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Plunge Waveforms from Inspiralling Binary Black Holes
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We study the coalescence of nonspinning binary black holes from near the innermost stable circular
orbit down to the final single rotating black hole. We use a technique that combines the full numerical
approach to solve the Einstein equations, applied in the truly nonlinear regime, and linearized perturbation
theory around the final distorted single black hole at later times. We compute the plunge waveforms,
which present a non-negligible signal lasting for t � 100M showing early nonlinear ringing, and we
obtain estimates for the total gravitational energy and angular momentum radiated.
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The next few years will mark the birth of a new field,
gravitational wave astronomy. New extremely sensitive
gravitational wave interferometers (LIGO and GEO) are
nearing completion and should begin taking scientific data
in about a year to be joined later by VIRGO and the LISA
space mission. The expectation of very strong gravitational
wave emissions from the merger of black hole–black hole
binary systems, and some indirect indications that these
systems may be commonly generated in globular clusters
[1], makes them one of the most promising candidates for
early observation.

The interpretation of merger events, and in some cases
even their detection, requires a theoretical understanding
of the gravitational waveforms based on general relativ-
ity. Several theoretical approaches have been developed
for treating these systems. So far the post-Newtonian (PN)
approximation has provided a good understanding of the
early slow adiabatic inspiral phase of these systems, and
extending PN calculations to the innermost stable circu-
lar orbit (ISCO) may be possible using resummation tech-
niques [2]. In its final moments, though, after the black
holes are closer than ISCO, the orbital dynamics are ex-
pected to be replaced by a rapid plunge and coalescence.
An understanding of the final burst of radiation coming
from the black hole merger can significantly enhance the
detectability of systems with total mass M . 35MØ [3]
and even qualitative information is very important for de-
veloping search strategies [4]. It is generally expected that
the dynamics near the ISCO can be treated only by a fully
nonlinear simulation of Einstein’s equations.

Thus far the numerical treatment of black hole systems
has proved difficult. A key limiting factor is the achievable
evolution time after which the code fails due to numerical
problems associated with the black hole singularities. The
first fully 3D simulation of spinning and moving black
holes was performed in [5] for a “grazing collision,” where
the black holes start out well within the ISCO. Recently,
evolution times of about 9M 30M have been achieved
[6,7]. However, these simulations, even beginning late
in the plunge near the onset of quasinormal ringing, still
generate only about two wave cycles. On the other hand,
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a third approach, the “close limit” approximation treating
the late-time ring-down dynamics of the system as a linear
perturbation of a single stationary black hole, has shown
great effectiveness in estimating the radiative dynamics
once the strong nonlinear interactions have passed — for
example, in the case of grazing collisions without spin [8].

In order to provide expectant observers with some esti-
mate of the full merger waveforms from binary black hole
systems “within a factor of 2,” and to guide future, more
advanced numerical simulations, we have implemented an
interface between full nonlinear numerical simulations and
close limit approximations. This interface allows us to ap-
ply the numerical and close limit treatments in sequence,
moving back the finite time interval of full nonlinear nu-
merical evolution to cover the earlier part of the plunge and
then computing the complete black hole ring-down and the
propagation of radiation into the wave zone with a close
limit treatment based on the Teukolsky equation [9]. In
[10] we have developed the basic idea for the required in-
terface and applied it to a model case, head on collisions
of two black holes, producing complete waveforms for the
first time in full 3D numerical relativity.

In this Letter we present the first theoretical predictions
from nonaxisymmetric binary black hole mergers starting
from an estimate of the innermost stable circular orbit,
based on a generalization of [10] to include angular mo-
mentum. We explicitly derive an astrophysically plausible
estimate for the radiation waveforms and energy which can
be expected from a system of equal mass black holes with
no intrinsic spin. We also estimate the duration of the
plunge phase.

Currently no genuinely astrophysical description of
ISCO initial data for numerical simulations exists. As a
reasonable starting point we will use approximate ISCO
data based on the effective potential method of [11] as
derived in [12] for the puncture construction [13] of black
hole initial data. The solution to the general relativistic
constraint equations is constructed within the Bowen-York,
conformally flat, longitudinal ansatz. To locate the ISCO,
the minimum in the binding energy along sequences of
constant (apparent) horizon area is studied as a function of
© 2001 The American Physical Society 121103-1
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the total angular momentum of the system. For puncture
data the ISCO is characterized by the parameters

m � 0.45M, L � 4.9M ,

P � 0.335M, J � 0.77M2,
(1)

where m is the mass of each of the single black holes, M
is the total ADM (Arnowitt-Deser-Misner) mass of the bi-
nary system, L is the proper distance between the apparent
horizons, P is the magnitude of the linear momenta (equal
but opposite and perpendicular to the line connecting the
holes), and J is the total angular momentum.

Our full numerical evolutions are carried out using the
standard ADM decomposition of the Einstein equations.
The lapse is determined by the maximal slicing condition,
and the shift is set to zero. Our biggest runs had 5122 3

256 grid points and a central resolution of M�24. We
use the Cactus Computational Toolkit to implement these
simulations [14]. Our typical evolution times reach T �
15M. After this time, the “grid stretching” associated
with the singularity avoiding property of maximal slicing
crashes the code. This is consistent with the evolution time
for grazing collisions of about 30M, because for “ISCO”
runs the time scale for grid stretching is determined by the
individual black holes of mass 0.45M that are present for
most of the run, and not by the final black hole of mass
1M that quickly appears in the grazing collisions.

The fundamental problem of determining initial data for
the close limit perturbative approach is to define a back-
ground Kerr metric on the later part of the numerically
computed spacetime. We look for a hypersurface and a
spatial coordinate transformation such that the transformed
numerical data on this hypersurface are close to a Kerr met-
ric in Boyer-Lindquist coordinates to which all perturbative
quantities refer. The first order gauge and tetrad invariance
of the perturbative formalism implies that the results will
not depend strongly on small variations in our procedure.

We start with the estimate that the background Kerr
black hole is given by the parameters M and a of the
initial data. Then we correct those values with the in-
formation about the energy and angular momentum ra-
diated. This procedure quickly converges. The slice is
defined by identifying the numerical time coordinate with
the Boyer-Lindquist time, since we have found that in the
late stages of the numerical evolution the maximal slicing
lapse approaches quite closely the Boyer-Lindquist lapse
�2gtt

Kerr�21�2 outside the black hole. To obtain the r coor-
dinate we compute the invariant I � C̃abgdC̃abgd, where

C̃abgd � Cabgd 1 �i�2�eabrlC
rl
gd is the self-dual part

of the Weyl tensor. Since in Boyer-Lindquist coordinates
I � 3M2��r 2 ia cosu�6 for the Kerr background we can
invert this relationship to assign a value of r to each point
of the numerically generated spacetime. For the coordinate
u it turned out to be sufficient to adopt the correspond-
ing numerical coordinate. Since the binary system carries
a non-negligible amount of angular momentum J pro-
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ducing frame dragging effects, we supplement the Carte-
sian definition of f with a correction that makes the grf

component of the metric vanish (primes denote numerical
coordinates),

f � f0 1
Z

�g0
r 0f 0�g0

f 0f 0�dr 0. (2)

The Teukolsky equation is a complex linear wave equa-
tion for the 2 degrees of freedom of the gravitational field
in a Kerr background. It requires as initial data the Weyl
scalar c4 � 2Cabgdnam̄bngm̄d, with the usual notation
for the null tetrad, and its time derivative ≠tc4 (see [15]
for the ADM decomposition of these quantities). First, a
tetrad is constructed from the basis vectors of the numeri-
cal coordinates, and a Gram-Schmidt procedure is used to
ensure orthonormalization with respect to the full numeri-
cal metric. The tetrad is then rotated to approximate the
required background tetrad. This procedure determines a
transformed c4 as a linear combination of all five Weyl
scalars c4,3,2,1,0 with coefficients depending on the back-
ground coordinates r and u, and on M and a [16]. With
the Cauchy data c4 and ≠tc4 extracted in appropriate coor-
dinates, we can proceed with the evolution by numerically
integrating the Teukolsky equation as described in [17].
Here one can implement all the desired features for stable
evolution, excision of the event horizon, mesh refinement
through the use of the tortoise coordinate r�, nonvanishing
background shift, imposition of consistent boundary con-
ditions on c4, etc. The perturbative description is then able
to efficiently follow the evolution of the system forever.

A key question is at what time we can actually make
the transition from full numerical to perturbative evolution.
One of the tests we perform is to compute at every 1M of
evolution the speciality index S � 27J 2�I 3 [18], a com-
bination of curvature invariants �J � C̃abgdC̃

gd
rl C̃rlab�.

For the algebraically special Kerr spacetime S � 1, and
the size of deviation from 1 provides a guide on how close
a numerical spacetime is to Kerr. A complementary ex-
periment is to do a full numerical evolution, during which
we extract the data for the Teukolsky equation every 1M.
Computing the Teukolsky evolution starting at different
times, we can check whether the final results (radiated en-
ergies and waveforms) depend on the time T at which the
transition took place. If the binary system has reached a
regime where all further evolution can be described by the
linearized Einstein equations, the final results should be in-
dependent of the choice of the transition time T . This con-
stitutes an important built-in self-consistency test of our
method.

As mentioned above, we have successfully tested the ba-
sic procedure for the head-on collision of black holes [10].
In [16] we report on nontrivial consistency checks, e.g.,
quadratic convergence to vanishing gravitational radia-
tion, which our method passes for the evolution of Kerr
initial data. Now, in order to better understand the physics
of the plunge, we have designed a set of sequences
121103-2
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approaching the ISCO by varying one of its physical
parameters. Several different sequences are possible,
which we will discuss in a longer paper. Here we re-
port only on the “P sequence” for which we keep the
separation constant at L � LISCO � 4.9M, but vary the
linear momentum, P�PISCO � 0, 1

3 , 2
3 , 5

6 , 1, 13
12 . With this

sequence we can vary continuously from the head-on
collisions treated effectively in [10] to the case we are
most interested in, P � PISCO. None of the elements of
this sequence starts in the close limit regime. Referring
to Fig. 1, we observe that the minimal time of full
numerical evolution T needed to switch to perturbation
theory initially grows roughly linearly with increasing
momentum, with a further deviation towards longer times
when approaching the ISCO. We also show the time at
which a common apparent horizon appears, if it actually
appears during the achievable 15M of full numerical
evolution. In our simulations this provides an upper limit
to the linearization time. We note that with the current
method P � PISCO is a marginal case. Based on the S
invariant and the transition time experiment, linearization
for the ISCO happens in the range T � 11M 15M. For
P�PISCO �

13
12 the S invariant does not indicate lineariza-

tion much before T � 15M. As shown in Fig. 1, the total
radiated gravitational energy grows quadratically with the
momentum P for small values, as one would expect from
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FIG. 1. Linearization time and total radiated energy.
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dimensional arguments and from extrapolation of close
limit results [8]. The error bars are based on variations
for different transition times.

Figure 2 shows the real part of c4 as seen by an observer
located at radial coordinate r� � 31M along the orbital
pole. We display the leading m � 2 mode, since we de-
compose the Weyl scalar into eimw modes. The waveforms
are obtained for 0M, 10M, and 11M of full numerical evo-
lution plus 120M of linear evolution. The T � 0 wave-
form is displayed only to illustrate the importance of the
full numerical evolution. As is suggested by comparing the
waveforms for T � 10M and 11M, we have precisely de-
termined the first part of the waveform lasting up to about
t � 60M. Beyond that the agreement is less precise. In
the final region some details of our result, in particular the
phase, are still sensitive to elements of the approximation
procedure. Nevertheless, we judge that we have met our
goal of a waveform estimate within a “factor of 2” even
in that region. The exact shape of the waveforms after
t � 60M may still change when more sophisticated nu-
merical techniques are applied.

Let us summarize some of the robust features of our
waveform. The duration of the most significant part of
the waveform is roughly 100M, lasting for about twice as
many wave cycles as in the head-on collision case. There
is a “ring-up” with increasing amplitude until about t �
60M followed by a “ring-down.” If we define the duration
of the plunge by the time interval from the beginning of the
signal to the onset of the ring-down in Fig. 2, we obtain a
plunge time of �30M. This is comparable to the plunge
time derived by different means in PN calculations in the
range from 41M to 77M [2]. For the type of initial data we
use, the plunge time is estimated to be equal to the orbital
period at the ISCO in [11,12], which is 37M and again
consistent with what we find.

For an orbital period of 37M we expect to see quad-
rupole radiation at half that period. In fact, a frequency
decomposition of the waveform shows a dominating
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FIG. 2. ISCO waveform for two transition times compared
against the result with no full numerical evolution, T � 0.
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component with periods close to 12M and 19M, the two
most weakly damped quasinormal oscillation frequencies
for m � 62 [19] of our final black hole with a � 0.8M.
This suggests that at around 19M there is a mixture of
quasinormal ringing and orbital components. For a system
with total mass 35MØ these two principal frequency
components correspond to frequencies of roughly 600 and
900 Hz, which are within the sensitive range of typical
interferometric gravitational wave detectors. Note that
there is a discrepancy of roughly a factor of 2 in the orbital
period at the ISCO between the initial data analysis and
PN calculations, i.e., our initial data correspond to tighter
configurations than are found in PN studies.

Let us point out that the observed time for linearization
of less than 15M is significantly shorter than the �30M
it takes until ring-down. The onset of linear evolution
need not immediately result in a ring-down waveform. The
linearization time is also less than the time until a common
apparent horizon appears, but recall what sets the range
of validity of the close limit approximation. It is not the
presence of a common horizon, but rather that the black
holes sit in a common gravitational well, which occurs
earlier. The briefness of the nonlinear phase of the plunge
is good news, because this is the technical reason why we
can perform these simulations with the current techniques.
Still, we want to emphasize that numerical relativity was
essential for achieving these results. For T � 11M, the
first wave cycle is determined precisely to within 1% of
a wave cycle, while the T � 0M waveform with no full
numerical evolution has a very different appearance and is
roughly 90± out of phase.

We estimate the total radiated energy after ISCO to be
�3% of the total ADM mass coming almost entirely from
the m � 62 modes. This is larger than the 1.4% obtained
by extrapolating PN results [2] and the 1%–2% obtained
by extrapolation of the close limit [8]. The radiated angu-
lar momentum is a delicate quantity to compute involving
correlations of waveforms [20], we estimate the angular
momentum loss to be around 2%. This confirms the ex-
pectation that not much angular momentum is lost during
the plunge and ring-down.

In conclusion, our approach makes it for the first time
possible to study the fundamentally nonlinear processes
taking place during the final plunge phase of the collision
of two well-separated black holes, starting from an esti-
mate for the ISCO location. The results presented here
show that full 3D numerical evolution is essential to de-
scribing the nonlinear interaction of binary black holes.
The interface to a linear evolution of Einstein equations
allows us to target the full numerical evolution where it
121103-4
really matters. Ours are the first, but certainly not the
final, numerical results for astrophysical black hole sys-
tems. Further work will be done in extending the dura-
tion of the numerical simulations, and in moving toward
more astrophysically realistic initial data descriptions such
as with a true interface to the post-Newtonian approxima-
tion. The technology we have developed makes it possible
to explicitly study the physical appropriateness of various
initial data descriptions, both by comparison studies, and
by moving to more separated “pre-ISCO” configurations.
Further important astrophysical applications of numerical
relativity can now begin characterizing the effects of black
hole spins and relative mass differences on the radiation
waveforms.
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