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Abstract. We review the WKB method for multicomponent fields obeying hyperbolic linear
partial differential equations and derive a general necessary and sufficient condition for the
formalism to provide transport equations. We apply the method to linearized perturbations of
perfect fluid solutions to Einstein’s equation and show that the gravitational and sound wave
modes satisfy this condition, whereas a zero-frequency, non-propagating matter mode does not.
We derive the transport equations for the wave amplitudes in leading order; they exhibit in
particular the influence of background curvature on the propagation of gravitational waves.

PACS numbers: 0425N, 0430N

1. Introduction

In an earlier paper (Ehlerst al 1987) we have dealt with the problem of propagation

of gravitational waves through pressureless matter using a WKB method which provided
transport equations for the wave amplitudes in the zeroth order of approximation. The
purpose of this paper is twofold. First we shall establish a general condition which is
necessary and sufficient in order that the WKB method leads to transport equations for
the amplitudes of multicomponent fields, and secondly we shall apply the method to linear
perturbations of perfect fluid solutions to Einstein’s field equations.

In section 2, we derive the condition announced in the preceding paragraph, which was
found earlier in a special case (Ehleesal 1987), and is based on a generalization of
the long-known ‘lemma on bicharacteristic directions’ (Courant-Hilbert 1962, ch 6, # 3,
no 1). The method applies to linear partial differential equations of any order, provided
the differential operator does not depend on the short-wave parameter to which the WKB
asymptotics refers. In the context of this analysis, which is carried out in section 2,
we introduce a distinction between regular and singular modes, and we separate the
amplitudes of the perturbations into primary and secondary parts. In the regular case,
the primary amplitudes obey transport equations along the rays while the secondary ones
follow algebraically from the primary ones. Thus, initial data have to be specified for the
primary amplitudes only.

In section 3, we apply the method developed in section 2 to linear perturbations of
perfect fluid solutions to Einstein’s field equation. The background solution is assumed to
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have geodesic fluid world lines but is otherwise arbitrary. Naturally there are three modes.
Two of them, corresponding to gravitational and sound waves, respectively, turn out to be
regular, while the third one does not propagate and is singular.

The gravitational waves, in particular, propagate, according to the lowest WKB order,
as in empty space; only higher orders show the influence of background curvature and,
of course, ‘diffraction’ corrections depending on inhomogeneities. This paper may be
considered as an extension of an earlier one (Elde 1987) which gave some of our
results for the case of pressureless matter.

By refining the matter model and extending the approximations it should be possible
to get more detailed results on the interaction of gravitational waves with matter, including
damping mechanisms.

2. General WKB formalism for vector valued functions

Let a linear partial differential equation
P(x,0)U = (A”b(x){)aab + B%(x)d, + C(x))U =0 (2.1)

of second order for a functioty : R” — R™ be given where thet*’, B¢, C are (m x m)
matrix valued, smooth functions with real entries. (We could also consider one equation of
arbitrary orderp, but since the application in the following section concerns an equation
of second order, and the general formalism is independent of the order, we treat (2.1) as a
representative of the general case.)

All real solutions of (2.1) can be obtained as real parts of complex solutions; for
simplicity, we denote such solutions &5

In order to set up a scheme which may provide approximate solutions of (2.1) with a
rapidly oscillatingphasesS and a slowly varyincgamplitudeV one inserts, as a preliminary
step, an expression

U= [exp(lS(x))} \% (2.2)

into (2.1). TreatingS andV as unspecified functions and using the abbreviation

I, =9,8 (2.3)
for the wave covectqgrone can rearrange the expressip(e®/?V) as follows:
N2
) i ) 2
P(x.0)(@5V) = <> gs/e (Lo n ?Ll n (?) P) % (2.4)
&
where
Lo(x,1) = A®(x)laly (2.5)
is called theprincipal symbolof P, and
La(x,1,9) = 2A"° (x)1,8, + A (x)d,1, + B (x)l, (2.6)

is a first order differential operator.

As in the typical case, considered here, so in the general casetf arder operator,
the principal parts oLy, ..., L, (defined as in (2.4)) are determined by the principal part of
the original operator and one has formulae similar to (2.5)—(2.7). In particular, the principal
part L\” of Ly is always related td.q by

a
LP =(-"Lo)a.. 2.7
' (ala 0) @0
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L; is of orderj and depends ohand its derivatives up to ordgras long asj < p — 1.
To construct formal solutions of (2.1) in a step by step procedure, one now susbstitutes
for V a series

Ve~ 3 () v (28)

n=0

and requires the terms of orderel ¢, ... in the resulting equation

£ £\2 £
(L0+iL1+(i> P) (VO+TV1+~-->=0 (2.9)
to vanish separately. The lowest ‘zeroth’ order equation
LoVo=0 (2.10)

admits nontrivial solutiond/ if and only if S obeys thecharacteristic equation
detLo = det( A“’ (x)1,1,) := Q(x,1) = 0. (2.12)

Q is a homogeneous polynomial of degree id the variables, whose coefficients depend
on x; it is called thecharacteristic formof the differential operatoP.

Geometrically,0 may be viewed as a function @thase space = {(x,)}. In general,
the so-called characteristic set of (real) pointstofvhich obey (2.11) consists of several
hypersurfaces (branches) which may intersect or touch each other. Let us henceforth assume
that the equation

H(x,) =0 (2.12)

describes locally over some domain ®f, one such hypersurface and let us suppose that
oH
onx: - #0 rankLo = r = constant (2.13)

Then we say thak corresponds to aimple modethat (2.12) is itdispersion relationand
H(x,dS) =0 (2.14)

its eikonal equation (Note that what matters is not the functiéh but the hypersurfac&
in 7 defined by (2.14).)

On X, Lo admitsp = m —r linearly independent left null vector fields and as many
right null vector fieldsp/,

AjLo=0 Lop’ =0 A<j<p. (2.15)

Let (A, ...\ Aps Apits -5 Am) @nd (o, ..., pP, pP+L ... 5™) each be a basis (in the
appropriate linear space). We may then write

Va=a"p/ + b5 = vV + V. (2.16)

We shall see that the two terms 6f play different parts in the WKB expansion; therefore
we call V® the primary, V@ the secondaryamplitude ofnth order. (This decomposition
depends, of course, on the mode considered as well as on the chosep.pdei® zero-
order equation (2.10) then requires

Vo=Vg" =a%p/ (= 5" =0), (2.17)

thus Vy is independent of the choice of the bagis
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In the case of waves (2.17), the kernellgf is the p-dimensional space gfolarization
states The assumptions (2.13) which we made abBuimply that on X, there exists a
p X p matrix valued functionM}< such that

dLo\ OH
Aj ( ol )p = M; 3l (2.18)
This generalized lemma on bicharacteristic directiofis crucial for the derivation of
transport equations for the primary amplitudes within the WKB method. (For a proof,
see Ehlerset al (1987).) Note that the term ‘simple mode’ was used differently in that
paper than it is here, which, however, does not affect the argument. We call a simple mode
regular if M is invertible, otherwise the mode is said to &iagular.

We continue the review of the WKB formalism. First, one has to solve the eikonal
equation (2.14). That can be done (locally) via Hamilton’s ordinary differential equations
(method of ray tracing):

oH . oH
= I, =— ) 2.19
al, ¢ dxe (2.19)
Supposes is a real solution of (2.15). It determinesray bundlein x-space generated by
the vector field

)-Ca

oH
T = 30 (x?,8,9). (2.20)
The first order WKB equation resulting from (2.10) requires
LoVi+ L1Vp=0. (2.21)

Due to the definition of;, (2.15) and (2.17), this equation admits a solutigrif and only
if forl <j <p,

AjL1Vo = A;L1V{P = a;L1(p*a”) = 0. (2.22)

Because of (2.7), (2.18) and the definition (2.20) of tita@sport vector fieldT* associated
with §, (2.22) has the form

(METD, + 05)(a®) =0, (2.23)
where
OH dLo
MFT = MF =\ k
j Par, ~ M P
and

dL
Q) =1, (810 dap* — (AP, + Balﬁ,)pk> :

If the mode isregular, this equation is equivalent to a first order, linear, homogeneous
ordinary differential equation for the lowest order amplitudecalled itstransport equation
It determinesV, everywhere, given arbitrary initial data on some hypersurface-$pace
intersecting the rays. Moreover (2.21) then determiﬁé?é algebraically in terms ol
and its first derivatives.

The second order equation requires

LoV, + L1V + PVy=0. (224)
Its solvability for V, requires via (2.8) and (2.19) the inhomogeneous transport equation
MLVY = =3 L1V — 3 PV (2.25)
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for Vl(l), the right-hand side being known already. If that equation has been solved, (2.24)
givesvz(z) etc. Note that, generally, the transport equationfflf is necessary and sufficient

in order that th& N 4 1)th order equation admits a (unique) solutﬁzijfl. (This is a special

case of a more general feature of perturbation theoryntanorder solution is ‘reliable’,

i.e. extendable to higher order, only if the former obeys an equation which frequently is an
evolution equation; more complicated examples are post-Newtonian or post-Minkowskian
equations of motion in GR.) Note also that, given a phase funcjonitial data have to be
prescribed only for the@rimary amplitudes of all orders. In practice, one will usually set
the initial values for all amplitudes but the lowest order one to zero, in order that the lowest
order already approximates the full solution as well as possible near the initial hypersurface.
After n steps one obtains a formal solution of (2.1):

gs/e (VO + ?Vl 44 (?)ﬂil an) (2.26)

to within order "1, If the original equation is hyperbolic, the one-parameter family
(2.26) of functions is asymptotic for — 0 to a one-parameter family of solutions of
(2.1), the ‘error’ being of ordet” (see, for example, Courant-Hilbert 1962, Taylor 1981).
In applications it is usual to put = 1 at the end of the calculations. The role of the
small parameter is then played by L where A is the scale on whicl§ varies (typical
‘wavelength’) andL is the scale on which the coefficient functions of (2.1), the ‘background
field’, vary; in general, theé/, will vary on this scale also.

In the singular case (2.23) will, in general, impose further ‘algebraic’ restrictions on
vs" obtained by multiplying (2.23) with the left null vectes; of M

,u,lj QAI; (a,io)) =0.

In the extreme casa/ = QY = 0, (2.21) only givesV,” in terms of Vo and its
first derivatives and (2.25) provides an underdetermined system of second order partial
differential equations forvgl) which is more complicated than the original equation (2.1)
for U, so that in this case the WKB formalism is useless; in particular, it does not lead to
transport equations for the leading amplitudg The example treated in the next section
may suggest that this extreme singular case occurs for zero frequency, non-propagating
modes only. Whether that is true is by no means obvious from the general formalism; it
should be tested in other cases. We have not investigated the general singular case and are
not aware of a case where it occurs.

The formalism described above can without change be appliediif (2.1) denotes a
tensor field and, is replaced by the covariant derivative.

3. Short wave linear perturbations of perfect fluid solutions of Einstein’s equations

The linear perturbation equations of a background solutign, U?, p) of Einstein’s
equations with a cosmological constant for a perfect fluid satisfying an equation of
statep = p(p) are given by

p= [2Rij + (p +3p — 2M)&;,]U U/ (3.2)

(1+3C?
p=CHp (3.13)

pU = [Rijhi, + 3(p — p + 28) 2 ]U7 (3.2)
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and
Hop 255V = 878/ V2 — g“'ViV)) (8ca)
=[(p = p+2M)hghi, — (o + 3p — 20)ahayU' U’ ] 8ij). (3.3)
Here the notation is as follows. Overhead hats denote the perturbed quaﬂﬁtiesg—ﬁ is
the squared sound speed; the speed of light and the Einstein gravitational constant are set
equal to 1. The signature of the metricH, hi = §' + U'U, is the usual projection tensor
and
HY) = hih] — ahaU'UY.
The scalaw ;= (1— CSZ)/(1+3CS2) takes values in the rangeQ« < 1 since 1> C, > 0.
As was shown in Ehlerst al (1987) one can impose the gauge conditigpU? = 0,
if the streamlines of the background fluid are geodesics. We assume that and can thus use
that gauge condition as in the earlier paper and simplify the system of equations (3.3) as
follows:
P &1 = [(2hi 5 VIV — hL 1]V — g hShiV. V)
Faha, (g VE 4+ 2vUiUNv, + 4V,U' VU
—(p = p + 2M)hh]] (%)) = 0. (3.4)
This equation forg;; governs the linearized perturbations under the conditions specified
above;p and U, are as given in (3.1) and (3.2).
Equation (3.4) is of the form (2.1) (except for the substitutionvpfin place ofd,),
whence the formalism of section 2 can be applied. Using equations (2.5) and (2.6), we

obtain the operatorg; corresponding to (3.4) which act on the six-dimensional space of
metric perturbations as follows:

L, = —2h{okPkyy + hioh) 12 + (kaky — 0wha)h™,
LY, = [—8hi b AVV; + VL) + 21k VD + 20y (V) +0/2)
+ 200h, VAU — B4R, h] V;l; + 2k Ky V;

- O5halb(2wvu - Uivuli)}]’

(3.5)

wherel, = 9,5 as in (2.3) andv := —Ul,, k, = h%l,, 6 = Vl,, V, = U'V;, V; =1'V;.
In analogy to (2.2), (2.8) we use the notatians v();; for the total and partial complex
amplitudes ofg;;.
As has been noticed earlier (Ehlersal 1987), the characteristic equation in this case
is
|detLo| = I*0®[w? — C%%?* =0 (3.6)
or equivalently
@ Lulp))[(U U = CZh)lp)(U1,)° = O

Thus there are three modes:

(i) the gravitational wavemode, given by the Hamiltoniali = %g“blalh and the null
geodesic rays with tangefit* = [

(ii) the sound wavenode, given byH = [C2h®> — U*U"]l,l, and the sound rays with
tangent7T® = (<X + U9); and

(i) the matter modegiven by H = U“l, and ‘matter rays’ with tangerif¢ = U*“.
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Figure 1.

Thus the (zero frequency) excitations of the last mode do not propagate relative to the
unperturbed matter, in contrast to those of the other two.

Assuming(ef) i = 1,2, 3 to denote an orthonormal basis in the space orthogonal to
U“?, with e[,f‘kh] = 0, one can write explicitly the basis vectors in the space of amplitudes
and its dual respectively according to (2.15), as follows.

Mode (i),/2 =0, rankLg =4, p =2

M= el = (efe] — eheh) Ay = e = 2eleD),
d3 = eib = Zeiueg) da = egb = Ze;“e?, 3.7)
hs = egb = egeg ha = ef{b = (e’fefj + egelz’)

and
pL=¢, p2 = ey,
p3 = eib P4 = eib: (3.8)
P5 = eSb 06 = ejb-

Mode (i), w? = C%?, rankLo =5, p =1
A= ((L+ CHA? — 2¢87) hy=e,
Tome® G4 et (39)
hs = e‘zlh re = eé‘b

and
pt = (CZhay + €3) p2 = ey,
p3=er, pa= e, (3.10)
fs = €5, fs = €3y

Mode (jii), w?> = 0, rankLo = 3
A= e‘l’b A2 = e‘z’b,
Az = h® — 28 Ag = e, (3.11)
5\5 = e‘;b 5\6 = egb
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and
1 2
P1 =€y P2 =€y,
p3 = e, pa=el, (3.12)
~ ~ 4
P5 = eZb Pe = €yp-

Accordingly the lowest order amplitudes gf; are

(i) vih = alPel, +ale,, (3.13)
which is transverse and trace free;

(WD) Vo = D(Cohay + €y), (3.14)
with tracev” ¢ = (14 3C2)b;

0 &3

v _ 01, 0,2
(iii) vipy = alel, +a e, +aled, = A(aeb), (3.15)
with 4, = a%el + ay’e? + a{ e arbitrary, and
1 0
vy o =ag’, (3.16)

One can now compute the matncﬁg‘ using the definition (2.24). It turns out that for
gravitational wavesMk is the unit matrix, while for sound wave¥ is the positive scalar

2/1+a) = 1+ 3C2)/(1 + C2), and for the zero frequency matter mogig vanishes
identically.

For the three particular cases of special interest the situation is as follows. In the case
of dust(p = 0), C;, = 0 or ¢ = 1, there are no sound waves; in fact 16y = 0, mode
(i) degenerates into the longitudinal part of mode (iii). In the case of stiff méttet p),

s = 1 anda = 0, sound waves propagate with the speed of light but are (of course)
volume changing, in contrast to gravitational waves, afid= 2. For the case of pure
radiation,p = p, C? =a = % andM = 3. According to the definition given in section 2,
we thus have the modes correspondingjtavitational wavesand tosound wavesegular,
whereas the matter mode ssgular.

We now consider th&ransport equationfor the amplitudes of the regular modes.

3.1. The gravitational wave mode
In this case, as has been shown earlier, the transport of the primary ampiitfidesda "

is governed by the equations

0 (]
(v, + 2) (“t») _o, (317)

where the vectors] andej in (3.7) are assumed to be quasi-parallelly transpérédang
the rays, null geodesics with tangerits Applying the method of section 2, we find the
structure of the first order secondary amplitude

2
v = %(65,03 + €564) (V¥ v0ca).- (3.18)

T Quasi-parallel transport has been defined in Ehé¢ral (1987).
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This part ofv, is thus smaller thamg by a factor of order%, as expected. In contrast to the
primary amplitude, its polarization is neither longitudinal nor transverse, but mixed. The
transport equation for thedist order primary amplitudess then given by

0
(Vz + 2) @ =30 —p+20)@?)

+3e/{[2(VIV; 4+ Vi V)8 — 578IV% — h°/V;Vi] (voca)) (3.19)
and a similar one fou'?.

Using the definitions of the curvature tenimf;k) and the Weyl tenso(Cl.hjk) and the
field equation

Rl = 1R8] = (o + pUUI + p§] — AS) (3.20)

one can rewrite (3.19) as
0 ij h c
(Vz + 2) (115_1)) = %91{[4Vivl vojn — VZu0i; — h“V;Vivgea] + 2Chijvek)
~1(p—3p+4n)a. (3.21)

If the background spacetime is conformally flat, we hzﬁ/é{.‘j =0, and the transport

equations for'” anda'” turn out to be

1 R 1 . . .
(vl + 29) @) + §(af)) = ée+f(4viv 8¢ — 878/V% — h*'V; Vi) (voca). (3.22)

which exhibits the influence of both the background curvai®rand the inhomogeneities
of vg on the wave.

3.2. Sound waves

We next consider mode (iiyp? = C2k?, representing the sound waves, whose primary
amplitude is given by (3.14),
Vocd = b(cThea + €3)).

Using this in equation (2.21) and left multiplying this withfrom (3.9), one gets after
simplification the transport equation fér

AC?[(V7 4 mb] 4+ {(1 + C?)(1 + 3C3)(Vk* — wV,U")

(L + COHRY — J[(1 — CH(Vik)) — (1+ 3C)(Viw)U;]

—[(1+2C% +5CHAY — &L+ C?el o (ViU))

+A(C2hi; + ) VI(CZhT — e)]Hb) =0, (3.23)
wheren =V, T4, Vy =TV, T* = (ka“ +wU*?) is the tangent vector to the sound rays.

Finally using (3.1) and (3.2), along with the gauge conditign/® = 0, one can find
the density and the 4-velocity perturbation to be

2
(1+3C?)
—20;;VU'VUI + 2R, ;U U M) (3.24)

b= {(e2w? = 2ie 'V, 00" — 2V, (v VEU?) — V2T
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and
,00[1 = 8_2(wlmvam) + is_l[Ujlmvavjm + lmUavu(Ujvjm) + Ujkavmvjm

H"V, Vam — 0Bl V"™ v + U (V") 00 — 2U7 K Vyv;;

_(Vuka)vT - a)vavT - laquT]

+h U (V" Vivj + V"V 0i — V20;5) — BV, VT (3.25)
where a superscripf’ represents the trace’ and VU7 the rate of deformation of the
background matter flow. It is seen that for the gravitational wave mBde 0, vou, = €,
or ¢,;) and the matter modeo(= 0, vo,, = Akp)) both o and U, vanish in the leading
(¢~2) order whereas for sound wavés? = C%k?)

p = 2bw? (3.26)
and

pU, = b1+ CHwk, (3.27)

in the leading order.

From the general equations (3.1) to (3.3), it may easily be seen that the treatment used
above is equally valid for the vacuum cag; = 0, as there appear no terms involvingp
or A in the leading order equations, i.e. the dispersion relation and the transport equations
for the primary amplitude, and vanishes to the order required.
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