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Abstract: We investigate the generalised diffeomorphisms in M-theory, which are gauge
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infinite. The Jacobiator of generalised diffeomorphisms gives such a reducibility trans-

formation. We give a concrete description of the ghost structure, and demonstrate that

the infinite sums give the correct (regularised) number of degrees of freedom. The ghost

towers belong to the sequences of representations previously observed appearing in tensor

hierarchies and Borcherds algebras. All calculations rely on the section condition, which

we reformulate as a linear condition on the cotangent directions. The analysis holds for

n < 8. At n = 8, where the dual gravity field becomes relevant, the natural guess for the

gauge parameter and its reducibility still yields the correct counting of gauge parameters.
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1 Introduction

It has been known for a long time that compactification on an n-dimensional torus of

D = 11 supergravity, and of M-theory, enjoys a U-duality symmetry, namely a discrete

version of En(n) (see for example refs. [1–3]). Such a symmetry mixes momentum states

with winding states of branes. The series can even be continued to the infinite-dimensional

algebras E9 [4, 5], E10 [6–10] and E11 [11–15], although the interpretation is somewhat

different in the last two cases. It has later become clear that it should be possible to give the

theory a formulation which is manifest under the (continuous) exceptional group [16–21],

which plays roughly speaking the same rôle as GL(n) does in gravity.

Such ideas, where space-time is enlarged to accommodate the extra “momenta”, found

its geometric formulation in the work of Hull, first for T-duality [22] and later for U-

duality [23, 24]. The doubled field theory relevant for T-duality is closely connected to

the generalised geometry of Hitchin [25], and has been thoroughly investigated [26–36],

although some geometric understanding still seems to be missing.

Concerning U-duality, much of the structure is similar, but there are some fundamental

differences in the structure of the generalised diffeomorphisms. Part of the purpose of the

present paper is to clarify these. From investigations of the dynamics of supersymmetric

membranes, it has been clear from different arguments that U-duality can be made mani-

fest [37–39]. Properties of generalised diffeomorphisms, and of some objects transforming
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n R1 R2 R3 R4

3 (3,2) (3,1) (1,2) (3,1)

4 10 5 5 10

5 16 10 16 45

6 27 27 78 351′

7 56 133 912 8645⊕ 133

8 248 3875⊕ 1 147250⊕ 3875⊕ 248 6696000⊕ 779247⊕ 147250

⊕ 2·30380⊕ 3875⊕ 2·248

Table 1. Some relevant representations.

linearly under them (that can serve as equations of motion) have been investigated in

refs. [40–45]. A generic geometric picture and a tensor formalism are lacking, as is a full

geometric treatment of fermions (though progress has been made in the case of double field

theory/ten-dimensional supergravity [46–50]).

An interesting structure arising in the context of U-duality is the concept of tensor

hierarchies, connected to the possible gaugings of supergravity [51–53]. They can also

be understood in terms of Borcherds algebras [54–56], and seem to have an origin in

the decomposition of the adjoint representation of E11 [14, 57]. In the present paper we

will encounter the same structures in a seemingly different context, namely in the ghost

structure of the algebra of generalised diffeomorphisms. Some of the representations are

given in table 1. The representations Rk given there are possible representations of k-form

fields in the uncompactified dimensions.

The section condition, restricting the dependence of fields on the coordinates of the

extended manifold, is central in the analysis. It is essential for the equivalence of a model

formulated within the framework of generalised geometry with an ordinary supergravity.

If it could be meaningfully continued to higher n, it would be a key ingredient in demon-

strating the validity of the E11 conjecture. A first step in this direction may be found

in ref. [57].

The present paper is structured as follows: section 2 contains basic facts about gener-

alised (exceptional) diffeomorphisms and their algebras. This analysis is not new [45], but

its covariant formulation has to our knowledge not been given previously. In section 3, we

investigate the reducibility of generalised diffeomorphisms, which, when formulated covari-

antly, turns out to be infinite. The version of the representations presented in table 1 is

part of the prediction of section 3. We show that the counting of gauge parameters arising

from the infinite sums is correct, even for n = 8. In section 4, finally, we come back to the

section condition and show how it can be cast in a linear form, mimicking the construction

of isotropic subspaces from pure spinors in doubled geometry [25]. Throughout the paper

we will only be concerned with what is normally viewed as the compactified directions, and

completely ignore the rest.

A note on terminology: the term “generalised geometry”, when used in this paper,

will typically refer to the exceptional En(n) geometry. When we want to refer to the
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O(d, d) situation, we use the term “doubled geometry”. We have no need to make a

terminological distinction between the doubled formalism of Hull [22] and the mathematical

setting of Hitchin [25].

2 Generalised diffeomorphisms

Since gravitational and tensorial degrees of freedom mix under U-duality, so do their re-

spective gauge transformations, and the concept of diffeomorphisms has to be generalised.

In ordinary geometry, the infinitesimal transformation of any tensor is given by the Lie

derivative in the direction of the diffeomorphism parameter um, which acting on a vector

vm reads

δuv
m = Luv

m = [u, v]m = un∂nv
m − ∂nu

mvn . (2.1)

The interpretation of this transformation that best lends itself to generalisations is to view

the first term as a transport term, and the second one as a gl(n) transformation with

the matrix ∂nu
m valued in the fundamental representation of the Lie algebra gl(n). The

transformation of any tensor is given by replacing the Lie algebra action by the appropriate

representation. Of course, this transformation is already antisymmetric in u and v, and

the commutator of two diffeomorphisms is given by the algebra of vector fields:

[Lu, Lv] = L[u,v] = LLuv . (2.2)

In the context of U-duality, the rôle played by gl(n) is assumed by the Lie algebra en(n),

together with a real scaling, corresponding to the (on-shell) trombone symmetry [58]. The

tensors should now be tensors under En(n) × R, and a generalised diffeomorphism should

be of the form

δUV
M = LUV

M = UN∂NV M − αP(adj)
M

N,
P
Q∂PU

QV N + β∂NUNV M (2.3)

for some constants α and β. An upper index M,N, . . . denotes an object in the rep-

resentation R1 (see table 1), the “coordinate representation” of En(n), and P(adj) is the

projection on the adjoint representation that is contained in the tensor product R1 ⊗ R̄1

of the coordinate representation R1 and its conjugate. This lends itself to a natural gen-

eralisation to other representations, and respects composition of tensors since both terms

obey the Leibniz rule. These transformations has been been defined, and their algebra

examined, in ref. [45], in a formalism where GL(n) is manifest. We will give a covariant

analysis. The operation LU is referred to as a generalised Lie derivative, or an “exceptional

Dorfman bracket”.

The Ansatz we will use is not of the form (2.3), but of the general form

LUV
M = LUV

M + Y MN
PQ∂NUPV Q (2.4)

for some En(n)-invariant tensor Y . If the “tensor-friendly” version (2.3) is to hold, there

must be an identity

Y MN
PQ = δMP δNQ − αP(adj)

M
Q,

N
P + βδMQ δNP . (2.5)

– 3 –
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2.1 The section condition

When one starts commuting two generalised diffeomorphisms given by eq. (2.4), one im-

mediately encounters the condition

Y MN
PQ∂M . . . ∂N . . . = 0 , (2.6)

where the ellipses indicate that the derivatives act on different objects. This will be solved

by the section condition. Often, one makes the difference between a strong and a weak

section condition. The weak version of the section condition reads PMN
(R2)PQ∂M∂NΦ = 0 for

any field or variable Φ, while the strong one states that PMN
(R2)PQ∂MΦ∂NΦ′ = 0 for any pair

of fields or variables, which we write in shorthand as

(∂ ⊗ ∂)|R̄2
= 0 . (2.7)

(The representation R2 is listed for the various values of n in table 1.) This latter version

is the one that will be needed throughout our analysis, and when we refer to the section

condition in the following, we will mean its strong version, unless explicitly stated otherwise.

Section 4 will be devoted to a detailed analysis of the section condition, its reformula-

tion and solution. For now, we just make a brief comment. The interpretation of eq. (2.7)

is not as a non-linear condition on the momenta (which would be strange, considering they

are cotangent vectors). Instead, eq. (2.7) should be read: find a largest possible linear

subspace of cotangent space such that any pair of vectors A and B belonging to the sub-

space fulfill PMN
(R2)PQAMBN = 0. This insinuates that there should be a more direct way

of writing the section condition as a linear condition on momenta. We will do this in sec-

tion 4. Generally, any such solution to the section condition will pick out an n-dimensional

subspace conserved by GL(n).

In doubled geometry, where the manifest duality group is O(d, d), the generalised Lie

derivative (Dorfman bracket) is

LUV
M =UN∂NV M − (δMQ δPN − ηMP ηNQ)∂PU

QV N =LUV
M + ηMP ηNQ∂PU

QV N , (2.8)

where η is the O(d, d)-invariant metric. Comparing to the different forms for the expression

in the U-duality setting, we see that it has analogous properties — the expression δMQ δPN −

ηMP ηNQ projects on the adjoint, and the section condition is simply ηMN∂M ⊗ ∂N = 0.

The section condition is fulfilled by any pairs of covectors in an isotropic (null) subspace

of dimension d.

2.2 The algebra of generalised diffeomorphisms

The tensor Y in the Ansatz for the generalised diffeomorphisms is completely determined

by demanding that the transformations form an algebra. We need

[LU ,LV ] = L[[U,V ]] , (2.9)

where

[[U, V ]] = [U, V ]M +
1

2
Y MN

PQ(∂NUPV Q − ∂NV PUQ) . (2.10)
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This bracket is analogous to and shares many properties with the Courant bracket in dou-

bled geometry, and may be called an “exceptional Courant bracket”. A direct calculation

shows that the algebra closes according to eq. (2.9) iff the following conditions are fulfilled:

Y MN
PQ∂M ⊗ ∂N = 0 , (2.11a)

(

Y MN
TQY

TP
RS − Y MN

RSδ
P
Q

)

∂(N ⊗ ∂P ) = 0 , (2.11b)
(

Y MN
TQY

TP
[SR] + 2Y MN

[R|T |Y
TP

S]Q

−Y MN
[RS]δ

P
Q − 2Y MN

[S|Q|δ
P
R]

)

∂(N ⊗ ∂P ) = 0 , (2.11c)
(

Y MN
TQY

TP
(SR) + 2Y MN

(R|T |Y
TP

S)Q

−Y MN
(RS)δ

P
Q − 2Y MN

(S|Q|δ
P
R)

)

∂[N ⊗ ∂P ] = 0 . (2.11d)

Eq. (2.11a), which roughly speaking is the section condition of the previous subsection,

comes from a single remaining term in the commutator containing a derivative. Equa-

tion (2.11b) comes from terms with ∂2UV and U∂2V , while eqs. (2.11c) and (2.11d) mul-

tiply ∂U∂V (hence the opposite symmetrisations). No specific symmetry properties have

been assumed for Y .

The easiest possible expression for Y MN
PQ, satisfying the section condition, would be

that it is proportional to the projector on R2 itself,

Y MN
PQ = kPMN

(R2)PQ . (2.12)

This is indeed the case for n ≤ 6, where it then immediately follows that Y is symmetric

in pairs of indices. For higher n, Y also contains some other term that separately vanishes

with the help of the section condition when contracted with derivatives as in eq. (2.11a).

In all cases up to n = 6, with Y given by eq. (2.12), the equations (2.11) simplify. Terms

with coefficients 1 and 2 in the third and fourth equation combine into symmetrisations

in three indices. Note that this is also precisely what is needed for the second equation to

hold; if

Y (MN
TQY

P )T
RS − Y (MN

RSδ
P )
Q = 0 , (2.13)

which turns out to be true for n ≤ 5, but needs a little modification for n = 6, 7, the indices

on the derivative can be cycled to Y , and the equations are then satisfied thanks to the

section condition.

Let Y MN
PQ = kPMN

(R2)PQ, where P(R2) is the projector on R2 in the symmetric product

of two R1’s (this will be modified for n = 7). Eq. (2.13) has the structure R1⊗R2⊗(⊗3
sR̄1).

The number of possible invariant tensors is the number of singlets in this tensor product,

i.e., the number of irreducible modules in T = (R1 ⊗R2) ∩ (⊗3
sR1).

For n ≤ 5, this number is 1, which means that the two terms in eq. (2.13) are propor-

tional to each other. Then the constant k can be determined simply by taking some trace

of the equation. One gets k = 2(n− 1). The explicit expressions are given below.

For n = 6, 7, the number of irreducible modules in T is 2. In E6, there is an invariant

symmetric tensor cMNP . If one normalises it so that cMNP cMNP = 27 (in which case

– 5 –
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PMN
(27) PQ = cMNRcPQR), the relevant identity reads

10P
(MN

(27) QTP
P )T
(27)RS − P

(MN

(27) RSδ
P )
Q −

1

3
cMNP cQRS = 0 . (2.14)

The last term is of course 27- or 27-projected on any pair of indices. The tensor Y is given

by the same expression as for lower n.

When n = 7, R1 is the fundamental 56-dimensional module. It is symplectic, so there

is an invariant tensor εMN . We choose conventions where εMN is the inverse to εMN . R2 is

133, the adjoint. There is a completely symmetric 4-index tensor cMNPQ, which we choose

to normalise so that cMNPQ = P
(MNPQ)
(133) . Then, the projector on 133 can be written

PMN
(133)PQ = cMN

PQ +
1

12
δ
(M
P δ

N)
Q , (2.15)

which is a practical expression when one wants to move indices on P . The relevant identity

generalising eqs. (2.13), (2.14) is

12P
(MN

(133)QTP
P )T
(133)RS − 4cMNPTP(133)TQRS − P

(MN

(133)RSδ
P )
Q = 0 . (2.16)

The tensor Y now necessarily contains an antisymmetric part, and takes the form

Y MN
PQ = 12PMN

(133)PQ +
1

2
εMNεPQ . (2.17)

It is clear (even more so from the argument in section 4.5) that if an SL(7) vector is picked

out by the section condition, one will also have εMN∂M ⊗ ∂N = 0.

In section 2.4, we will study the case n = 8, for which the generalised Lie derivatives

fail to form an ordinary Lie algebra.

To summarise, the forms of the tensor Y in the different cases are:

n = 3 : Y iα,jβ
kγ,lδ = 4δijklδ

αβ
γδ ,

n = 4 : Y mn,pq
rs,tu = 6δmnpq

rstu ,

n = 5 : Y αβ
γδ =

1

2
γαβa γaγδ , (2.18)

n = 6 : Y MN
PQ = 10cMNRcPQR ,

n = 7 : Y MN
PQ = 12cMN

PQ + δ
(M
P δ

N)
Q +

1

2
εMNεPQ ,

with index notation that is hopefully self-explanatory (see section 4 for details).

In all cases, it can be checked that if one makes a Fierz-like rearrangement and rewrites

Y MN
PQ in a basis where R1 ⊗ R̄1 represented by the indices N and P (which are the ones

contracting ∂NUP ) is expanded in irreducible modules, one gets

Y MN
PQ = −αnP(adj)

M
Q,

N
P + βnδ

M
Q δNP + δMP δNQ . (2.19)

Here, the last term cancels the second term in the ordinary Lie derivative, when inserted

in eq. (2.4). The projector on the adjoint is defined so that P(adj)
M

N,
R
SP(adj)

S
R,

P
Q =

– 6 –
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P(adj)
M

N,
P
Q and P(adj)

M
N,

N
M = dim(adj) (unfortunately, the convention for raising and

lowering indices leads to P(adj) = −P133 for n = 7). The constants αn and βn take the

numerical values (α4, β4) =
(

3, 15
)

, (α5, β5) =
(

4, 14
)

, (α6, β6) =
(

6, 13
)

, (α7, β7) =
(

12, 12
)

.

For n = 3, the U-duality group SL(3)× SL(2) is not semisimple. There one has

Y iα,jβ
kγ,lδ = δikδ

j
l δ

α
γ δ

β
δ − (2P(8,1) + 3P(1,3))

iα
lδ,

jβ
kγ +

1

6
δilδ

j
kδ

α
δ δ

β
γ . (2.20)

This provides the precise relations with the expressions of ref. [45]. There seems to be a

pattern: βn = 1
9−n

. The coefficient in front of P(R2) is always 2(n− 1).

2.3 The Jacobi identity

For an ordinary Lie derivative, LUV is already antisymmetric in U and V , so [U, V ] = LUV .

This is now no longer the case. Define the symmetric part of LUV as ((U, V )) = 1
2(LUV +

LV U). Then

L((U,V ))W
M = −

(

Y M [N
PQY

|P |R]
[ST ] + Y M [N

[ST ]δ
R]
Q

)

∂NUS∂RV
TWQ , (2.21)

after eq. (2.11b) has been used for the part symmetric in indices on derivatives. This

vanishes trivially for n ≤ 6 and equals −1
4ε

NRεPQ∂[NUP∂R]V
QWM = 0 for n = 7 by the

section condition. Hence a generalised diffeomorphism generated by ((U, V )) gives a zero

transformation.

The Jacobiator [[·, ·, ·]] can be calculated using the same method as in ref. [25]. Let

[[U, V,W ]] = [[[[U, V ]],W ]] + cycl.. Using

[[[[U, V ]],W ]] =
1

2
(L[[U,V ]]W − LW [[U, V ]])

=
1

2
(LULV W − LV LUW )−

1

4
(LWLUV − LWLV U) , (2.22)

we see that the Jacobiator can be written using either the first or the second term of the

first line of eq. (2.22):

[[U, V,W ]] =

{

1
4L[[U,V ]]W + cycl.

1
2LW [[U, V ]] + cycl.

(2.23)

and thus also as

[[U, V,W ]] =
1

6
(L[[U,V ]]W + LW [[U, V ]]) + cycl. =

1

3
(([[U, V ]],W )) + cycl. . (2.24)

So, the Jacobiator generates a zero transformation for all n ≤ 7. We will give a more

careful interpretation of this statement in the following section.

2.4 n = 8

For n = 8, the algebra does not work. This is more or less expected, since this is where

the dual (in the 11-dimensional sense) gravity field becomes relevant. As we will see in

the following section, the counting of gauge parameters nevertheless matches the ones in
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component form, including the “dual diffeomorphisms”. For this reason, we would still like

to say a few words about the failure of the algebra.

The section condition will necessarily be in R̄2 = 1⊕ 3875, as can be seen at an early

stage in the calculation (this is vindicated by the entry in table 1, as it will be calculated

in section 3). This leaves only 27000 in the symmetric product of two derivatives, and it

can be deduced that it also implies that the projections of two derivatives on 248 vanish.

The projection operators are [59]

PMN
(1) PQ =

1

248
ηMNηPQ ,

PMN
(248)PQ = −

1

60
fA

MNfA
PQ , (2.25)

PMN
(3875)PQ = −

1

14
fA(M

P fA
N)

Q +
1

7
δ
(M
P δ

N)
Q −

1

56
ηMNηPQ ,

where the structure constants are normalised so that fMABfNAB = −60δMN .

There is a certain combination of these projectors that combine in the same way as

for lower n, and this is a reasonable candidate:

LUV
M = LUV

M + (14P(3875) − 30P(248) + 62P(1))
MN

PQ∂NUPV Q

= UN∂NV M + ∂NUNV M − fAM
QfA

N
P∂NUPV Q . (2.26)

Note that the coefficients follow the pattern deduced from lower n. It certainly looks a

lot easier to try this than to make a general Ansatz with the P ’s. The section condition

now implies

ηMN∂M ⊗ ∂N = 0 ,

fAMN∂M ⊗ ∂N = 0 , (2.27)

(fAM
P fA

N
Q − 2δ

(M
P δ

N)
Q )∂M ⊗ ∂N = 0

(note that symmetrisation is not needed in the first term in the last equation).

The terms in ([LU ,LV ]−L[[U,V ]])W with a derivative onW vanish due to the section con-

dition. It turns out that also the terms of the form “∂U∂VW” all cancel. A long calculation

leads to a single remaining obstruction with the structure fMN
Qf

P
ST∂N∂PU

SV TWQ −

(U ↔ V ). Even if our guess (2.26) was dictated by the tensor-friendly form (2.3), it can

be checked explicitly that other combinations fail even more seriously to fulfill an algebra.

3 The ghost tower

The tensor gauge transformations are reducible. A 2-form transformation has a 1-form

reducibility and a 0-form second order reducibility, so that the effective number of gauge

parameters in n dimensions is
(

n
2

)

−n+1 =
(

n−1
2

)

, and analogously for a a 5-form parame-

ter
(

n−1
5

)

. Including diffeomorphisms, the effective number of generalised diffeomorphisms

should be n +
(

n−1
2

)

+
(

n−1
5

)

, as long as dual gravity does not enter. This number will be

checked by examining the reducibility of the generalised diffeomorphisms in their covari-

ant form.
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In doubled geometry, the gauge transformations contained in the generalised diffeomor-

phisms are diffeomorphisms and the gauge transformation of the 2-form B, δB = dΛ. The

latter is reducible, since Λ = dφ gives rise to no transformation on the fields. This reducibil-

ity is directly reflected in the reducibility of the generalised diffeomorphisms: a parameter

UM = ηMN∂Nξ does not enter the transformation (2.8) due to the section condition.

Analogously, the reducibility in the exceptional setting is also associated with the

section condition. A parameter constructed as UM [ξ] = ∂NξMN , where ξ is in the rep-

resentation R2 conjugate to the section condition, will generate a zero transformation

through LU [ξ]. This is easily seen from the form (2.3) of the generalised diffeomorphisms.

In the transport term, ∂P ξ
NP∂N = 0 due to the section condition, and in the En(n) × R

transformation terms, ∂2ξ contains neither the singlet nor the adjoint. This is the first

order reducibility. The relation for U [ξ] will in turn be reducible, in the sense that for an

ξMN = ∂P ξ
′MNP , with ξ′ in a certain representation R3, U [ξ[ξ′]] = 0, and so on.

We will now examine the representation content of the reducibility, and show that it

is directly connected to the properties of the weak section condition. Namely, consider an

object λM in R̄1, satisfying the weak section condition, T ≡ λ2|R̄2
= 0. This constraint

is reducible, there is always some representation R̄3 such that T ′ ≡ (λT )|R̄3
= 0. Again,

given this form of T ′ it will satisfy T ′′ ≡ (λT ′)|R̄4
= 0, and so on. The representations in

question can be determined by examining the partition function for the object λ, as will be

done below. A typical example is provided by pure spinors in D = 10, which will actually

be one of the cases.

Now, consider a momentum in R1 conjugate to λ, and call it wM = ∂
∂λM

. A naked

w is not invariant with respect to the constraint on λ, λ2|R̄2
= 0. This constraint, with

parameter ξMN in R2, generates a transformation of w, δξw
M = [−1

2ξ
NPλNλP , w

M ] =

λNξMN . Here we note that this transformation is formally equivalent to the reducibility

of the parameter of generalised diffeomorphisms, if we replace λM by ∂M and wM by UM .

Once this is established, it is clear that the parameters of higher order reducibility are

identical to those of the reducibility of the weak section condition on ∂. The first order

reducibility is precisely such that it leaves both the scalar and adjoint parts of ∂MUN

invariant. This point of view gives yet another, algebraic, reason why only the scalar and

adjoint of ∂U can appear in the generalised Lie derivative (2.3).

Such towers of ghosts have been examined in the cases of pure spinors in various dimen-

sions (see e.g. refs. [60–62]). Typically, one can quite easily deduce the modules appearing

at different powers of the constrained object (pure spinor) λ. These modules, or their

dimensionalities, are then used to construct the ghosts, ghosts for ghosts (reducibility) and

so on. While (the dimensionalities of) the modules in the power expansion can be encoded

in a partition function given in the form of a sum, the ghost structure is encoded in the

same partition function rewritten on a product form. The details can be derived as follows.

Write a partition function by counting the homogeneous functions of degree i of the

constrained object λ:

Z(t) =
∞
∑

i=0

dim(ri)t
i . (3.1)
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(This, and everything below, can of course in principle be refined by not only counting

dimensions, but also actual representations. For low Rk’s, the actual representations can

however be deduced safely by just observing the dimension.) In all the cases under con-

sideration, the weak section condition is such that the representation ri contained in the

i’th power of λ is the irreducible representation with highest weight i times the one of

the coordinate representation R̄1. This is a direct consequence of the fact that all smaller

representations than the largest one are absent in r2 due to the bilinear constraint. In ri,

any smaller representation would have to be formed by tensor some pair of λ’s into such a

smaller representation.

These partition functions Zn are given for different values of n below. They can

either be calculated with the help of explicit expressions1 for dim(ri), or alternatively in

a pragmatic way: by forming the series in eq. (3.1) from dimensions calculated with the

Lie algebra program LiE [63], up to some high power where we safely can conclude that it

coincides with (1− t)−(some number) × F (t), where F (t) is a polynomial with F (1) 6= 0.

Z3(t) =

∞
∑

i=0

(i+ 1)

(

i+ 2

2

)

ti = (1− t)−4(1 + 2t) ,

Z4(t) =
∞
∑

i=0

1

3

(

i+ 4

4

)(

i+ 3

2

)

ti = (1− t)−7(1 + 3t+ t2) ,

Z5(t) =
∞
∑

i=0

1

10

(

i+ 7

7

)(

i+ 5

3

)

ti = (1− t)−11(1 + t)(1 + 4t+ t2) ,

Z6(t) =
∞
∑

i=0

1

56

(

i+ 11

11

)(

i+ 8

5

)

ti = (1− t)−17(1 + t)(1 + 9t+ 19t2 + 9t3 + t4) ,

Z7(t) =
∞
∑

i=0

1

32 ·5·11·13
(i+ 9)

(

i+ 17

17

)(

i+ 13

9

)

ti

= (1− t)−28(1 + 28t+ 273t2 + 1248t3 + 3003t4 + 4004t5 + 3003t6 + 1248t7

+ 273t8 + 28t9 + t10) ,

Z8(t) =
∞
∑

i=0

1

2·7·112 ·13·17·192 ·23·29
(2i+ 29)

(

i+ 28

28

)(

i+ 23

18

)(

i+ 19

10

)

ti

= (1− t)−58(1 + t)(1 + 189t+ 14 080t2 + 562 133t3 + 13 722 599t4

+ 220 731 150t5 + 2454 952 400t6 + 19 517 762 786t7 + 113 608 689 871t8

+ 492 718 282 457t9 + 1612 836 871 168t10 + 4022 154 098 447t11

+ 7692 605 013 883t12 + 11 332 578 013 712t13 + 12 891 341 012 848t14

+ 11 332 578 013 712t15 + 7692 605 013 883t16 + 4022 154 098 447t17

+ 1612 836 871 168t18 + 492 718 282 457t19 + 113 608 689 871t20

+ 19 517 762 786t21 + 2454 952 400t22 + 220 731 150t23 + 13 722 599t24

+ 562 133t25 + 14 080t26 + 189t27 + t28) . (3.2)

1See for example The Online Encyclopedia of Integer Sequences, http://oeis.org.

– 10 –

http://oeis.org


J
H
E
P
0
1
(
2
0
1
3
)
0
6
4

n diffeo 2-form 5-form dual diffeo total

3 3 1 4

4 4 3 7

5 5 6 0 11

6 6 10 1 17

7 7 15 6 0 28

8 8 21 21 8 58

Table 2. The counting of gauge parameters.

The effective number of independent gauge parameters is read off as the negative power of

the first factor (the number of “bosonic degrees of freedom”). For n ≤ 6 the corresponding

spaces and their dimensions are known earlier. For n = 4, the 7-dimensional space is a cône

over the Grassmannian Gr(2, 5) of 2-planes in 5 dimensions. For n = 5, 11 is the dimension

of the space of pure spinors of Spin(5, 5). For n = 6, an object XM with cMNPX
NXP = 0

lies on a 17-dimensional cône over the 16-dimensional Cayley plane [64].

For n ≤ 7, the dimension is 1 greater than the dimension of R1 for the next lower

value of n. This observation should be related to the existence of a 3-grading of the algebra

corresponding to the subgroup En+1(n+1) ⊃ En(n) ×R, providing a non-linear “conformal”

realisation of En+1(n+1) on R1 of En(n) [65, 66]. In fact, the present construction provides an

infinite-dimensional linear representation of En+1(n+1) on polynomials of the constrained

objects in R1 of En(n), i.e., on ⊕∞
i=0(i0 . . . 0) (the Dynkin index for R1 is taken to be

(10 . . . 0)), which can be thought of as a singleton representation. For n = 5, this was also

observed in ref. [67]. For n = 7, the grading corresponding to E8(8) ⊃ E7(7) × SL(2,R)

is a 5-grading [66]. The dimensions can also be identified as the dimensions of coadjoint

nilpotent orbits of 1
2 -BPS instantons [68].

For n ≤ 7, the number of gauge parameters thus calculated match the number of

diffeomorphisms, 2-form and 5-form (for n ≥ 6) transformations calculated above. For

n = 8, strikingly enough, the counting also matches if one includes also n
(

n−1
7

)

= 8 gauge

parameters for the vector-valued 7-form transformations of the dual gravity field. The

counting, and the comparison with the results from reducibility are summarised in table 2.

More information on the structure of the reducibility can be extracted by rewriting the

partition functions as products of ghost partitions,

Z(t) =
∞
∏

k=1

(1− tk)−Ak , (3.3)

where the power Ak is (−1)k−1 times the dimension of the (k − 1)’th reducibility ghost

representation. To get the number of effective gauge transformations, we want to calculate

a regulated sum
∑∞

k=1Ak. Taking the logarithm,

logZ(t) = −

∞
∑

k=1

Ak log(1− tk) = −

∞
∑

k=1

Ak

(

log(1− t) + log

k−1
∑

i=0

ti

)

. (3.4)
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The second logarithm is regular at t = 1, so the sum is obtained as the coefficient of the

singular behaviour − log(1 − t) at t = 1, as argued above. This result is also what one

obtains from regulating the sum with analytic continuation. A more refined treatment (see

for example ref. [61]) is required if one wants to calculate other moments like ghost number
∑∞

k=1 kAk.

A completely refined partition function gives information about the exact representa-

tions Rk. It requires rewriting the known partition function, including complete informa-

tion about representations,

Z(t) =
∞
⊕

i=0

(i0 . . . 0)ti . (3.5)

on a product form

Z(t) =





∏

k∈2N+1

∞
⊕

j=0

tjk ⊗j
s Rk



⊗





∏

k∈2N+2

dim(Rk)
⊕

j=0

(−1)jtjk ∧j Rk



 , (3.6)

where the first factor contains partitions for bosons in Rodd and the second one partitions

for fermions in Reven. This can be done recursively to find arbitrary Rk.

Unlike tensor gauge transformations and generalised diffeomorphisms in doubled field

theory, the tower of ghosts (reducibility) is infinite in all cases. Such a statement can of

course change if one is allowed to break En invariance to some smaller covariance. Note

that the representations Rk, listed in table 1, coincide with the representations of “form

fields”, listed in various tables (see e.g. refs. [40, 51, 52, 56]).2 The representations Rk are

possible representations for k-form fields in the uncompactified 11 − n dimensions. The

sequences continues beyond those of the form fields, and do not halt at any finite k.

For example, when n = 6,

Z6(t) = (1−t)−27(1−t2)27(1−t3)−78(1−t4)351(1−t5)−1755(1−t6)8983(1−t7)−47034 × . . .

(3.7)

This product form of the partition function is simply obtained from the summation form

(or closed form) above by recursively matching the exponents, i.e., the dimensions of the

ghost modules. Here, we recognise the 27, 27, 78, 351′ and 1728 ⊕ 27 from the table

of fields.3

The Dynkin indices of Rk for the first few k are depicted in figure 1. For n = 7, 8, this

gives the leading (biggest) representations. For n = 3, R1 = (10)(1) (i.e., 1’s at the nodes

marked R4 and R3 in the figure), but R2,3,4 are given accurately by the figure.

2The representations we derive coincide exactly with those appearing in Borcherds algebras. For n = 8,

we have verified this up to R4. The reason for this is probably that Serre relations for the Borcherds algebra

is effectively encoded in an algebraic constraint (the section condition). We may come back to this in a

future publication.
3We write 351

′ for a tensor A[MN ]. There are four 351-dimensional representations of E6: this one, the

symmetric 351 of a tensor S(MN) with cMNPS
NP = 0, and their conjugates.
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Figure 1. Dynkin indices of some reducibility representations.

Let us spell out an example in some detail. For n = 5, the parameter is a spinor, and

we have

Y αβ
γδ = 8Pαβ

10 γδ =
1

2
γαβa γaγδ

= δαγ δ
β
δ +

1

8
(γab)αδ(γab)

β
γ +

1

4
δαδ δ

β
γ , (3.8)

so that generalised diffeomorphisms are generated by LU , where

LUV
α = (U∂)V α +

1

8
(∂γabU)(γabV )α +

1

4
(∂U)V α . (3.9)

Now, consider a parameter U which is constructed as a derivative of a Spin(5, 5) vector as

Uα[ξ] = γαβa ∂βξ
a . (3.10)

Substituting this parameter in the transformation gives

LU [ξ]V
α = γβγa ∂γξ

a∂βV
α +

1

8
(∂γabγc∂)ξ

c(γabV )α +
1

4
(∂γc∂)ξ

cV α . (3.11)

All three terms vanish, since the section condition implies γαβa ∂α⊗∂β = 0. So, the reducibil-

ity of the parameter Uα lies at least in ξa (it is not difficult to show that this the complete

reducibility). Then ξ in turn has a second order reducibility, ξa = (∂γaξ′), which gives

zero in eq. (3.10) by virtue of the Fierz identity γaα(βγa
γδ) = 0 and the section condition.

Next, ξ′α = (γab∂)αξ
′′ab, etc. The structure is reflected in the product form

Z5(t)=(1−t)−16(1−t2)10(1−t3)−16(1−t4)45(1−t5)−144(1−t6)456(1−t7)−1440× . . . (3.12)

The parameter U in R1 = 16 branches into the diffeomorphism vector and a 2-form

and a 5-form gauge transformation. The vector ξ in R2 = 10 branches into a 1-form and a

4-form when Spin(5, 5) → GL(5). This is of course the reducibility one wants for a 2-form

and a 5-form gauge transformation. At the next level, something has to change, however.

The second order reducibility in the GL(n) language contains a scalar and a 3-form (in

total 11 second order ghosts), while the smallest representation of ξ′ such that ξ = ∂ξ′ is

R3 = 16. There is an excess of a 1-form. This does not imply any extra reducibility as

compared to the GL(n)-covariant considerations, but has to be compensated for by higher

reducibilities. The reducibility becomes infinite, with ever growing representations Rk, but

in a way that makes the resulting infinite alternating sum meaningful.
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4 The section condition as a linear constraint

In the generalised space-time the coordinates form the representation R1 of the duality

group En(n). The section condition is given by projecting out a particular representa-

tion R̄2:

(∂ ⊗ ∂)|R̄2
= 0 . (4.1)

We propose instead to introduce an auxiliary object Λ in a representation T which will

play the analogous role to the pure spinor in the O(d, d) case and pick out a subspace akin

to the way the pure spinor identifies a maximal isotropic subspace. The “pure spinor”

constraints in this case transform in a representation P , i.e., has the form

Λ2|P = 0 . (4.2)

The linear section equation will have the form

(Λ⊗ ∂)|N = 0 (4.3)

for some representation N , and will imply the section condition.

We will make this reformulation for n ≤ 7. In all cases, the representation T of Λ is

R̄3, and the representation N for the linear constraint of eq. (4.3) is R̄4. The constraint

on Λ is absent for n ≤ 4. We are not yet able to deduce a pattern for the representation P

of this constraint.

Let us remind of the situation in doubled generalised geometry. The section condition

in its non-linear form reads ηMN∂M ⊗ ∂N = 0. The largest linear subspace of the cône of

null vectors is an isotropic subspace. Such a space is determined by the choice of a pure

Spin(d, d) spinor Λα, obeying (ΛγMΛ) = 0, and the strong section condition is replaced by

the linear condition (γMΛ)α∂M = 0.

4.1 n = 3

The duality group is G = SL(3) × SL(2). The six coordinates of extended space time are

in the R1 = (3,2) representation of this duality group. The section condition reads

εαβ∂aαA∂bβB = 0 , α = 1, 2 a = 1, 2, 3 . (4.4)

Let us instead introduce a Λα in R̄3 = (1,2) and consider the linear section equation

Λα∂aα = 0 . (4.5)

This transforms in R̄4 = (3,1) and it implies the section condition. For instance, choose

a frame where Λ1 6= 0 with Λ2 = 0, then we see that eq. (4.5) would imply that ∂a1 = 0

and clearly then eq. (4.4) is satisfied. The linear section condition serves to reduce from

the six extended coordinates to three physical coordinates.
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4.2 n = 4

In this case the duality group is G = SL(5). The ten coordinates of extended space time

are in the R1 = 10 representation of G. The section condition is in R̄2 = 5:

εabcde∂abA∂cdB = 0 , a = 1 . . . 5 . (4.6)

Instead let us introduce an Λa in the R̄3 = 5 and consider the linear section equation

Λ[a∂bc] = 0 . (4.7)

This transforms in R̄4 = 10 and it implies the section condition. For instance choose Λ1 6= 0

with other components vanishing. Then we see that eq. (4.7) would imply that ∂23 =

∂24 = ∂25 = ∂34 = ∂35 = ∂45 = 0 and clearly then eq. (4.6) is satisfied. The linear section

condition serves to reduce from the ten extended coordinates to four physical coordinates.

4.3 n = 5

The duality group is G = Spin(5, 5) and the coordinates form an R1 = 16. The section

condition is

∂αγ
aαβ∂β = 0 , a = 1 . . . 10, α = 1 . . . 16 . (4.8)

We now introduce a linear section condition

0 = Λα(γab)α
β∂β = 0 , (4.9)

which transforms in R̄4 = 45, involving a spinor Λα in R̄3 = 16. If we further make the

restriction that Λ is pure we see that this constraint implies that 11 components of ∂α
are constrained to vanish leaving correctly 5 physical coordinates. To see this consider

decomposing Λ = φ + u[ab] + t[abcd] and considering the special choice for which φ 6= 0 is

the only non-vanishing. Then in terms of the Mukai pairing we need

(Λ, ω1 ∧ ω2∂) = 0 ,

(Λ, ιX1ιX2∂) = 0 , (4.10)

(Λ, ιX1(ω1 ∧ ∂)− ω1 ∧ (ιX1∂)) = 0 .

With this choice for Λ we see that first of these sets the 3-form of ∂ to zero, the second is

trivial and the final one sets the five-form to zero. What remains unconstrained are the five

coordinates in the direction of the one-form. This is a solution to the section condition.

4.4 n = 6

The duality group is the split form of E6 and the coordinates are in the 27.4 The section

conditions must eliminate 21 of these components.

4It seems that the number of point-like charge in five dimensions gives a counting of 27⊕1 and provides

an extra singlet which is unneeded or irrelevant. Probably it can be accommodated but is rather trivially

projected out by the section condition.
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To match with the field content we decompose according to SL(6)× SL(2) so that the

derivatives decompose as 27 → (15,1)⊕ (6,2):

∂ = ∂ab + ∂α
a . (4.11)

Then the section conditions are given by a 27 → (15,1)⊕ (6,2):

εαβ∂
α
a ∂

β
b + εabcdef∂

cd∂ef = 0 , ∂ab∂
β
b = 0 , a = 1 . . . 6 , α = 1 . . . 2 , (4.12)

In other words we are projecting the (27⊗ 27)|27 to zero.

Now to build the linear section condition we start with a Λ in R̄3 = 78 and impose the

“purity constraint” Λ2|650 = 0. Then for this restricted choice we tensor with a derivative

and demand Λ∂|R̄4=351′ = 0. We decompose the 78 according to the SL(6) × SL(2),

78 → (1,3)⊕ (35,1)⊕ (20,2),

Λ → φ(αβ) + ua
b + w[abc]

α . (4.13)

The constraint decomposes as 650 → (1,1)⊕(70,2)⊕(70,2)⊕(20,2)⊕(189,1)⊕(35,1)⊕

(35,3), where some non-trivial SL(6) representations are

20 : 21 : 70 : 84 : 105 : 189 : (4.14)

A representative of the solution of the constraint on Λ can be taken as ua
b = w[abc]

α = 0,

φ12 = φ22 = 0, φ11 6= 0.

Now we consider this particular solution in the section equation in the representation

R̄4 = 351′, which decomposes as 351′ → (21,1) ⊕ (15,3) ⊕ (84,2) ⊕ (6,2) ⊕ (105,1).

The relevant SL(6) × SL(2) representations of the linear section condition (considering

u = w = 0) are only (15,3)⊕(6,2). This implies ∂ab = 0 and ∂2
a = 0. Six directions remain.

We can check that under dimensional reduction this reduces to the pure spinor con-

straint and associated linear section condition. This entails doing a branching into SO(5, 5)

and essentially keeping only the 10−2 ⊂ 27 and the 16−3 ⊂ 78. From the purity con-

straint, (78 ⊗S 78)|650 = 0, one recovers (16−3 ⊗ 16−3)|10−6
and then from the section

condition (27⊗ 78)|351 = 0 one indeed recovers (10−2 ⊗ 16−3)|16−5
= 0.

4.5 n = 7

For E7, the “pure spinor” should be in R̄3 = 912. Start by decomposing various modules

in SL(8) modules:

56 −→ 28⊕ 28

133 −→ 63⊕ 70

912 −→ 36⊕ 36⊕ 420⊕ 420 (4.15)

1463 −→ 1⊕ 336⊕ 336⊕ 720⊕ 70

8645 −→ 63⊕ 378⊕ 378⊕ 2352⊕ 945⊕ 945⊕ 3584
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The Young tableaux for some non-obvious representations are:

70 : 420 : 336 : 720 : 378 : 2352 : 945 : 3584 : (4.16)

The section condition as a bilinear condition on the derivatives reads ∂ac∂
bc− 1

8δ
b
a∂cd∂

cd = 0,

∂[ab∂cd]+
1
24εabcdefgh∂

ef∂gh = 0. A representative of the solution can be taken as the linear

subspace spanned by ∂a8, which breaks to SL(7). Consider an object Λ in 912, constrained

by Λ2|1463 = 0. One solution is that Λ only sits as an SL(7) singlet λ88 in the 36.

Consider now a linear condition Λ∂|8645⊕133 = 0. With Λ in 36 as above, the constraints

are Λab∂
cd = 0 (945⊕ 63), Λa[b∂cd] = 0 (378). This is solved by ∂ab as above.

5 Conclusions

In this paper, we have studied a couple of different, but connected, aspects of generalised

diffeomorphisms in the U-duality (exceptional) framework. We have examined their alge-

braic structure and reducibility in a U-duality covariant formalism, and demonstrated how

to understand and formulate the section condition in a linear way.

One of the most striking observations here is the appearance of the representations

forming tensor hierarchies or Borcherds algebras, connected to form fields of different de-

grees in the dimensionally reduced theory, as representations describing the infinite re-

ducibility of the generalised diffeomorphisms. The representation contents of these struc-

tures have varied slightly between different authors, but we believe that our predictions,

that are algebraically unique, will provide the generic structure. This question certainly

merits further attention.

Although we have not been able to give a consistent algebra of generalised diffeo-

morphisms based on E8, it is striking that the algebra is as close to working as it is. It

is also remarkable that the natural extrapolation of the reducibility of gauge parameters

produces the correct counting, including the dual diffeomorphisms. Even if E8 in itself is

a complicated algebra, it is still finite-dimensional, and may provide a relatively simple

means of studying dual gravity without the introduction of infinite-dimensional algebras

— the caveat of course being that the structure must be modified in some way to make

sense algebraically.

We think that the covariant treatment in the present paper opens a route to a classifica-

tion of generalised geometries. Another urgent question is the extension to supergeometries.

In order to take that step, a tensor calculus with a spin connection has to be invented.

Such a formulation is at present unknown, but will be needed since fermions transform

under the compact subgroup K(En(n)) [69].
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