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Abstract. We present an analytic description of ther-mode in-
stability in newly-born neutron stars, using the approximation
of uniform density. Our computation is consistently accurate to
second order in the angular velocity of the star. We obtain for-
mulae for the growth-time of the instability due to gravitational-
wave emission, for both current and mass multipole radiation
and for the damping timescale, due to viscosity. Thel = m = 2
current-multipole radiation dominates the timescale of the in-
stability. We estimate the deviation of the second order accurate
results from the lowest order approximation and show that the
uncertainty in the equation of state has only a small effect on the
onset of ther-mode instability. The viscosity coefficients and
the cooling process in newly-born neutron stars are, at present,
uncertain and our analytic formulae enable a quick check of
such effects on the development of the instability.

Key words: gravitational waves – instabilities – stars: neutron
– stars: oscillations

1. Introduction

The recently discoveredr-mode instability (Andersson 1998)
in rotating neutron stars, has significant implications on the ro-
tational evolution of a newly-born neutron star. Ther-modes
are unstable due to the Chandrasekhar-Friedman-Schutz (CFS)
mechanism (Chandrasekhar 1970, Friedman & Schutz 1978)
(see also Friedman & Morsink 1997). Two independent com-
putations by Andersson, Kokkotas & Schutz (1998) and Lind-
blom, Owen and Morsink (1998) find that ther-mode instability
is responsible for slowing down a rapidly rotating, newly-born
neutron star to rotation rates comparable to that of the initial
period of the Crab pulsar (∼19 ms) or the recently discovered
16 ms X-ray pulsar in the supernova remnant N157B (Marshall
et al. 1998) (with an estimated initial period of 6-9 ms). This
is achieved by the emission of current-quadrupole gravitational
waves, which reduce the angular momentum of the star. Ad-
ditionally, as the initially rapidly rotating star spins down, an
energy equivalent to roughly 1% of a solar mass is radiated
in gravitational waves, which makes the process an interesting
source of detectable gravitational waves (Owen et al. 1998).

In the present paper, we investigate ther-mode instabil-
ity to 2nd order accuracy in the angular velocity of the star,

in the approximation of uniform density (the actual density
profile of realistic neutron stars is nearly uniform), where all
results can be obtained analytically.1 While our analytic re-
sults provide an independent check of the numerical results in
Andersson et al. 1998 and Lindblom et al. 1998, our main ob-
jective is to present a simple set of equations, which enable one
to obtain a qualitative insight into the mechanism of ther-mode
instability and to quickly check the dependence of the instability
on various important factors, such as the central density of the
star, the different types of viscosity in neutron stars, the differ-
ent possible cooling processes etc. Additionally, we expect that
there is a number of issues related to the spinning mechanisms
of pulsar such as accretion disc induced spin up, or the cre-
ation of millisecond pulsars due to accretion-induced collapse
of a white dwarf (Andersson et al. 1998), for which one can use
the simple relations provided here for a fast but still accurate
evaluation of the various evolution scenarii.

2. The r-mode instability

Oscillations of stars are commonly described by the Lagrangian
displacement vectorξ, which describes the displacement of a
given fluid element due to the oscillation. Sinceξ is a vector on
the(θ, φ) 2-sphere, it can be analyzed into a sum of spheroidal
and toroidal components (or polar and axial components, in a
different terminology). In a non-rotating star, the usualf , p and
g modes of oscillation are purely spheroidal, characterized by
the indices(l, m) of the spherical harmonic functionY m

l . In a
rotating star, modes that reduce to purely spheroidal modes in
the non-rotating limit, also acquire toroidal components. Con-
versely,r-modes in a non-rotating star are purely toroidal modes
with vanishing frequency. In a rotating star, the displacement
vector acquires spheroidal components and the frequency in the
rotating frame, to first order in the rotational frequencyΩ of the
star, becomes

ωr =
2mΩ

l(l + 1)
, (1)

1 After this paper was submitted, a preprint by Lindblom & Ipser
(1998) appeared, where the studyr-modes in Maclaurin spheroids and
find the existence of morer-modes than the “classical”r-mode con-
sidered here.
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for a given (l, m) mode. An inertial observer, measures a fre-
quency of

ωi = ωr − mΩ . (2)

From (1) and (2) it can be deduced that a counter-rotating
(with respect to the star, as defined in the co-rotating frame)
r-mode, appears as co-rotating with the star to a distant inertial
observer. Thus, to O(Ω), all r-modes withl ≥ 2 are generi-
cally unstable to the emission of gravitational radiation, due to
the Chandrasekhar-Friedman-Schutz (CFS) mechanism (note
that thel = 1 r-mode is marginally unstable, to this order).
The instability is active for as long as its growth-time is shorter
than the damping-time due to the viscosity of neutron-star mat-
ter. Its effect is to slow-down, within a year, a rapidly rotat-
ing neutron star to slow rotation rates and this explains why
only slowly-rotating pulsars are associated with supernova rem-
nants (Andersson et al. 1998). Thus, ther-mode instability does
not allow millisecond pulsars to be formed after an accretion-
induced collapse of a white dwarf. It seems that millisecond
pulsars can only be formed by the accretion-induced spin-up of
old, cold, neutron stars.

3. The 2nd-order accurate slow rotation formalism

To O(Ω), the star is still spherical, and one can only determine
the angular dependence of ther-mode eigenfunctions and their
lowest orderr-dependence (the latter is obtained by taking the
curl of the perturbed equations of motion). For obtaining the
second-order correction to the eigenfunctions and to the fre-
quency, one must proceed to a consistent O(Ω2) calculation.
We follow the formalism for computingr-modes in Newtonian
stars, due to Saio 1982, that was presented in more detail in
Andersson et al. 1998. Here we will only summarize the equa-
tions needed for the uniform density case.

3.1. Assumptions

We make the following assumptions:

1. the perturbations are adiabatic,
2. the star is an incompressible barotrope of uniform density,
3. the rotation of the star is uniform, and
4. the perturbation of the gravitational potential can be ne-

glected (Cowling approximation),

These assumptions are justified by the fact that, even for tem-
peraturesT = 109K, the thermal energy of the star is much
less than the Fermi energy of its interior (> 60 MeV). Also,
at such temperatures, the initially differentially rotating proto-
neutron star is rotating uniformly, due to the formation of a
solid crust (see Stergioulas 1998, for a recent review on rotat-
ing neutron stars). The Cowling approximation has been shown
to yield sufficiently accurate results forr-modes in slowly ro-
tating, Newtonian stars (Saio 1982, Provost et al. 1981).

3.2. Definitions

In a slowly rotating star, the dominant correction to its structure
is of O(Ω2). The analysis of perturbations of the star is simplified
by introducing a new radial coordinatea, defined through

r = a(1 + ε) , (3)

whereε = ε(a, θ) is a quantity of O(Ω2), representing the de-
formation of the equilibrium structure from the non-rotating
configuration. In the new coordinate system, all equilibrium
quantities are functions ofa only and the surfaces of constanta
are equipotential surfaces.

Since equilibrium neutron stars are stationary and axisym-
metric, a general oscillation can be analyzed into a sum of nor-
mal modes, with harmonic time-dependenceei(mφ+ωit).The
displacement vector for a givenr-mode can be written as
(Saio 1982):

ξ/a = T + S =
(
0, Klm sin−1 θ∂φ,−Klm∂θ

)
Y m

l

+
∑
νµ

(
Sνµ, Hνµ∂θ, Hνµ sin−1 θ∂φ

)
Y µ

ν , (4)

whereT and S are thetoroidal and spheroidalparts of the
displacement, respectively. Note that the toroidal part has van-
ishing a-component and is described only by the function
Klm = Klm(a), which multiplies a toroidal angular vec-
tor. The spheroidal part has an non-vanishinga-component of
O(Ω2), described by the functionsSνµ = Sνµ(a). Theθ and
φ-components of the spheroidal part are described by the func-
tionsHνµ = Hνµ(a) (also of O(Ω2)), multiplying spheroidal
angular vectors.

The perturbation in the pressure is expressed in terms of
spheroidal radial functionsζνµ, as

δp = ρga
∑
νµ

ζνµY µ
ν , (5)

whereδp is the Eulerian variation in the pressure (the variation
of the pressure at a fixed point in space),ρ is the density and
g = −ρ−1dP/da is the acceleration of gravity.

3.3. The propensity rule

For zero-temperature (barotropic) stars, it can easily be shown
from the perturbation equations, that only modes withl = m
exist. Then, only theν = l + 1, µ = m terms contribute
in the expansions for the displacement vector and the per-
turbation in the pressure (in the remainder of the text, we
will drop the indexm in these quantities). The absence of
l − 1 terms (the spherical harmonicsY m

l−1 are zero) means
that rotation excites only higher multipole spheroidal parts.
This is in agreement with the “propensity” rule suggested by
Chandrasekhar & Ferrari 1991, for the oscillations of slowly
rotating relativistic stars, i.e. that the rotational coupling of a
toroidall-term with a spheroidall+1-terms is strongly favored
over the coupling with a spheroidall − 1-term. We find that, in
uniform density stars, the “propensity” rule completely elimi-
nates the coupling to lower-multipole terms.
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3.4. The perturbation equations

A normal-mode solution to the perturbation equations satisfies
the perturbed Euler equations, the perturbed continuity equa-
tion and the relation between the perturbations in density and
pressure. We define dimensionless frequencies as

ω̄r = ωr

( R3

GM

)1/2
, (6)

and

$ = Ω
( R3

GM

)1/2
, (7)

and expand the frequency in the rotating frame as

ω̄r = σ0$ + σ2$
3. (8)

Writing the distortion parameterε as

ε ≡
[
D̃1(a) + D̃2(a)P2(cos θ)

]
$2, (9)

(whereP2(cos θ) is the Legendre polynomial) and expanding
the perturbation equations consistently to second order in the
angular velocity of the star, we find that the eigenfunctionsζl+1,
Sl+1, Hl+1 andKl are given by the following set of equations:
2

a
dζl+1

da
= (l − 1) ζl+1 , (10)

a
dSl+1

da
= − (4 + l)Sl+1 − hζl+1 , (11)

Hl+1 = Sl+1 +
(2l + 1)(l + 1)

8lσ0

[
(l + 1)σ2 + 6D̃2

]
ζl+1, (12)

and

Kl = i
(l + 1)

√
2l + 3

2lω̄r$
ζl+1. (13)

In (11),h is

h =
1
σ2

0

{
(l + 1)

l

[
(2l + 3)

σ2

σ0
+ 6(l − 1)D̃2

]

+3

(
3D̃2 + a

dD̃2

da

)}
. (14)

Note that the perturbation in the pressure is independent of the
displacement vector and can be found by analytically integrat-
ing (10), while the toroidal functionKl is given algebraically in
terms of the perturbation in the pressure. The spheroidal func-
tion Sl+1 satisfies a differential equation that depends on the
perturbation in the pressure and the structure of the star and
can not be obtained analytically, but will not be needed for the
remainder of this paper. The spheroidal functionHl is given
algebraically in terms ofSl+1 andζl+1.

2 These equations can be derived correspondingly from Saio’s
Eqs. (38), (36), (50) and (48).

3.5. Boundary conditions

From the leading terms ofSl andζl neara = 0, one obtains the
boundary condition at the center of the star:

(2l + 3)Sl+1 + hζl+1 = 0 . (15)

At the surface of the star, the Lagrangian variation of the pres-
sure vanishes (a fluid element on the surface of the unperturbed
configuration must also be on the surface of the perturbed con-
figuration):

∆p = δp + ξ∇p = 0, (16)

or

ζl+1 = Sl+1. (17)

To O(Ω), (16) is satisfied trivially, while toO(Ω2) it yields the
correction to the eigenfrequency to that order.

4. Eigenfunctions and eigenfrequencies

Eq. (10) forζl+1 implies a solution of the form

ζl+1 ∼ al−1. (18)

Sinceζl+1 is of orderO($2), we normalize it to the dimension-
less quantity

ζl+1 = $2
( a

R

)l−1
. (19)

Then, (13) yields

Kl = i
(l + 1)

√
2l + 3

2l

( Ω
ωr

)( a

R

)l−1
, (20)

whereR is the radius of the star. These are the only two eigen-
functions needed for the remainder of the paper.

To O(Ω), the frequency of anl = m r-mode is

σ0 =
2

l + 1
. (21)

An expression for the second order correction to the eigenfre-
quency of a given mode can be obtained either directly from the
boundary conditions (17), or by constructing an integral relation
using the perturbed Euler equations. Applying the approximate
integral relation given in the appendix of Saio (1982) to uniform
density stars, we obtain:( ω̄r

$
− σ0

)∫ R

0
a2l+2da = − 3l

l + 1
σ0

∫ R

0
a2l+2D2da

− 3l

(l + 1)(2l + 3)
σ0

∫ R

0
a2l+3 dD2

da
da (22)

which leads, after integration by parts, to the approximate result

σ2 ' 5l

(l + 1)2
, (23)

and

ω̄r ' 2
l + 1

$ +
5l

(l + 1)2
$3. (24)

For the derivation of Eq. (24), we have used the fact that
D2(R) = −(5/6)$2 for uniform density stars (cf. appendix
II of Provost et al. 1981).
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5. Dissipation time-scales

5.1. Energy of mode

The energy of the mode, measured in the rotating frame, is

E =
1
2

∫
ρ|ξ̇|2dV,

=
l(l + 1)

2
ω2

rρ

∫ R

0
a4|Kl|2da, (25)

which gives

E =
(l + 1)3

8l
ρΩ2R5. (26)

5.2. Dissipation due to gravitational waves

The dissipation of energy due to the emission of gravitational
waves can be estimated from the standard multipole formula:

dE

dt

∣∣∣∣
gw

= −ωr

∑
l

Nlω
2l+1
i

(|δDm
l |2 + |δJm

l |2), (27)

where

Nl = 4π
(l + 1)(l + 2)

l(l − 1)[(2l + 1)!!]2
. (28)

In (27)

δDm
l =

∫
δρalY m∗

l dV, (29)

are the mass multipole moments and

δJm
l = 2

√
l

l + 1

∫
al(ρδv + δρv)Y mB∗

l dV (30)

are the current multipole moments, wherev is the velocity of
the fluid andY mB∗

l are the “magnetic” vector harmonics (see
Thorne 1980, Lindblom et al. 1998).

5.2.1. Mass multipoles

The dominant mass multipole moment isδDl+1. For incom-
pressible stars the Lagrangian variation of the density vanishes,
∆ρ =0. From the relation between Lagrangian and Eulerian per-
turbations of a scalar quantity, it follows that

δρ = −ξ∇ρ. (31)

The derivative of the density across the surface is a Dirac delta-
function ata = R, thus

δρ = −aSl+1Y
l
l+1ρδ(a − R) (32)

The mass-multipole moment becomes

δDl+1 = −$2ρRl+4, (33)

and, being of O(Ω2), it contributes todE/dt|gw an O(Ω2l+8)
term.

5.2.2. Current multipoles

The dominant current multipole moment is

δJl = 2lωr

∫ R

0
ρal+3Klda, (34)

which is

δJl = i
(l + 1)√
2l + 3

ρΩRl+4. (35)

The contribution of he dominant multipole moment todE/dt|gw
is an O(Ω2l+4) and an O(Ω2l+6) term.

5.2.3. Growth-time

The growth time due to the emission of gravitational waves is

tgw = − 2E

dE/dt|gw
. (36)

Including both the mass and current multipole contributions and
keeping the frequency to O(Ω2), we obtain

tgw = −c2l+3

G

π(l + 1)3

3l

{
(σ0 + σ2$

2)
[
l − σ0 − σ2$

2]2l+1

×
[
(l + 1)2

2l + 3
Nl +

[
l − σ0 − σ2$

2]2 Nl+1$
4
]

×MR2lΩ2l+2

}−1

. (37)

To lowest order inΩ, (37) reduces to

tgw = −c2l+3

24G

[(2l + 3)!!]2

(2l + 3)(l − 1)2l

(
l + 1
l + 2

)2l+2 Ω−2l−2

MR2l
. (38)

5.3. Dissipation due to shear viscosity

The dissipation of energy because of the shear viscosity of neu-
tron star matter is

dE

dt

∣∣∣∣
sv

= −2
∫

ηδσabδσ∗
abdV, (39)

where

δσab =
iωr

2

(
∇aξb + ∇bξa − 2

3
gab∇cξ

c

)
, (40)

(see e.g. Ipser & Lindblom 1991) andη is the shear viscosity
coefficient. We obtain

dE

dt

∣∣∣∣
sv

= −l(l + 1)ω2
rη

[∫ R

0
a2|a∂aKl|2da

+(l − 1)(l + 2)
∫ R

0
a2|Kl|2da

]
, (41)

which yields

dE

dt

∣∣∣∣
sv

= − (l + 1)3(l − 1)(2l + 3)
4l

ηΩ2R3. (42)
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The damping time due to shear viscosity is

tsv =
3

4π(l − 1)(2l + 3)
M

ηR
. (43)

5.4. Dissipation due to bulk viscosity

In a neutron star, bulk viscosity can arise, because of the
departure from nuclear reaction equilibrium, such as beta-
equilibrium, during the compression and expansion of matter
caused by an oscillation. The energy is dissipated at a rate

dE

dt

∣∣∣∣
bv

= −
∫

ζ|δσ|2dV, (44)

whereζ is the coefficient of bulk viscosity

δσ = −iωr
∆p

Γp
, (45)

is the expansion of the fluid andΓ is the adiabatic index. The last
relation follows from baryon conservation in an adiabatic oscil-
lation. Strictly speaking, in a uniform density star,δσ = 0. But,
we assumed the uniform density approximation only to make
calculations easier. For the bulk viscosity we use an approximate
timescale, that has been derived by Cutler & Lindblom 1987 for
spheroidal oscillations in uniform-density stars. Since the bulk
viscosity arises because of the change in density, for toroidal
oscillations we use the spheroidal formula, but withl replaced
by l + 1:

τbv =
3(2l + 5)
2π(l + 1)3

Γ4M

ζR
. (46)

For the purpose of estimating the bulk viscosity only,Γ is taken
to be equal to 5, i.e. correspond to that of a stiff (nearly uniform
density),N = 0.25 polytrope.

6. Critical angular velocities

Below the superfluid transition temperature, which isT ∼ 109

K, the shear viscosity is dominated by electron-electron scat-
tering and an approximate formula for the viscosity coefficient
is

η = 6 × 1018 ρ2
15

T 2
9

g/cm s, (47)

(Cutler & Lindblom 1987), where the notationρ15 means nor-
malization of the density to1015 gr/cm3 andT9 normalization
of temperature to109K. Above the superfluid transition tem-
perature, the shear viscosity coefficient due to neutron-neutron
interactions is

η = 2 × 1018 ρ
9/4
15

T 2
9

g/cm s, (48)

(Flowers & Itoh 1979). The bulk viscosity will be important in
hot, newly-born neutron stars, but its coefficient is not as certain
as the coefficient for shear viscosity. Sawyer (1989) estimates
the bulk viscosity in neutron star matter, assuming that the star

cools through the modified URCA process and that it is trans-
parent to neutrinos. The coefficient he obtains is

ζ = 6 × 1025ρ2
15ω

−2
r T 6

9 g/cms. (49)

It has been suggested (Lai & Shapiro 1995) that for tempera-
tures larger than a few times109K the neutrino optical depth
is still large and the bulk viscosity is thus inactive. If the star
cools through the direct URCA reaction, the bulk viscosity will
be much larger than in (49), but again only for temperatures for
which the star is transparent to neutrinos. It becomes apparent
that, depending on the cooling process and on the neutrino op-
tical depth in a newly-born neutron star, the bulk viscosity can
almost completely damp non-axisymmetric instabilities or have
only a small effect on them. A more detailed study is needed
and departure from equilibrium of other interactions (such as
interactions between quarks at lower temperatures) should also
be considered. For the time being we will use (49) as an conser-
vative average of the large error bars associated with the bulk
viscosity.

Another dissipation mechanism that can affect the instability
is the superfluid mutual friction. Estimates by Mendell (1991)
and Lindblom & Mendell (1995), suggests that mutual friction
could suppress the gravitational - radiation - driven instability
of f -modes, when the temperature of the star is between107K<
T < 109K. It is not clear whether mutual friction will have the
same effect forr-modes, and a new calculation of this effect is
needed.

At each value of the temperature of the star, the critical angu-
lar velocity above which gravitations radiation has the shortest
time-scale, compared to the viscosity time-scales, is obtained
by solving the equation

1
τgw

+
1

τsv
+

1
τbv

= 0. (50)

We specialize to a specific neutron star model with ra-
dius R = 12.47km and massM = 1.5M� (same as in
Andersson et al. 1998 and Lindblom et al. 1998). The density
of the star isρ = 3.4 × 1014gr/cm3.

Fig. 1, shows the critical angular velocity as a function
of temperature (in units of the angular velocity at the mass-
shedding limit for Newtonian, uniform density and uniformly
rotating stars,ΩK ' 0.67

√
πGρ). The solid curve corresponds

to theO(Ω2) Eq. (37). A rapidly-rotating neutron star, born at
temperatures1011K loses angular momentum because of the
r-mode instability and slows-down. The minimum angular ve-
locity it could reach isΩc = 414s−1 (or a period of 15ms) at
T ' 1 × 1.5 × 109 K. The mass of the neutron star, or the adi-
abatic index, do not have a significant effect on the minimum
critical angular velocity. The radius of the neutron star, however,
(which can range from 10km to 15km), does have a consider-
able effect and the radius of our model represents a mean value
of the expected radius of a typical1.5M� neutron star.

For low rotation rates, one can use (38) to construct approx-
imate equations for the two parts of the curve in Fig. 1. The part
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of the critical curve where the shear viscosity dominates can be
approximated by

Ω(sv)
c = 581

(
10km

R

)3/2(109K
T

)1/3

s−1, (51)

while the bulk viscosity dominated part is described by

Ω(bv)
c = 362

(
R

10km

)9/8(
T

109K

)3/4

s−1. (52)

The two approximate expressions are shown as dotted curves
in Fig. 1. For a period1.56 ms (the period of the fastest known
millisecond pulsar), the lowest order critical angular velocity
differs from theO(Ω2) result by∼ 17%.

In a similar way, the lowest order approximations to the
dissipation timescales are

tgw = −1.4× 106
(

103s−1

Ω

)6(1.4M�
M

)(
10km

R

)4

s, (53)

tsv = 3.6 × 107
(

R

10km

)5(
T

109K

)2(1.4M�
M

)
s, (54)

and

tbv = 4.6 × 109

×
(

R

10km

)5( Ω
103s−1

)2(1.4M�
M

)(
109K

T

)6

s, (55)

Our current results for the onset of ther-mode instability
correspond to neutron stars with a very stiff equation of state.
The results in Andersson et al. (1998), correspond to a much
softer equation of state (an N=1.0 polytrope) and a comparison
is shown in Fig. 2. The minimum critical temperature is roughly
the same for both equations of state, although it occurs at a
somewhat smaller temperature in the uniform density case. This
shows that the uncertainty in the equation of state does not have
a significant impact on ther-mode instability.

7. Discussion

Our analytical results for the onset of ther-mode instability
in neutron stars agree well with numerically obtained results,
for the same neutron star model. Using our analytic formu-
lae, the uncertainty in the bulk viscosity can be easily explored
for different present and future estimates of the bulk viscosity
coefficient. The shear viscosity for lower temperatures is also
uncertain, since a high shear viscosity due to the mutual friction
between superfluid vortices below the superfluid transition tem-
perature could suppress the instability. If future investigations
provide a definite answer on the effect of mutual friction in a
superfluid, one can easily study the implication on ther-mode
instability using the analytic formulae presented in this paper.

We would also like to point out that, although anl = 1
dipole mode does not radiate in a non-rotating star, it does emit
gravitational waves through the coupling to higher order terms,
in rotating stars. According to (43), the shear viscosity forl = 1
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Fig. 2. Critical angular velocity for the onset of ther-mode instability
as a function of temperature (for a 1.5M� neutron star model). The
present uniform density result (N = 0) is compared to the critical curve
for the equation of state used in Andersson et al. (1998), (N = 1.0
polytrope). The minimum value ofΩc/ΩK is roughly the same, and
the effect of the equation of state is mainly to shift the critical curve to
different temperatures.

vanishes and thus cannot affect the emission of gravitational
waves, this is not true for realistic equations of state but still
the damping times are extremely long. Thel = 1 r-mode will
radiate through the coupling to spheroidall = 2 terms, i.e. it will
generate mass quadrupole radiation. The frequency of this mode
in the rotating frame is̄ωr = $, while in the inertial frame the
frequency isω̄i = (3/4)$3. According to the criterion for the
onset of the CFS-instability, thel = 1 r-modes are thus stable
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to the emission of gravitational waves, in contrast to thel ≥ 2
modes. Such stable oscillations, unaffected by shear viscosity at
low temperatures, could be excited during a neutron star glitch.
In analogy to thel = 1 r-modes, anl = 1 spheroidal mode,
like thef mode or thep-modes, will emit current quadrupole
radiation and this case needs further study.
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