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Abstract. We present a novel spectroscopic method based
on a phase-modulated interferometer which is suitable for
the high-precision measurement of absorption and index of
refraction profiles. A comparison with competing methods,
that is with interferometry and FM spectroscopy, is given.
The combination of these two methods, the phase-modulated
interferometer, is shown to be best suited for experiments
aiming at the realization of novel optical media, for ex-
ample media exhibiting an ultra-large index of refraction
or strong dispersion without absorption. The theory of op-
eration and a theoretical and experimental signal-to-noise
analysis are presented. Current detection limits for optical
phase shift and relative absorption are1.1×10−5 rad/

√
Hz

and 2×10−5 /
√

Hz, respectively. We demonstrate the ef-
fectiveness of this novel technique by investigating the ab-
sorption and index of refraction profiles of the 4s2 1S0→
4s4p 1P1 resonance transition at423 nmin calcium.

PACS: 07.65; 07.57.Pt; 32.70.Jz

Over the last years it has been shown both theoretically
and experimentally that the optical properties of atoms and
molecules can be “designed” simply by introducing atomic
coherence or utilizing quantum interference. Examples are
cancellation of absorption [1], enhancing the index of refrac-
tion and the dispersion [2–4] and the realization of ultra-
large non-linearities without absorption [5]. These media pro-
vide a variety of new applications, such as an ultra-sensitive
magnetometer [6] or high-finesse broadband optical cavities
(white-light cavities [7]). For their realization, precise know-
ledge and control of the absorption coefficient and of the
index of refraction of these media are necessary. Since it
overcomes some of the problems related to competing spec-
troscopic methods while offering the potential for shot-noise-
limited measurement of optical spectra, the novel spectro-
scopic method that we present in this paper is best suited for
the measurement of these properties.

Among the large number of existing spectroscopic
methods there are only two providing highly sensitive and

simultaneous detection of the absorption and phase shift (in-
dex of refraction) which a “probe field” experiences as it
passes through the medium under investigation. The first
method is given by the category of phase and/or amplitude
modulation techniques whereas the second is an interferomet-
ric method.

Based on the pioneering work of Bjorklund [9] phase
modulation techniques in the optical domain have been used
and optimized for about two decades [8]. By choosing the
phase modulation indexM and the modulation frequencyωm
one can distinguish between two distinct regimes of phase
modulation spectroscopy. Thewavelength modulation spec-
troscopyutilizes a large phase modulation index (M � 1)
and a modulation frequency small compared to the widthΓ
of spectral feature under investigation:M×ωm� Γ . This
method reveals only the derivative of the absorption with re-
spect to the optical frequency and does practically not provide
information about the index of refraction [10]. The second
limiting case whereM � 1 and aωm� Γ , is referred to
as frequency modulation spectroscopy(FMS). For this case,
only the carrier and the first-order modulation sidebands of
the phase-modulated optical field have to be considered [10].
When passing through the sample, these three spectral com-
ponents will experience a certain phase shift and damping,
which can be described by a complex amplitude transmis-
sion coefficientTn = e−δn× ei φn , wheren=−1,0,+1 des-
ignates the low-frequency, the carrier, and the high-frequency
component, respectively. Assuming small variation of the
absorption and the phase shift with frequency (|δn− δn+1|,
|φn−φn+1| � 1), the beat signal at the modulation frequency
detected with a fast photodiode takes the form [10]:

Iωm(t)∝ M (δ−1− δ+1) cosωm t

+M (φ−1+φ+1−2φ0) sinωm t . (1)

From (1) it follows that a simultaneous measurement of the
phase shiftφ(ω) (index of refraction) and the absorptionδ(ω)
can only be achieved when one of the sidebands is swept
across the spectral feature of interest, with the carrier and
the other sideband not experiencing any phase shift or damp-
ing at all. One of the most important features of FMS is the
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fact that quantum-noise (shot-noise)-limited sensitivity can
be achieved experimentally for both absorption and phase
shift detection [11]: First, FMS has no background signal.
In the case of vanishing absorption and phase shift there is
no signal at the modulation frequency. Second, the infor-
mation is contained in the high-frequency component of the
photodiode signal. At high modulation frequencies, detec-
tor electronics noise, technical laser frequency, and power
noise can be suppressed below the shot-noise level of the
optical field. Furthermore, techniques have been developed
to overcome those technical problems encountered in FMS
one encounters when trying to achieve shot-noise-limited sen-
sitivity (RAM [11], interference effects [12], drift of base-
line: two-tone-FMS [13]). Even sub-shot-noise-limited sen-
sitivity for absorption measurements has been achieved with
amplitude-squeezed lasers [14]. FM-noise spectroscopy [15]
provides FMS without the need of active phase modulation
and is based on the intrinsic broadband frequency noise of
diode lasers.

Schmidt et al. [16] used a Mach–Zehnder interferometer
for the simultaneous detection of the absorption and of the
index of refraction in aΛ-scheme inCs, exhibiting strong
positive dispersion without absorption. In the limit of perfect
contrast, a perfectly balanced power beam splitter at the out-
put of the interferometer, and two ideal photodiodes (unity
quantum efficiency, identical transimpedance gain), the dif-
ferential mode (balanced) output of the interferometer can
provide shot-noise-limited phase shift sensitivity, if the inter-
ferometer is operated at a “half fringe”. Here, “half fringe”
describes the situation where, for a balanced output beam
splitter, the signals from both of the outputs equal each other:
I1 = I2 = I0/2 (see below). However, the absorption meas-
urement is based on directly detecting the transmitted power
and will therefore not reach a sensitivity comparable to FMS.
In addition, for certain reasons not connected to the interfero-
metric technique, Schmidt and co-workers had to ensure that
the laser power in both arms of the interferometer was the
same. Hence, for a weak probe, the detected signal must be
small and technical noise problems can arise.

Müller et al. [3] developed a common-path heterodyne in-
terferometer for which both the reference and probe beam
are separated not in space but in frequency. The setup can
be interpreted in terms of an interferometer operated at the
difference frequency (microwave range). This method shows
some similarity to FMS in the limit of complete absorption of
the non-probing sideband and can provide shot-noise-limited
sensitivity for phase shift detection. However, as with the
homodyne interferometer, the absorption is directly detected
so that shot-noise-limited sensitivity can not be achieved for
this quantity. Nevertheless, this method offers some advan-
tages compared to ordinary FMS, since it is not limited to
a small phase modulation index (i.e. small probe power). In
this way one can avoid those problems that can arise from the
interaction of the non-probing sideband or the higher order
sidebands with the sample. In addition, it technically simpli-
fies the setup in those cases where phase-locked lasers must
be used: then, additional active phase modulation is obsolete.

Although all of the spectroscopic methods mentioned so
far seem to be well suited for the simultaneous and highly
sensitive detection of absorption and refractive index pro-
files, they do not meet all of the requirements for “designing”
the optical properties of certain media. In order to discuss

this in Sect. 1, we will define five requirements a convenient
setup has to meet, we will briefly evaluate the spectroscopic
methods mentioned above with respect to these requirements,
and we will introduce the basic concept of the novel method
discussed in this paper. In Sect. 2, a theoretical description
of this novel method is developed. These results are used to
investigate its sensitivity limit in Sect. 3. In Sect. 4 we give
a description of technical details, we discuss the operation as
an active null instrument, and present some experimental data
on the sensitivity achieved so far. Finally, we demonstrate the
performance of the novel method by spectroscopically inves-
tigating theCa4s2 1S0→ 4s4p 1P1 transition.

1 Basics of the novel method

The spectroscopy requirements for realizing novel optical
media differ from those given for laser stabilization, opti-
cal clocks, or molecular spectroscopy. Although especially
for high-precision spectroscopy a detailed understanding of
the absorption line shape is essential for determining the line
center, it is mainly the exact knowledge about the transition
frequency that provides the information about, for example
the molecule. In contrast, the absorption and index of refrac-
tion profilesare of major interest for the design of the novel
media mentioned above. A spectroscopic setup dedicated to
the investigation of these novel media has to meet the follow-
ing requirements:

(i) The spectroscopic method should allow thesimultaneous
measurementof the absorption coefficient and of the in-
dex of refraction, as both vary with frequency. In princi-
ple, one can derive one of these profiles from the other by
applying the Kramers–Kronig relations [17]. However,
these relations assume that either the absorption or the in-
dex of refraction is known for every frequency. This can
be a problem for very complex spectra of molecules, for
example.

(ii) The method shouldavoid cross-talkingbetween the ab-
sorption and index of refraction signal. Cross-talking
can play a role especially for spectroscopy within the
very vicinity of a resonance, where the absorption signal
reaches its maximum and the index of refraction signal
(usually an optical phase shift) approaches zero.

(iii) The (classical) measurement must not modify the optical
properties of the medium under investigation. The signal
should carry information concerning the absorption and
the index of refraction of the probe field only. This is of
importance for FMS, as discussed below.

(iv) A good signal-to-noise ratio should be achievable even at
low probe powers: for our purpose of realizing negative
dispersion without absorption [4], a sensitivity of10−5−
10−6 for relative absorption and10−5–10−6 rad for opti-
cal phase shifts should be reached at probe power levels
of ≈ 20µW.

(v) Since it is the absolute value of the absorption coefficient
and of the index of refraction that is to be determined,
calibration of the signals should be simple, accurate, and
reliable. In the ideal case, the calibration factor is a con-
stant and does not depend on laser power etc. Actually,
this is a question of convenience rather than a require-
ment. Still, it turns out to be an advantage of the novel
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method presented here so that we may add this point
to this list of aspects used to compare different spectro-
scopic methods.

We begin our discussion by evaluating FMS with respect
to these requirements. It first should be emphasized that only
FMS used in the way described above can provide informa-
tion for both optical phase shifts and absorption, with shot-
noise-limited sensitivity. This also includes the novel method
presented here and is due to the fact that all but the FMS
detects transmitted fields rather than the absorbed fields (i,
iv). However, some problems arise when FMS is used for in-
vestigations on novel optical media such as those providing
an enhanced index of refraction. To recognize this, we no-
tice that (1) is valid only in the limit of small phase shift and
small absorption. Taking into account higher order terms and
assuming that only one FM sideband, for examplen= 1, ex-
periences some phase shift and absorption, (1) becomes

Iωm(t)∝M×
{
−δ1 + 1

2

(
δ2

1 − φ2
1

) − 1

6
δ3

1 +
1

2
φ2

1δ1 + . . .
}

× cosωm t

+M×
{
φ1 − δ1φ1 + 1

2
δ2

1φ1 − 1

6
φ3

1 + . . .
}

× sinωm t .
(2)

Hence, the second-order terms give rise to cross-talking ef-
fects and to non-linearities. For example, near points of van-
ishing absorption where the index of refraction and conse-
quently the phase shift can be large for certain systems [2],
the absorption signal will be masked completely by the phase
shift. Additionally, for phase shifts approaching≈ π/2, the
phase shift signal strongly becomes non-linear or even am-
biguous. Therefore, (ii) will not be satisfied in general. Fur-
ther, in FMS there are two optical fields used for optical phase
referencing, that is the carrier (n= 0) and the second FM
sideband (n=−1), which both pass the medium. If the mod-
ulation frequencyωm is not sufficiently large, both of the
reference fields will experience varying phase shifts and ab-
sorption during an experiment when the laser frequency or the
modulation frequency is swept. Of course, this will introduce
an error to the signal. Finally, to obtain a good signal-to-noise
ratio, the carrier usually has to be strong. Again, if the mod-
ulation frequency is too small, the strong carrier will drive
the atoms thus modifying the optical properties measured by
the probe field. In this sense, the measurement itself modi-
fies the sample and vice versa, so that it might be difficult
to meet (iii). In principle, this additional interaction between
the measurement device and the sample can be strongly re-
duced by increasing the modulation frequency. However, one
may reach technical limits at a few tens of GHz, which still
may not be enough for example for molecular spectroscopy.
Further, cross-talking and non-linearity problems still main-
tain as they are not related to the value of the modulation
frequency. In conclusion we find, that FMS might not be well
suited for those investigations that focus on the realization of
certain novel optical media.

The Mach–Zehnder interferometer used by Schmidt and
co-workers [16] substantially fulfills all but the second to the
last of these requirements. Cross-talking (ii) is avoided and

the calibration factor (v) of the phase-shift signal is a con-
stant, if the interferometer is operated as an active null instru-
ment and the phase-shift signal is derived from the feedback
signal of the servo loop stabilizing the interferometer to a
“half fringe”. Since the optical phase reference and the probe
field are separated in space, the reference neither is affected
by the medium nor modifies the absorption and the index
of refraction of the sample (iii). However, to get a conve-
nient signal-to-noise ratio at low probe power levels within
the sample, a “high-power” reference has to be used. This can
be realized by using a strongly unbalanced beam splitter at
the input of the interferometer, passing almost all of the probe
laser power to the reference arm. Of course, this strongly
reduces the contrast of the interferometer and therefore intro-
duces some difficulties in locking the apparatus exactly at the
desired working point (at a “half fringe”). Problems arising
from imperfect contrast, from a not perfectly balanced out-
put beam splitter and from unbalanced photodetectors at the
output of the interferometer will shift the locking point of
the interferometer thus introducing cross-talking effects and
changing the calibration factor. Therefore, an interferometer
like the one used by Schmidt and co-workers usually will
be operated with a balanced input beam splitter [18]. Conse-
quently, this will cause some difficulties in reaching a good
signal-to-noise ratio at low probe field powers (iv). Please
note, that even in the case of a perfectly balanced input beam
splitter it will take some effort to overcome the other prob-
lems mentioned above. Therefore, we conclude that it will be
difficult to satisfy (iii) and (iv) under experimental conditions.
Nevertheless, it should be emphasized that the interferomet-
ric setup – at least in principle – provides the possibility to
achieve shot-noise-limited sensitivity for optical phase shift
detection.

When compared to the Mach–Zehnder interferometer the
heterodyne interferometer of Müller et al. [3] has three major
advantages. First, it satisfies (iv), since a high-power optical
local oscillator (LO) may be used to achieve a large signal
even for a low-power probe field (iv). The principle of oper-
ation for phase shift detection is the same as for FMS, so that
shot-noise-limited sensitivity may be achieved with respect to
this quantity. Second, this heterodyne interferometer may be
interpreted as an interferometer operated at microwave fre-
quency (ωLO−ωprobe= 9.2 GHz), thus reducing the strong
demands for passive mechanical stability which have to be
satisfied in the case of an optical interferometer. Third, the
phase shift information is contained at microwave frequency
so that the common problems connected with dc measure-
ments are omitted. However, the problems arising with the
heterodyne interferometer are nearly the same as with FMS.
Cross-talking (ii) is not avoided, since the signal is propor-
tional to the product of probe power transmission and the
optical phase shift. Additionally, for large optical phase shifts
(≈ 1 rad), the phase detection becomes non-linear, since the
heterodyne interferometer can not be operated as an active
null instrument. Further, (iii) only is fulfilled in parts. The
strong optical field driving the atoms [3] also serves as the
constant-frequency optical phase reference, thus the optical
LO does not introduceadditionalmodification of the optical
properties of the medium. However, in the limit of a strong
probe the phase and amplitude of thereferenceoptical field
will be modified when the probe field is tuned during an ex-
periment, so that the reference field no longer may serve as
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a phase reference. In general, satisfying (iii) turns out to be
crucial for a setup where both the probe and the reference
field pass the medium.

On one hand, the comparison of these methods clearly
shows that an interferometric setup satisfies most of the re-
quirements and is the only way to inherently fulfill (iii). How-
ever, the most severe problems related to the setup used by
Schmidt et al. are due to the difficulties in locking the inter-
ferometer exactly at the working point (at a “half fringe”).
On the other hand, FMS and the heterodyne interferometer
tell us how to overcome this problem. Consequently, a com-
bination of interferometry and of the phase modulation tech-
nique should unite the advantages of both while at the same
time avoiding the problems related to each of them. How this
is done is shown in Fig. 1. The setup consists of a Mach–
Zehnder interferometer utilizing an electro-optic phase mod-
ulator within the reference arm. Although each single output
provides full information about phase shifts and absorption
and would allow locking the interferometer at a “dark fringe”
or at a “half fringe” without any subtraction of a background
signal, the differential mode signal (balanced signal) is de-
tected for signal-to-noise reasons. By demodulating the signal
at the modulation frequency or higher harmonics the phase
shift and absorption can be determined. As we will see later
on, this setup meets (i), although it is only the optical phase
shift for which shot-noise-limited sensitivity can be achieved
in principle. Since the setup can be operated as an active
null instrument for phase shift detection, cross-talking and
non-linearities present in FMS, for example, are avoided (ii).
Further, calibration of the absorption signal is simple and the
calibration factor for the phase shift measurement even is
a constant determined by the half-wave voltage of the EOM
(v). The optical phase reference does not pass the medium
thus inherently omitting problems arising from the (classical)
interaction between the apparatus and the sample under inves-
tigation (iii). The novel method makes use of the strong local

Fig. 1. Principle of operation of the novel method which consists of a com-
bination of a Mach–Zehnder interferometer and FMS. The reference arm of
the interferometer is phase modulated (EOM), whereas the test arm inter-
sects a chopped atomic beam (AB). The differential mode signal (balanced
output) of the interferometer provides the information about optical phase
shifts and absorption. M1, M3: beam splitter, LO: local oscillator. A piezo-
electric transducer (PZT) is used for optical phase correction

oscillator concept known from FMS by using a strongly un-
balanced input beam splitter (iv). In contrast to the standard
Mach–Zehnder interferometer, this now does not introduce
problems to actually lock the interferometer at the desired
operating point (“half fringe” or “dark fringe”). Further, prob-
lems arising from a not perfectly balanced output beam split-
ter and from unbalanced photodetectors are omitted as well.

Of course, we do not gain these advantages for free. To
see this, one should recognize that the setup could be inter-
preted as a FMS method, where the carrier (n= 0) serves as
a probe and where strong sidebands spatially bypassing the
interaction zone serve as the phase reference. Hence, from (1)
it is obvious that only phase shifts can be detected with FMS
methods and therefore may be measured with shot-noise-
limited sensitivity. The absorption measurement is based on
a detection of the transmitted field amplitude (“direct detec-
tion”). Therefore, the absorption sensitivity will always be
limited by dc-power noise of the laser. Nevertheless, since the
strong-LO concept can be applied to the absorption measure-
ment, this method is superior to the direct detection of ab-
sorption by ordinary absorption spectroscopy, so that a good
signal-to-noise ratio can be achieved even at low probe pow-
ers. Finally, as for the setup used by Schmidt et al., the phase
sensitivity is limited by the passive mechanical stability of the
optical interferometer. Consequently, in order to reach high
sensitivity, the sample should be chopped so that the signal is
detected at frequencies, at which seismic and acoustic noise
may be neglected. This might not be a problem in those cases,
where an atomic or molecular beam must be used in order to
avoid the Doppler effect. Then, chopping the sample simply
can be realized by using a mechanical or optical chopper.

2 Theory of operation

In this section the theory of operation for the novel method
is developed and the optimum conditions for operation are
discussed.

An optical field described byEIN = E0 exp(iωt) enters the
interferometer at the beam splitter M1, as shown in Fig. 2.
The amplitude reflectivities of both beam splitters are denoted
by r1 andr3, respectively. The beam splitters are assumed to
be ideal:r 2

i + t2
i = 1. The reflectivity of the mirrors is assumed

to equal unity.l1+ la gives the test arm physical length,l2 de-
notes the distance between the input beam splitter M1 and
the phase modulator (EOM), andlb denotes the distance be-
tween the phase modulator and the output beam splitter. The
photodiodes at the output of the interferometer are placed at
distancesL1 andL2 from M3, respectively. An optical fieldE
interacting with the sample being placed within the test arm
experiences some phase shiftϕm and absorption(1− tm), so
that one may writeE → E × tm exp(iϕm). Finally, an opti-
cal field E passing the electro-optic phase modulator placed
within the reference arm will undergo some phase modula-
tion: E→ E ×exp(i MP sinΩt). As an example, we give the
optical fields at the photodiode of output 1. The contributions
from the test arm (ET) and from the reference arm (ER) are:

ET = E0 r1 (−r3) tm ei (ϕ1+ϕa+ψ1+ϕm) ,

ER= E0 t1 t3 ei (ϕ2+ϕb+ψ1) ei MP sin(φ1) . (3)
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Fig. 2. Theory of operation of the novel spectroscopic method. The probe
field EIN enters the interferometer at the strongly unbalanced beam splitter
M1. An electro-optic phase modulator (EOM) is placed within the reference
arm of the interferometer. A chopped atomic beam (AB) intersects the test
arm. Both paths are recombined at the balanced beam splitter M3. The sig-
nal from both of the photodiodes at the outputs are subtracted to yieldI−.
ϕi , ψi : optical phase shifts,ri : amplitude reflectivity coefficients. For details
see text

Here,ϕi = l i ×ω/c for i ∈ {1,2,a,b} andψi = Li ×ω/c for
i ∈ {1,2}mean optical phases, whereasφi =Ωt+ (lb+ Li )×
Ω/c for i ∈ {1,2} describe microwave phases. The differen-
tial mode signalI− derived from the two photodetectors can
be written asI− := I1− g I2, whereg accounts for a possible
difference in the sensitivity of the detectors. Expanding the
signal into Bessel functions of the first kind,Jm ≡ Jm(MP),
we find:

I− = I0

[
t2
m

[
r̃ 2− gt̃2]+ [(r̃ κ)2− g(t̃ κ̃)2

]
−2tm cos(ϕm+∆ϕL)

[
r̃ 2κ+ gt̃2κ̃

]
J0

−4tm cos(ϕm+∆ϕL)

×
∞∑

n=1

J2n
{

r̃ 2κ cos(2nΦ1) + g t̃ 2κ̃ cos(2nΦ2)
}

−4tm sin(ϕm+∆ϕL)

×
∞∑

n=0

J2n+1

{
r̃ 2κ sin[(2n+1)Φ1]

+ gt̃ 2κ̃ sin[(2n+1)Φ2]
}]
,

(4)

where

∆ϕL = (ϕ1+ϕa)− (ϕ2+ϕb) (5)

is the optical phase difference between the arms of the empty
interferometer, and̃r = r1 r3 and t̃ = r1 t3 describe the am-
plitude transmission coefficients for the transfer of the probe
field from the input to outputs 1 and 2 via the test arm, respec-
tively. Similarly, r̃κ = t1 t3 and t̃κ̃ = t1 r3 give the amplitude
transmission coefficients for a transfer of the probe field from

the input to outputs 1 and 2 via the reference arm, respec-
tively. Finally, I0 means the optical power injected into the in-
terferometer. As a first result, we conclude from the equation
above, that the demodulation of the signal at the modulation
frequency and at its harmonics provides a signal to lock the
interferometer at a “dark fringe” (sin[∆ϕL+ϕm] = 0) or at
a “half fringe” (cos[∆ϕL+ϕm] = 0).

In order to simplify the expression, we first discuss the
physical meaning of the microwave phasesφ1 andφ2. The
corresponding terms within the sum over the Bessel functions
have the form

asin(mΩt)+bsin(mΩt+ [L2− L1]Ω/c)

= d sin(mΩt+ψ′)
for certaind andψ′ depending ona, b, and[L2− L1]Ω/c.
It can be shown, that a variation ofL2− L1 will changeψ′
and hence introduce a phase shift of the modulation signal
with respect to the phase of the local oscillator. In addition,
the amplituded of the signal will vary sinusoidally with
L2− L1 and may even vanish for certain parameters. There-
fore, both of the “signal paths” which are formed by the
output beam splitter, by each of the photodetectors and by
the subtracter, may be interpreted in terms of a microwave
interferometer (see Fig. 2). However, there is no square-law
detector following the “output beam splitter” (the subtracter),
so there is no complete analogy to a standard interferom-
eter. Nevertheless, we may conclude two important results
from this discussion. First, differential mode variations of
the photodetector positions will change the phase and am-
plitude of the signal at the modulation frequency and its
harmonics and therefore will only introducerelative noise
to the signal. This means, that any variation ofL2− L1
will not affect the “locking points” sin(ϕm +∆ϕL)= 0 and
cos(ϕm +∆ϕL)= 0 of the interferometer. Second, we notice
that for modulation frequencies in the MHz regime the phase
differenceφ2−φ1= (L2− L1)Ω/c can usually be kept small
and variations ofL2− L1 due to seismic and acoustic interfer-
ence will give rise to relative signal noise in the ppm to ppb
range only. For sake of simplicity, we therefore will assume
φ2= φ1=Ωt in the following.

We continue the discussion by asking for the optimum
choice of the beam splitter reflectivities. From (4) it follows,
that maximum signal at the modulation frequency and its har-
monics is achieved, if

I0 Jm(MP)
[
r̃ 2κ+ gt̃ 2κ̃

]= I0 Jm(MP) 2r1 r3

√
1− r 2

1

√
1− r 2

3

(6)

becomes maximum, where balanced photodetectors (g≡ 1)
have been assumed. Usually, the experimental situation im-
plies some convenient test field powerIIZ in the interaction
zone, which defines the input beam splitter reflectivity for
a given probe laser powerI0: r 2

1 = IIZ/I0. Expression (6) will
be maximum for a balanced beam splitter at the output of the
interferometer,r 2

3 = 1/2. Using these reflectivities, the signal
“strength” (6) may be rewritten as

I0 Jm(MP)
[
r̃ 2κ+ gt̃ 2κ̃

] ≈ √
IIZ×

√
J2

m(MP) I0 (7)

in the limit of IIZ � I0. As in FMS, this clearly demonstrates
that the signal arises from the beat of the optical field of the
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test arm and certain phase modulation sidebands of the refer-
ence arm. Hence, in order to achieve a good signal-to-noise
ratio, a strong probeI0� IIZ, an unbalanced input beam split-
ter r 2

1� 1 and a balanced output beam splitterr 2
3 = 1/2 have

to be used.
In a real experiment the output beam splitter (r 2

3 =
1/2+ δR) and the photodetectors (g= 1+ δg) are never
exactly balanced but their unbalance can be kept small
(|δg|, |δR| � 1). Although it is not essential, we will further
assume for sake of simplicity, that the absorption-induced
loss introduced to the test field is small. Consequently,
tm = exp(−αm/2)≈ 1−αm/2, whereαm describes the rela-
tive absorption of the test field power. Further, for small
phase shiftsϕm� 1, sine and cosine expressions of (4) can
be expanded with respect to this quantity. Then, two modes
of operation may be distinguished, which will be discussed
in the following: operation at a “dark fringe”, sin∆ϕL = 0,
and operation at a “half fringe”, cos∆ϕL = 0. Please note
that for unbalanced beam splitters the “dark port” will not
really be dark.

For operation at a “dark fringe” we find the following con-
tributions to the signal at dc, at the modulation frequencyΩ
and at its second harmonic 2Ω:

I−DC≈−I0×
[

2J0(MP) r1 t1

(
1− α

2
+ δg

2

)
+ 1

2
δg−4

(
r 2

1−
1

2

)
δR

]
,

I−Ω ≈−4I0× J1(MP) r1 t1 ϕm×sinΩt ,

I−2Ω ≈−4I0× J2(MP) r1 t1

(
1− 1

2
α+ 1

2
δg

)
×cos 2Ωt .

(8)

Based on the assumptions introduced above, the signal has
been expanded with respect toαm, ϕm, δg, andδR where sec-
ond and higher order terms have been neglected. As can be
seen, the term oscillating at the modulation frequency pro-
vides information about the phase shiftϕm of the optical test
field, whereas deviations from perfect balance of the beam
splitter and of the photodetectors do not contribute to first
order [19]. Both, the dc signal and the contribution at2Ω
provide the information about the absorption, which may be
offset by the unbalance of the output beam splitter and of the
photodetectors. Utilizing the contribution at the second har-
monic offers some advantages since the signal is less affected
by unbalance and by 1/ f electronic noise than the dc contri-
bution. However, this requires additional HF electronics.

For the second mode of operation, for operation at a “half
fringe”, we similarly find the following expressions for the
contributions to the signal:

I−DC≈ I0×
[

2r1 t1 J0(MP) ϕm− 1

2
δg+4

(
r 2

1−
1

2

)
δR

]
,

I−Ω ≈−4I0× J1(MP)r1 t1

(
1− 1

2
α+ 1

2
δg

)
×sinΩt ,

I−2Ω ≈ 4I0× J2(MP)r1 t1ϕm×cos 2Ωt .
(9)

As far as the dc part of the signal is concerned, this mode
of operation is comparable to the setup used by Schmidt et

al. [16]. From the equation above it is clear, that especially
for a strongly unbalancedinput beam splitter an imbalance
of the output beam splitter will introduce a large offset to the
signal. For this reason, it is much more convenient to extract
the phase shift information from the signal at the second har-
monic of the modulation frequency, while the loss now can be
determined from the contribution at the modulation frequency
itself.

Comparing the two modes of operation, we find that they
both provide the information about the optical phase shift
without offsets, if detected properly. Further, the transmit-
ted amplitude of the test field is measured rather than the
absorbed. Please also note, that for both operational modes
there is no cross-talking between the phase and the absorp-
tion signal to first order. If the interferometer is operated as
an active null instrument for phase shift detection so that
sin(∆ϕL+ϕm)= 0 or cos(∆ϕL+ϕm)= 0 for operation at
a “dark fringe” or at a “half fringe”, respectively, cross-
talking is avoided even for large phase shifts and for large
absorption, as can be seen from (4). Additionally, imbalance
of the output beam splitter or of the photodetectors do not
introduce any offsets to the phase shift measurement, if the
phase shift information is not obtained from the dc contribu-
tion to the signal. Hence, the interferometer may be locked
exactly at the operating point as desired, which is essential
for avoiding cross-talking effects. Finally, only operation at
a “dark fringe” allows us to use a single HF demodulation
scheme, so that this operational mode appears to be the most
simple one.

3 Signal-to-noise analysis

In this section an analysis of the most important technical
noise sources and a discussion of the signal-to-noise ratio is
presented. This analysis provides useful information about
the optimum phase modulation index and the geometry of the
interferometer.

The most important sources for signal noise are laser
power noise, laser frequency noise, and mechanical noise of
the interferometer which is introduced by seismic and acous-
tic noise of the environment. We will only give a rough es-
timation about shot noise, since the sensitivity of the present
setup is well above this fundamental limit.

In an experiment, the laser powerI0 will be affected by
noise. Hence, one may writeI0 = Î0 (1+ i(t)), wherei(t) is
the relative power noise (RIN) of the laser andÎ0 denotes
the mean power averaged over a certain measurement in-
terval T. Defining the Fourier transform ofi(t) by îT( f) =∫ T/2
−T/2 i(t) exp(i2π ft) dt, the single-sided power spectral dens-

ity of the relative intensity noise is given by [20]

SP {i(t)} ( f)= lim
T→∞

2

T
îT( f)× î ∗T( f) . (10)

The signal noise arising from RIN then is given by

δI−(t)= Î0(t) × i(t)

{
ADC+

∞∑
n=1

C2n cos[2n 2π fmt]

+
∞∑

n=0

C2n+1 sin[(2n+1) 2π fmt]
}
, (11)
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where ADC and Cn are defined according to (4) andfm =
Ω/(2π) is the modulation frequency. Now, the Fourier trans-
form δ̂I−T( f) of δI−(t) has to be calculated. Next, in analogy
to (10), the power spectral density of the signal noise due to
RIN may be obtained from the Fourier transform. We find:

Sp
{
δI−(t)

}
( f)≈ Î 2

0 ×
{
|ADC|2 Sp {i(t)} ( f)

+ 1

4

∞∑
n=1

|Cn|2
{

Sp {i(t)} (|n fm− f |)+Sp {i(t)} (n fm+ f)
}}
.

(12)

It has been assumed that the RIN from different Fourier com-
ponents is not correlated, so that on the r.h.s. of (10) all terms
except those taken at identical frequency cancel. From the
power spectral density the rms noise signal for a given inte-
gration time, i.e. for a certain detection bandwidth∆ f , can be
calculated:

I−rms, min :=
√

∆ f ×
√

Sp {δI−(t)} . (13)

This rms noise signal reveals the rms signal, which can be
recorded with unity signal-to-noise ratio. Hence, it deter-
mines the minimum detectable phase shift and loss signal and
thus defines the sensitivity limit. Combining (8), (9) and (13),
the sensitivity for phase shift and loss detection can be calcu-
lated. For operation at a “dark fringe” (8), we find

αrms, min, DC=

2×
√

Sp {i(t)} (0)+2
(

J2

J0

)2

Sp {i(t)} (2 fm) ×
√

∆ f , (14)

ϕrms, min, fm =
√

1+
(

J0

J1

)2

×
√

Sp {i(t)} ( fm)×
√

∆ f , (15)

αrms, min, 2 fm =√
Sp {i(t)} (0)+ J2

0 + J2
4

J2
2

Sp {i(t)} (2 fm)×
√

∆ f . (16)

Since RIN will decrease at high frequencies, only noise con-
tributions from RIN at dc,fm, and 2fm are considered. Please
note, that at dc the minimum detectable loss is twice as large
as expected for a direct loss detection. This is due to the fact,
that the method described here measures the damping of the
test field amplitude rather than the damping of the test field
power. For operation at a “half fringe” the calculation yields

ϕrms, min, DC=
√

2×
∣∣∣∣ J1

J0

∣∣∣∣×√Sp {i(t)} ( fm)×
√

∆ f , (17)

αrms, min, fm =√
Sp {i(t)} (0)+

(
1+ J2

3

J2
1

)
Sp {i(t)} (2 fm)×

√
∆ f , (18)

ϕrms, min, 2 fm =
1

2
×
√

J2
1 + J2

3

J2
2

×
√

Sp {i(t)} ( fm)×
√

∆ f ,

(19)

where again high-frequency RIN (f > 2 fm) has been neg-
lected. From (15), (17), and (19) it follows that shot-noise-
limited phase-shift detection is achievable if the modulation
frequency is large enough, so that RIN atfm and its harmon-
ics may be neglected when compared to shot noise. However,
as can be seen from (14), (16), and (18), the loss detection al-
ways contains RIN from dc, where shot-noise-limited power
stability usually can not be achieved for technical reasons.

The noise analysis clearly shows that the optimum mod-
ulation index depends on the spectral properties of the RIN.
The laser system [21] used for the experimental investiga-
tions on the novel spectroscopic method exhibits a roughly
white RIN for Fourier frequencies up to3 MHz. This is about
twice the modulation frequency (fm = 1.8 MHz) that has
been applied, so that as a good approximationSp {i(t)} (0)=
Sp {i(t)} ( fm) = Sp {i(t)} (2 fm) may be assumed. Based on
this simplification, the optimum choice for the phase modu-
lation index can be evaluated. This is shown for both modes
of operation, that is for operation at a “dark fringe” in Fig. 3a
and for operation at a “half fringe” in Fig. 3b. In these figures
the minimum detectable lossαrms, minand phase shiftϕrms, min
normalized to

√
Sp {i(t)}×∆ f are given for detection at dc,

at fm and at 2fm.
For operation at a “dark fringe” (Fig. 3a), the optimum

phase modulation index isMP≈ 2.3, if phase shift and loss
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Fig. 3a,b.Optimum phase-modulation index for operation at a “dark fringe”
(a) and at a “half fringe” (b). Minimum detectable loss and phase shift are
shown vs. phase modulation indexMP. Loss and phase shift are normalized
to
√

Sp {i(t)} (0)×∆ f . Loss and phase-shift detection are shown insolid
anddashed lines, respectively. Detection at dc and ac are given inthin and
thick lines, respectively
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are detected at ac. However, the most simple way of op-
eration from the electronics point of view is achieved with
loss detection at dc. Then, the optimum phase modulation in-
dex is Mp ≈ 1.5. This setup was chosen for the experiment.
For a much larger modulation index, the loss sensitivity is
strongly reduced or even vanishes atMP= 2.4. At this modu-
lation depth, the carrier field within the reference arm is sup-
pressed, as follows from the zero of the Bessel functionJ0.

For operation at a “half fringe” (Fig. 3b), optimum phase
shift and loss sensitivity are achieved at different phase mod-
ulation indices. As a compromise, a modulation index of
MP≈ 3 is adequate, where the phase shift sensitivity over-
comes the sensitivity for operation at a “dark fringe” by a fac-
tor of 2 and the loss sensitivity is worse by a factor of

√
2.

Finally it should be emphasized that for the laser system
and the modulation frequency used here, the minimum de-
tectable relative loss and phase shift will be limited by the
RIN at dc and roughly be given by its magnitude. If lasers
were used featuring shot-noise-limited power stability at the
modulation frequency or if the modulation frequency was
sufficiently increased, then shot-noise-limited phase-shift de-
tection would be achievable.

A measurement of the optical phase shift always yields
ϕ = ∆ϕL +ϕm. Hence, it can not be decided whether the
phase shift is introduced by the medium or by a variation
of ∆ϕL . According to (5), phase-shift noise will be intro-
duced by residual laser-frequency noise and by mechanical
noise of the interferometer. As for the analysis of laser-power
noise, this rms phase shift error measured within the detec-
tion bandwidth∆ f will define the minimum phase shift due
to the medium, which can be detected with unity signal-to-
noise ratio. From (5) it follows, that this sensitivity limit is
given by

ϕ2
rms, min=

{ (
∆L0

c

)2

×Sp {δω(t)} ( f)

+
(ω0

c

)2×Sp {δ (∆L) (t)} ( f)

}
×∆ f , (20)

where∆L0 + δ(∆L)(t)= [(l1+ la)− (l2+ lb)] (t) according
to Fig. 2 andω(t) = ω0+ δω(t) denotes the instantaneous
laser frequency. From the equation above it follows, that noise
contribution from laser-frequency noise can be suppressed,
if a white-light interferometer (∆L0 = 0) is used, a condi-
tion well known from interferometry. The second term of
(20) introduces noise arising from differential mode geometry
fluctuations of the interferometer. For a Mach–Zehnder inter-
ferometer, this contribution can be kept small even for low
Fourier frequencies, since for proper mechanical construction
differential mode drifts can be avoided to some extent. Nev-
ertheless, the phase-shift sensitivity will always be limited
by the passive stability of the interferometer. Therefore, good
seismic and acoustic isolation of the setup from the environ-
ment is essential. In general, high sensitivity will only be
accessible if phase shift (and loss) detection is shifted from
dc to higher frequencies (kHz), where seismic and acoustic
interference can reduced by passive isolation, so that it can
be neglected when compared to laser noise. For example, this
can be realized by chopping the sample which is an atomic
beam in our case.

Finally we will give a rough estimation about the signif-
icance of quantum noise, as far as is related to the optical
fields (shot noise). A rigorous shot-noise analysis requires
a quantum mechanical treatment of the interferometer, of the
electro-optic phase modulator and of the balanced detector.
To our knowledge, a shot-noise analysis of a compound sys-
tem like the one discussed here has not been done so far. For
example, Caves [22] has presented a shot-noise analysis that
may be applied to Mach–Zehnder interferometers. However,
this analysis is based on the condition that none of the fields
is modulated and that both of the beam splitters are balanced.
Hence, it does not meet our requirements. The latter argument
also applies to the discussion about non-stationary shot noise
given by Niebauer et al. [23]. Further, these authors did not
consider balanced detection of the signal, so that their dis-
cussion as well does not match our situation. Therefore, we
will simply assume that the order of magnitude of signal shot
noise is given by the shot noise of the weak test field, if it was
directly detected with an ideal photodetector. This assump-
tion seems reasonable as can be seen from the discussion of
shot noise in homodyne and heterodyne detection [24]. The
RIN due to shot noise of the weak test field is determined
by [20]

Sp {i(t)} ( f)= 2
hν

r 2
1 P0

, (21)

where P0 is the laser power at the input beam splitter. The
factor of 2 enters from the fact thatSp {i(t)} ( f) is a single-
sided power spectral density. In our experiments, the power
in the interaction volume is aboutr 2

1 P0∼ 20µW. At a wave-
length ofλ= 423 nmthis results in a RIN ofS1/2

p {i(t)} ( f)≈
2×10−7 /

√
Hz, which is less than our current (technical)

RIN at the corresponding Fourier frequencies by a factor of
about 50. Hence, we conclude that our sensitivity is not yet
shot-noise-limited.

4 Experimental realization

Finally, a description of the experimental setup and an ex-
perimental determination of the sensitivity achieved so far
are given. To demonstrate the potential of the novel method,
the spectroscopic investigation of the Ca-resonance transition
4s2 1S0→ 4s4p 1P1 at 423 nmis presented.

The interferometer is operated completely in an UHV
(< 10−7 mbar) environment. The vacuum chamber is mech-
anically decoupled from the interferometer, which is con-
nected to the optical table by an intra-vacuum 2-stage mount.
This consists of three legs, carrying an intermediate mass
(≈ 35 kg), which is mechanically decoupled from the legs via
a number of self-made rubber cylinders qualified for UHV
operation. The interferometer itself (≈ 30 kg) is placed upon
the intermediate mass with a set of rubber cylinders between
them. The components of the interferometer are intercon-
nected by three rods made of Zerodur in order to reduce
thermal drifts of the apparatus. The vacuum chamber also in-
cludes a Ca oven used to produce an atomic beam, which can
be chopped mechanically at frequencies up to4 kHz, where
fC= 1.77 kHz is the value usually chosen.

We use an intra-vacuum polarizer (extinction> 10−7

nominal) before the input beam splitter of the interferome-
ter. The optical beam traverses the input beam splitter at an
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angle that is close to the Brewster angle. This way, an un-
coated substrate provides the realization of highly unbalanced
tunable input beam splitters. So far, an effective splitting of
1 : 7 has been employed, where the loss due to the phase mod-
ulator has been taken into account. The laser power within
the test arm usually is taken to ber 2

1 P0≈ 20µW, whereas
the power of the reference field at the output beam splitter
is aboutP0 ≈ 140µW. The EOM is driven at a frequency of
fm = 1.8 MHz with a phase modulation index ofM ≈ 1.

The interferometer is operated as an active null instru-
ment. Therefore, we lock the interferometer to a “dark
fringe”. The error-signal is derived from the balanced in-
terferometer output and is demodulated atfm. After some
filtering and amplification, the signal is applied to a piezo-
electric-transducer (PZT, Fig. 1) in order to compensate for
low-frequency phase noise and drifts. The high-frequency
part of the signal is applied to the EOM. This way we achieve
a locking bandwidth (unity gain) of50 kHz with the cross-
over between PZT- and EOM loop at Fourier frequencies
below f = 200 Hz and a−12 dB/oct. suppression of PZT
gain against EOM gain. We have ensured that the gain of
the EOM loop exceeds40 dB (50 dB typically) within the
frequency band of200 Hz to 2 kHz. To extract the optical
phase shift of the test field due to the interaction with the
atoms, the feedback signal for the EOM is probed with a high-
impedance probe, filtered by an 8th-order bandpass and then
detected with a dual-phase lock-in amplifier. By detecting the
servo-signal for the EOM, calibration of the phase shift sig-
nal is most simple since the half-wave voltage of the EOM
is known. Further, this calibration does not depend on experi-
mental conditions, for example on the probe field power. For
the sake of experimental simplicity, the absorption signal is
derived from the dc part of the balanced interferometer out-
put and not from the signal at 2fm. After some amplification
and filtering with an 8th-order bandpass, the loss signal is
detected with a dual-phase lock-in amplifier as well.

For an experimental determination of the current phase
shift sensitivity, the setup was operated as described above
but with the phase-shift lock-in amplifier replaced by a spec-
trum analyzer. The oven was not heated but the atomic
beam chopper was driven atf = 146 Hz which would re-
sult in a chopping frequency offC = 1752 Hz. The laser
was free-running for this measurement. The power spec-
tral density of the phase noise is shown in Fig. 4. A num-
ber of resonances can be identified, which are due to
interference of mechanical noise arising from the turbo-
pumps (an = n×750 Hz) and from the atomic beam chopper
(bn = n×146 Hz). The background noise is almost white and
is close toS1/2

P {ϕm(t)} ( f)≈ 1.1×10−5 rad/
√

Hz, determin-
ing the current phase-shift sensitivity. At frequencies above
f ≈ 1.2 kHz, the noise at the harmonics of the mechanical
rotation frequency of the atomic beam chopper is negligi-
ble. Therefore, a chopping frequency of aboutfC ≈ 1770 Hz
usually is chosen.

We next discuss the current limitations for the phase-shift
sensitivity. Following [21, 25], the high-frequency RIN of the
laser is close toS1/2

P {i(t)} (1.8 MHz)= 5.0×10−6 /
√

Hz. Ac-
cording to (15), this will give rise to a phase noise of
S1/2

P {ϕm(t)} (1.7 kHz)≈ 6.5×10−6 rad/
√

Hz for a phase
modulation index ofM = 1.57. This is4.6 dB less than the
sensitivity limit achieved experimentally. The power spec-
tral density of the frequency noise of the free-running laser
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Fig. 4. Sensitivity for phase-shift detection. The square root of the power
spectral density of the phase-shift noise is shown. (A) phase noise of
the interferometer measured with a free-running laser. The phase mod-
ulation index is M = 1.57. (B) detector electronic noise. Phase noise
resulting from high-frequency RIN and from laser-frequency noise is
≈ 6.5×10−6 rad/

√
Hz and≈ 1.2×10−5 rad/

√
Hz at f ≈ 1.7 kHz, respec-

tively. (C) low-frequency RIN [a.u.], which does not limit the phase-noise
sensitivity but which is shown here for the discussion of the structure of
the noise spectra. Thenth harmonic resonancesan andbn result from me-
chanical interference of the turbo-pumps and of the atomic beam chopper,
respectively

exceedsS1/2
P {δω(t)} ( f)= 7.5 kHz/

√
Hz at f = 1.7 kHz and

can be estimated to be close to28 kHz/
√

Hz [21, 25]. Follow-
ing (20) this introduces a phase noise ofS1/2

P {ϕm(t)} (1.7 kHz)
≈ 1.2×10−5 rad/

√
Hz for an interferometric arm length dif-

ference of∆L0 = 13 cm. Since the background noise is
almost white we may assume, that acoustic and seismic noise
directly interfering with the interferometer do not contribute
to it significantly. Provided RIN and laser-frequency noise are
uncorrelated (which strictly speaking will not be the case),
both noise sources would add up to a phase-shift sensitiv-
ity of S1/2

P {ϕm(t)} (1.7 kHz) = 1.4×10−5 rad/
√

Hz, which
is 1.9 dB more than the sensitivity limit determined exper-
imentally. This small discrepancy can be attributed to the
uncertainty in knowledge of the laser frequency noise and
the EOM half-wave voltage. Hence, we conclude that for
the measurement presented here, the phase-shift sensitivity is
limited by residual laser-frequency noise.

To underpin this conclusion, the low-frequency RIN is
shown as curve C in Fig. 4. From Sect. 3 we know, that RIN
at low Fourier frequencies does not contribute to the phase-
shift signal noise. Nevertheless, it can be seen that the phase
noise spectrum shows the same resonances as does the RIN
spectrum at Fourier frequencies above3.5 kHz. This can be
explained as follows: The optical power is provided by a sin-
gle resonant external cavity frequency-doubling unit, which
is stabilized in frequency to a free-running diode laser sys-
tem. The unity gain frequency of the corresponding servo-
loop is about6 kHz, so that at Fourier frequencies well below
6 kHz the cavity can “follow” the frequency excursions of
the diode laser. Therefore, resonances of the frequency noise
spectrum at Fourier frequencies up to a fewkHz do not ap-
pear within the power noise spectrum of the laser. However, at
Fourier frequencies comparable with or greater than≈ 6 kHz,
these frequency-noise resonances will be recovered within
the power noise spectrum. In conclusion this explains why
the resonances within the phase noise spectrum coincide with
the low-frequencyresonances of the power noise spectrum at
Fourier frequencies above a fewkHz, and why they do not at
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Fig. 5a,b. Ca resonance transition 4s2 1S0→ 4s4p 1P1, ∆m= 0. a shows
the optical phase shift,b shows the natural logarithm of the relative trans-
missionα0× L IZ , whereα0 is the absorption coefficient andL IZ gives the
interaction length. An atomic beam is used for the measurement. Inter-
action length:leff ≈ 1 mm. Atomic density:N ≈ 4×108 cm−3. Integration
time: 1 s. Zero frequency detuning corresponds to the nominal resonance
frequency. Thesolid linesdepict a fit of a theoretical two-level spectrum.
The fitted parameters are given within the text

frequencies below. We also conclude that it is consistent to at-
tribute the peaks and the white background of the phase noise
spectrum to laser-frequency noise.

As a demonstration of the potential provided by the
novel method, we finally present the results of a spectro-
scopic investigation of theCaresonance transition 4s2 1S0→
4s4p 1P1, ∆m= 0, at423 nm. For this experiment two lasers
based on external-cavity SHG (second-harmonic generation)
are used, the first of which is locked to the transition. This
servo-loop utilizes a FMS setup based on aCa heatpipe.
A fraction of the first laser’s fundamental power is shifted in
frequency by200 MHz and then is used as an optical local
oscillator for phase locking of the second laser system. Ap-
plying a tunable microwave oscillator and a mixer, the second
laser can be tuned in frequency with respect to the first laser.
This second laser is used for measuring the optical spectra.
The result of this experiment is shown in Fig. 5, where the
optical phase shift and the negative natural logarithm of the
transmission (α= α0 L IZ) are given. For this measurement the
power in the test arm of the interferometer was20µW cor-
responding to an intensity of0.4 mW/mm2, which is about
1/3 of the saturation intensity [27]. The integration time was
1 s. The solid lines in Fig. 5 correspond to the theoretical
spectrum of a two-level atom [4] fitted to the experimental
data. For an interaction length ofL IZ = 1 mm the follow-
ing parameters are obtained:N = 4.1900(89)×108 cm−3,
γ/(2π)= 24.252(85)MHz, and∆ν = 3 27(26) kHz from the

phase shift data andN = 3.451(23)×108 cm−3, γ/(2π) =
22.41(21)MHz, and∆ν = 326(75) kHz from the absorption
data. For these parameters, only statistical errors (one stan-
dard deviation) are given. Here,γ/(2π) denotes the FWHM-
linewidth and∆ν gives the detuning of the line center from
the frequency expected. A non-zero detuning is obtained, if
the laser field does not intersect the atomic beam at a right
angle so that a Doppler shift can be observed.

The remarkable agreement between the fit parameters
derived independently from the absorption and phase-shift
measurement (∆N/N = 0.18, ∆γ/γ = 0.076) should be
pointed out. Nevertheless, the differences exceed the statis-
tical errors given above. The difference between the atomic
densities is attributed to inaccurate calibration of phase shift
and absorption data. A calibration error enters into the phase-
shift detection, if the EOM half-wave voltage is not precisely
known (8%). For the calibration of the absorption data we es-
timate a slightly larger uncertainty, as a number of parameters
and their experimental uncertainties enter (15%). We estimate
the phase-modulation index to be the parameter introducing
the largest uncertainty to the absorption calibration and the
absorption calibration to be less accurate than the phase-shift
calibration. We attribute the origin of the difference between
the fitted linewidth data to technical problems in maintaining
a constant phase modulation index during a single scan. Work
is in progress to resolve this problem.

Although the origin of some systematic effects has not yet
been fully resolved, the correspondence between theoretical
and experimental data clearly demonstrates, that this novel
method provides good signal-to-noise ratio even at low op-
tical powers within the interaction zone. It also proves that
cross-talking between the phase shift and absorption signal is
avoided. Therefore, this method is well suited especially for
those applications of precision spectroscopy, where accurate
knowledge of absorption and index of refractionprofilesis of
major interest.

5 Conclusion

In this paper we have presented a novel spectroscopic method
which is based on a phase-modulated interferometer. We have
shown that this novel setup is well suited especially for ex-
periments on novel optical media for which the simultaneous
and high-precision measurement of absorption and index of
refractionprofilesis most important.

A comparison with competing methods of interferome-
try and FMS has revealed that only the novel method can
simultaneously fulfill the essential requirements related to the
study of novel optical media. In principle, shot-noise-limited
sensitivity can be achieved for optical phase-shift detection
(index of refraction measurement). Optical reference fields
bypass the interaction zone avoiding a modification of the
medium by the reference fields and vice versa. Cross-talking
between the absorption and the index of refraction signal is
avoided and a linear response is ensured even for large phase
shifts (≈ π), provided that the interferometer is operated as an
active null instrument. Implementing a strongly unbalanced
input beam splitter, a strong reference field (optical LO) can
be used to achieve a good signal-to-noise ratio even at low
probe powers in the sample volume.
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The theory of operation for the phase-modulated inter-
ferometer has been presented. Following this analysis we
found that the absorption and the index of refraction (opti-
cal phase shift) can both be extracted from the differential
mode output of the interferometer by demodulating the signal
at the modulation frequency and its harmonics. Two useful
modes of operation can be distinguished if the interferome-
ter is operated as an active null instrument, that is operation
at a “dark fringe” and operation at a “half fringe”. A classical
signal-to-noise analysis lead to an optimization of the phase-
modulation index for both modes of operation. This signal-
to-noise analysis has taken into account the most important
sources of signal noise, that is laser power and laser fre-
quency noise. The phase-shift sensitivity determined experi-
mentally (1.1×10−5 rad/

√
Hz at a probe power of≈ 20µW)

was found to be in good agreement with the value calcu-
lated: it has been pointed out, that although laser-frequency
noise is currently limiting the phase-shift sensitivity, shot-
noise-limited sensitivity should be achievable experimentally.
Further, it has been shown that absorption sensitivity will al-
ways be limited by low-frequency (“dc”) laser-power noise
(2×10−5 /

√
Hz).

Finally, an experimental investigation of the 4s2 1S0→
4s4p 1P1 Ca resonance transition at423 nm has been dis-
cussed to underline the powerful potential of the novel
method. The experimental result impressively demonstrates
that this phase-modulated interferometer is well suited for
experiments on the realization of novel optical media.

To improve the current phase-shift sensitivity, we will
increase the modulation frequency to reduce RIN at the mod-
ulation frequency and its harmonics. By balancing the arm
length of the interferometer, it will be possible to reduce
phase-shift signal noise arising from laser-frequency noise by
about 2 orders of magnitude. With decreased technical noise,
we will be able to come closer to the shot-noise limit. Then,
a shot-noise analysis of the phase-modulated interferometer
will be necessary.
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1. K.-J. Boller, A. Immamǒglu, S.E. Harris: Phys. Rev. Lett.66, 2593
(1991); S.-Y. Zhu, M.O. Scully: Phys. Rev. Lett.76, 388 (1996);
O.A. Kocharovskaya, Y.I. Khanin: Pis’ma Zh.́eksp. teor. Fiz.48,
581 (1988) (Engl. Transl. JETP Lett.48, 6301 (1988)); A. Not-
telmann, C. Peters, W. Lange: Phys. Rev. Lett.70, 1783 (1993);
W.E. van der Veer, R.J.J. van Diest, A. Dönszelmann, H.B. van Lin-
den van den Heuvell: Phys. Rev. Lett.70, 3243 (1993); E.S. Fry,
X. Li, D.E. Nikonov, G.G. Padmabandu, M.O. Scully, A.V. Smith,
F.K. Tittel, C. Wang, S.R. Wilkinson, S.-Y. Zhu: Phys. Rev. Lett.
70, 3235 (1993)

2. M.O. Scully: Phys. Rev. Lett.67, 1855 (1991); M. Xiao, Y.-Q. Li,
S.-Z. Jin, J. Gea-Banacloche: Phys. Rev. Lett.74, 666 (1995);

A.S. Zibrov, M.D. Lukin, L.W. Hollberg, M.O. Scully, H.G. Robin-
son, V.L. Velichansky: Phys. Rev. Lett.76, 3935 (1996); L. v. Hau,
S.E. Harris, Z. Duffen, C.H. Behroozi: Nature397, 394 (1999)

3. G. Müller, A. Wicht, R.-H. Rinkleff, K. Danzmann: Opt. Commun.
127, 37 (1996)

4. C. Szymanowski, A. Wicht, K. Danzmann: J. Mod. Opt.44, 1373
(1997)

5. M.D. Lukin, P. Hemmer, M. Löffler, M.O. Scully: Phys. Rev. Lett.81,
2675 (1998)

6. M.O. Scully, M. Fleischhauer: Phys. Rev. Lett.69, 1360 (1992);
S. Brandt, A. Nagel, R. Wynands, D. Meschede: Phys. Rev. A56,
R1063 (1997)

7. A. Wicht, K. Danzmann, M. Fleischhauer, M.O. Scully, G. Müller,
R.-H. Rinkleff: Opt. Commun.134, 431 (1997)

8. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Mun-
ley, H. Ward: Appl. Phys. D31, 97 (1983); J. Ye, L.-S. Ma, J.L. Hall:
J. Opt. Soc. Am. B15, 6 (1998)

9. G.C. Bjorklund: Opt. Lett.5, 15 (1980)
10. J.M. Supplee, E.A. Whittaker, W. Lenth: Appl. Opt.33, 6294 (1994)
11. N.C. Wong, J.L. Hall: J. Opt. Soc. Am. B2, 1527 (1985); J.A. Silver:

Appl. Opt. 31, 707 (1992)
12. L.-G. Wang, D.A. Tate, H. Riris, T.F. Gallagher: J. Opt. Soc. Am. B6,

871 (1989); D.R. Hjellme, S. Neegard, E. Vartdal: Opt. Lett.20, 1731
(1995)

13. G.R. Janik, C.B. Carlisle, T.F. Gallagher: J. Opt. Soc. Am. B3, 1070
(1986)

14. E.S. Polzik, J. Carri, H.J. Kimble: Appl. Phys. B55, 279 (1992);
F. Marin, A. Bramati, V. Jost, E. Giacobino: Opt. Commun.140,
146 (1997); S. Kasapi, S. Lathi, Y. Yamamoto: Opt. Lett.22, 478
(1997)

15. T. Yabuzaki, T. Mitsui, U. Tanaka: Phys. Rev. Lett.67, 2453 (1991)
16. O. Schmidt, R. Wynands, Z. Hussein, D. Meschede: Phys. Rev. A53,

R27 (1995)
17. L.D. Landau, E.M. Lifschitz:Elektrodynamik der Kontinua, Lehrbuch

der Theoretischen Physik, Band 8, 5-te Auflage (Akademie-Verlag,
Berlin 1985)

18. Schmidt [16] and co-workers had to use a balanced-input beam split-
ter in order get rid of the Doppler-induced background signal for the
spectroscopic investigations performed on aCscell. Hence, it might be
desirable to use a balanced-input beam splitter not only for the purpose
of better contrast

19. Actually, the exact expression reveals, that imbalance of the beam
splitter or of the detector only changes the proportionality con-
stant of the signal but does not introduce an offset at any
order

20. H.R. Telle: Spectroch. Acta Rev.15, 301 (1993)
21. O.S. Brozek, V. Quetschke, A. Wicht, K. Danzmann: Opt. Commun.

146, 141 (1998)
22. C.M. Caves: Phys. Rev. D23, 1693 (1981)
23. T.M. Niebauer, R. Schilling, K. Danzmann, A. Rüdiger, W. Winkler:

Phys. Rev. A43, 5022 (1991)
24. For example, see B.L. Schumaker: Opt. Lett.9, 189 (1984). It should

be emphasized that there is nostrict equivalence between a quantum
description of the balanced homodyne or heterodyne detector used e.g.
for squeezing experiments and the interferometer with a balanced de-
tector. This is due to the fact, that in the first case the local oscillator
and the signal do commute whereas they do not in the case of the
interferometer

25. A. Wicht: Ph. D. Thesis, Universität Hannover, Germany (1998)
26. T. Kisters, K. Zeiske, F. Riehle, J. Helmke: Appl. Phys. B59, 89

(1994)
27. A. Witte, T. Kisters, F. Riehle, J. Helmke: J. Opt. Soc. Am. B9, 1030

(1992)


