Non-parametric Mean Curvature Evolution with Boundary Conditions

GERHARD HUISKEN

Centre for Mathematical Analysis, Australian National University, Canberra ACT 2601, Australia

Received April 15, 1988

Let Ω be a bounded domain of \mathbb{R}^n , $n \ge 2$, with smooth boundary $\partial \Omega$ and let the minimal surface operator A be given by

$$A = -D_i(a^i(p)), \qquad a^i = p^i(1+|p|^2)^{-1/2}.$$

Then the evolution equation

$$\dot{u} + Au = 0 \qquad \text{in} \quad \Omega \times [0, T) \tag{1}$$

was studied for both Dirichlet and Neumann boundary conditions (see [2, 3, 7]). Here the surfaces $M_t = \text{graph } u(\cdot, t)$ move in x^{n+1} -direction with speed given by their mean curvature H = -Au. Recent work on parametric surfaces moving by their mean curvature suggests that it is geometrically more natural to consider surfaces whose speed in direction of their *unit normal* is equal to the mean curvature [1, 5, 6]. In the graphical setting one is then naturally led to the evolution equation

$$\dot{u} + (1 + |Du|^2)^{1/2} \cdot Au = 0$$
 in $\Omega \times [0, T)$. (2)

We want to show here that as in the case of closed convex surfaces (see [5]), this flow has the property to level out the curvature asymptotically. We prove in Theorem 1.1 that surfaces with vertical contact angle at the boundary asymptotically converge to a constant function. The main difficulty in the proof is a time-independent gradient bound. Such an estimate is established with the Sobolev inequality and an iteration method. In case of Dirichlet boundary conditions asymptotically $u(\cdot, t)$ approaches the solution of the minimal surface equation, provided $\partial \Omega$ has positive mean curvature. This result is obtained more easily since the same barriers as in the time-independent case can be used. It also follows from the work of Lieberman [8].

The author recently learned that Eq. (2) was used by G. Dziuk to compute minimal surfaces numerically.

1. SURFACES WITH VERTICAL CONTACT ANGLE

In the following we assume that $\partial\Omega$ is of class $C^{2,\alpha}$ and denote by $\gamma=(\gamma_1,...,\gamma_n)$ the outer unit normal to $\partial\Omega$. We extend γ to a uniformly Lipschitz continuous vector field in Ω which is absolutely bounded by 1.

1.1. THEOREM. Let $u_0 \in C^{2,\alpha}(\overline{\Omega})$ satisfy $a^i(Du_0) \cdot \gamma_i = 0$ on $\partial \Omega$. Then the boundary value problem

$$\dot{u} + (1 + |Du|^2)^{1/2} Au = 0 \qquad \text{in} \quad \Omega \times [0, \infty)$$

$$a^i(Du) \cdot \gamma_i = 0 \qquad \text{on} \quad \partial\Omega \times [0, \infty)$$

$$u(\cdot, 0) = u_0$$
(3)

has a smooth solution u and $u_t = u(\cdot, t)$ converges to a constant function as $t \to \infty$.

Since Eq. (2) is uniformly parabolic as long as |Du| is bounded, the existence part of Theorem 1.1 follows if we have an a priori estimate for the C^1 -norm of u_i . To accomplish this we study the function

$$v = (1 + |Du|^2)^{1/2}.$$

If $a^i = a^i(Du) = v^{-1} D_i u$ and $a^{ij} = \partial a^i/\partial p_j$, then we obtain from (2)

1.2. Lemma. We have the identities

$$\dot{v} = a^{l} D_{l}(vH)$$

$$= D_{i}(a^{ij} D_{i}v)v + Ha^{l} D_{l}v - a^{ij}a^{kl} D_{i} D_{k}u D_{i} D_{l}u \cdot v. \tag{4}$$

Notice that the last term on the RHS is positive; in fact, we have

$$a^{ij}a^{kl} D_i D_k u D_j D_l u = v^{-2} |\delta^2 u|^2,$$
 (5)

where $\delta^2 u$ denotes the second tangential derivatives of u (see [4, Lemma 1.3]). We can now derive a uniform support bound for u on $Q = \Omega \times [0, \infty)$.

1.3. LEMMA. If u = u(x, t) is a solution of (3), then

$$\sup_{Q}|u|=\sup_{\Omega}|u_{0}|.$$

Proof. Let $k = \sup_{\Omega} |u_0|$ and $u_k = \max(u - k, 0)$. Then multiply the evolution equation for u with u_k and integrate. Then we obtain from Lemma 1.2 with $A(k) = \{x \in \Omega \mid u(x) > k\}$

$$\frac{d}{dt} \int_{\Omega} u_k^2 v \, dx = \int_{A(k)} u_k^2 a^l \, D_l(vH) \, dx + 2 \int_{A(k)} u_k v^2 H \, dx$$

$$= -\int_{A(k)} u_k^2 H^2 v \, dx - 2 \int_{A(k)} u_k |Du|^2 \, H \, dx$$

$$+ 2 \int_{A(k)} u_k v^2 H \, dx$$

$$= -\int_{A(k)} u_k^2 H^2 v \, dx + 2 \int_{A(k)} u_k \, D_l(a^l) \, dx$$

$$= -\int_{A(k)} u_k^2 H^2 v \, dx - 2 \int_{A(k)} v^{-1} |Du|^2 \, dx \le 0. \tag{6}$$

Since $a' \cdot \gamma_l = 0$ on $\partial \Omega$, no boundary integrals occurred. We conclude that $u(x, t) \leq k$ on Q and a similar calculation shows that $-u(x, t) \leq k$.

To obtain a gradient estimate, we denote by $\delta = (\delta^1, ..., \delta^{n+1})$ the tangential derivatives on $M_i = \text{graph } u_i$ such that

$$\delta^{i}g = D^{i}g - v_{i} \cdot \sum_{k=1}^{n+1} v_{k} \cdot D^{k}g, \quad i = 1, ..., n+1,$$

where $v = (v_1, ..., v_{n+1})$ is the exterior unit normal to M_t , i.e.,

$$v = v^{-1}(-D_1u, -D_2u, ..., -D_nu, 1).$$

We will use some estimates which were derived in [4].

1.4. Lemma. There is a constant c_1 depending only on $\partial\Omega$ such that for any positive function $\eta \in W^{1,\infty}(\Omega)$

$$\int_{\partial\Omega}v\eta\ dH_{n-1}\leqslant c_1\int_{M_1}|\delta\eta|+(|H|+1)\eta\ dH_n.$$

1.5. Lemma. There is a constant c_2 depending only on $\partial\Omega$ such that on $\partial\Omega$ the estimate

$$|\gamma_i \cdot a^{ij} D_j v| \leq c_2$$

is valid as long as $a^{i}(Du)\gamma_{i}=0$ holds on $\partial\Omega$.

We will also need a Sobolev inequality which was shown in [4] for functions with compact support and in [9] for the case of nonvanishing boundary values:

1.6. Lemma. For any function $g \in C^1(\overline{\Omega})$ the inequality

$$\left(\int_{M} |g|^{n/(n-1)} dH_{n}\right)^{(n-1)/n}$$

$$\leq c_{3} \left\{ \int_{M} |\delta g| + |H| |g| dH_{n} + \int_{\partial \Omega} |g| v dH_{n-1} \right\}$$

is valid with a constant c_3 only depending on n.

Now we want to estimate

$$w = \log v$$
.

For that purpose let $w_k = \max(w - k, 0)$ and multiply the evolution equation for v in Lemma 1.2 with w_k^2 . After integration we derive

$$\begin{split} \frac{d}{dt} \int_{\Omega} w_k^2 v \, dx &= \int_{\Omega} w_k^2 a^l \, D_l(vH) \, dx \\ &+ 2 \int_{\Omega} w_k \cdot \left\{ D_i(a^{ij} \, D_j v) v + H a^l \, D_l v \right. \\ &- a^{ij} a^{kl} \, D_i \, D_k u \, D_j \, D_l u \right\} \, dx \\ &\leqslant - \int_{\Omega} H^2 w_k^2 v \, dx - 2 \int_{\Omega} w_k a^l \, D_l v H \, dx \\ &- 2 \int_{\Omega} a^{ij} \, D_i v \, D_j v w_k \, dx + \int_{\partial \Omega} a^{ij} \cdot \gamma_i \, D_j v w_k v \, dH_{n-1} \\ &+ 2 \int_{\Omega} w_k a^l \, D_l v H \, dx - 2 \int_{\Omega} a^{ij} \, D_i w_k \, D_j v v \, dx. \end{split}$$

Here we used that $a^i \gamma_i = 0$ on $\partial \Omega$ and (5). Notice that in a convex domain the boundary integral has the right sign and can be neglected (cf. [12]). Now observe that

$$a^{ij} D_i g D_j g = v^{-1} |\delta g|^2$$
.

Then we derive from Lemma 1.5 that

$$\frac{d}{dt} \int_{\Omega} w_k^2 v \, dx \le -2 \int_{A(k)} |\delta w|^2 v \, dx - \int_{A(k)} H^2 w_k^2 v \, dx + c_2 \int_{\partial \Omega} w_k v \, dH_{n-1},$$

where A(k) is the set $\{(x, u(x)) \in M \mid w(x) > k\}$. Since on $M dH^n = v dx$, we conclude from Lemma 1.4

$$\frac{d}{dt} \int_{M} w_{k}^{2} dH_{n} \leq -2 \int_{A(k)} |\delta w|^{2} dH_{n} - \int_{A(k)} H^{2} w_{k}^{2} dH_{n}
+ c_{2} c_{1} \int_{A(k)} |\delta w_{k}| + (|H| + 1) w_{k} dH_{n}
\leq - \int_{A(k)} |\delta w|^{2} dH_{n} - \frac{1}{2} \int_{A(k)} H^{2} w_{k}^{2} dH_{n}
+ c |A(k)| + c \int_{A(k)} w_{k}^{2} dH_{n}.$$
(7)

Combining now Lemmas 1.4 and 1.6 we have

$$\left(\int_{M} |g|^{n/(n-1)} dH_{n}\right)^{(n-1)/n}$$

$$\leq c \left(\int_{M} |\delta g| + (|H| + 1) |g| dH_{n}\right)$$

for some constant depending on c_1 and c_3 . The Hölder inequality then implies that

$$\left(\int_{M} |g|^{2q} dH_{n}\right)^{1/q} \le c \int_{M} |\delta g|^{2} + (|H|^{2} + 1) |g|^{2} dH_{n}, \tag{8}$$

where

$$q = \begin{cases} n/(n-2), & n > 2, \\ < \infty, & n = 2. \end{cases}$$

Now let

$$||A(k)||_T = \int_0^T |A(k)| d\tau = \int_0^T \int_{A(k)} dH_n d\tau.$$

Then for each $T < \infty$ we derive from (7) and (8)

$$\sup_{[0,T]} \int_{A(k)} w_k^2 dH_n + c \int_0^T \left(\int_{A(k)} w_k^{2q} dH_n \right)^{1/q} dt$$

$$\leq c \|A(k)\|_T + c \int_0^T \int_{A(k)} w_k^2 dH_n dt$$

provided $k \ge k_0 = \sup_{\Omega} (w|_{t=0})$. From interpolation inequalities for L^p -spaces we have

$$\left(\int_{A(k)} w_k^{2q_0} dH_n \right)^{1/q_0} \le \left(\int_{A(k)} w_k^{2q} dH_n \right)^{a/q} \left(\int_{A(k)} w_k^2 dH_n \right)^{1-a},$$

$$\frac{1}{q_0} = \frac{a}{q} + (1-a),$$

where $a = 1/q_0$ such that $1 < q_0 < q$. So we derive

$$\left(\int_{0}^{T} \int_{A(k)} w_{k}^{2q_{0}} dH_{n} dt\right)^{1/q_{0}}$$

$$\leq c \|A(k)\|_{T} + c \left(\int_{0}^{T} \int_{A(k)} w_{k}^{2q_{0}} dH_{n} dt\right)^{1/q_{0}} \|A(k)\|_{T}^{1-1/q_{0}}.$$
(9)

To proceed further, we need to estimate $||A(k)||_T$. We use estimate (6) with k=0 to obtain

$$\frac{d}{dt} \int_{\Omega} u^2 v \, dx \le -\int_{\Omega} H^2 u^2 v \, dx - 2 \int_{\Omega} v^{-1} |Du|^2 \, dx.$$

It follows that

$$\int_{0}^{T} \int_{\Omega} v^{-1} |Du|^{2} dx dt \leq \int_{\Omega} u^{2} v dx|_{t=0} = c_{4}$$
 (10)

uniformly in T. Now notice that on A(k)

$$|v^{-1}|Du|^2 = v - v^{-1} \ge v(1 - e^{-k}) = \alpha(k)v$$
.

Then for arbitrary but fixed $k_0 > 0$ we have $\alpha(k_0) > 0$ and therefore

$$||A(k)||_{T} \leq \int_{0}^{T} \int_{A(k)} v \, dx \, dt$$

$$\leq \alpha^{-1}(k_{0}) \int_{0}^{T} \int_{A(k)} v^{-1} |Du|^{2} \, dx \, dt \leq \alpha^{-1}(k_{0}) c_{4}$$
(11)

for all $k \ge k_0 > 0$. Similarly, we can compute from Lemmata 1.2 and 1.4 that

$$\frac{d}{dt} \int_{A(k)} u^2 w_k^2 v \, dx$$

$$\leq -2 \int_{A(k)} v^{-1} |Du|^2 w_k^2 \, dx + c_5 \int_{A(k)} v \, dx$$

with a constant c_5 depending on $\sup |u|$, c_1 , and c_2 . Thus we have from (11) for $k \ge k_0 > 0$

$$\int_0^T \int_{A(k)} w_k^2 dH_n dt \leq \alpha^{-1}(k_0) \int_0^T \int_{A(k)} v^{-1} |Du|^2 w_k^2 dx dt$$
$$\leq \alpha^{-1}(k_0) c_6.$$

In particular we get

$$||A(k)||_T \le (k - k_0)^{-2} \int_0^T \int_{A(k)} w_{k_0}^2 dH_n dt$$

$$\le (k - k_0)^{-2} \alpha^{-1}(k_0) c_6.$$

Choosing then $k_1 \ge k_0$ sufficiently large, we get from (9) that

$$\left(\int_{0}^{T} \int_{A(k)} w_{k}^{2q_{0}} dH_{n} dt\right)^{1/q_{0}} \leq c \|A(k)\|_{T}, \quad \forall k \geq k_{1}.$$

Therefore by Hölders inequality

$$|h-k|^2 \|A(h)\|_T \le c_7 \|A(k)\|_T^{2-1/q_0} = c_7 \|A(k)\|_T^{\gamma}, \quad \gamma > 1$$

for all $h > k \ge k_1$. The constant c_7 depends only on c_1 , c_2 , and sup |u|, but not on T. By a well-known result (see, e.g., [11, Lemma 4.1]) we conclude that on $\Omega \times [0, T]$

$$w \le k_1 + d$$
, $d^2 = c_7 2^{2\gamma/(\gamma + 1)} ||A(k_1)||_T^{\gamma - 1}$.

Together with (11) this completes the proof of the gradient estimate.

1.6. Proposition. If u is a smooth solution of (3) in $\Omega \times [0, T]$ then

$$\sup_{\Omega \times [0,T]} [|u(x,t)| + |Du(x,t)|] \leq c_8$$

with a constant c_8 depending only on n, u_0 , and $\partial\Omega$.

Now standard results imply that (3) has a smooth solution on $\Omega \times [0, \infty)$ for arbitrary $u_0 \in C^{2,\alpha}(\overline{\Omega})$. It remains to show that u approaches a constant function as $t \to \infty$. To show this observe that

$$\frac{d}{dt} \int_{\Omega} v \, dx = -\int_{\Omega} H^2 v \, dx,$$

such that

$$\int_0^\infty \int_\Omega H^2 v \ dx \ dt \leqslant \int_\Omega v \ dx|_{t=0} = c.$$

Thus we obtain from (10) and the uniform gradient bound that

$$\int_{0}^{T} \int_{\Omega} |\dot{u}|^{2} dx dt + \int_{0}^{T} \int_{\Omega} |Du|^{2} dx dt \leq c.$$
 (12)

In view of Proposition 1.6 our evolution equation is uniformly parabolic, implying uniform estimates on all higher derivatives of u. Thus (12) shows that u converges uniformly to a constant function, completing the proof of Theorem 1.1.

2. DIRICHLET BOUNDARY CONDITIONS

The case of Dirichlet boundary conditions was studied by Lieberman in [8] for general quasilinear parabolic equations and his structure conditions cover our equation. For the convenience of the reader we include a short proof based on Lemma 1.2.

Assuming that φ is a function in $C^{2,\alpha}(\bar{\Omega})$, we have

2.1. THEOREM. Let $u_0 \in C^{2,\alpha}(\overline{\Omega})$ satisfy $u_0 = \varphi$ on $\partial \Omega$. If $\partial \Omega$ has non-negative mean curvature, the boundary value problem

$$\dot{u} + (1 + |Du|^2)^{1/2} Au = 0 \qquad \text{in} \quad \Omega \times [0, \infty)$$

$$u = \varphi \qquad \text{on} \quad \partial\Omega$$

$$u(\cdot, 0) = u_0$$
(12)

has a smooth solution and $u_t = u(\cdot, t)$ converges to the solution of the minimal surface equation with boundary data φ as $t \to \infty$.

Proof. Again we need uniform a priori estimates for $\sup_{\Omega} |u|$ and $\sup_{\Omega} |Du|$. From the parabolic maximum principle or an argument as in Lemma 1.3 we get immediately that

$$\sup_{\Omega \times [0,T]} |u| = \sup_{\Omega} |u_0|.$$

Furthermore, since $\partial\Omega$ has nonnegative mean curvature, it is well known (see, e.g., [10]) that one can construct barriers δ^+ and δ^- with

$$A \delta^{+} \geqslant 0, \qquad \delta^{+}|_{\partial\Omega} = \varphi$$

 $A \delta^{-} \leqslant 0, \qquad \delta^{-}|_{\partial\Omega} = \varphi.$

It is easy to see that one can also achieve $\delta^- \leq u_0 \leq \delta^+$.

In view of the parabolic maximum principle we have then $\delta^- \leq u_i \leq \delta^+$ for all times. Thus there is a constant c_8 depending only on φ , u_0 , and $\partial \Omega$ such that

$$|Du| \le c_8$$
 uniformly on $\partial \Omega \times [0, T]$.

Applying then the parabolic maximum principle to the evolution equation for v in Lemma 1.2 we conclude that $\sup_{\Omega \times [0,T]} |Du|$ can be bounded uniformly in time by a constant depending on c_8 and $\sup_{\Omega} |Du_0|$. As in the proof of Theorem 1.1 the uniform a priori estimate on $||u||_{C^1}$ ensures the existence of a solution to (12) for all times $0 < t < \infty$. Moreover, the gradient estimate ensures that the evolution equation is uniformly parabolic, so all higher derivatives of u are bounded as well. Now we compute

$$\frac{d}{dt} \int_{\Omega} v \, dx = -\int_{\Omega} H^2 v \, dx$$

since $H = \dot{u}v^{-1} = 0$ on $\partial\Omega$. Therefore

$$\int_0^\infty \int_\Omega H^2 v \, dx \, dt \leqslant \int_\Omega v \, dx|_{t=0}.$$

Since v is already bounded, we conclude that both $\sup_{\Omega} |\dot{u}|$ and $\sup_{\Omega} |H|$ converge to zero uniformly as $t \to \infty$. This completes the proof of Theorem 2.1.

REFERENCES

- 1. K. A. Brakke, The motion of a surface by its mean curvature, in "Math. Notes," Princeton Univ. Press, Princeton, NJ, 1978.
- 2. K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature, *Math. Z.* 180 (1982), 179-192.
- 3. C. GERHARDT, Evolutionary surfaces of prescribed mean curvature, J. Differential Equations 36 (1980), 139-172.
- 4. C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Sci. Norm. Sup. Pisa Ser. IV 4 (1977), 343-362.
- 5. G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237–266.
- 6. G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, *Invent. Math.* 84 (1986), 463–480.
- 7. A. LICHNEWSKI AND R. TEMAM, Surfaces minimales d'évolution: Le concept de pseudosolution, C.R. Acad. Sci. Paris 284 (1977), 853-856.
- 8. G. M. LIEBERMAN, The first initial boundary value problem for quasilinear second order parabolic equations, Ann. Sci. Norm. Sup. Pisa Ser. IV 8 (1986), 347-387.

- 9. J. H. MICHAEL AND L. M. SIMON, Sobolev and mean value inequalities on generalized submanifolds of \mathbb{R}^n , Comm. Pure Appl. Math. 26 (1973), 361-379.
- 10. J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, *Philos. Trans. Roy. Soc. London Ser. A* 264 (1969), 413-496.
- 11. G. Stampacchia, "Équations elliptiques du second ordre à coefficients discontinus," Les Presses de l'Université, Montréal, 1966.
- 12. N. N. URAL'CEVA, The solvability of the capillarity problem, Vestnik Leningrad Univ. Mat. Mekh. Astronom. 4 (1973), 54-64.