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We extend the previous work on 3D black hole excision to the case of distorted black holes, with a variety
of dynamic gauge conditions that respond naturally to the spacetime dynamics. We show that in evolutions of
highly distorted, rotating black holes, the combination of excision and the gauge conditions we use is able to
drive the coordinates to a frame in which the system looks almost static at late times. Further, we show for the
first time that one can extract accurate wave forms from these simulations, with the full machinery of excision
and dynamic gauge conditions. The evolutions can be carried out for a long time, far exceeding the longevity
and accuracy of better resolved 2D codes.
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INTRODUCTION rate as indicated by the mass associated with the apparent
horizon, but also that very accurate wave forms can be ex-
The long term simulation of black hol@BH) systems is tracted, even when the waves carry only a tiny fraction of the
one of the most challenging and important problems in nuenergy of the spacetime. We also show that the 3D evolu-
merical relativity. For BHs, the difficulties of accuracy and tions of dynamic BHs we are now able to perform, are supe-
stability in solving Einstein’s equations numerically are ex-ior, in terms of accuracy, stability, and longevity, to previous
acerbated by the special problems posed by spacetimes con# 1 BH simulations, whether carried out in full 3D or even
taining singularities. At a singularity, geometric quantitiesWhen restricted to 2D. These results indicate that BH exci-
become infinite and cannot be handled easily by a computegion can be made to work under rather general circumstances
Traditiona”y, inthe 31 approach the freedom in choos- and can significantly improve the Iength of the evolutions,
ing the S|icing has been used to slow down the approach (ﬂnd the accuracy of the waveforms extracted, which will be
the time slices towards the singularif{singularity avoid-  crucial for gravitational wave astronomy.
ance”), while allowing them to proceed outside the BH.

Singularity avoiding slicings are able to provide accurate INITIAL DATA
evolutions, allowing one to study BH collisions and extract ) . ) ) .
wave forms[2], but only for limited evolution times. Com- _For this paper we consider single distorted BH spacetimes

bining short full numerical evolutions with perturbation [13,14 that have been used to model the late stages of BH
methods, one can even study the plunge from the last stabf@alescencél15,16. Following [13,14, the initial 3-metric
orbit of two BHs[3]. But a breakthrough is required to push Yab iS chosen to be
numerical simulations far enough to study orbiting BHs, re-
quiring accurate evolutions exceeding time scalest of ds’=w*e*(dn*+d6*) +sinf 6 dp?], (1)
~100M. In 3D, traditional approaches have not been able to
reach such time scales, even in the case of Schwarzschilghere the “Brill wave” functionq is a general function of
BHs. Characteristic evolution codes, on the other hand, arthe spatial coordinates, subject to certain regularity and fall
well adapted to the long-term evolution of single black holesoff restrictions, that can be tailored to produce very distorted
[4], but here we concentrate on noncharacteristic methods f&D BHs interacting with nonlinear waves. The radial coordi-
their ease of generalization to multiple black holes. nate# is logarithmic in the Cartesian radiusThere are two

A more promising approach involves cutting away theclasses of data sets used here corresponding to even- and
singularity from the calculatiof‘singularity excision”), as-  odd-parity distortions. The even-parity data have vanishing
suming it is hidden inside an apparent horiz#H) [5,6].  extrinsic curvature, while the cases containing an odd-parity
This work has been progressing, from early spherical prootomponent have nontrivial extrinsic curvatul€;. As
of principle [6] to recent 3D developmeni{4,7—-10. How-  shown in[17,18, these distorted BH data sets can include
ever, beyond a few spherical test cagEk 12, excision has rotation as well, corresponding to spinning, distorted BHs
yet to be used in conjunction with live gauge conditionsthat mimic the early merger of two orbiting BHs. Hence they
designed to respond to both the dynamics of the BH and theake an ideal test case for the development of our tech-
coordinate motion through the spacetime. nigues. We leave the details of the construction of these BH

In this paper we extend recent excision wde{ to the initial data sets to Ref§17,18. An important point that we
case of distorted, dynamic BHs in 3D using a new class ofvish to emphasize is that such data ao¢of the Kerr-Schild
gauge conditions. These gauge conditions not only responidrm with ingoing coordinates at the horizon. That form of
naturally to the true spacetime dynamics, but alswe the initial data sets has been recently advocated since it is not
coordinates to a frame where the system looks almost staticonformally flat[19] and is well adapted to inward propaga-
at late timesWe show that not only are the evolutions accu-tion of quantities at the horizon.
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EVOLUTION AND EXCISION PROCEDURES implicit schemes have no such restricioVe have then

Our simulations have been performed using what we refe?oncentrated on hyperbolic conditions of the form

to as the Baumgarte-Shapiro-Shibata-NakaniB&SN ver-

sion of the 3+1 evolution equation$20—-23, which we ) - .

have found to have superior stability properties when com- B =gal"-¢a B, 3

pared to standard formulations. As detailed 22—24, we

actively force the trace of the conformal-traceless extrinsic

curvatureA; to remain zero, and we use the independentlyVhereZ and¢ are positive functions. We call such evolution

evolved “conformal connection functiond®' only in terms conditions for the shift hyperbolic “driver” conditiongsee

where derivatives of these functions appear. All the simula[26])' o ]

tions described below have been performed using a 3-step N the spirit of the puncture method for evolutiof7],

iterative Crank-Nicholson scheme and a radiai@emmer- ~We use a BSSN scheme with the usual time-dependent con-

feld) outer boundary condition. We refer the reader to Refformal factore*® and an additional time-independent confor-

[24] for the details of the numerical implementation. mal factor U'# that comes from the initial data. In our ex-
We use the simple excision approach describd@jnOur  amples we us¢=k/W¥*, wherek is a positive constant. The

algorithm is based on the following ideas) excise acube  division by W* helps to slow down the evolution of the shift

contained inside the AH that is well adapted to Cartesiann the vicinity of the black hole. We have found it important

coordinates(b) use a simple boundary condition at the sidesto add a dissipation term with a constant coefficiénin

of the excised cube: copying of time derivatives from theirorder to reduce some initial oscillations in the shift. Notice

values one grid point out along the normal directidgsuse  that in contrast wittk, the coefficientt is not dimensionless

centerednon-causal differences in all terms except for ad- (it has dimensions of inverse lengttso in practice we re-

vection terms on the shifterms of the formg'd;). For these  gcale it using the total mass of the system. Experience has

terms we use second order upwind along the shift directionshown that by tuning the value gfwe can almost freeze the
These simplifications in excision reduce the complexity ing, oiution of the system at late times.

the algorithm, avoid delicate interpolation issues near the o parameters used for all simulations described below

excision boundary, and have allowed us to make rapid . .= . b f i e g
progress. Currently, the method is implemented for non(-jare'a 's given by £q.(2), with f=2/a, /' is given by Eq.

. N a ) . :
moving excision regions, although they are allowed to grow(g) with .§_0'75M’ » §=3M [M is the |n|t|_al_ _Arnown’;-
One can hope that colliding black holes can be treated ever eser-MisnerADM) miass of the sys;te]'nAs initial (?Ond"
with this restriction through the use of co-moving coordi- 10NS We takea=1, f'=0, da=d3'=0, except in one
nates. A more detailed description of our excision algorithmt@S€ mentioned below where we perform a single maximal
can be found in Ref8]. slicing solve to obtain a more appropriate initial lapse. Given

these initial conditions, we let the gauge conditions take care
of the rest. We use the same gauge parameters for all the
results in this paper, whether they are applied to Schwarzs-

For the lapse, we use a hyperbolic slicing condition mo-child, _distorted, or rotating B_I-_|s, showing the strength and
tivated by the Bona-Masstamily of slicing conditiong25] ~ generic nature of these conditions.

GAUGE CONDITIONS

da=—a’f(a)(K—Ko) 2 RESULTS

The first example we show is Schwarzschild, written in
whereK is the trace of the extrinsic curvatut€y is its value  the standard isotropic coordinates used in many BH evolu-
in the initial data, and is a (positive) function of & which  tions. Note that with this initial data and our starting gauge
we specify below. With this condition, the lapse will evolve conditions, the BH should evolve rapidly. & and 8 were
as long asx?f(«) andK—K, are non-vanishing. held fixed at their initial values, the slices would hit the

For the shift3' we have considered families of elliptic, singularity att= 7M. Instead,« and 8" work together with
parabolic, and hyperbolic conditions that relate the shift withexcision to rapidly drive the coordinates to a frame where the
the evolution of the conformal connection functiohs We  system looks essentially static, corresponding to the true
obtain parabolic and hyperbolic shift conditions by makingphysical situation.
eithers,8' or 97’ proportional to the elliptic operator fg8' In Fig. 1 we show the radial metric functiay, /¥* vs
contained in the “gamma freezing” conditiomfk=0 (see time. The grid covers an octant with 12Boints (Ax=0.2,
Ref. [24]), itself closely related to the well known minimal M=2). Appropriate symmetry conditions are applied on the
distortion family[1]. Elliptic conditions have the disadvan- faces of the octant for the different dynamical variables. We
tage of requiring boundary data at the excision region wheréave checked that removing the octant symmeéirkile us-
it is difficult to know what to impose, while parabolic con- ing a lower resolutiondoes not change the results for the
ditions force a strong restriction on the stability of the differ- evolution times reported her@gn particular no instabilities
encing schemeAto (Ax)? (this is true for explicit schemes, were encountered, cf8]). Notice that the metric begins to
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FIG. 1. We show the evolution of the radial metric function
g, /¥4 for a Schwarzschild BH along theaxis, constructed from
the Cartesian components. The upper panel shows the grid stretc
ing in the metric for singularity avoiding slicing with vanishing
shift and no excision, while the lower panel shows the metric for
the new gauge conditions with an excision box inside a sphere o
radius IM. Note the difference in the vertical scales. Without shift

al
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FIG. 3. The solid line shows the development of the AH mass

M an, determined through a 3D AH finder, for the simulation of a

chwarzschild BH shown above, while the dashed lines show the

H mass obtained using 2D and 3D codes with no shift and no

excision. The 2D code crashestat150M, the 3D run without shift

rashes at=50M, while the 3D run with shift and excision reaches

n effectively static state and the error remains less than a few

and excision the metric grows out of control, while with shift and percent even afterr=200M.

excision a peak begins to form initially but later freezes in as the
shift drives the metric to a static configuratiénote the time la-

bels.

then effectively freeze bringing the whole system to an al-
most static state bi=10M. The evolution of the metric and
gauge variables then proceeds very slowly with time until the

grow, as it does without a shift, but as the shift builds up theSimulation is stopped, well after=200M. The decision to
growth slows down significantly. At this stage, the system isStop the code at this time is simply a CPU time consider-
effectively static, even though we started in the highly dy-ation, but we notice that in this and all following examples
namic isotropic coordinates. We also show the time developth® code is stopped once all the interesting dynamics have

ment of @ and 8" in Fig. 2, which evolve rapidly at first but  finished.
Figure 3 shows the AH madd ,,,= VArea, /16, deter-
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location of the AH.

mined with a 3D AH findef{28]. For comparison we also
show the value oM »y for the 3D run without shift, and for

a highly resolved 2D simulation with no shift and no exci-
sion[14]. The 2D code uses maximal slicing, so the coordi-
nate timet refers to different slices, but the slicings turn out
to be even more similar than is to be expected from Ej.
While the 3D simulation with shift and excision continues
well beyondt=200M, the 2D result becomes inaccurate and
the code crashes due to axis instabilitiestbyl50M, and
the 3D run without shift crashes already ty 50M. Notice
that in the 2D case, after aroune 35M, M,y grows rap-
idly due to numerical errors associated with grid stretching.
With excision and our new gauge conditions, the 3D run has
less than a few percent error by 200M, while the 2D case
has more than 100% error before it crashes~at50M. For

the excision run, notice also that while there is some initial
evolution in the metric and the coordinate size of the &kEe
Figs. 1 and 2 the AH mass changes very little.

Next, we turn to a truly dynamic, even-parity distorted
FIG. 2. We show the lapse and shift for the excision evolution ofBH. This system contains a strong gravitational wave that
a Schwarzschild BH. After around 1) the lapse and shift freeze in  distorts the BH, causing it to evolve, first nonlinearly, and
as the metric is driven to a static configuration. The size of thethen oscillating at its quasi-normal frequency, finally settling
excision box was allowed to grow with the change in the coordinatedown to a static Schwarzschild BH. This provides a test case
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FIG. 4. We show the AH masséé,,, for a BH with even-parity

distortion for the 2D(no excision, no shiftand 3D(excision, shift
cases. The 3D result continues well past5@vhile the 2D result

becomes very inaccurate and crashegy00M.

=0.5, 7,=0, 0=1, corresponding to a highly distorted BH
with M=1.83. Just as before, we use a grid that covers on

octant, with 128 points andAx=0.2.

In Fig. 4 we show the AH madd , as a function of time
for the distorted BH simulations carried out in both 2D and
3D. M,y grows initially as a nonlinear burst of gravitational
waves is absorbed by the BH, but then levels off as the B

FIG. 6. The solid line shows tHe=2,m=0 waveform extracted
at a radius of 5.48 for the even-parity distorted BH described in

the text, while the dashed line shows the result of the same simu-
lation carried out in the 2D code. We also show a fit to the two
and allows us to test our ability to extract gravitational waveSowest QNM's of the BH for 2D and 3D separately, using numerical
with excision for the first time. In this case, in the languagedata fromt=9M to t=80M.
of [17], we choose the Brill wave parameters to Qg

close to 2, it later oscillates from prolate to oblate and back
ggain, and finally settles on a sphévéth a ratio of 1.

In the 3D case, the gauge conditions and excision quickly
drive the metric to an almost static configuration, as the sys-
tem itself settles towards a static Schwarzschild BH. The
I_Fvolution is terminated at arourtd=160M. To our knowl-

i : . .~ edge, distorted BHs of this type have never been evolved for
goes into a ring-down phase towards Schwarzschild. Figurg ; O

. o So long, nor with such accuracy, in either 2D or 3D. By
5 shows the proper polar circumference of the AH divided by . , : .
) L . . comparison, in the more highly resolved 2D case with zero
its proper equatorial circumference. This ratio allows an es-

timate of the size of the local dynamics during the run. No-
tice how the horizon starts far from spheridalith a ratio
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even-parity distortion.

150.0

shift and no excision, the familiar grid stretching effects al-
lowed by the gauge choice lead to highly inaccurate evolu-
tions after some time with the error M 5,y again approach-
ing 100% when the code finally crashestat100M.

In Fig. 6, we show the results of extracting waves from
the evolution of this highly distorted, excised BH. Using the
] standard gauge-invariant waveform extraction technique, the
Zerilli function is shown for both the 2D and 3D simulations
discussed above. There is a slight but physically irrelevant
] phase difference in the two results due to differences in the
slicing; otherwise the results are remarkably simi(gre
waves are extracted at the same Schwarzschild radius in both
i cases This shows conclusively that the excision and live
gauge conditions do not adversely affect the waveforms,
even if they carry a small amount of energpround

We now turn to a rather different type of distorted BH,
including rotation and general even and odd-parity distor-
tions. In the language of Refl7], the parameters for this
simulation areQ,=0.5, 79=0, 0=1, J= 35, corresponding

to a rotating distorted BH witiM=7.54 and an effective
FIG. 5. We show the ratio of the polar and equatorial circum-rotation parametea/M =0.62. Previously, such data sets

ferences as a measure of the dynamics of the AH for the BH witicould be evolved only to about B0 [16]. For the purposes

of this paper we have chosen an axisymmetric case so that
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we can compare the results to those obtained with a 2D code 0.00010 . .
Since this example is much more demanding, we have founc
it important in order to increase the accuracy of our runs to
perform a single initial maximal solve to reduce the initial
gauge dynamics. The symmetries of this example are now
not consistent with the evolution of just one octant. However, _,
. . >
we still have reflection symmetry on tlee=0 plane, so we &
evolve only the positive half of the domain. The grid used  0.00000
in this case has 1% 100 points and\x=0.4. The gauge
conditions work well even in the presence of rotation: the
shift drives the evolution to an almost static state as the sys ; —-— 2D(300x59)
tem itself settles down to a Kerr BH. The metric functions ~-%%%% | —— 3D(195'%0.5)
(not shown evolve in a similar way to those shown before,
essentially freezing at late times. In Fig. 7, we show the
extracted waveforms, now computed using the imaginary_g.0o010
part of the Newman-Penrose quanti, (e.g.,[3]), which
includes contributions from allmodes at the same time. The
results from the 2D and 3D codes agree very closely, except FIG. 7. The solid line shows the imaginary partyaf computed
for a slight phase shift due to slicing differences, until the 2Dat r=3.94M and 6= ¢= /4 for a rotating distorted BH obtained
code becomes inaccurate and crashes. The 3D simulatidrem our 3D code with excision, while the dash line shows the same
continues well beyond this point, and is terminatedt at quglgtit)y computed using a 2D codthis simulation crashes at
=120M. =60M).

0.00005 - R

0.0 20.0 40.0 60.0 80.0 100.0
M

lived, than previous 3D simulations and even better resolved

2D simulations of the same data. Such improvements in BH
We have extended recently developed 3D BH excisiorexcision are badly needed for more astrophysically realistic

techniques, using a new class of live gauge conditions thaH collision simulations, which are in progress and will be

dynamically drivethe coordinates to a frame where the met-reported elsewhere.

ric looks essentially static at late times, when the system

itself settles to a statlonary Kerr BH.. Our techniques have ACKNOWLEDGMENTS

been tested on highly distorted, rotating BHs, and are shown

to be very robust. For the first time, excision is tested with This work was supported by AEI. Calculations were per-

wave extraction, and waveforms are presented and verifiedormed using thecAcTus code at AEI, NCSA, PSC, and

The results are shown to be more accurate, and much long®ZG.
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