Data Description Via a Generalized Fiber Bundle Data Model

Werner Benger*' Hans-Christian Hege! ~ Thomas Radke* Edward Seidel*
April 5, 2001

Abstract

Advanced applications in a metacomputing environment need to communicate semantic
information in addition to raw data. This requires a suitable data model, appropriate concepts
on how to exchange data objects, as well as corresponding I/O layers and communication pro-
tocols. In this paper a data model is presented, providing a conceptual base for the design of
generalized grid operations and semantics aware I/O layers. With this model, code redundan-
cies can be immensely reduced and high reusability of algorithms is ensured. It is inspired by
the mathematical theory of fiber bundles and generalized to the concept of index spaces.

The presented concepts allow us to formulate data properties and relationships among data
objects in a powerful and widely usable way. A wide range of data types, like 3D uniform
grids, particle trajectories, triangular surfaces, expansion coefficients, can be covered. The
HDF 5 API and XML can be used to realize fully capable I/O layers. By employing HDF 5
virtual file drivers remote I/O of persistent and volatile data is easily achieved, in addition to
local file I/O.

1 Introduction

The description of data has always been a difficult issue, even when dealing with a single application
that simply produces data to be read by another (e.g., a simulation code generates various output
data to be visualized by a graphics package.). In the emerging era of Grid computing[l, 5],
such problems become much more difficult. Grid enabled applications will be distributed across
multiple machines with different architectures [2], or even migrate from site to site, spawn off
related jobs, dynamically link to one another, etc. [3, 4]. Exchanging data among applications in
a Grid environment can easily fail simply because of the different file formats used and diverse
treatment of semantically identical structures.

While there are many of standards used to exchange data (e.g. an array of 1283 floats) among
applications, there are up to now no commonly agreed standards on how to specify metadata
information of numerical data in scientific computing (e.g. ‘it is a scalar field on the faces of some
regular grid’), i.e. a language to formulate the semantics of mathematical and/or physical objects.

Different applications with their own file formats and network transfer protocols usually treat
the same semantics in diverse ways. Coupling of applications therefore requires repeated de-
velopment of proprietary methods for mapping metadata and data. This process can also be
computationally expensive, and is particularly troublesome for interactive remote visualization

*Max-Planck-Institut fiir Gravitationsphysik, Albert-Einstein-Institut, Golm (AEI)
tKonrad-Zuse-Zentrum fiir Informationstechnik, Berlin (ZIB)

Figure 1: Example of different data objects originating from the same application: A three-
dimensional uniform grid carrying some scalar field (the escaping gravitational energy from an
astrophysical simulation process), particle trajectories in the vicinity of a black hole and a surface
which was reconstructed given a series of multipole moments.

[22, 21, 11, 8]. If diverse simulation and visualization programs are used, the expenditure of hu-
man labour as well as the number of sources of error increase quadratically. This could be avoided
by a commonly agreed standard.

Our main work are astrophysical simulations using Cactus [9]. Data from general relativistic
simulations require general handling concepts, which therefore are useful in a broader range of
application contexts. The primary computational data are manifolds as well as scalar, vector
or tensor fields on them. These discretized manifolds are represented as grids of different types
(structured or unstructured, flat or hierarchical grids [14]) in various coordinate systems (e.g.
cartesian or polar coordinates). Examples of such manifold data are 1D or 2D slices of the 3D
data (‘hyperslabs’), isosurfaces (i.e. triangular surfaces) and geodesics (particle trajectories), but
also data like multipole expansion coefficients, e.g. used to describe the apparent horizon surfaces
of colliding black holes [18], c.f. Fig. 1. In a ‘naive’ approach, each of these various kinds of data
is handled through individual I/O and visualization methods. It is desirable to have a data model
covering all these types within the same framework.

Finding a general data layout scheme is not a new task and several efforts have already been
made, most recently within the framework of the ASCI data management project [7, 11]. In 1992
Butler [10] proposed a data model based on the theory of vector bundles [19], using abstract
mathematical concepts as a basis for deriving a class hierarchy. His concept builds on a base set of
points (corresponding to physical coordinate locations), topological space (points with neighborhood
information at each point), manifolds (topological space with charts and coordinates associated
with each point) and vector bundles/sections (which associate vector data with each point) Each
physical point gets a unique number (a ‘label’), and information on each point is provided by
mapping this unique number to some information item.

In IBM data explorer (Open DX) this concept has been taken up [12]. Open DX provides the
most successful implementation of a fiber bundle data model to date. The Open DX data model
consists of fields as the fundamental data objects, each field containing a couple of components,
which are used to implement the mapping from some data domain to the actual data types. Such
components are e.g. the neighborhood, as in Butler’s data model, or the coordinate locations of

each point. Other components define e.g. the connectivity, i.e. the information which points belong
to the same grid cell, like triangles, tetrahedrons, hexahedrons or generic n-dimensional simplices.
By specifying attributes with each field, relationships among different fields can be specified and
complexes of cells can be constructed.

Whereas in Open DX, semantics are represented by standardized attributes (‘Field Compo-
nents’), the data model we propose aims at providing semantic information on mathematical ob-
jects as well as on relationships between these directly, i.e. without need of any naming convention.
It also provides a more natural support for coordinate transformation and various representations
of the same semantic data.

2 Concepts

Not all properties of data sets are required for specific operations. Therefore it is desirable to
identify sets of properties which can be handled independently. For instance it is a good idea to
distinguish between the geometrical and combinatorial information on a grid; e.g. an algorithm
just operating on the information ‘vertex indices per triangle’ should not bother with the geometric
properties of a vertex (see [20] for a more detailed discussion).

We want to find groups of properties, such that methods can be shared among different grids
— if they are just compatible regarding this property group. A straight hierarchy is not necessarily
the best way to organize these property groups; it is more appropriate to treat them in a modular
way, such that complex data types can be constructed from just a few components. Such property
groups may be categorized by looking at the purpose for which the data on some grid are intended
to be used:

Data related to points

Data related to objects constructed by points or objects (recursively)

Data specifying relationships between distinct grids
e Data which do not fit into these categories, like expansion coefficients.

It is natural to organize the data in groups of ‘compatible arrays’. The term ‘array’ hereby
also includes procedural arrays, i.e. routines which create data values on request instead of storing
them in some memory area. In this more general sense, an array is a mapping of some index to
some arbitrary data value. Two arrays A and B are called ‘compatible’; if each allowed index of
array A is also valid for array B. Consequently, compatible arrays have the same size (but not
necessarily the same number of elements is stored in memory/disk space, remembering that an
array can also be just some procedure).

We may assign additional properties beyond the numerical value to an index, namely the index
may also carry the information to which ‘grid property group’ (as listed above) the corresponding
array belongs. The data model is based on grouping the various atomic data arrays into index
spaces. An index space is an abstract domain referring to the same ‘grid property group’ of the
data. It is the space of all possible indices of compatible arrays. Arrays are mappings from the
index space into some arbitrary data spaces. Each index space is related to some ‘index depth’,
which specifies how many de-referencing operations have to be performed to reach information
related to points.

Topology
Neighbourhood

Cartesian Chart 3D ‘ Polar Chart 3D ‘

Transformation

Rule
Representation Representation
[CartesianChart3D] [PolarChart3D]
B {X,y,Z} P {r,e,(p}
B L B, ff,

Figure 2: The Topology object for points: It contains neighborhood information for each point,
and for each chart object a representation of the geometrical location and some data fields (e.g. a
vector field).

2.1 Data Related to Points

Each point (‘vertex’) of a computational domain is assigned an index of depth 0. A triangle is
described by three vertices, so it is described by three point indices, and is therefore treated as an
element of ‘index space of depth 1’:

Vertex :ig — {z,y,2}
Triangle : Z.1 = {27]>k} = {{xiayiazi}) {xj)yjyzj}a {xkaykazk}}

A topological space, hereby named a ‘Topology object’, is formed by assigning neighborhood in-
formation to each point. Additional point data, like the coordinates, or the cartesian/polar com-
ponents of a vector field (Fig. 2), may be provided in various ‘Representation Objects’. A specific
representation object is accessed via a ‘chart object’. Two chart objects might have some relation-
ship specified, which are contained in so-called ‘transformation objects’. By these means, some data
representation (e.g. data given in polar coordinates) may be transformed transparently on-demand
into another chart (e.g. into cartesian coordinates). Using ‘chart objects’ to identify a group of
data objects is also useful to e.g. distinguish between world coordinates and object coordinates, as
common in computer graphics. Such transformation operations may also be chained.

2.2 Cells and Cell Complexes

The concept of ‘index space of depth zero’ directly conforms to the fiber bundle layout as described
by Butler [10]. However, often additional information is required, as available in the Open DX

m==T=21.0

- m—=T=20.0

Figure 3: Relations between grids: Some points may become multiple points on another time step
of some evolution sequence, others merge, some don’t have any correspondence at all.

data model, e.g. the connectivity property of a grid, which tells which points refer to the same ‘cell’
(the three vertices of a triangle, ...). Such cells may also carry data (e.g. a colored triangle), and
therefore these data reside in the same index space as the cells (of depth one).

We may now apply the concepts of index space zero to index spaces of higher index depth: As
with the index space of depth 0, neighborhood information may (optionally) be provided on the
cells, therefore forming a topological object on index space 1 (‘Cell Topology’). Moreover, what
is a ‘chart object’ on index space 0, may be another Topology object on index space 1: Usually,
a ‘Cell Topology’ may be represented as vertices per cell. The ‘coordinate location’ of each cell
are the vertices (i.e. their indices in the point Topology, thus integer numbers, or indices of depth
Z€ero).

By treating a Topology as a generalized chart object, one may also represent the index space
of depth zero by a Cell Topology. The ‘coordinates’ of this point representation are then the
‘cells-per-point’ information, the inverse of the ‘points-per-cell’ information.

Also complexes and conglomerates of cells (index spaces of higher depth) may be constructed
using the same methods as developed for the initial index space of depth zero. In various kinds of
algorithms, index space of depth zero is not required at all.

The ability to ‘represent one Topology A by another Topology B’ is actually a generic way to
specify and store a general ‘A per B’ elements information.

2.3 Timelike and Spacelike Relationships among Grids

While the above layout was mainly targeting at data within the same computational grid, the
methods may also be applied to time-varying grids or hierarchies consisting of many independent
grids. A Topology on one Grid object may be represented by the Topology in another Grid object,
thereby mapping a point in one grid into a number of points in the other grid - possible even none,
if this point has no further correspondence (Fig. 3).

A typical application example are particle trajectories: Each grid specifies a set of points and
their geometrical locations. The representation of the grid’s Point Topology in its succeeding Point
Topology provides a mapping of each point index to its successor. This will be a trivial one-to-one
mapping unless a particle leaves the computational domain, new ones are created, or the ordering
of particles changes during simulation. By using this information algorithms work even if some

Grid |

——Topology<-1>"Y1m"

[PositionalChart]: iy = {l,m} — Ap,

—>Points

|—>—[Positiona1Chart] iio — {V, p}

"Y1n":ig 5 Vi (0, ¢)

|—>"R"Ci0 g Zl,m ArmYim (19; (10)

—[PolarChart3D]:ip — {R, ¥, ¢}

—[CartesianChart3D]:iy — {z,y, 2}

Figure 4: Hierarchy diagram of a surface which is specified via multipole moments Ay, .

points leave some computational domain and re-occur in another domain, as it might occur during
metacomputing simulations, when a particle leaves one computers domain and continues to live in
another ones memory.

Similar relationships may be defined among grids within the same time level. A mapping from
one grid to another grid may be defined as the representation of one grid’s Point Topology in the
others one. Such a mapping may describe which points in one fine-resolution grid correspond in
some way to a point in a coarser grid. Fig. 3 is valid in this case of a ‘spacelike’ relationship, too,
with the two grids referring to different refinement levels at the same time step.

2.4 Non-Spatial Data

Data which do not refer to geometrical locations, e.g. multipole moments, do not fit into the above
scheme. Remembering that ‘index space 1’ only makes - conceptually - sense only when ‘index
space 0’ exists, in this case ‘index space 0’ (the geometrical shape) can only be computed when the
expansion coefficients are given. It is therefore consistent to treat these coefficient data as elements
of an index space of ‘negative depth’.

Also topological neighborhood information on the coefficients is useful. For example some
expansion series may be given in one or more dimensions, regularly spaced or in something like a
‘upper triangular matrix’ form (for instance spherical harmonics, ¥;,,, where m € [—1, +1]).

3 Results and Conclusion

In this paper, a new concept to layout data in a structure has been outlined that permits code
and algorithm reusability to a high extent. It is inspired by the fiber bundle data model, and
applies these concepts to higher grades of abstraction, the so-called index spaces. The Topology
and Representation concepts can be applied in a couple of situations. The general structural
layout specifies a clearly defined way to store various kinds of properties. Such a framework
will be useful not only in describing data from one application, to be analyzed or visualized by
another application, but will be extremely important in a Grid environment where a complex set
of applications will interact with each other through data exchange across different computational
resources.

Currently, these data layout concepts are being implemented within the framework of the
visualization program Amira [13]. Modern techniques from C++ template metaprogramming [15],
are used for efficient implementation of computational and visualization tasks. The driving force
is to handle many different kinds of data originating from numerical simulations [6, 17] using the
Cactus Code [9]. However, the data layout scheme is not limited to these kinds of data.

Ongoing work include the mapping of the various data components and hierarchical relation-
ships into file formats. Various proprietary file layouts are used for special data types, and metadata
information can be output in XML or BTEX. The NCSA HDF5 library [16] provides the most
powerful and generic I/O capabilities, and will be used as a generic I/O layer for the entire data
model.

This work has been supported by AEI, ZIB, and the DFN-Verein. We would like to thank John
Shalf and Gabrielle Allen for suggestions and motivation for this work.

References

[1] I. Foster, C. Kesselman (Eds), The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers, 1998

[2] T. Dramlitsch, G. Allen, and E. Seidel, Efficient Techniques for Distributed Computing sub-
mitted to HPDC10

[3] G. Allen, G. Lanfermann, T. Radke, E. Seidel, Nomadic Migration: A New Tool for Dynamic
Grid Computing submitted to HPDC'10.

[4] G. Allen, I. Foster, T. Goodale, G. Lanfermann, T . Radke, M. Russell, E. Seidel, J. Shalf
Grid Computing: An Applications Perspective (in preparation)

[5] Globus Metacomputing Toolkit: http://wuw.globus.org/

[6] G. Allen, T. Goodale, G. Lanfermann, E. Seidel, W. Benger, H.-C. Hege, A. Merzky, J. Masso,
T. Radke, and J. Shalf, Solving Finstein’s Equation on Supercomputers, IEEE Computer,
pp- 52-59, December, 1999.
http://www.computer.org/computer/articles/einstein 1299_1.htm

[7] M.C. Miller, J.F. Reus, R.P. Matzke, W.J. Arrighi, L.A. Schoof, R.T. Hitt, P.K. Espen,
D.M. Butler, Enabling Interoperation of High Performance Scientific Computing Applications:

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

modeling scientific data with the Sets € Fields (SAF) modeling system, to appear in Proceed-
ings of ICCS-2001, San Francisco, CA. May 28-31, 2001.

DFN Gigabit Project: Tele Immersion, Collision of Black Holes:
http://www.zib.de/Visual/projects/TIKSL/

Cactus Code: http://www.cactuscode.org

D.M. Butler and S. Bryson, Vector Bundle Classes From Powerful Tool for Scientific Visual-
ization, Computers in Physics, Vol 6., No. 6, Nov/Dec 1992, pp. 576 - 584

Army Research Laboratory - Major Shared Research Center DICE - The Distributed Interac-
tive Computing Environment, http://wuw.arl.hpc.mil/SciVis/dice/

IBM Research (Lloyd A. Treinish), Data FEzplorer data model, IBM Visualization
Data Explorer User’s Guide, Version 3, Modification 4, IBM Publication SC38-0496-06
http://www.research.ibm.com/people/1/11loydt/dm/dx/dx_dm.htm, 1997

Amira: http://amira.zib.de/

M. Parashar, DAGH - Distributed Adaptive Grid Hierarchy,
http://www.cs.utexas.edu/users/dagh/

T.L. Veldhuizen, Using C++ Template Metaprograms, C++ Report, Vol 7., No. 4., May 1995,
pp. 36-43, http://www.oonumerics.org/

Hierarchical Data Format Version 5: http://hdf .ncsa.uiuc.edu/HDF5/
The numerical relativity movie archive http://jean-luc.aei.mpg.de/Movies/

M. Bondarescu, M. Alcubierre, E. Seidel, Isometric embeddings of black hole horizons in three-
dimensional flat space., to be submitted to Phys. Rev. D in 2001

B.F. Schutz, Geometrical Methods of Mathematical Physics , Cambridge University Press,
1980.

G. Berti, Generic Software Components for Scientific Computing, PhD Thesis, May 2000, p.
52, http://www.math.tu-cottbus.de/ berti/diss/

G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, A. Merzky, T. Radke and E. Seidel,
The Cactus Code: A Problem Solving Environment for the Grid, Proceedings of Ninth IEEE
International Symposium on High Performance Distributed Computing, HPDC-9, Pittsburgh,
2000, pp. 253-260

W. Benger, H. -C. Hege, A. Merzky, T. Radke, E. Seidel, Efficient Distributed File I/0 for
Visualization in Grid Environments. Proc. PDC99 Simulation and Visualization on the Grid.,
Stockholm (1999), pp. 1-16

