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Let Q be a bounded domain of R”, n=2, with smooth boundary 062 and
let the minimal surface operator 4 be given by

A= —D(d(p)), da'=p'(1+|p|>)"2

Then the evolution equation
4+ Au=0 in Q2x[0,T) (1)

was studied for both Dirichlet and Neumann boundary conditions (see [2,
3, 71). Here the surfaces M, = graph u(-, ) move in x"*!-direction with
speed given by their mean curvature H = — 4u. Recent work on parametric
surfaces moving by their mean curvature suggests that it is geometrically
more natural to consider surfaces whose speed in direction of their unir
normal is equal to the mean curvature [1, 5, 6]. In the graphical setting
one is then naturally led to the evolution equation

u+ (14 |Duf*)'? - Au=0 in Qx[0, T). (2)

We want to show here that as in the case of closed convex surfaces (see
[57), this flow has the property to level out the curvature asymptotically.
We prove in Theorem 1.1 that surfaces with vertical contact angle at the
boundary asymptotically converge to a constant function. The main dif-
ficulty in the proof is a time-independent gradient bound. Such an estimate
is established with the Sobolev inequality and an iteration method. In case
of Dirichlet boundary conditions asymptotically u(-, t) approaches the
solution of the minimal surface equation, provided 82 has positive mean
curvature. This result is obtained more easily since the same barriers as in
the time-independent case can be used. It also follows from the work of
Lieberman [&8].

The author recently learned that Eq.(2) was used by G. Dziuk to
compute minimal surfaces numerically.
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1. SURFACES WITH VERTICAL CONTACT ANGLE

In the following we assume that 8 is of class C** and denote by y =
(¥4, .y P») the outer unit normal to 0£2. We extend y to a uniformly
Lipschitz continuous vector field in £ which is absolutely bounded by 1.

1.1. THEOREM. Let uy e C**(£2) satisfy a'(Dug)-y; =0 on 8Q. Then the
boundary value problem

g4 (14 |Du|*)'? Au=0 in Q2x[0, )
a'(Du) -y, =0 on 00 x [0, c0) (3)
u(-, 0)=1uq

has a smooth solution u and u, =u(-, 1) converges to a constant function as
t — co.

Since Eq. (2) is uniformly parabolic as long as |Du| is bounded, the
existence part of Theorem 1.1 follows if we have an a priori estimate for the
Cl-norm of #,. To accomplish this we study the function

v =(1+ |Du}?)"~

If & =a'(Du)=v~" D,u and a¥ =3a'/0p;, then we obtain from (2)

1.2. LEMMA. We have the identities
v=a D,(vH)
=D,(a’ D,v)v+ Ha' Djv—a¥a" D, Dyu D, Du-v. (4)
Notice that the last term on the RHS is positive; in fact, we have
a’a"" D; D, uD; Dju=p"7|6%u|>, (5)

where 6%u denotes the second tangential derivatives of u (see [4,

Lemma 1.3]). We can now derive a uniform supnorm bound for u# on
Q=0 x[0, o)

1.3, LEMMA. If u=u(x, t) is a solution of (3), then

sup |u| =sup |ug].
o Q
Proof. Let k=supgluy| and u, =max(u—k, 0). Then multiply the

evolution equation for u with u, and integrate. Then we obtain from
Lemma 1.2 with A(k)= {xeQ|u(x)>k}
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a 20 dx = 2 1 2
dz‘L: uZL dx L(k) ura D (vH) dx+ 2 ” v H dx

Ak)

=—{ w2y dx—2L(k u, | Dul® H dx
: )

42 u, v H dx
Ak)

= — uz H?p dx—l-ZJ urD{a’) dx
A(k) A(k)

- uiH?vdx —2 v~ 1 Du|? dx <0, (6)

Alk) Alk)

Since a’-y,=0 on R, no boundary integrals occurred. We conclude that
u(x, t)<k on Q and a similar calculation shows that —u(x, 1)< k.

To obtain a gradient estimate, we denote by § = (8!, ..., 5"+ ') the tangen-
tial derivatives on M, = graph u, such that

HA+1
S'g=D'g—v,- Y v, DFg, i=1,.,n+1,
e ]
where v=(v,, ..., v,4 ) is the exterior unit normal to A, ie.,
v=v"Y(=D,u, —D,u, .., —D,u, 1)
We will use some estimates which were derived in [4].

1.4. LEMMA. There is a constant ¢, depending only on 8Q such that for
any positive function ne W'*(Q)

[ onam, . <e [ |oq)+(1H 1)y dH,.
ag M;

1.5. LEMMA. There is a constant c, depending only on 892 such that on
d82 the estimate

v:-a’ Dol < ey

is valid as long as a'(Du)y; =0 holds on 0Q.

We will also need a Sobolev inequality which was shown in [4] for
functions with compact support and in {97 for the case of nonvanishing -
boundary values:
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1.6. LEMMA. For any function g€ C'($) the inequality

(sn— 1)/n
(I [g|n/(n—- 1) dH,,)
M

<e {[, 1581+ V#1121 a, + [ gl v, |

is valid with a constant ¢ only depending on n.

Now we want to estimate

w ==log v.

For that purpose let w, =max(w—k,0) and multiply the evolution
equation for v in Lemma 1.2 with wi. After integration we derive

%L wivdx = J;? wiza' D,(vH) dx

+2J wy - {D;(a¥ D;v)v+ Ha' Dy
e
—a¥%a* D, D,uD;D,u} dx

< —I szﬁvdx«-2f wea' D,vH dx
Q Q
—2 L} a’ D,v Dow, dx + LQ a¥-y, DyowvdH,
—!—ZJ wka’D,dexHZJ a’ D,w, D;vv dx.
£ Q

Here we used that a’y; =0 on 982 and (5). Notice that in a convex domain
the boundary integral has the right sign and can be neglected (cf. [12]).
Now observe that

aUDingg=Uml 6|2
Then we derive from Lemma 1.5 that

d
——j. windx < —2 |6w|? v dx — H*wivdx
dt o A(k) A(k)

teo [ wevdH,_,,
a2
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where 4(k) is the set {(x, u(x))e M|w(x)> k}. Since on M dH" =y dx, we
conclude from Lemma 1.4

d )
-~ dH, < — 2 - 2,2
7 _[M wi dH, 2 | low|* dH Lm H*wi dH,

Alk

+cacy L(k} |owe| + (|H| + 1)w, dH,,

< - |0w|? dH, 1 H?*w2 dH,
A(k) 2040k
+ ¢ IA(k)I+cJ wi dH,,. (7)
Alk)

Combining now Lemmas 1.4 and 1.6 we have
(n—1)n
(f Ig'n/(n— 1) dH“)
M
sc(j |5g1+(|H|+1)|g|dH,,)
M

for some constant depending on ¢, and ¢,. The Hélder mequality then
implies that

Lty
U Iglz"dHn) <c| |81+ (HP+1)1gl? aH,, (8)
M M
whefe
_ [n/(n—-2), n>2,
7= < 00, n=2.
Now let

l40) | 7 = j: |A(k)| dr = LT Lm dH, d.

Then for each T'< o we derive from (7) and (8)

T /g
sup wi dH, + cj (J- wid dH,,) dt
[0,77 Y Alk) o \’awk)

T
<cld®r+e| | whaA,ar
0 A(k)
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provided k=kg=supg (W] ,.o) From interpolation inequalities for
LP-spaces we have

1/40 alyg 1—a
f Wit dH,,) < U wi dH,.) (J wi dH ) )
Alk) Ak} Alk)

1
~ =2 -,
do 4

where a= 1/g, such that 1 < g, <g. So we derive

T /40
(J J wit dH, dt)
0 <Ak)
< ' "0 dH, d . Ak 4 Yo 9
<claly+e(f, [ wiear,dt) 4@l )

To proceed further, we need to estimate || A(k}{| . We use estimate (6) with
k=0 to obtain

%L} 1 dx < —JQ H?up dx-—-2Lv‘l | Du|? dx.

It follows that

T
j J u"|Du|2dxdt$J W20 dx|, .o = C4 (10)
0 vQ 0

uniformly in 7. Now notice that on A(k)
v DulP=v—v ' zo(l —e F)=a(k)v.

Then for arEitrary but fixed ky, > 0 we have a(ky) > 0 and therefore

T
1A - < jo Lm v dx dt

T
sa—l(ko)jo L(k,”—l |Du|? dx dt <o~ (ko). (11)

for all k =k, >0. Similarly, we can compute from Lemmata 1.2 and [.4

that
d
— J- wiwio dx
dt dawy

< —2 v“lDu|2w,2cdx+csj v dx
Atk) A(k)
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with a constant ¢s depending on sup lul, ¢, and c,.

(11) for k2 ko >0 Thus we have from
= N0

JTI widH, dt<oa '(k g ~1 2.2
o dag Ve s (o)_[D L v | Dul® wi dx dr

(k)

<o ko) es.
In particular we get

T
4G < (k—keo)™> [ [ wh, a, i

S (k—ko) 2 a~Hkg)cq.

Choosing then &, =k, sufficiently large, we get from (9) that

(ﬂ 200 gl ) < e A
0 A(k)wk n I) s [lA(&)) 7, Vkzk,.

Therefore by Hdélders inequality
h— k12 NAR) 7 <7 IAKY 570 = ¢, |A(R)Y, y>1

for all >k > k,. The constant ¢, depends only on ¢, ¢y, and sup |u|, but
not on 7. By a well-known result (see, e.g., [11, Lemma 4.1]) we conclude
that on @ x [0, T]

w<k, +d, d? =, 220+ D Ak Y3t

Together with (11) this completes the proof of the gradient estimate.

1.6. PrOPOSITION. If u is a smooth solution of (3) in '.Qx [0, T] then

sup [|u(x, 1) + | Du(x, 1)| 1< ¢4
2% [0,T]

with a constant cg depending only on n, uy, and 6%,

Now standard results imply that (3) has a smooth solution on
Q2 x [0, o) for arbitrary u, € C**(Q). It remains to show that u approaches
a constant function as ¢ — co. To show this observe that

d 3
;ELde: ——fﬂH v dx,
such that

J:D J'Q H2 dx dts__[q vdx|, .o =c.
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Thus we obtain from (10) and the uniform gradient bound that
T T
(] jaf? dxdi+ [ | |Dul?dxde<e. (12)
0 Y0 0 Y2

In view of Proposition 1.6 our evolution equation is uniformly parabolic,
implying uniform estimates on all higher derivatives of ». Thus (12) shows
that u converges uniformly to a constant function, completing the proof of
Theorem 1.1.

2. DIRICHLET BOUNDARY CONDITIONS

The case of Dirichlet boundary conditions was studied by Lieberman in
F8] for general quasilinear parabolic equations and his structure condi-
tions cover our equation. For the convenience of the reader we include a
short proof based on Lemma 1.2.

Assuming that ¢ is a function in C**(2), we have

2.1. THEOREM. Let uy s C**(Q) satisfy v, =@ on 0Q. If 32 has non-
negative mean curvature, the boundary value problem
-+ (1+|Dul*)'? Au=0 in x[0, o)
U= on 082 (12)
u(-, 0) =uq
has a smooth soclution and u, =u(-,t) converges to the solution of the
minimal surface equation with boundary data ¢ as t — 0.

Proof. Apgain we need uniform a priori estimates for sup, |#| and
Supg [Du|. From the parabolic maximum principle or an argument as in
Lemma 1.3 we get immediately that

sup  |u| = sup |ug].
2x[0,T] Q

Furthermore, since 92 has nonnegative mean curvature, it is well known
(see, e.g., [10]) that one can construct barriers 6 ¥ and 6~ with

AsT 20, 6"l =0
Aa_éo, 5“IE}Q=(P.

It is easy to see that one can also achieve § ~ <uy, <5+,
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In view of the parabolic maximum principle we have then § - < u, <86+
for all times. Thus there is a constant ¢; depending only on ¢, u,, and 6Q
such that ’

| Du| < eg uniformly on 402 x [0, T1.

Applyi_ng then the parabolic maximum principle to the evolution equation
for v in L.em.ma 1.2 we conclude that SUPg o, 77 | Du| can be bounded
uniformly in time by a constant depending on ¢s and supg, [Du,|. As in the
proof of Theorem 1.1 the uniform a priori estimate on ll#|l -1 ensures the
existence of a solution to (12) for all times 0<?< . Moreover, the
gradient estimate ensures that the evolution equation is uniformly
parabolic, so all higher derivatives of u are bounded as well. Now we
compute

d

— S = — 2

difgud,\ LH b dx
since H=uv~'=0 on Q. Therefore

Lm Lz H?v dx drs;L? v dx|,_o.

Since v is already bounded, we conclude that both supg, || and sup, | H|
converge to zero uniformly as ¢— co. This completes the proof of
Theorem 2.1.
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