂ'i”(UH—l*Q'awl)_e*Z‘ﬂ'i”(Ui’Q'ai)}

)

h:_a;ix(tlx) — z {ei477n(t—r)/LeS[1/)>< + e—i4wn(t—r)/LeS[1/);}‘ N1 , ,
n=1 _ | & &
(2.33 2mn <o 1_Q'a1'/ 1_Q'a1'/—1
rad ; i i i N
Recall thath™®is obtained from the full metric perturbation X e~ 2min(u-0-a) 3.3

h by dropping then= 0 term, which corresponds to the static

(non-radiativé part of the field. _ _with a similar equation fod. If we insert these expressions
The power emitted to infinity per solid angle may be writ- j,:o Eq.(2.32 and then into Eq(2.33 the sum oven for

ten as hi2d consists of terms of the form

dP r? o
—=lim==—=(h,4:h*? (2.39 1 A A
dQ Hoo327TG< p"0) nzl ~3C08 2mn[2(t— 1)+ (U= Q- &)+ (0= Q-b))]
o 3.4
_GMzz 2 A(n)z + A(n)2 ( )
T o A wn{([A19+ (AR} which may be performed exactly using the identity
1 1
> —200527Tnx=772<x2—x+— xe[0,1). (3.5
IIl. EXAMPLES A=1n 6
For convenience we shall now set the length of the looprhis function is extended to other values by periodicity, for
L=1, and take/=0. example, forxe[1,2) we merely replac& by x—1 in Eq.
(3.5). Such transformations leave the coefficientxdfun-
A. Piecewise linear loops changed and can only change the coefficient by a mul-

: . tiple of 2. As a result, when the sum in E§.3) is performed
These are the loops for which the functiafs) andb(v) for the coefficient ofx? the sum telescopes and gives zero.

are pltgace\(wtse I|(;1ear funcyonfs. lThe;ulncncn(:s?]_aEdb(v)_ ¢ hus, the wave form of a piecewise linear loop will be a
mgydetplp Lﬁ{e asa tpal_r”:) close ?OPS.’ V\tl Ic thconsj{'i. %biecewise linear function. In addition, considering the coef-
joned straight Segments. 1he Segments Join together at KiNkgsient of x all slopes of the waveform must be a multiple of

wherea’(u) andb’(v) are discontinuous. some fundamental slope. The slope only changes when a

b IFoIIowmhg the notdatlor|1_ of Ref[8] we take the_a— f‘ndh (4-dimensiongl kink crosses the past light cone of the ob-
loops to aveéN, andNy inear segments, respectively. The server at {,x). These properties are illustrated in the ex-
coordinateu on thea-loop is chosen to take the value zero at

gmples below.

one of the kinks and increases along the loop. The kinks ar
labeled by the index, wherei=0,1, ... N,—1. The value

of u at theith kink is denoted by; and without loss of
generality we setip=0.The segments on the loop are also As our first set of loops we study the loops considered by
labeled byi, with the ith segment being the one lying be- Garfinkle and Vachaspdtl6]. The vectors(u) andb(v) lie

B. Garfinkle-Vachaspati loops
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in a plane and make a constant anglke ®ith each other and correspondingly
where « € (0,77/2). To be specific, we may taka(u) and
b(v) to be given by

( 1 i ) —
u(cosai+sinaj), e (05)' A~ sirfd cog ¢+ a)coq ¢— o) — CcOS 2¢
a(u) =< . T (1-sirt0co@(d—a))(1—sirto cod(p+ a))
\ (1—u)(cosai+sinaj), ue E,1 , " 1 aimn(i—sing cos@s—a))_
68 72 )
. 1 X (ei mn(1—sin 6 cos(p+ a)) _ 1) (3.83
v(cosai—singj), ve(oi),
b(v)= 1 1
1- i—sinaj -
L (1-v)(cosai—sina)), ve 701 A= cosf sin2¢
(3.6 X (1—sif8 co2(d—a))(1—sirt o cod(+ a))
It is then straightforward to calculate that, for 0,
imn(1—sin —a))__
eiq-rn(lfsinacos@:fa))_l anﬂ'z(el " snocosem ) 1)
(M= . (cosai+sinaj) _ .
imn(1—sirf0cos(d—a)) X (gl -sindcosp+a)) 1) (3.8b
(3.7

ei wn(1l—sin 6 cos(p+ a)) _ 1
g = (cosai—sinaj)

imn(1l—sirfcos(p+ a))

As described above, the sum owerin Eq. (2.33 may be
performed explicitly to yield a piecewise linear function. For
(3.7b example,¢ e[ 0,7/2), h, is given explicitly by

_2GM sirfé cog ¢+ a)cod ¢— o) —Ccos 2¢
T (1—sirP0co(d—a))(1—sirPoco(d+ a))

( (1-sinfcog¢p—a))(1l—sinfcod ¢+ a)),

+

Os(t—r)<%sin 0(cof p—a)+cod p+ a))
—8(t—r)+(1+sinfcog p+ a))(l+sinfcod d—a)),
%sin 0(cog ¢p— a)+coq ¢+ a))s(t—r)<%(1+sinecos(¢+ a))

—(1—sinfcog ¢p— a))(1+sinfcog d+ a)), (3.9

%(1+sinecos(¢+ a))s(t—r)<%(1+sinacos(¢—a))

+(1—sinfcog ¢p—a))(A—sinfcog ¢+ a)),

o 1
t=r—>

1 1
K Z(1+sinecos(¢—a))s(t—r)<§,

and the waveforms are periodic inwith period 3. The intervals are ordered in the given way for our choice¢of
€[0,7/2). hy is obtained simply by replacing the prefactor by one appropria#,to as is clear from Eq(3.8). To obtain
the waveforms for other angles we may note that the transformatienp+ = is equivalent to changing the sign of (
—r), while the transformatiory— 7— ¢ is equivalent to changing the sign df<r) and the sign in front of the sin@ term
in the prefactor irh,, .
Note that the apparent singularity in the waveforms in the plane of the I@ep(2) at =+ a and¢= 7= « is Spurious.
This may be seen by noting that the waveform is bounded by the two constant sections of the piecewise linear curve which
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take on a value which tends to zero in this limit. In fact, the numerator of the prefactor also vanishes in this limit, which
ensures that the amplitude tends to zero at these points and hence that even the time ddvrivathaietermine the power
are finite. Along the axi®=0, Eq. (3.9 reduces to

2GM i
h,,«(6=0)=— COS 2¢p/sin2 ¢ 1 1 1 (3.10
8(t—r—§ +1, Zst—r<§.
|
Waveforms for various angles are plotted in Fig. 1 for theAlso 3(3“)=0, so we have
case ofa= /4, corresponding to two lines at right angles.
This is the configuration which radiates minimum gravita- A, =—sinfcosh(cospl,+sindd,)l;  (3.133
tional radiation for this class of loopsP=64In2Gu?
~44.36145 u>. A, =sind(singpJd;—cospd,)l 3. (3.13b

It follows immediately that the waveforms vanish along the
_ z-axis.
As our next set of examples we study the set of loops in |, Ref. [17] we proved that the minimum gravitational

which a(u) lies along thez-axis andb(v) is always in the  radiation emitted by any loop in this class is given by taking
x-y plane. This class of loops was studied by us in RET],  the p-loop to be a circle:

where we gave an analytic result for the power lost in gravi-
tational radiation by such loops. ExplicitB(u) is given by

C. Plane-line loops

1
b(v)=E(COE{Zwv)i—FSin(Zﬂ'v)j). (3.19

1
uk ue ( 0’5) . - o . .
a(u)= . (3.11) The power emitted in gravitational radiation by this loop is
(1-uwk UE(—,].). 2m(1—CcosX) ) )
2 P=16f —— dxGu?~39.00256 %,
0
It follows that (3.15
el mM(1-cost) _ 1 J™ may be determined explicitly as
M=k, (3.12
i mnsin’ o P .
IV =S{eMDET 2, (nsing)
n
osl —e (= D=2)3 _ (nsing)] (3.163
06l m_Lrgimine-D i
' J2'=5le 2/Jp41(NsinG)
0471 . 7'r )
+e (V=23 (nsing)].  (3.16h
2 This gives the equivalent forms
0 0 02 a3 sin(zrn sir?( 6/2))cosé _
A= — e [Jns1(nsing)
-0.21
i 1. 2 .
+Jn,1(nsm0)]—ne'”“s' (012)+in(¢p—m/2)
FIG. 1. Plus-polarized waveforms for the Garfinkle-Vachaspati &
loops with@= /4. The solid line corresponds to the wave travel- sin(znsiré( 8/2))cos §
ling up thez-axis (#=0). The dotted line corresponds to a direction =—2 (m _( ))cos 6) J,(nsin @)
at elevationd= 7/3 along¢=0. The dashed line corresponds to a Sy
wave travelling in the plane of the loof= /2 at angle¢= =/5.
The cross-polarized waveforms differ only in that their amplitude i ing—in(m/2)cosd
: X —¢ (3.17
has a different dependece @nand ¢. n
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0.271

-0.2T

-0471

0.6

03T

FIG. 2. Plus-polarized waveforms for the circle-line loop. Plot-

ted ish, /sin@ for 6= /2 (solid line), 6= m/4 (dashed ling and

PHYSICAL REVIEW D63 063507

FIG. 4. The solid lines are the plus-polarized waveforms for the
hexagon-line loop withh= /4 and with =0 (left through and

0= /20 (dotted ling. The choice of scaling is chosen on the basis =5#/6 (right through. The dotted lines are the corresponding

of the asymptotic form Eq3.19.

and

A =sin(7nsir?( 6/2))sin [ I, 1(nsin 6)

1. .
_ ; = Jimn sir?(012)+in(p— /2)
Jh—1(nsin 0)]Tme

o S|n(7rn§|n2( 612)) 31(nsing)
sing

i
X%e|n¢7|n(7r/2)cosf)_ (3.18)

The corresponding waveforms for various choicesfddre
plotted in Figs. 2 and 3As the system simply rotates cylin-
drically, with time the choice ofp is irrelevant, correspond-
ing simply to a shift int—r.)

FIG. 3. Cross-polarized waveforms for the circle-line loop. Plot-
ted ishy /sin@ for 6= /2 (solid line), 6= m/4 (dashed ling and
0= /20 (dotted ling. The choice of scaling is chosen on the basis =5#/6 (right peak. The dotted lines are the corresponding wave-

of the asymptotic form Eq.3.20.

waveforms for the circle-line loop.

In the plane of thé-loop h, vanishes so that the wave
becomes linearly polarized. On the other hand, as we ap-
proach the axis§=0 the fundamental modenE&1l term
dominates and we have

GM )
h+~—TSII’IHS|n(4’77(t—I')+¢) (3.19
and

GM |
hy~ —sin ocod4m(t—r)+ ¢).
(3.20

Thus the wave approaches circular polarization but its am-
plitude vanishes as sih

As in Ref.[17] we may also consider the case where the
b-loop forms a regulaN-sided polygon. In Figs. 4 and 5 we

FIG. 5. The solid lines are the cross-polarized waveforms for the
hexagon-line loop withh= /4 and with $=0 (left peak and ¢

forms for the circle-line loop.
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compare the waveform for the circle with that for a
regular hexagon for which P=(40In5-32In2)Gu?
~42.196&% 1. As mentioned above a change dnfor the
circle-line loop corresponds simply to a shift inhowever,
this is no longer the case for the polygon for which the wave-
form will only repeat every Z/N. Hence in Figs. 4 and 5
we include hexagon-line waveforms for bo#h=0 and ¢
=57/6 (this choice was made simply to disentangle the two
graphs as far as possiblét is remarkable that even for such |
a crude approximation to the circle as a hexagon, the wave
form of the hexagon-line loop provides remarkably good
piecewise linear approximations to the circle-line wave- Al , '
forms. T R

{
|
]
i
8

i oy

IV. CONCLUSION

R

e,
0.2 “ 0.3 04 0.5

0

Given the remarkable agreement of the waveforms it is of _ _ _
interest to compare the instantaneous power defined by FIG. 6. Comparison of the instantaneous power in plus-
polarized waves for the 24-sided polygon-line Iqdptted ling and
for the circle-line loop(solid line) with = 7/4 and¢=0.

GM?
P+/><:? 2 wﬁ|A(+n/)><|2 (4.1)

n=1

tion, the instantaneous power, which is the square of its
in the different polarizations. While this quantity is not derivative, will be piecewise constant. For example, in Fig. 6
gauge invariant its time average is and gives the total powewe compare the instantaneous power in the plus-polarization
radiated in each polarization. By comparing the function forbetween the circle-line loop and a regular 24-sided polygon-
the polygon-line loops with the circle-line loop we can cer-line loop. The very close agreement between the two curves
tainly see that their time averages agree well. As the waveprovides further evidence for the validity of the piecewise
form for a piecewise linear loop is a piecewise linear func-linear approximation of string loops used [8].
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