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Black hole excision for dynamic black holes
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We extend the previous work on 3D black hole excision to the case of distorted black holes, with a variety
of dynamic gauge conditions that respond naturally to the spacetime dynamics. We show that in evolutions of
highly distorted, rotating black holes, the combination of excision and the gauge conditions we use is able to
drive the coordinates to a frame in which the system looks almost static at late times. Further, we show for the
first time that one can extract accurate wave forms from these simulations, with the full machinery of excision
and dynamic gauge conditions. The evolutions can be carried out for a long time, far exceeding the longevity
and accuracy of better resolved 2D codes.
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INTRODUCTION

The long term simulation of black hole~BH! systems is
one of the most challenging and important problems in
merical relativity. For BHs, the difficulties of accuracy an
stability in solving Einstein’s equations numerically are e
acerbated by the special problems posed by spacetimes
taining singularities. At a singularity, geometric quantiti
become infinite and cannot be handled easily by a compu

Traditionally, in the 311 approach the freedom in choo
ing the slicing has been used to slow down the approac
the time slices towards the singularity~‘‘singularity avoid-
ance’’!, while allowing them to proceed outside the BH@1#.
Singularity avoiding slicings are able to provide accur
evolutions, allowing one to study BH collisions and extra
wave forms@2#, but only for limited evolution times. Com
bining short full numerical evolutions with perturbatio
methods, one can even study the plunge from the last st
orbit of two BHs@3#. But a breakthrough is required to pus
numerical simulations far enough to study orbiting BHs,
quiring accurate evolutions exceeding time scales ot
'100M . In 3D, traditional approaches have not been able
reach such time scales, even in the case of Schwarzs
BHs. Characteristic evolution codes, on the other hand,
well adapted to the long-term evolution of single black ho
@4#, but here we concentrate on noncharacteristic method
their ease of generalization to multiple black holes.

A more promising approach involves cutting away t
singularity from the calculation~‘‘singularity excision’’!, as-
suming it is hidden inside an apparent horizon~AH! @5,6#.
This work has been progressing, from early spherical pr
of principle @6# to recent 3D developments@4,7–10#. How-
ever, beyond a few spherical test cases@11,12#, excision has
yet to be used in conjunction with live gauge conditio
designed to respond to both the dynamics of the BH and
coordinate motion through the spacetime.

In this paper we extend recent excision work@8# to the
case of distorted, dynamic BHs in 3D using a new class
gauge conditions. These gauge conditions not only resp
naturally to the true spacetime dynamics, but alsodrive the
coordinates to a frame where the system looks almost s
at late times. We show that not only are the evolutions acc
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-

-
on-

er.

of

e
t

le

-

o
ild
re
s
or

f

e

f
nd

tic
-

rate as indicated by the mass associated with the appa
horizon, but also that very accurate wave forms can be
tracted, even when the waves carry only a tiny fraction of
energy of the spacetime. We also show that the 3D evo
tions of dynamic BHs we are now able to perform, are su
rior, in terms of accuracy, stability, and longevity, to previo
311 BH simulations, whether carried out in full 3D or eve
when restricted to 2D. These results indicate that BH ex
sion can be made to work under rather general circumsta
and can significantly improve the length of the evolution
and the accuracy of the waveforms extracted, which will
crucial for gravitational wave astronomy.

INITIAL DATA

For this paper we consider single distorted BH spacetim
@13,14# that have been used to model the late stages of
coalescence@15,16#. Following @13,14#, the initial 3-metric
gab is chosen to be

ds25C4@e2q~dh21du2!1sin2u df2#, ~1!

where the ‘‘Brill wave’’ function q is a general function of
the spatial coordinates, subject to certain regularity and
off restrictions, that can be tailored to produce very distor
3D BHs interacting with nonlinear waves. The radial coor
nateh is logarithmic in the Cartesian radiusr. There are two
classes of data sets used here corresponding to even-
odd-parity distortions. The even-parity data have vanish
extrinsic curvature, while the cases containing an odd-pa
component have nontrivial extrinsic curvatureKi j . As
shown in @17,18#, these distorted BH data sets can inclu
rotation as well, corresponding to spinning, distorted B
that mimic the early merger of two orbiting BHs. Hence th
make an ideal test case for the development of our te
niques. We leave the details of the construction of these
initial data sets to Refs.@17,18#. An important point that we
wish to emphasize is that such data arenot of the Kerr-Schild
form with ingoing coordinates at the horizon. That form
initial data sets has been recently advocated since it is
conformally flat@19# and is well adapted to inward propag
tion of quantities at the horizon.
©2001 The American Physical Society01-1
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EVOLUTION AND EXCISION PROCEDURES

Our simulations have been performed using what we re
to as the Baumgarte-Shapiro-Shibata-Nakamura~BSSN! ver-
sion of the 311 evolution equations@20–23#, which we
have found to have superior stability properties when co
pared to standard formulations. As detailed in@22–24#, we
actively force the trace of the conformal-traceless extrin
curvatureÃi j to remain zero, and we use the independen
evolved ‘‘conformal connection functions’’G̃ i only in terms
where derivatives of these functions appear. All the simu
tions described below have been performed using a 3-
iterative Crank-Nicholson scheme and a radiative~Sommer-
feld! outer boundary condition. We refer the reader to R
@24# for the details of the numerical implementation.

We use the simple excision approach described in@8#. Our
algorithm is based on the following ideas:~a! excise acube
contained inside the AH that is well adapted to Cartes
coordinates,~b! use a simple boundary condition at the sid
of the excised cube: copying of time derivatives from th
values one grid point out along the normal directions,~c! use
centered~non-causal! differences in all terms except for ad
vection terms on the shift~terms of the formb i] i). For these
terms we use second order upwind along the shift direct
These simplifications in excision reduce the complexity
the algorithm, avoid delicate interpolation issues near
excision boundary, and have allowed us to make ra
progress. Currently, the method is implemented for n
moving excision regions, although they are allowed to gro
One can hope that colliding black holes can be treated e
with this restriction through the use of co-moving coord
nates. A more detailed description of our excision algorit
can be found in Ref.@8#.

GAUGE CONDITIONS

For the lapse, we use a hyperbolic slicing condition m
tivated by the Bona-Masso´ family of slicing conditions@25#

] ta52a2f ~a!~K2K0! ~2!

whereK is the trace of the extrinsic curvature,K0 is its value
in the initial data, andf is a ~positive! function of a which
we specify below. With this condition, the lapse will evolv
as long asa2f (a) andK2K0 are non-vanishing.

For the shiftb i we have considered families of elliptic
parabolic, and hyperbolic conditions that relate the shift w
the evolution of the conformal connection functionsG̃ i . We
obtain parabolic and hyperbolic shift conditions by maki
either] tb

i or ] t
2b i proportional to the elliptic operator forb i

contained in the ‘‘gamma freezing’’ condition] tG̃
k50 ~see

Ref. @24#!, itself closely related to the well known minima
distortion family @1#. Elliptic conditions have the disadvan
tage of requiring boundary data at the excision region wh
it is difficult to know what to impose, while parabolic con
ditions force a strong restriction on the stability of the diffe
encing scheme:Dt}(Dx)2 ~this is true for explicit schemes
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implicit schemes have no such restriction!. We have then
concentrated on hyperbolic conditions of the form

] t
2b i5z ] tG̃

i2j ] tb
i , ~3!

wherez andj are positive functions. We call such evolutio
conditions for the shift hyperbolic ‘‘driver’’ conditions~see
@26#!.

In the spirit of the puncture method for evolutions@27#,
we use a BSSN scheme with the usual time-dependent
formal factore4f and an additional time-independent confo
mal factorC4 that comes from the initial data. In our ex
amples we usez5k/C4, wherek is a positive constant. The
division byC4 helps to slow down the evolution of the shi
in the vicinity of the black hole. We have found it importa
to add a dissipation term with a constant coefficientj in
order to reduce some initial oscillations in the shift. Noti
that in contrast withk, the coefficientj is not dimensionless
~it has dimensions of inverse length!, so in practice we re-
scale it using the total mass of the system. Experience
shown that by tuning the value ofj we can almost freeze th
evolution of the system at late times.

The parameters used for all simulations described be
are:a is given by Eq.~2!, with f 52/a, b i is given by Eq.
~3! with z50.75/C4, j53/M @M is the initial Arnowitt-
Deser-Misner~ADM ! mass of the system#. As initial condi-
tions we takea51, b i50, ] ta5] tb

i50, except in one
case mentioned below where we perform a single maxi
slicing solve to obtain a more appropriate initial lapse. Giv
these initial conditions, we let the gauge conditions take c
of the rest. We use the same gauge parameters for all
results in this paper, whether they are applied to Schwa
child, distorted, or rotating BHs, showing the strength a
generic nature of these conditions.

RESULTS

The first example we show is Schwarzschild, written
the standard isotropic coordinates used in many BH evo
tions. Note that with this initial data and our starting gau
conditions, the BH should evolve rapidly. Ifa andb i were
held fixed at their initial values, the slices would hit th
singularity att5pM . Instead,a andb i work together with
excision to rapidly drive the coordinates to a frame where
system looks essentially static, corresponding to the t
physical situation.

In Fig. 1 we show the radial metric functiongrr /C4 vs
time. The grid covers an octant with 1283 points (Dx50.2,
M52). Appropriate symmetry conditions are applied on t
faces of the octant for the different dynamical variables.
have checked that removing the octant symmetry~while us-
ing a lower resolution! does not change the results for th
evolution times reported here~in particular no instabilities
were encountered, cf.@8#!. Notice that the metric begins to
1-2
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grow, as it does without a shift, but as the shift builds up
growth slows down significantly. At this stage, the system
effectively static, even though we started in the highly d
namic isotropic coordinates. We also show the time deve
ment ofa andb r in Fig. 2, which evolve rapidly at first bu

FIG. 1. We show the evolution of the radial metric functio
grr /C4 for a Schwarzschild BH along thex axis, constructed from
the Cartesian components. The upper panel shows the grid str
ing in the metric for singularity avoiding slicing with vanishin
shift and no excision, while the lower panel shows the metric
the new gauge conditions with an excision box inside a spher
radius 1M . Note the difference in the vertical scales. Without sh
and excision the metric grows out of control, while with shift a
excision a peak begins to form initially but later freezes in as
shift drives the metric to a static configuration~note the time la-
bels!.

FIG. 2. We show the lapse and shift for the excision evolution
a Schwarzschild BH. After around 10M, the lapse and shift freeze i
as the metric is driven to a static configuration. The size of
excision box was allowed to grow with the change in the coordin
location of the AH.
06150
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then effectively freeze bringing the whole system to an
most static state byt510M . The evolution of the metric and
gauge variables then proceeds very slowly with time until
simulation is stopped, well aftert5200M . The decision to
stop the code at this time is simply a CPU time consid
ation, but we notice that in this and all following exampl
the code is stopped once all the interesting dynamics h
finished.

Figure 3 shows the AH massMAH5AAreaAH/16p, deter-
mined with a 3D AH finder@28#. For comparison we also
show the value ofMAH for the 3D run without shift, and for
a highly resolved 2D simulation with no shift and no exc
sion @14#. The 2D code uses maximal slicing, so the coor
nate timet refers to different slices, but the slicings turn o
to be even more similar than is to be expected from Eq.~2!.
While the 3D simulation with shift and excision continue
well beyondt5200M , the 2D result becomes inaccurate a
the code crashes due to axis instabilities byt5150M , and
the 3D run without shift crashes already byt550M . Notice
that in the 2D case, after aroundt535M , MAH grows rap-
idly due to numerical errors associated with grid stretchi
With excision and our new gauge conditions, the 3D run h
less than a few percent error byt5200M , while the 2D case
has more than 100% error before it crashes att'150M . For
the excision run, notice also that while there is some ini
evolution in the metric and the coordinate size of the AH~see
Figs. 1 and 2!, the AH mass changes very little.

Next, we turn to a truly dynamic, even-parity distorte
BH. This system contains a strong gravitational wave t
distorts the BH, causing it to evolve, first nonlinearly, a
then oscillating at its quasi-normal frequency, finally settli
down to a static Schwarzschild BH. This provides a test c
for our techniques with dynamic, evolving BH spacetime

ch-
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FIG. 3. The solid line shows the development of the AH ma
MAH , determined through a 3D AH finder, for the simulation of
Schwarzschild BH shown above, while the dashed lines show
AH mass obtained using 2D and 3D codes with no shift and
excision. The 2D code crashes att.150M , the 3D run without shift
crashes att.50M , while the 3D run with shift and excision reache
an effectively static state and the error remains less than a
percent even aftert5200M .
1-3
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and allows us to test our ability to extract gravitational wav
with excision for the first time. In this case, in the langua
of @17#, we choose the Brill wave parameters to beQ0
50.5, h050, s51, corresponding to a highly distorted B
with M51.83. Just as before, we use a grid that covers
octant, with 1283 points andDx50.2.

In Fig. 4 we show the AH massMAH as a function of time
for the distorted BH simulations carried out in both 2D a
3D. MAH grows initially as a nonlinear burst of gravitation
waves is absorbed by the BH, but then levels off as the
goes into a ring-down phase towards Schwarzschild. Fig
5 shows the proper polar circumference of the AH divided
its proper equatorial circumference. This ratio allows an
timate of the size of the local dynamics during the run. N
tice how the horizon starts far from spherical~with a ratio

FIG. 4. We show the AH massesMAH for a BH with even-parity
distortion for the 2D~no excision, no shift! and 3D~excision, shift!
cases. The 3D result continues well past 150M , while the 2D result
becomes very inaccurate and crashes byt5100M .

FIG. 5. We show the ratio of the polar and equatorial circu
ferences as a measure of the dynamics of the AH for the BH w
even-parity distortion.
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close to 2!, it later oscillates from prolate to oblate and ba
again, and finally settles on a sphere~with a ratio of 1!.

In the 3D case, the gauge conditions and excision quic
drive the metric to an almost static configuration, as the s
tem itself settles towards a static Schwarzschild BH. T
evolution is terminated at aroundt5160M . To our knowl-
edge, distorted BHs of this type have never been evolved
so long, nor with such accuracy, in either 2D or 3D. B
comparison, in the more highly resolved 2D case with z
shift and no excision, the familiar grid stretching effects
lowed by the gauge choice lead to highly inaccurate evo
tions after some time with the error inMAH again approach-
ing 100% when the code finally crashes att'100M .

In Fig. 6, we show the results of extracting waves fro
the evolution of this highly distorted, excised BH. Using t
standard gauge-invariant waveform extraction technique,
Zerilli function is shown for both the 2D and 3D simulation
discussed above. There is a slight but physically irrelev
phase difference in the two results due to differences in
slicing; otherwise the results are remarkably similar~the
waves are extracted at the same Schwarzschild radius in
cases!. This shows conclusively that the excision and li
gauge conditions do not adversely affect the waveform
even if they carry a small amount of energy~around
1023MADM in this case!.

We now turn to a rather different type of distorted BH
including rotation and general even and odd-parity dist
tions. In the language of Ref.@17#, the parameters for this
simulation areQ050.5, h050, s51, J535, corresponding
to a rotating distorted BH withM57.54 and an effective
rotation parametera/M50.62. Previously, such data se
could be evolved only to about 40M @16#. For the purposes
of this paper we have chosen an axisymmetric case so

-
h

FIG. 6. The solid line shows thel 52,m50 waveform extracted
at a radius of 5.45M for the even-parity distorted BH described
the text, while the dashed line shows the result of the same si
lation carried out in the 2D code. We also show a fit to the t
lowest QNM’s of the BH for 2D and 3D separately, using numeric
data fromt59M to t580M .
1-4
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we can compare the results to those obtained with a 2D c
Since this example is much more demanding, we have fo
it important in order to increase the accuracy of our runs
perform a single initial maximal solve to reduce the init
gauge dynamics. The symmetries of this example are n
not consistent with the evolution of just one octant. Howev
we still have reflection symmetry on thez50 plane, so we
evolve only the positivez half of the domain. The grid use
in this case has 19923100 points andDx50.4. The gauge
conditions work well even in the presence of rotation: t
shift drives the evolution to an almost static state as the
tem itself settles down to a Kerr BH. The metric functio
~not shown! evolve in a similar way to those shown befor
essentially freezing at late times. In Fig. 7, we show
extracted waveforms, now computed using the imagin
part of the Newman-Penrose quantityC4 ~e.g., @3#!, which
includes contributions from alll modes at the same time. Th
results from the 2D and 3D codes agree very closely, exc
for a slight phase shift due to slicing differences, until the
code becomes inaccurate and crashes. The 3D simula
continues well beyond this point, and is terminated at
5120M .

CONCLUSIONS

We have extended recently developed 3D BH excis
techniques, using a new class of live gauge conditions
dynamically drivethe coordinates to a frame where the m
ric looks essentially static at late times, when the syst
itself settles to a stationary Kerr BH. Our techniques ha
been tested on highly distorted, rotating BHs, and are sh
to be very robust. For the first time, excision is tested w
wave extraction, and waveforms are presented and veri
The results are shown to be more accurate, and much lo
D

is

06150
e.
d

o

w
r,

s-

e
y

pt

ion

n
at
-
m
e
n

d.
er

lived, than previous 3D simulations and even better resol
2D simulations of the same data. Such improvements in
excision are badly needed for more astrophysically reali
BH collision simulations, which are in progress and will b
reported elsewhere.
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FIG. 7. The solid line shows the imaginary part ofc4 computed
at r 53.94M and u5f5p/4 for a rotating distorted BH obtained
from our 3D code with excision, while the dash line shows the sa
quantity computed using a 2D code~this simulation crashes att
.60M ).
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