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Differentially Rotating Disks of Dust

Marcus Ansorg1 and Reinhard Meinel2
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We present a three-parameter family of solutions to the stationary axi-
symmetric Einstein equations that describe differentially rotating disks
of dust. They have been constructed by generalizing the Neugebauer-
Meinel solution of the problem of a rigidly rotating disk of dust. The
solutions correspond to disks with angular velocities depending monoton-
ically on the radial coordinate; both decreasing and increasing behaviour
is exhibited. In general, the solutions are related mathematically to Ja-
cobi’s inversion problem and can be expressed in terms of Riemann theta
functions. A particularly interesting two-parameter subfamily represents
Bäcklund transformations to appropriate seed solutions of the Weyl class.

KEY WORDS : Rotating bodies ; disks of dust ; Ernst equation ; Ja-
cobi’s inversion problem ; Bäcklund transformations

1. INTRODUCTION

Although many rigorous solutions to Einstein’s field equations have been
constructed, only few of them can be applied to physically relevant situ-
ations. In the particular field of stationary axisymmetric solutions so far
only the Kerr black holes [1] and the rigidly rotating disks of dust [2–4] are
known to be physically relevant. On the other hand, stationary axisym-
metric solutions are of special interest to astrophysics to model equilibrium
configurations like stars and galaxies.
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The complicated structure of the Einstein equations describing the
interior of a rotating body gives little hope for a rigorous global solution
in the near future. However, if one restricts oneself to considering only
dust configurations of finite extension, the body flattens in an extreme
manner (it becomes a disk) and the interior equations turn into boundary
conditions for the exterior vacuum equations. Now these equations can
be expressed by a single nonlinear equation – the so-called Ernst equation
[5,6]. For treating the Ernst equation, there are powerful analytic methods
available which come from soliton theory [7–12]. In particular, Korotkin
[13,14] and Meinel and Neugebauer [15] (see also Refs. 16,17), were able
to construct a class of solutions containing a finite number of complex
parameters and one arbitrary real solution to the axisymmetric three di-
mensional Laplace equation. In this paper we present a three-parameter
subclass describing disks of dust revolving with a non uniform angular ve-
locity. These solutions are analytic in the sense that they belong to the
class of solutions under discussion and therefore strictly satisfy the Ernst
equation. On the other hand, these solutions are numerical solutions since
the real-valued potential function mentioned above has been determined
numerically in order to satisfy the boundary conditions. The accuracy
that has been obtained was very high (generally 12 digits) such that for
any practical use the solutions are just as good as purely analytic ones.
Moreover, the accuracy may in principle be increased arbitrarily.

The paper is organized as follows. In the first section, the boundary
value problem for differentially rotating disks of dust is introduced and
the class of solutions in question is reviewed. The numerical methods by
which we were able to obtain our subclass of differentially rotating disks
of dust will be discussed in the first part of the second section. This will
be followed by a thorough illustration of the parameter space of these
solutions. The subsequent subsections contain detailed discussions about
particular limits.

In what follows, units are used in which the velocity of light as well
as Newton’s constant of gravitation are equal to 1.

1.1. Metric tensor, Ernst equation, and boundary conditions

The metric tensor for axisymmetric stationary and asymptotically flat
space-times reads as follows in Weyl–Papapetrou-coordinates (ρ, ζ, ϕ, t):

ds2 = e−2U [e2k(dρ2 + dζ2) + ρ2dϕ2]− e2U (dt+ a dϕ)2.

For this line element, the vacuum field equations are equivalent to a single
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complex equation — the so-called Ernst equation3

(Re f)�f = (∇f)2 , (1)

� =
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂ζ2
, ∇ =

(
∂

∂ρ
,
∂

∂ζ

)
,

where the Ernst potential f is given by

f = e2U + i b with b,ζ =
e4U

ρ
a,ρ, b,ρ = −e

4U

ρ
a,ζ . (2)

To obtain the boundary conditions for differentially rotating disks of dust,
one has to consider the field equations for an energy-momentum-tensor

T ik = εuiuk = σp(ρ)eU−kδ(ζ)uiuk,

where ε and σp stand for the energy-density and the invariant (proper)
surface mass-density, respectively, δ is the usual Dirac delta-distribution,
and ui denotes the four-velocity of the dust material.4

Integration of the corresponding field equations from the lower to the
upper side of the disk (with coordinate radius ρ0) yields for ζ = 0+ and
0 ≤ ρ ≤ ρ0 the conditions (see Ref. 18, p. 81–83)

2πσp = eU−k(U,ζ + 1
2Q) (3)

e4UQ2 +Q(e4U ),ζ + (b,ρ)2 = 0 (4)

with
Q = −ρe−4U [b,ρb,ζ + (e2U ),ρ(e2U ),ζ ]. (5)

Note that boundary condition (4) for the Ernst potential f does not involve
the surface mass-density σp. This condition comes from the nature of the
material the disk is made of. Therefore, eq. (4) will be referred to as the
dust-condition.

The angular velocity Ω = uϕ/ut of the disk can be calculated from

Ω =
Q

a,ζ − aQ
. (6)

3 The remaining function k can be calculated from the Ernst potential f by a line
integration.

4 ui has only ϕ- and t- components.
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The following requirements resulting from symmetry conditions and
asymptotical flatness complete our set of boundary conditions:
• Regularity at the rotation axis is guaranteed by

∂f

∂ρ
(0, ζ) = 0 .

• At infinity asymptotical flatness is realized by U → 0 and a→ 0. For
the potential b this has the consequence b → b∞ = const. Without
loss of generality, this constant can be set to 0, i.e. f → 1 at infinity.

• Finally, we assume reflectional symmetry with respect to the plane ζ =
0, i.e. f(ρ,−ζ) = f(ρ, ζ) (with a bar denoting complex conjugation).

1.2. Solutions related to Jacobi’s inversion problem
Meinel and Neugebauer [15] showed that for an arbitrary integer p the

function f defined by

f = exp
( p∑
ν=1

∫ K(ν)

Kν

KpdK

W (K)
− vp

)

with

W (K) =

√√√√(K + iz)(K − iz̄)
p∏
ν=1

(K −Kν)(K − K̄ν)

satisfies the Ernst equation.5 Hereby, the Kν are arbitrary complex pa-
rameters. The variable z = ρ + iζ is the complex combination of the
coordinates ρ and ζ. The (z-dependent) values for the K(ν) as well as the
integration paths on a two-sheeted Riemann surface have to be taken from
the solution to the following Jacobian inversion problem:

p∑
ν=1

∫ K(ν)

Kν

KjdK

W (K)
= vj , 0 ≤ j < p.

The potential functions vj (0 ≤ j ≤ p) may be any real solutions to the
axisymmetric Laplace equation�vj = 0 satisfying the recursion conditions

ivj,z = 1
2vj−1 + zvj−1,z .

5 Korotkin [13,14] (see also Refs. 16,17) found solutions to the Ernst equation which
are closely related to the solutions considered here.
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These recursion conditions are automatically satisfied by the ansatz

vj =
1

2πi

∫
Σ

KjH(K)√
(K − ζ)2 + ρ2

dK, (8)

where Σ is some curve (or even some set of curves) in the complex plane.
With (8), the regularity of the resulting solution at (ρ, ζ) = (|	[Kν ]|,
Re [Kν ]) is guaranteed. However, there are discontinuities along the curve
Σ′ = {(ρ, ζ) : ζ± iρ ∈ Σ}. Moreover, a free function H defined on Σ enters
the class of solutions. Hence, this ansatz allows us to consider a restricted
class of boundary value problems6 in which the curve Σ results from the
shape of the boundary Σ′.

Ernst potentials with reflectional symmetry f(ρ,−ζ) = f(ρ, ζ) are
obtained if the following properties are all satisfied:
• For each parameter Kν there is a different parameter Kµ with Kµ =
−Kν .
• K ∈ Σ ⇔ 1± K̄ ∈ Σ
• H(1± K̄) = H(K)

For differentially rotating disks, we can set Σ = {K : K = iρ0x,−1 ≤
x ≤ 1}. Thus we get

vj = ρ j−p0

∫ 1

−1

(ix)jh(x2)
ZD

dx,

ZD =
√

(ix− ζ/ρ0)2 + (ρ/ρ0)2 (Re (ZD) < 0).

In this expression we require the real-valued function h to be analytic
on the interval [0, 1]. This is necessary for an analytic behaviour of the
angular velocity Ω for all ρ ∈ [0, ρ0].

The additional requirement

h(1) = 0 (9)

leads to a surface mass-density σp of the form

σp(ρ) = ψ(ρ)
√
ρ2
0 − ρ2 (with ψ analytic on [0, ρ0])

and therefore ensures vanishing σp at the rim of the disk. The resulting
Ernst potential f depends on the normalized coordinates (ρ/ρ0, ζ/ρ0), on
the parameters Xν = Kν/ρ0 and functionally on h.

6 The restriction comes from the requirement that the potential functions vj be real .
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One obtains the special case of rigid rotation [3] when the following
equations are all satisfied:

• p = 2

• X2
1 = −1 +

i
µ
, X2 = −X1

• h(x2) = µ
arsinh[µ(1− x2)]

π
√

1 + µ2(1− x2)2
. (10)

The parameter µ is related to the angular velocity

µ = 2Ω2ρ2
0e
−2V0 , V0 = U(ρ = 0, ζ = 0)

and runs on the interval (0, µ0) with µ0 = 4.62966184 . . . For µ � 1 one
obtains the Newtonian limit of the Maclaurin disk. On the other hand,
µ → µ0 and ρ0 → 0 yields the ultrarelativistic limit of the extreme Kerr
black hole.

In this article we explore the subclass p = 2 of the solutions introduced
above. It will be shown how, for a given value of the complex parameter
X1 (K1 = ρ0X1), the freedom of the choice of the function h with the
property (9) has been used to find a solution satisfying the dust-condition
(4). It turns out that for each X1 within a certain region (a more precise
description follows) there is a function h such that the resulting Ernst
potential can be interpreted as having been created by a differentially
rotating disk of dust. The accompanying surface mass-density and angular
velocity may afterwards be calculated according to eqs. (3) and (6).

2. DIFFERENTIALLY ROTATING DISKS

2.1. The numerical scheme
As already mentioned above, in this paper we consider the class of

solutions introduced in the previous chapter for the particular case p = 2.
Here we can prescribe
(i) the coordinate radius ρ0

(ii) the complex parameter X1 with Re (X1) ≤ 0 and 	(X1) ≤ 0 (without
loss of generality). Then K1 and K2 follow from K1 = ρ0X1, K2 =
−K1.

(iii) a real-valued function h : [0, 1] −→ R which is analytic everywhere in
[0, 1] (i.e. in particular at the boundaries of the interval) and vanishes
at the upper boundary: h(1) = 0.
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For such a choice all the requirements stated in subsection 1.1 are
satisfied except the dust-condition (4)7 . Now, this condition yields a
complicated nonlinear integral equation for h:

D

(
x2 =

ρ2

ρ2
0

;X1;h
)

:= ρ2
0[e

4UQ2 +Q(e4U ),ζ + (b,ρ)2]
.= 0

(ζ = 0+, 0 ≤ ρ ≤ ρ0) (11)

{Q=−ρe−4U [b,ρb,ζ + (e2U ),ρ(e2U ),ζ ] , f=e2U + ib=f(ρ/ρ0, ζ/ρ0;X1;h) }.
Note that the resulting function h depends parametrically on X1 (but not
on ρ0).

With expansions of the functions h and D in Chebyshev-polynomials
(this can be done since both of them are analytic in [0, 1]) we try to dis-
cretize eq. (11):

• h(x2) ≈
N∑
j=1

hjTj−1(2x2 − 1)− 1
2
h1 , Tj(τ) = cos[j arccos(τ)],

h(1) .= 0 ⇒ h1 = −2
N∑
j=2

hj

• D(x2;X1;h) ≈
N−1∑
j=1

Dj(X1;hk)Tj−1(2x2 − 1)− 1
2
D1(X1;hk).

In this manner, the nonlinear integral equation (11) is approximated by a
finite system of nonlinear equations

Dj(X1;hk) = 0 (1 ≤ j < N, 2 ≤ k ≤ N). (12)

The system (12) has been solved numerically by a Newton–Raphson
method. For this technique one needs a good initial guess for the solu-
tion. Fortunately, the values hk are given exactly for the rigidly rotating
disks. Therefore, we start with an X1 that differs only slightly from those
for the rigidly rotating disks [say X2

1 = (−1 + ε) + i/µ] and take the hk’s
for the rigidly rotating disks as initial values. The newly calculated nearby

7 Additionally one has to ensure that the surface mass-density σp given by eq. (3)
is positive and finite within [0, ρ0]. Furthermore, the global regularity of the Ernst
potential has to be checked. Fortunately, our solutions possess these properties.
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solution serves then as an initial guess for another solution further away
from the rigidly rotating disks. Thus we can gradually explore the whole
parameter region of X1.

The numerical code written to implement this scheme produces results
with excellent convergence. For almost all values X1 inside the available
parameter region8 the cancellation of the terms in eq. (11) up to the 12th
digit and even beyond has been achieved within the whole range x2 ∈ [0, 1].
The resulting Chebyshev-coefficients fall off rapidly (generally N = 20
suffices to achieve the previously mentioned accuracy of 12 digits) and the
resulting function h indeed has the desired smooth analytic behaviour. As
already mentioned in footnote 7, the accompanying surface mass-density
turns out to be positive and finite and the Ernst potential is regular outside
the disk.
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Figure 1. Outside the hatched region of the parameter space of X2
1 regular solutions

have been found. Physical characteristics of solutions corresponding to values inside
the allowed region are indicated.

2.2. The parameter region of the solutions and examples
In the following we discuss the solutions obtained, as a function of the

parameter X2
1 . For each value outside the hatched region in Figure 1 we

have found a corresponding solution to the Ernst equation satisfying the
dust-condition. What follows is a discussion of the details of Figure 1:

8 The exceptions are to be found in narrow stripes along the curve Γσ (see next section).
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(i) Differential rotation: For Re (X2
1 ) = −1 we find the rigidly rotating

disks. On the left-hand side of this line (i.e. for Re (X2
1 ) < −1) the

solutions turned out to possess an angular velocity Ω which increases
with the radial coordinate ρ. On the other side, for Re (X2

1 ) > −1,
the function Ω decreases as ρ increases.

(ii) Ergoregions: For values X2
1 inside the area encompassed by the curve

ΓE , the curve ΓU and parts of the curves ΓB and Γσ, the corresponding
disks possess an ergoregion, i.e. a portion of the (ρ, ζ)-space within
which the function e2U is negative.

(iii) Ultrarelativistic limit : As will be shown in subsection 2.3, any simul-
taneous limit
• ρ0 tends to 0
• X2

1 tends to a value on ΓU
turns out to be an ultrarelativistic limit. In the case of non vanishing
values for ρ2 + ζ2, the resulting f tends to the Ernst potential of
an extreme Kerr black hole. If, on the contrary, finite values for√
ρ2 + ζ2/ρ0 are maintained, non asymptotically flat solutions can

be obtained. These results are in agreement with a conjecture by
Bardeen and Wagoner [19].

(iv) The Newtonian limit |X2
1 | → ∞: Here the Ernst potential tends to

1, i.e. it describes a Minkowski space. In a given neighbourhood (for
large values of |X2

1 |) a post-Minkowskian expansion (with the first
coefficient being a Newtonian potential) of the Ernst potential can be
carried out. One finds that the resulting Newtonian coefficient is the
gravitational field of a rigidly rotating Maclaurin-disk.

(v) The Newtonian limit 	(X1) → 0: For real and positive values of X2
1

(hence X1 = −X2, both real) again the corresponding Ernst potential
is equal to 1. Here, the Newtonian coefficient of the post-Minkowskian
expansion describes a disk with decreasing Ω(ρ).

(vi) Bäcklund limit : For real and negative values of X2
1 we get X1 = X2.

Then the complicated structure of the Ernst potential f simplifies
considerably. One finds that these solutions can be interpreted as
Bäcklund transforms of appropriate seed solutions of the Weyl class.
A detailed discussion on this subclass is given in subsection 2.4.

(vii) The hatched region and the curve Γσ: Inside the hatched region no
solutions have been found satisfying both of the requirements
• f is regular everywhere outside the disk.
• The function h is analytic for all x2 ∈ [0, 1].

Apart from the ultrarelativistic curve ΓU the hatched region is en-
compassed by the curve Γσ. Starting from the Newtonian solutions
described in (v) and ending at ΓU , the corresponding Ernst potentials
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Figure 2. Examples for differentially rotating disks. The dimensionless quantities
ρ0σp, ρ0Ω and the function h are plotted against the normalized radial coordinate ρ/ρ0

and x, respectively, for (a) X2
1 ≈ −1/2 + i/3 (here X2

1 ∈ Γσ), (b) X2
1 = −2/3 + i/2, (c)

X2
1 = −3/2 + i/5, (d) X2

1 = −4.
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describe a transition from Minkowski space to the ultrarelativistic
limit, just as the rigidly rotating disks and the Bäcklund solutions (at
ΓB) do. Now, all solutions along Γσ possess the property that the de-
rivative of the surface mass-density vanishes at the rim of the disk, i.e.
σp(ρ) = (ρ2

0−ρ2)3/2 ψ̃(ρ) (with ψ̃ analytic in [0, ρ0]). Surprisingly, this
physical property coincides with the failure of our numerical method
at Γσ. Further investigations are necessary to clarify this coincidence.
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<(X2
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Figure 3. Contourplot of M2/J . The stripes correspond to intervals of length 1/20;
they are white for Newtonian disks (M2/J → 0) and black for highly relativistic disks
(M2/J → 1).

Figure 2 shows representative examples of solutions. From Figure 3
we can get an impression of how “relativistic” our solutions are. Here, the
physical quantity M2/J is plotted over the available parameter region of
X2

1 with the gravitational mass M and the total angular momentum J
given by

M = 2
∫
S

(Tab − 1
2Tgab)n

aξbdV (T = gabT
ab), J = − ∫

S
Tabn

aηbdV.

(S is the spacelike hypersurface t = constant with the unit future-pointing
normal vector na; the Killing vectors ξa and ηa correspond to stationarity
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and axisymmetry, respectively.) Note that M and J can also be calculated
from the behaviour of the Ernst potential at infinity:

U = −M
r

+O(r−2), b = −2J
cos θ
r2

+O(r−3) (ρ = r sin θ, ζ = r cos θ).

The agreement of the two expressions yields an excellent confirmation of
the regularity of the solutions. For Figure 3, not only the values M2/J
have been determined but also this agreement was checked.
2.3. Ultrarelativistic limits

In this subsection we show how ultrarelativistic limits of our solutions
can be obtained if simultaneously
• X2

1 tends to a value on ΓU .
• the coordinate radius ρ0 tends to zero.

To this end we first consider the limit ρ0 → 0 for a fixed value X2
1 /∈ ΓU

and finite values of ρ2 + ζ2 �= 0. Here, f tends to 1. In a second step,
we investigate the above simultaneous limit again for ρ2 + ζ2 �= 0 and find
that f tends to the Ernst potential of an extreme Kerr black hole. Finally,
we indicate how further non asymptotically flat solutions can be obtained
by fixing finite values of

√
ρ2 + ζ2/ρ0.

(i) The limit ρ0 → 0 for X2
1 /∈ ΓU : Similar to the treatment in [20]

we rewrite the expression for f and Jacobi’s inversion problem in the
equivalent form9

f = exp
( ∫ K(1)

K(2)

K2dK

W
− ṽ2

)
,

∫ K(1)

K(2)

dK

W
= ṽ0 ,

∫ K(1)

K(2)

K dK

W
= ṽ1 (13)

with

ṽj = vj − wj = vj −
∫ K2

K1

Kj dK

W
(j = 0, 1, 2).

In the limit ρ0 → 0, ρ2 + ζ2 �= 0 the potential function v0 as well as
the integral w0 diverge whilst these values remain finite for j > 0:

v0 = − 1

ρ0

√
ρ2 + ζ2

∫ 1

−1

h(x2;X1) dx+O(ρ0), v1 = O(ρ0), v2 = O(ρ0),

w0 =
2

ρ0

√
ρ2 + ζ2

Re
[

1
X1

K

(
X2

X1

)]
+

πiζ
2(ρ2 + ζ2)3/2

+O(ρ0)

9 K(2) is now on the other sheet of the Riemann surface.
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with K being the Jacobian elliptic function

K(m) =
∫ π/2

0

d θ√
1−m2 sin2 θ

,

w1 =
πi

2
√
ρ2 + ζ2

+O(ρ0), w2 = O(ρ0).

Now, we define the curve ΓU (X2 = −X̄1):

X2
1 ∈ ΓU

:⇔ C(X1) := −
∫ 1

−1

h(x2;X1) dx− 2Re
[

1
X1

K

(
X2

X1

)]
.= 0 . (14)

For all values X2
1 /∈ ΓU , ṽ0 diverges as well:

ṽ0 =
C(X1)

ρ0

√
ρ2 + ζ2

− πiζ
2(ρ2 + ζ2)3/2

+O(ρ0) with C(X1) �= 0.

In the limit ρ0 → 0, this leads to finite solutions X(j) = K(j)/ρ0

(j = 1, 2) of Jacobi’s inversion problem and eventually to

f = exp
(

ρ0√
ρ2 + ζ2

∫ X(1)

X(2)

X2dX√
(X2 −X2

1 )(X2 −X2
2 )

+O(ρ0)
)
→ 1.

(ii) The black hole limit : The above simultaneous limit is performed such
that

ΩU :=
C(X1)

2ρ0

remains finite. We then get for ρ0 → 0 (with ρ = r sin θ, ζ = r cos θ):

ṽ0 =
2ΩU
r
− πi cos θ

2r2
, ṽ1 = −πi

2r
, ṽ2 = 0 .

Again we can follow the procedure of [20]. Since Kj → 0 (j = 1, 2),
the integrals in Jacobi’s inversion problem (13) become elementary,
and thus for f one obtains

f =
2rΩU − 1− i cos θ
2rΩU + 1− i cos θ

,
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i.e. the (r > 0 part of the) extreme Kerr solution with J = 1/(4Ω2
U ) =

M2. The constant ΩU plays the role of the ‘angular velocity of the
horizon’.

(iii) The non asymptotically flat ultrarelativistic limit : As shown in [20]
for the rigidly rotating disks, our more general solutions also allow for
a different, not asymptotically flat limit. To achieve this, one has to
consider finite values of r/ρ0. A coordinate transformation

r̃ =
r

C(X1)
, ϕ̃ = ϕ− ΩU t, θ̃ = θ,

t̃ = C(X1)t (hence r/ρ0 = 2r̃ΩU ),

yields a transformation to a corotating system (with angular veloc-
ity ΩU ) combined with a rescaling of r and t. In the limit ρ0 → 0
and C(X1) → 0, the resulting Ernst potential f̃ [which is related
to the Ernst potential f ′U within the above corotating system by
f̃ = f ′U/C

2(X1)] still describes a disk and is regular everywhere out-
side the disk. However, it is not asymptotically flat.

2.4. Bäcklund limit
In the limit of real and negative values of X2

1 we obtain purely imag-
inary values for K1 and K2 with K1 = K2. Then the reformulation (13)
of the expressions for f and Jacobi’s inversion problem, leads to [with the
abbreviation r1 =

√
(K1 − iz̄)(K1 + iz) ]:

f = exp
( ∫ K(1)

K(2)

dK√
(K − iz̄)(K + iz)

− [v2 −K2
1v0]

)
,

∫ K(1)

K(2)

dK

(K −K1)
√

(K − iz̄)(K + iz)
= v1 +K1v0 − iπ

r1
,

∫ K(1)

K(2)

dK

(K +K1)
√

(K − iz̄)(K + iz)
= v1 −K1v0 .

Applying the substitution λ(K) =
√

(K − iz̄)/(K + iz), we get the follow-
ing system of equations for f , λ(1)λ(2), and (λ(2) − λ(1)):

f =
λ(1)λ(2) + (λ(2) − λ(1))− 1
λ(1)λ(2) − (λ(2) − λ(1))− 1

e−(v2−K2
1v0),

λ(1)λ(2) − λ1(λ(2) − λ(1))− λ2
1

λ(1)λ(2) + λ1(λ(2) − λ(1))− λ2
1

= − er1(v1+K1v0),
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λ(1)λ(2) − λ∗1(λ
(2) − λ(1))− λ∗21

λ(1)λ(2) + λ∗1(λ(2) − λ(1))− λ∗21

= er
∗
1 (v1−K1v0)

[with λ(j) = λ(K(j)), λ1 = λ(K1), λ∗1 = 1/λ̄1, r
∗
1 = r̄1].

The solution for f is given by

f = f0

∣∣∣∣∣∣
1 1 1
−1 λ1α1 λ∗1α

∗
1

1 λ2
1 λ∗21

∣∣∣∣∣∣
/ ∣∣∣∣∣∣

1 1 1
1 λ1α1 λ∗1α

∗
1

1 λ2
1 λ∗21

∣∣∣∣∣∣ (15)

where

f0 = e−(v2−K2
1v0), α1 =

1− exp[r1(v1 +K1v0)]
1 + exp[r1(v1 +K1v0)]

, α∗1 =
1
ᾱ1

.

Equation (15) represents a Bäcklund transformation of the real seed solu-
tion f0 (see Refs. 10,11). As a consequence of (7), α1 satisfies the Riccati
equations10

α1,z = λ1(α2
1 − 1)

f0,z

2f0
, α1,z̄ =

1
λ1

(α2
1 − 1)

f0,z̄

2f0
.

Hence, in this limit, our solutions are physically interesting Bäcklund
transforms of nontrivial seed solutions of the Weyl class.
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ence Network Publishing, Konstanz); gr-qc/9703077.


