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Helmut Friedrich

Albert-Einstein-Institut

Max-Planck-Institut für Gravitationsphysik

Schlaatzweg 1, 14473 Potsdam, Germany

1 Introduction

The intimate relations between Einstein’s equation, conformal geometry, geometric asymp-
totics, and the idea of an isolated system in general relativity have been pointed out by
Penrose [38], [39] many years ago. A detailed analysis of the interplay of conformal
geometry with Einstein’s equation ([14], [15]) allowed us to deduce from the conformal
properties of the field equations a method to derive under various assumptions definite
statements about the feasibility of the idea of geometric asymptotics.

More recent investigations have demonstrated the possibility to analyse the most delicate
problem of the subject – the behaviour of asymptotically flat solutions to Einstein’s
equation in the region where “null infinity meets space-like infinity” – to an arbitrary
precision. Moreover, we see now that the, initially quite abstract, analysis yields methods
for dealing with practical issues. Numerical calculations of complete space-times in finite
grids without cut-offs become feasible now. Finally, already at this stage it is seen that the
completion of these investigations will lead to a clarification and deeper understanding of
the idea of an isolated system in Einstein’s theory of gravitation. In the following I wish
to give a survey of the circle of ideas outlined above, emphasizing the interdependence of
the structures and the naturalness of the concepts involved.

2 Geometric asymptotics and conformal field equations

To illustrate the notion of geometric asymptotics I shall discuss the content of the fol-
lowing theorem ([17], [19]).

The set of smooth asymptotically simple solutions is open in the set of all smooth, maxi-
mal, globally hyperbolic solutions to Einstein’s equation

Ric[g̃] = λ g̃, λ < 0, sign(g̃) = (1,−1,−1,−1) (2.1)

∗To appear in the proceedings of the 15th International Conference on General Relativity and Gravi-
tation (GR 15), Pune, India, December 16 - 21, 1997.
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with compact space sections (“Nonlinear stability of asymptotic simplicity, case λ < 0”).

To see what is entailed by the asserted asymptotic simplicity of the solutions, we recall
its technical definition [38], [39] in a form convenient for our purpose (cf. Figure 1). A
space-time (M̃ , g̃) is called asymptotically simple iff:

1. All null geodesics γ(t) in (M̃ , g̃) are complete.

2. There exists a smooth function Ω > 0 on M̃ with Ω(γ(t)) → 0 as |t| → ∞,

3. there exists an extension of M̃ to a smooth manifold M = M̃ ∪ J with boundary
J = J − ∪ J+, where J− ∩ J + = ∅, such that:

4. Ω extends smoothly to M with: Ω = 0, dΩ 6= 0 on J ,

5. g = Ω2 g̃ extends to a smooth Lorentz metric on M ,

6. Each null geodesic acquires an endpoint in the past on J − and an endpoint in the
future on J +.

This definition implies in particular that the space-times considered in the theorem above
are complete with J− (J+) being a space-like hypersurface which represents the infi-
nite null and time-like past (future). The fact that we can associate with the “physical”
space-time (M̃ , g̃) the smooth compact conformal extension (M,g) (which is unique apart
from conformal diffeomorphisms) implies among other things that the conformal Weyl
tensor Cµ

νλρ of g, which agrees on M̃ with that of g̃, vanishes on J . Thus asymptotic
simplicity characterizes the asymptotic behaviour of the physical space-time. This char-
acterization is optimal; any attempt to strengthen it further would remove the generality
of the admissible solutions. Being determined solely in terms of the conformal structure
– certainly the most important substructure of the metric in general relativity – this
characterization is certainly as geometrical as we could wish.

When we shall consider later on solutions for different signs of the cosmological constant
λ we shall assume the definition above in approprately modified form. In particular, it
may be necessary to drop the first condition and the decomposition of the hypersurface
J into two components. Since all this has been discussed at length in the literature I
shall not dwell on it any further.

Pick now any solution of the type considered in the theorem – the standard example is
given by De Sitter space – and consider the Cauchy data induced on an arbitrary smooth
Cauchy hypersurface of it. If we change these data by a finite but sufficiently small
amount, the theorem tells us that these data develop again into a solution satisfying the
definition above. Thus the completeness as well as the specific fall-off behaviour of the
gravitational field will be preserved. There exist further results which show that this
stability property is retained when Einstein’s equations are coupled to conformally well
behaved fields like Yang-Mills fields. A reliable estimation of the size of the changes in
the data which are admissible here is at present not available. Explicit examples make
it clear that we need to impose restrictions.
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Figure 1: Embedding the physical space-time into its conformal extension.

We emphasize that the asymptotic behaviour of the perturbed solutions asserted in the
theorem is implied solely by the choice of data and by the specific properties of Einstein’s
equation exhibited below, it is not imposed artificially from outside.

As has been stressed already in [38], [39], the property of asymptotic simplicity is of
interest for:

Practical reasons: In many considerations complicated limits in the physical space-time
(M̃ , g̃) can be replaced by simple differential geometric calculations in the conformal space-
time (M,g).

Conceptual reasons: Physical notions based on approximations in the physical space-time
can be replaced by notions which are defined in a precise way in terms of fields induced
on the conformal boundary J .

After the idea had been introduced, the further study of asymptotic simplicity concen-
trated for a long time mainly on these two aspects (cf. the surveys [3], [28]). In view of
the theorem above we can now add:

Asymptotic simplicity is a natural concept for solutions to

Ric[g̃] = λ g̃, λ < 0, sign(g̃) = (1,−1,−1,−1).

We have seen that the asymptotically simple solutions form islands, not singular peaks in
the sea of solutions. What is lying in between? Largely uncharted waters. To survey the
islands or to explore in any generality what can be found on and beyond their coast lines,
we would need to develop new tools. Of course, asymptotically simple space-times have
also been studied by the techniques of “exact solutions”. Explicit solutions can locate
the islands or allow us to learn about new features of gravitational fields by analysing
solutions lying in between. There exist e.g. explicit solutions to (2.1) which develop
pieces of a smooth conformal boundary, horizons, and singularities. However, we cannot
directly obtain statements about general classes of solutions in this way.

Since “existence” appears to have different meanings for different members of the rela-
tivity community, I wish to point out here that in the theorem above I do not simply
talk about presumptive solutions of which the first few coefficients in a formal expansion
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have been determined. Results of the generality considered above are necessarily based
on abstract arguments to establish the existence of solutions. Nevertheless, the solutions
referred to in this context have the same mathematical “reality” and precision as explicit
solutions. I shall have no further reason to consider the field of exact solutions and refer
the interested reader to [7] for a survey.

We do not only know by abstract arguments that the space-times considered in the
theorem have the very specific asymptotic behaviour asserted there but we can also
pinpoint the structural origin of it. Using the fields g = Ω2g̃ and Ω, and a frame ek =
eµ

k ∂xµ satisfying g(ei, ek) ≡ gik = diag(1,−1,−1,−1), we can derive from Einstein’s
equation the “conformal field equations” [14], [15] for the unknowns

eµ
k, Γi

j
k, di

jkl = Ω−1 Ci
jkl, Lij =

1

2
Rij −

1

12
R gij ,

Ω, s̄ =
1

4
∇i∇

iΩ +
1

24
R Ω,

where Γi
j

k denotes the connection coefficients in the frame ek and Ci
jkl, Rij, R the

conformal Weyl tensor, the Ricci tensor, and the Ricci scalar of g respectively. The
conformal field equations are given by

[ep, eq] = (Γp
l
q − Γq

l
p) el,

ep(Γq
i
j) − eq(Γp

i
j) − 2Γk

i
j Γ[p

k
q] + 2Γ[p

i
|k|Γq]

k
j

= 2 gi
[p Lq]j − 2 gik gj[p Lq]k + Ω di

jpq,

∇id
i
jkl = 0,

∇iLjk −∇jLik = ∇lΩ dl
kij,

∇i ∇jΩ = −Ω Lij + s̄gij ,

∇is̄ = −Lij∇
jΩ,

6Ω s̄ − 3∇jΩ∇jΩ = λ.

The derivation of these equations can be found in the literature and I just point out a
few of their properties. In regions where Ω > 0 the system is equivalent to Einstein’s
equation. For the special choice Ω ≡ 1 the last four equations become trivial identities
and the first three equations reduce to the system which forms the basis of the Newman-
Penrose spin frame formalism [36]. The most important feature of the above system, and
in fact the structural background of our results, is the observation that:

The conformal field equations are, in a suitable sense, hyperbolic. This is true irrespective
of the sign of Ω.

Two important things are coming together here. The conformal field equations do not
contain terms of the form Ω−1, which occur when the Ricci tensor of g is expressed in
terms of Ω and g. Secondly, after a suitable choice of gauge conditions the largely overde-
termined system above implies symmetric hyperbolic systems of propagation equations
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Figure 2: The conformal extension in the case λ > 0.

which are such that they preserve under their evolution law the constraints which are im-
plied by the system as well. It should be noted that the gauge conditions need to include
a condition which determines the conformal factor. A way to impose such a condition is
to prescribe the Ricci scalar R of g as a given function on the manifold M . The existence
results which led to our theorem are based on the hyperbolicity of the conformal field
equations.

3 Time-like conformal boundaries

If an asymptotically simple space-time solves Einstein’s equation

R̃µν = λ g̃µν (3.1)

near J , the function Ω satisfies gµν ∇µ Ω∇ν Ω = −1
3 λ on J , i.e. the sign of the cosmolog-

ical constant determines the causal properties of the conformal boundary [39]. Therefore,
if we want to assess the richness of the class of asymptotically simple solutions to Ein-
stein’s equation with λ > 0, for which J is time-like, we need to analyse initial boundary
value problems where initial data are given on a space-like slice and boundary data are
prescribed on the (time-like) conformal boundary J at space-like and null infinity (cf.
Figure 2). In terms of the physical space-time this is an unsual initial boundary value
problem. The boundary data are to be given on a boundary at space-like and null infinity
to be associated with a space-time which is not available yet and which itself is to be
determined partly by the boundary data.

Nevertheless, this initial boundary value problem can be analysed in detail. Let λ > 0
be given. Data are prescribed on smooth 3-manifolds S̃ = S \ Σ and J , where S is an
orientable compact manifold with boundary Σ, J = IR × Σ, and we assume Σ to be
identified with the subset {0} × Σ of J . The data are given as follows:

On S̃ we prescribe smooth, asymptotically simple standard Cauchy data h̃µν , χ̃µν , which
satisfy on S̃ the λ-constraints for space-like hypersurfaces.

Though it should be obvious, we shall explain below the notion of “asymptotic simplicity”
for initial data sets more carefully. It restricts the fall-off behaviour of the data near
infinity. In the case of the anti-De Sitter covering space, which is the standard example
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of the situation considered in this chapter, an initial data set of this type is given by
S̃ = IR3, χ̃µν = 0, and a metric h̃µν such that (S̃,−h̃µν) is a simply connected, complete
Riemannian space of negative constant curvature.

On J we prescribe as boundary data a smooth, 3-dimensional Lorentzian conformal struc-
ture for which the slice Σ is space-like.

If an initial boundary value problem has a smooth solution, the initial and the boundary
data are not quite independent. Thus, without going into details, we require:

The data on S and J satisfy the “compatibility conditions” at Σ which are implied by
the conformal field equations.

Given smooth data on S, there is no problem to construct data on J such that the
compatibility conditions are satisfied.

We set M = IR×S, perform the obvious identifications J ≃ ∂M , S̃ →֒ S ≃ {0}×S ⊂ M ,
and write M̃ = M \J . By t we denote the function on M , resp. on M̃ , which is induced
by the projection M = IR × S → IR. Finally, let Ω be a smooth function on M with
Ω > 0 on M̃ , dΩ 6= 0 on J . The function it induces on M̃ will also be denoted by Ω.
We can state now the following theorem [21].

For given data on S̃ and J as described above there is a T > 0 such that on M̃ ′ =
{p ∈ M̃ | |t(p)| < T} there exists a unique (up to diffeomorphisms) smooth solution g̃ to
R̃µν = λ g̃µν which induces the given initial data on S̃ and which is such that g = Ω2 g̃

extends to a smooth Lorentz metric on M ′ = {p ∈ M | |t(p)| < T} which induces the
conformal structure (up to diffeomorphisms) prescribed on M ′ ∩ J .

We have given here a characterization of all smooth asymptotically simple solutions with
λ > 0. Our result is global in space in the strong sense that not only the space-like but
also the null geodesics which run out to M ′ ∩ J are complete in that direction. It is
only local in time and in fact I did not try to show more; the cases λ > 0 and λ ≤ 0
are distinguished by a fundamental difference in their global causal structures. This
statement can be made precise [21] in terms of invariants of the conformal structure.

It is a remarkable feature of the initial boundary value problem above that the data on the
boundary can be prescribed in a simple covariant way. This is not the case in the “finite”
initial boundary value problem for Einstein’s vacuum field equations where the boundary
is thought of as a hypersurface in a smooth vacuum space-time [26]. Nevertheless, apart
from the additional freedom which allows us to characterize in the finite problem the
location of the boundary, the freedom to prescribe data is the same in both problems.
This indicates again the naturalness of the geometric characterization of “infinity” which
is inherent in the definition of asymptotic simplicity.

There arise subtleties from the non-compactness of the initial hypersurface S̃. To explain
this we need to be more specific about the nature of our data. In the context of initial
data “asymptotic simplicity” means the following: (i) The Riemannian space (S̃,−h̃µν)
is conformally compactifiable to a smooth Riemannian space (S,−hµν) for which Σ repre-
sents the conformal boundary at infinity. (ii) The data h̃µν , χ̃µν are transformed by the
appropriate conformal transformation laws into conformal initial data hµν , χµν which
extend smoothly to Σ. (iii) The conformal initial data set (S, hµν , χµν) satisfies those
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fall-off conditions at Σ which are implied by the requirement that it can be embedded
smoothly into an asymptotically simple solution to (3.1) as a hypersurface which has
intersection Σ = S ∩J with the conformal boundary and which is space-like everywhere.

The existence of large classes of “free data” which can be used to construct data hµν ,
χµν satisfying (i) to (iii) follows from [1], [2], [33]. We notice that condition (iii) implies
among other things that the conformal Weyl tensor Ci

jkl determined from such data
vanishes on Σ.

There exists a larger class of data which satisfy (i) and (ii) but not (iii). This raises the
questions whether the requirement of asymptotic simplicity is inappropriately strong. It
turns out, however, that for data violating (iii) the rescaled Weyl tensor di

jkl diverges
in general strongly at Σ. Because of the hyperbolicity of the conformal field equations
we can expect that this blow up spreads and leads to a space-time with a curvature
singularity in which the outgoing null geodesics are not even complete. Questions about
their asymptotic behaviour do not arise for such solutions. Moreover, free data yielding
data hµν , χµν for which (i) and (ii) hold, need only satisfy a few simple “extra conditions”
on Σ in order for (iii) to be satisfied. I think it is fair to conclude from what we have
seen that:

Asymptotic simplicity is a natural concept for solutions to

Ric[g̃] = λ g̃, λ > 0, sign(g̃) = (1,−1,−1,−1).

The need for extra conditions on the free data on Σ and the fact that data for the
conformal field equations explode if these extra conditions are not met, may be forboding
complications in the case λ = 0. In that case J should be a null hypersurface. It may
turn out, however, that the singularity “spreads over the set which we would like to
consider as J ” and destroys any hope to find a smooth conformal boundary.

4 Gravitational fields of isolated systems

The idea of the conformal boundary was one of the upshots of a discussion which was
initiated by the attempt to arrive at a rigorous concept of gravitational radiation in the
context of gravitational fields of isolated systems (cf. [20] for a sketch of this development
and a list of relevant references). It is, of course, of utmost interest to control, quali-
tatively as well as quantitatively, the complete process which starts with the generation
of the gravitational radiation by the interactions of some, possibly massive, sources and
which ends with the registration of the gravitational radiation at large distances from
any sources. At present we are far from a position to do that. However, when I shall
concentrate in the following on solutions to the vacuum equations

R̃µν = 0, (4.1)

it should be kept in mind that the resulting discussion of the asymptotic behaviour of
the gravitational field applies also to situations which includes black holes or massive and
other sources. These are being ignored here in order not to burden our discussion with
a baggage which is irrelevant for the questions we want to analyse.
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Figure 3: The conformal extension of Minkowski space.

Our expectation is, of course, that the asymptotic behaviour of the gravtitational field
of an isolated system resembles that of Minkowski space. The latter is exhibited most
clearly by the well known conformal extension of Minkowski space (cf. Figure 3).

Minkowski space satisfies conditions 1 to 6 of our definition of asymptotic simplicity.
Moreover, there exist smooth conformal extensions which contain regular points i±, rep-
resenting past and future time-like infinity, and a regular point i0, which represents
space-like infinity. We shall refer to a solution of the Einstein equation (4.1) arising
from asymptotically flat initial data on a Cauchy hypersurface diffeomorphic to IR3 and
satisfying conditions 1 to 6 as to an “Minkowski-type space-time”. The occurence of reg-
ular points in the conformal extension corresponding to i± will not be required and the
occurence of a regular point corresponding to i0 cannot be required if we are interested
in solutions which are not conformally flat. Nevertheless, we shall follow the custom of
thinking of space-like infinity as being represented by an ideal point i0. In view of the
preceding discussion, one might ask:

Is asymptotic simplicity nonlinearly stable at Minkowski space ?

It turned out to be much more difficult than expected to find an answer to this question.
In fact, even the “easier” question whether there exist non-trivial Minkowski-type space-
times has not been answered yet.

A first step into that direction was made by the analysis of the hyperboloidal initial value
problem. Imagine a smooth hypersurface S in the conformal extension of a Minkowski-
type space-time which extends to future null infinity J + such that it is space-like even
on the boundary Σ = S ∩J + of S. We call such a hypersurface together with the initial
data induced on it a “hyperboloidal initial data set” and the initial value problem for
Einstein’s equation (4.1) based on these data the “hyperboloidal initial value problem”.
The following has been shown [16], [17].

Solutions to the hyperboloidal initial value problem for Einstein’s equation (4.1) are
asymptotically simple in the future. Hyperboloidal initial data sufficiently close to Min-
kowskian hyperboloidal data develop into solutions which admit smooth conformal exten-
sions containing a regular point i+ that represents future time-like infinity.

The main point of this result is to reduce the search for Minkowski-type space-times to
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the investigation of the solutions in a neighbourhood of space-like infinity (thinking in
terms of the conformal picture).

An interesting subtlety arises here. It has been shown in [1], [2] how to construct smooth
hyperboloidal initial data from suitably given “free data”. Similar to what we have seen
in the case λ > 0, there exists also in the present case a class of more general free data
which lead to smoothly compactifiable physical initial data. Again, the free data have to
satisfy a few extra conditions on the boundary Σ of S to yield smooth initial data for the
conformal field equations; otherwise the rescaled comformal Weyl tensor determined by
them diverges at Σ. If such divergent data develop at all into solutions which are future
null complete, they will certainly not admit a smooth conformal boundary.

Does this indicate the need to impose extra conditions near space-like infinity if we want
to construct Minkowski-type space-times from asymptotically flat standard Cauchy data
?

This would be consistent with the results of Christodoulou and Klainerman [8]. In their
proof of the nonlinear stability of Minkowski space they could only establish a peeling
behaviour of the conformal Weyl tensor near null infinity which is weaker than the peeling
behaviour implied by asymptotic simplicity. If their estimates were sharp, this would
suggest that asymptotic simplicity can be established only, if at all, for data satisfying
stronger conditions then those required in [8].

One may wonder about the possible nature of such conditions. A straightforward streng-
thening of the usual fall-off conditions of asymptotically flat Cauchy data would eventu-
ally lead to data with vanishing mass, i.e. to trivial Cauchy data.

4.1 The basic problem

Our discussion has indicated the importance to understand the behaviour of the field in
the region where null infinity touches space-like infinity. To illustrate the situation we
take a closer look at space-like infinity in the standard conformal extension of Minkowski
space (cf. Figure 4).

In this extension the Cauchy hypersurface S̃ = {t = 0} (say) of Minkowski space is
compactified by adding of a point i to obtain a smooth compact hypersurface S = S̃ ∪
{i} ≃ S3. The future (past) null cone at this point coincides with J+ (J −). It will
be convenient conceptually to distinguish the point i0, considered as the endpoint of all
space-like geodesics in the 4-dimensional space, from the point i representing space-like
infinity for the asymptotically flat initial data on S̃. We note that the conformal factor
Ω satisfies Ω = 0, dΩ 6= 0 on J ± and Ω = 0, dΩ = 0, Hess Ω ≃ g at i0.

We could choose now asymptotically flat Cauchy data for Einstein’s equation (4.1) on S̃

which are close to the initial data induced by Minkowski space, transform them appro-
priately to obtain the corresponding data for the conformal field equations, and try to
establish the existence of non-trivial Minkowski-type space-times by using the conformal
field equations. Then we encounter the following difficulty, which poses in fact the main
problem of the whole field. Let |x(p)| denote the distance of the point p ∈ S from the
point i in terms of the given metric hµν on S. Then one finds that precisely at the point
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Figure 4: Neighbourhood of i
0 in Minkowski space.

where the mass of the data manifests itself the rescaled conformal Weyl tensor behaves
like

di
jkl = O(

1

|x|3
) as |x| → 0 unless mADM = 0.

This strong divergence at i of some of the initial data for the conformal field equations
has the consequence that the existence of Minkowski-type solutions cannot be shown by
applying straightforward PDE methods to these equations.

If one tries to analyse the evolution of the field near i one faces a host of complicated
subproblems. Already the calculation of a formal expansion of a solution will quickly be
swamped by singular terms which get more and more complicated at any order. Moreover,
there are various questions which have to be analysed in the context of abstract existence
arguments. Just to name a few: (i) How do we choose the gauge ? If the chosen gauge
is propagated implicitly by wave equations the singularity at i may lead to singular
gauge dependent fields, including Ω, which possibly hide the intrinsic smoothness of the
conformal boundary. (ii) How do we control the conformal life time of the solution ? We
would need to ensure that the solutions extend smoothly to the set J = {Ω = 0} but it
may already turn out problematic to locate this set if the gauge dependent function Ω is
non-smooth. Finally, how do we decide whether “J is inherently smooth/non-smooth” ?

Our problem is in fact even more complicated. As mentioned above, it may be necessary
to consider a suitably restricted subclass of the Cauchy data considered e.g. in [8] to
obtain solutions which admit a smooth structure at null infinity. This poses the difficult
question: How do we relate the smoothness of the solution near null infinity to prop-
erties of the Cauchy data on S and how do we determine those data which evolve into
asymptotically simple space-times ?

In view of these difficulties a different kind of question arises. In zeroth order of the
conformal structure, i.e. on the level of the light cone structure or the causal structure,
space-like infinity is represented naturally as an ideal point. For higher order structures
derived from the conformal structure to be smooth this representation is too narrow.
Thus we are led to ask: Does there exist a useful representation of space-like infinity
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which is “finite but wider than the point i0” ?

4.2 The finite representation of space-like infinity

It turns out that the investigation of the questions raised above requires a much deeper
analysis of the Cauchy data near space-like infinity as has been available hitherto. What
exactly needs to be known can only be decided by a simulteneous study of the evolution
problem. In order not to get bogged down by the wealth of details and to be able to
concentrate on the evolution problem I worked out the following results for a class of
data which is rich enough to exhibit the decisive features of the problem and which, on
the other hand, reduces the amount of algebraic calculations considerably. Furthermore,
I assume the data to be given on S̃ = S \{i} where S ≃ S3. It should be emphasized that
this condition and the conditions listed below are mainly made for convenience. There
is ample space for generalizations and what will be said later on about the evolution
equations is independent of requirements on the data. Our assumptions are as follows:

The data are time-symmetric, i.e. χ̃µν = 0 and the data are specified completely by an
asymtotically flat (negative) Riemannian metric h̃µν on S̃ with vanishing Ricci scalar.
The data are “asymptotically simple”, i.e. there exists a function Ω ∈ C∞(S̃) ∩ C2(S)
with Ω > 0 on S̃, Ω = 0, dΩ = 0, and Hess Ω negative definite at i such that hµν = Ω2 h̃µν

extends to a smooth Riemannian metric on S. In some h-normal coordinate system xα

centered in i the metric hµν is real analytic close to i.

As a consequence the basic data have the following local expressions near i. The conformal

factor has the form Ω = |x|2

(U+|x|W )2 where U , with U(i) = 1, is an analytic function

determined by the local geometry near i and W is an analytic function which encodes
global information since W (i) = 1

2 mADM . Writing Γ = |x|2, the rescaled conformal Weyl
tensor takes in space spinor notation the form φabcd = φ′

abcd +φW
abcd with a “massles part”

φ′
abcd = Γ−2

{

U2 D(ab Dcd) Γ − 4U D(abΓ Dcd)U

−2Γ U D(ab Dcd) U + 6Γ D(abU Dcd)U + Γ U2 sabcd

}

,

defined in terms of the local geometry near i, and a “massive part”

φW
abcd = Γ−2

{

−
3

2

1

|x|
U W D(ab Γ Dcd) Γ + U W |x|D(ab Dcd) Γ

+2 |x| (W D(abΓ Dcd)U − 3U D(abΓ Dcd)W )

+2 |x|Γ (−U D(ab Dcd) W − W D(ab Dcd) U + 6D(abU Dcd) W + U W sabcd)

+Γ2 (−2W D(ab Dcd) W + 6D(abW Dcd) W + W 2 sabcd)
}

,

where sabcd denotes the trace free part of the Ricci tensor of h. Unless the ADM mass
vanishes we still have φW

abcd = O( 1
|x|3 ) as |x| → 0.

Analysing under these assumptions the situation near space-like infinity and letting one-
self be guided by the field equations and conformal geometry, one is led to a representation
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Figure 5: The cylinder I representing space-like infinity.

of space-like infinity which differs from anything suggested before. The new picture is
indicated in Figure 5.

It is an important element of this setting that the conformal factor, denoted by Θ to
distiguish it from the function Ω given on the initial hypersurface S, is known explicitly
as a function of the coordinates and the initial data on S̃. As we shall see, it is determined
completely by the conformal geometry, Einstein’s equation, and certain initial conditions
on S̃ which are chosen here such as to obtain a simple picture.

The point i ∈ S is blown up to a spherical set I0 ≃ S2 which forms the new boundary of
S̃ at space-like infinity. We write now S = S̃∪I0 for the smooth manifold with boundary
I0 so obtained and introduce a coordinate r on S which vanishes on I0 and is positive
elsewhere.

The coordinate t is chosen such that it vanishes on S and induces an intrinsic parameter
on a congruence of “conformal geodesics” orthogonal to S. Then the 4-dimensional space-
time M̃ is given near space-like infinity in the form M̃ = {(t, p) ∈ IR × S|r(p) > 0, |t| <

1 + r(p)}. We have Θ > 0 on M̃ .

By a natural extension process we obtain the set I = {(t, p) ∈ IR × S|r(p) = 0, |t| < 1}
which represents space-like infinity. In terms of the earlier picture a point of I can be
interpreted as a space-like direction at i0, but I is not defined this way. Furthermore,
future and past null infinity are given near space-like infinity by the sets J ± = {(t, p) ∈
IR × S|r(p) > 0, t = ±(1 + r(p))}. The function Θ vanishes on I ∪ J− ∪ J+. The set
I± = {(t, p) ∈ IR×S|r(p) = 0, t = ±1}, where “null infinity touches space-like infinity”,
will be of special interest. In the following I shall indicate the structural background of
the new picture.
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4.3 Conformal geometry and Einstein’s equation

One of the most important features of the new representation is that it is defined ex-
clusively in terms of the field equations and the conformal geometry or, equivalently,
the light cone structure which in turn determines the physical characteristics of the field
equations. To make full use of the conformal geometry we need to consider conformal
rescalings g̃ → g = Θ g̃ of the metric as well as transitions from the g̃-Levi-Civita connec-
tion to “Weyl connections” ∇̃ → ∇̂ = ∇̃ + S(b), where the difference tensor, determined
by a 1-form b, is defined by S(b)µ

ν
ρ = δν

µ bρ + δν
ρ bµ − g̃µρ g̃νλ bλ. Parallel transport by

such connections maps g̃-conformal frames again into such frames.

A “conformal geodesic” [43] is a space-time curve x(t), together with a 1-form b(t) along
it, which satisfy the system of ODE’s

(∇̃ẋẋ)µ + S(b)ν
µ

ρ ẋν ẋρ = 0, (∇̃ẋb)ν −
1

2
bµ S(b)ν

µ
ρ ẋρ − L̃νµ ẋµ = 0,

where L̃νµ = 1
2 (R̃νµ − 1

6 g̃νµ R̃) is given in terms of the Ricci tensor and the Ricci scalar
of g̃.

The 1-form b(t) defines by the formula above a Weyl connection ∇̂ along the curve x(t)
such that the curve is an autoparallel for this connection. It is important to note that
the curve x(t) and the connection ∇̂ are invariants of the conformal structure of g̃.

We construct in an obvious way “conformal Gauss coordinates based on S” [27] which
are generated by a congruence of conformal geodesics threading orthogonally through
S. The natural parameter t on these curves which vanishes on S is used as a time
coordinate. Beside the connection ∇̂ we introduce also a smooth conformal frame field
ek which satisfies ∇̂ẋ ek = 0. This defines in turn a metric g in the conformal class of g̃

by the requirement gik ≡ g(ei, ek) = diag (1,−1,−1,−1) and consequently a conformal
factor Θ satisfying g = Θ2 g̃.

By this procedure we obtain a “conformal Gauss gauge” which is defined solely in terms
of conformal geometry. We study this gauge because we expect that suitably chosen
conformal geodesics starting in the physical space-time will pass through null infinity into
the (prospective smooth) conformal extension without being affected by the singularity
at the point i. The freedom to prescribe on S initial data for ẋ, b, ek, whence for Θ, can
be used to adapt the gauge to the situation we want to study.

The attempt to combine this gauge with the conformal field equations led to the following
unexpected observation [21].

Suppose x(t), b(t), ek(t), Θ(t) are as above with t taking values in an interval J , x(t)
being time-like, and ẋ(t∗) = e0, Θ(t∗) > 0 for some t∗ ∈ J . Then, if Einstein’s equation
R̃µν = 0 holds on M̃ , one has

Θ(t) = Θ∗ + (t − t∗) Θ̇∗ +
1

2
(t − t∗)

2 Θ̈∗, dk(t) ≡ Θ bµ eµ
k = (Θ̇, da∗)

with constants Θ∗, Θ̇∗, Θ̈∗, da∗, a = 1, 2, 3.

Thus the conformal factor Θ is known explicitly as a function of the parameter t and
certain data at t∗. Moreover, it is quadratic in t and, provided the underlying conformal
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geodesic has a sufficiently long life-time, we can expect that there are numbers t± ∈ J ,
t− < t∗ < t+ with Θ(t±) = 0. This is precisely what would happen if x(t) would pass
the conformal boundary at t±, i.e. if we had x(t±) ∈ J±.

There is some information about Einstein’s equation (4.1) encoded in the expressions for
Θ(t), dk(t). Under the assumption that the congruence of conformal geodesics passes
smoothly through J , the expressions imply gij ∇i(Θ)∇j(Θ) = 0 on J , a relation which
was deduced before from the field equations.

To incorporate the conformal Gauss gauge into the field equations we need to extend
the conformal field equations to admit Weyl connections. The “generalized conformal
Einstein equations” so obtained form a system of equations for the unknown

u =

(

eµ
k, Γ̂i

j
k, L̂jk =

1

2
R̂(jk) −

1

12
R̂ gjk −

1

4
R̂[jk], di

jkl = Θ−1 Ci
jkl

)

,

where Γ̂i
j

k are the connections coefficients of the Weyl connection ∇̂ in the frame ek,
R̂jk is the Ricci tensor of ∇̂, and R̂ = gjk R̂jk. The system is given by

[ep, eq] = (Γ̂p
l
q − Γ̂q

l
p) el,

ep(Γ̂q
i
j) − eq(Γ̂p

i
j) − 2 Γ̂k

i
j Γ̂[p

k
q] + 2 Γ̂[p

i
|k| Γ̂q]

k
j

= 2 gi
[p L̂q]j − 2 gik gj[p L̂q]k − 2 gi

j L̂[pq] + Θ di
jpq,

∇i di
jkl = 0,

∇̂p L̂qj − ∇̂q L̂pj = di d
i
jpq.

We note that no differential equations for the fields Θ, dk are included. For our purpose
the most important property of this system is stated in the following result [21].

In the conformal Gauss gauge, with Θ(t), dk(t) being the explicit expressions above, the
generalized conformal Einstein equations imply a “reduced system” of evolution equations
which (i) is symmetric hyperbolic irrespective of the values taken by Θ, (ii) preserves
the constraints under its evolution, (iii) gives for initial data satisfying the constraints
solutions g̃µν = Θ−2 gµν to Einstein’s equation (4.1) in the region where Θ > 0.

The conformal factor Θ and the 1-form dk play the role of gauge source functions in the
equations (cf. [22]). The propagation equations for the fields eµ

k, Γ̂i
j

k, L̂jk contain only
the derivative operator ∂t. This simplifies the analysis near i considerably and clearly
exhibits the special status of the Bianchi equation.

Given the equations above, it turns out that one can adapt the conformal Gauss gauge
in a particularly convenient way to the situation near space-like infinity. All the details
which are to be observed here and also the following results can be found in [23]. I
mention just one basic choice. We set Θ = Θ∗ ≡ κ−1 Ω, b = Ω−1 dΩ on S̃ with κ = r κ′

where κ′ is smooth and satisfies κ′(i) = 1. Here r(p) denotes the h-distance of a point
p ∈ S from i. Assuming in addition dµ eµ

0 = 0 on S̃, the fields Θ, b are determined on
M̃ and its possibly smooth conformal extensions. We note that the conformal gauge on
M̃ given by Θ is related in a particular way to the conformal gauge of the initial data
specified by Ω.
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We perform now the blow up by which the point i is replaced by the sphere I0 and use r

to define a coordinate, again denoted by r, which vanishes on I0 and is positive on S \I0.
We shall consider below an extension of S beyond I0 which is defined by allowing r to
take negative values. When the complete set of initial data for the generalized conformal
Einstein equations is transferred appropriately to the new setting we find the following
surprising result.

The function κ′ can be chosen such that Θ = Θ∗

(

1 − t2

(1+r)2

)

, with Θ∗ constant along the

conformal geodesics, and such that Θ, dk can be extended smoothly into a region where
r ≤ 0. Moreover, the initial data for the generalized conformal Einstein equations can be
extended smoothly into a domain where r ≤ 0.

This observation allows us to set up a regular, finite initial value problem near space-
like infinity which gives the new picture of space-like infinity outlined above. The set
I representing space-like infinity is obtained in our gauge by a simple smooth extension
and, if the solution extends smoothly to the set {t = ±(1 + r)}, a conformal boundary
J is obtained by a smooth extension as well.

4.4 The cylinder I at space-like infinity

In the following I want to discuss the nature of the finite, regular initial value problem
at space-like infinity and some of the consequences which have been worked out so far
[23]. Since it is defined exclusively in terms of the conformal geometry, this initial value
problem “is always there”. We can ignore it but we cannot avoid its consequences. Any
results derived from it gives direct information on the conformal geometry.

Since the data and the equations extend smoothly into the set {r ≤ 0}, we get on the
closure of M̃ a problem for symmetric hyperbolic equations of the form

(At ∂t + Ar ∂r + AB ∂B)u = F (t, r, xA;u),

with matrix valued functions Aµ of the unknown “vector”u and the coordinates x0 = t,
x1 = r, xA, A = 1, 2, where the latter imply in particular local coordinates on the sphere
I0.

A curious property of the new problem is the occurrence of the “boundary” I. To
understand its nature we extend the initial data and the equations smoothly into the
region {r ≤ 0} and use the well known results on symmetric hyperbolic equations (cf.
[35], [41]) to establish the existence of a smooth solution in some neighbourhood U of the
extended initial hypersurface S. Obviously U includes a part of I. Given this solution,
we can conclude from the form of the equations and the data that

The cylinder I at space-like infinity is “totally characteristic” in the sense that Ar = 0
on I.

Restricting our propagation equations to I we thus get interior symmetric hyperbolic
equations (At ∂t + AB ∂B)u = F (t, 0, xA;u) on I which allow us to determine u on I

uniquely in terms of the values of u on I0. It follows, as expected, that the solution is
determined on M̃ ∩U uniquely by the data on S̃. The extension of our original problem
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into the range where r < 0 is just a convenient trick to establish the existence of a solution
which extends smoothly to I ∩ U .

For p = 0, 1, 2, . . . we denote by up = ∂p
r u|I the restriction of the p-th r-derivative of u

to I. Taking formal r-derivatives of our original propagation equations and restricting to
I, we find

The quantities up, p = 1, 2, . . ., can be determined on I recursively as solutions to linear
symmetric hyperbolic equations on I. The formal expansion u =

∑

p≥0
1
p! up(t, x

A) rp of

u defined by these coefficients on I is convergent in a neighbourhood of I0.

We can calculate recursively explicit formulae for the quantities up. Though the expres-
sions become more and more complicated for increasing p and we are still far from having
worked out all the details we can state the most important consequence of the observation
above.

The interior equations on I allow us to relate properties of the solution on J± near I±

to the structure of the data on S near I0 if the solution extends smoothly to J±.

As an example, J. Kánnár [34] has derived (observing the regularity condition given
below) formulae for the conserved quantities of Newman and Penrose [37] in terms of the
functions up, p = 0, . . . , 3. Another example is given by the following result. Since the
total characteristic I approaches the characteristic J ± transversely in I± we can expect
a degeneracy of the equations on this set. The calculation of u on I shows in fact that
the matrix At, which is positive definite on I, degenerates on I±. As a consequence
the functions up develop a certain type of logarithmic singularity on I±. For a correct
assessment of this observation it is important that our setting is defined completely in
terms of the conformal geometry and not based on some obscure gauge condition. The
observed singularities indicate an intrinsic property of the conformal structure. It turns
out that we can isolate those parts of the initial data which give rise to the singular
terms.

The logarithmic singularities alluded to above do not occur if h satisfies at the point i the
regularity condition

C(Di1 , . . . ,Dip Bjk)(i) = 0, p = 0, 1, 2, . . . ,

where Bjk denotes the Cotton tensor of h and C means “symmetrize and take the trace
free part”. This regularity condition is equivalent to the requirement that the massless
part φ′

abcd of the rescaled conformal Weyl tensor extend smoothly to the point i of the
initial hypersurface.

The regularity condition is conformally invariant and thus in fact a condition on the free
initial data. Complicated as it looks, the condition is in fact quite weak and appears
to impose hardly any restriction on the modeling of physically interesting systems. It
allows us to choose the free data arbitrarily on any given compact subset of S̃, provided
we observe, as usual, the solvability of the Lichnerowicz equation. Furthermore, the
condition is satisfied by all static solutions which are analytic at space-like infinity [5],
[18]. Thus it implies no restriction on the admissible multipoles.

We note, that the set I is obtained as a limit of conformal geodesics and that its points
can be interpreted as the “space-like directions at i0”. Apart from that it does not have

16



Figure 6: An isolated gravitating system in the new representation.

any geometric meaning. The light cone structure degenerates on I but the vector fields
used to express the equations extend smoothly to I. We find that g(∂r , ∂r)(p) → ∞ as
p → I, |t(p)| < 1 − ǫ, 0 < ǫ < 1. If we replace r by a radial coordinate ρ which is better
adapted to the conformal gauge defined by Θ in the sense that 0 < c < g(∂ρ, ∂ρ) < c′ < ∞
we find that ρ → ∞ as r → 0. Thus

In terms of coordinates ρ, t adapted to the conformal gauge defined by Θ, the set I is at
ρ = ∞ but “has finite circumference”. The set J± is finite in time t.

It is a remarkable fact that the field dk and the coordinate r, which are adapted to the
conformal factor Ω, conspire with the conformal gauge defined by Θ to provide a smooth
finite representation of space-like infinity. We thus arrived at the picture of an isolated
system indicated in Figure 6.

A detailed comparison of the analysis of space-like infinity outlined in this lecture with
other investigations of space-like infinity (cf. [3], [4], [6], [8], [9], [40]) is impossible here.
Naturally, all these studies have various aspects in common. The present work differs
from the work quoted above in that it combines the following features in one approach.
The picture of space-like infinity which is proposed here is based on assumptions on the
initial data, the structure of the field equations, and properties of conformal geometry.
No a priori assumptions on the time evolution are being made. It is designed as a basis for
an existence theorem which should enable us to derive statements about the smoothness
of the structure at null infinity. This theorem has still to be worked out. If it will be
done, the setting will allow us to analyse the consequences of the field equations near
space-like infinity to an arbitrary precision and we shall be able to relate qualitative and
quantitative properties of the fields on J near space-like infinity to the structure of the
initial data. Moreover, the setting has the important practical feature that the evolution
of the fields can be studied in a finite picture near space-like and null infinity with the
usual concepts of smoothness.
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5 Concluding Remarks

The conformal structure proved to be most important in deriving – on the level of dif-
ferential topology and geometry – statements on the behaviour of space-times in the
large. The discussion above shows clearly that it is of structural interest to understand
the interaction between conformal geometry and Einstein propagation in depth. Our
statements above about the existence and the behaviour of solutions in the large were
obtained by results concerning this relation. There is still much more to be learned about
it.

Though it has not been emphasized above, certain results about the hyperbolicity of the
Einstein equations form an important technical ingredient in our analysis. Since the con-
formal field equations contain the Bianchi identity as a central part, hyperbolic reductions
of the Einstein equations based on equations for the curvature tensor play a vital role in
our discussions. Since the Bianchi identity is a tensor equation, the hyperbolicity of the
propagation equations derived from it is independent of the gauge conditions imposed on
the lower order fields and the formalism used (frame formalism, spin frame formalism,
ADM representation of the metric etc.). There is a considerable variety of possibilities to
impose gauge conditions such that the coupled system governing the curvature and the
lower oder fields is symmetric hyperbolic. These reductions can conveniently be adapted
to characteristic initial value problems, Cauchy problems, and initial boundary value
problems (cf. [22] and the references given there). Their applicability is not restricted to
the vacuum or the conformal vacuum equations, they can be extended to include matter
fields. Recently they have been used for the coupled Einstein-Euler equations to combine
symmetric hyperbolicity with a Lagrangian representation of the flow field [25].

We have seen how to derive by straightforward calculations on the cylinder at space-like
infinity information about the asymptotic behaviour of solutions in the region where null
infinity touches space-like infinity. However, the fact that infinite problems for Einstein’s
equations can be converted into regular finite problems for the conformal field equations
is of even more practical interest. It offers the possibility to calculate numerically entire
asymptotically flat space-times together with their conformal boundary on finite grids.
The introduction of cut-offs of the field at artificial time-like boundaries is not necessary.
By a judicious choice of the space-like slicing in the neighbourhood of the cylinder I it
should be possible to perform a smooth transition from the standard Cauchy problem
for the conformal field equations to the hyperboloidal Cauchy problem.

Numerical calculations based on the hyperboloidal Cauchy problem have been performed
successfully by Hübner [29], [30], [31], [32] and Frauendiener [12], [13]. The full potential
of hyperboloidal hypersurfaces, which offer a convenient way to trace radiation in the
context of Cauchy problems, can only completely be exhausted in conjuction with the
conformal field equations. The radiation extraction is performed directly at null infinity
where a well defined concept of a “radiation field” is available [38], [39].

The fact that the requirement of smoothness of the fields near I± implies regularity
conditions on the data raises new questions about the concept of an “isolated system”
in general relativity (cf. also [24] for a discussion of this point). Several authors (cf.
[10], [42]) considered asymptotic expansions of the gravitational field near null infinity
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which admit logarithmic terms. I think that one should not give in so easily. We have
seen that the somewhat esoteric desire to get control on the asymptotic smoothness of
solutions yields results of immediate practical consequences. Moreover, the idea of an
“isolated system” is an idealization which introduces “space-like infinity” as a convenient
construct. These notions leave a certain freedom which should be exploited as far as
necessary but without introducing irrelevant information. If in the end it should turn out
that the requirement of asymptotic simplicity restricts the class of admissible solutions
too strongly to model certain situations of physical interest, we will have understood why
there is a need to generalize and can start to do so.

Perhaps also Ellis’s critique [11] of the notion of an isolated system considered in this
lecture should be mentioned here. It was argued in [11] that one should avoid this
idealization, seperate instead the system of interest (star, system of stars etc.) from the
rest of the universe by a cut along a time-like hypersurface and study the system so
obtained. This introduces an initial boundary value problem into the discussion of the
system. Apart from the fact that it is hard to see how we could get useful information on
the required boundary data, this problem introduces difficulties of its own [26]. In view
of this and the results discussed above it appears to me that at least the technical aspects
of the critique in [11] need to be reconsidered in the light of the recent developments.

References
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