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We investigate the decay of loops of cosmic string via radiation of nongravitational energy. We show that emission of particles 
other than gravitons and Goldstone bosons is not significant. We use methods which are considerably more rigorous than those 
used in the past to draw similar conclusions. 

Cosmic strings are among the more bizarre objects 
that may be left over from the earliest moments of 
the Big Bang [ 1 ]. Recently there has been much work 
exploring the possibility that loops of cosmic string 
were the original seeds for galaxies and clusters of 
galaxies [ 1,2 ], rather than primordial fluctuations in 
dark matter [ 3 ]. Central to this scenario is the idea 
that a loop of string will decay only by gravitational 
radiation. It has been clearly established [4] that a 
loop of string with mass per unit length/t emits grav- 
itational energy at a rate 

Pgrav --  ~ G]./2 , ( 1 )  

where G is Newton's constant and ~, is a numerical 
factor depending on the shape (but not the size) of 
the loop. However, most other emission processes [ 5 ] 
have not been examined with the same level of rigor; 
we will do so in this letter. 

To begin, let (k be the superheavy scalar field whose 
vacuum expectation value is responsible for strings; 
classically, ~ = 0  at the center of the string, but 
I (P I = V# 0 far from a string. Define a real valued field 
~o = V -  [f~ I. Then, far from a string, ~o = 0 classically. 
Suppose a quantum state IS),  normalized as 
(S I S ) = 1, describes an infinite length of string along 
the z-axis; then we have 

(Sl~o(x, t ) IS )  = Vf(x 2 + y 2 ) .  (2) 
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Here f ( p 2 )  is a dimensionless function which is one 
f o r p = 0  but fails off rapidly for p >> a, where a~ 1/V 
is the thickness of the string. We will approximate f 
by a delta function: 

(Sl~0(x, t ) IS )  -~ Va26(x)6(y). (3) 

For a state describing a closed string located along a 
general curve, it is necessary to start from a repara- 
meterization invariant expression ,1. We describe the 
string location with a four-vector s u which is a func- 
tion of two parameters, a and z. The generalization 
ofeq. (3) is 

(S [ ~o(x, t ) IS)  -~ Va2~da dz ( -de tg )  In 

X ~ 4 ( X / t  --S/Z(O ", "g')) , (4) 

where 

de t g= \ oa  OaJ\Oz OzJ \ -~a-~zJ " (5) 

In the center-of-mass frame for the string loop, s°(a, 
z ) = z  [6]. Then z= t ,  and s(a, t) obeys the equa- 
tions [ 6,7 ] 

i ' = s " ,  ( ~ + s ' ) 2 = l ,  

s(a,  t ) = s ( a + L ,  t ) ,  (6) 

*~ We are grateful to A. Vilenkin for bringing this to our atten- 
tion. An earlier version of this paper had an incorrect form for 
eq. (7). 
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where a prime denotes O/Oa and a dot OlOt. The total 
mass-energy of the string is M=#L, where # ~ V 2 is 
the mass per unit length. Eq. (4) becomes 

L 

(SIC(x, t ) IS)  = Va2}dals'(a, t)12 
0 

× ~ 3 ( . 1 7 - - $ ' ( 0 " ,  t ) )  • ( 7 )  

Powers of ~o have similar expectation values: 

L 

(Sl~0n(x, t ) IS)  -- Vna2fdals'(a, t)12 
0 

×63(x-s(a,t)) . (8) 

The string will couple to various other fields. Con- 
sider, for example, the field h of the physical Wein- 
berg-Salam Higgs particle. In general the lagrangian 
will contain interaction terms like q)2h, (oh 2, and (p2h2. 
Let us use this last interaction to compute, via LSZ 
reduction, the amplitude for a string state I S) to emit 
two Higgs particles and become a state I S' ):  

( S ' ;  h i ,  h2 IS) -- [ d 4 x  exp(ikl .x) 
, /  

× ( S ' ; h 2 l ( [ ] + m Z ) h ( x ) l S )  

~- fd4x exp(ik.x) ( S'; h21 ~o2(x)h(x) IS) 

~fd4xexp[i(k, +k2) 'x]  (S '  1~02(x)IS) • (9) 

Here and throughout we do not write coupling con- 
stants explicitly. We now assume that the emission 
had a negligible impact on the string and replace (S'  I 
by (S I. Then, using eq. (8), we get 

(S; hi, h2 IS )  --- V2a2~d4x exp[i(kl + k2)'x] 
, /  

L 

×fda [s'(a, t )12~3(x-s (a ,  t)) . 
0 

(10) 

The prefactor V2a 2 is of order one; we will ignore it. 
Now define E = k ° ± K ° and k = kl + k2, and integrate 
over dJx:. 

-t-oo 

(S; hi, h2 i S )  --- ~ dt exp(iEt) 

L 

x fda Is'(a, t) [2exp[ -ik.s(a, t)] . (11) 
0 

In order to perform the remaining integrals, we need 
more information about s(a,  t). The general solu- 
tion to eq. (6) is [ 7 ] 

s(a, t)=½a(a+t)+½b(a-t) , 

l a ' l = l b ' l = l  • ( 1 2 )  

It is not hard to prove that the motion is periodic 
with period L/2 and that at some time some points 
on the string move at the speed of light [ 7,1 ]. (This 
is not necessarily true for an infinite length of string.) 
The periodicity means that we can write 

L 

fdals'(a, t) L2exp[ - i k . s ( a ,  t)] 
0 

= ~an exp( -4~int/L), 
n 

where 
L / 2  

an =~ dt exp( 4zdnt/L ) 
0 

(13) 

L 

× | d a  Is'(a, t) 12exp[ - i k . s ( a ,  t)] (14) 
0 

is a function ofk. This gives 

(S; hi, h21S) ~-2rt~anO(E-4gn/L). (15) 
n 

The total energy radiated is 

PT= dkldk2E] (S; hj, h2 IS)12 , (16) 

where P denotes power, T=2nO(0) ,  and dk= 
d3k/( 27r)32k °. Thus 
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P =  ~ P ~ ,  
n 

P~ =2~z ~ dkl dkzEla~ [2 8( E-47~n/L ) . (17) 

At this point it is convenient to use units such that 
L =  1; since we are contemplating cosmic strings, this 
means that our unit o f  length is very large and our 
unit o f  mass is very small (by particle physics stan- 
dards).  We must  still compute a,; setting E=4zcn, 

1/2 1 

o 0 

×exp{ i [Et -k , s (a ,  t ) ]} .  (18) 

We can evaluate a ,  by the method of  stationary phase. 
Define 

q / = E t - k . s ( a ,  t ) .  (19) 

Clearly g '  = ~/= 0 only i f  s '  = 0 and [J [ = 1, but we 
already know this is true for some 0- and t. Choose 
coordinates so that at this point 0 - = t = 0 ,  s = 0 ,  and 
J=£.  Then we also need k=E~. to have V' = ~ = 0 .  
This means kl =k°£ and kz= k°£, which is only one 
point  in phase space, and possible only if  mh = 0. In 
a moment  we will see that we can relax these condi- 
tions, but let us keep them for now. The value o f  the 
integral will then be given approximately by integrat- 
ing Is' ] 2 over the area of  the a, t plane which corre- 
sponds to I~'1 ~ 1. Using eq. (12) it is easy to show 
that for small 0- and t, s (a ,  t) has a power series 
expansion of  the form 

Sz = t + ca ( t 3 + 3ta 2) + c2( 0 -3 "~ 3at  2 ) + -.-, 

Sy = c 3 ( t  2 + 0 - 2 )  + 2 c A a t + . . . ,  

s~ = c s ( t  2 + 0  "2) + 2 c 6 a t +  .... (20) 

In general, the coefficients c,- are all o f  order one, but  
they are not independent. Using the expansion for s~ 
in eq. (I 9) we see that [ ~u [ will remain less than order 
one provided the absolute values o f  the following 
expressions are all less than order one: 

Et 3, Et20-, Et0- 2, E0- 3 . (21) 

This determines the max imum values o f  a and t 
before rapid oscillation begins: 

tma x ~ 0"ma x '~ E -  1/3 . (22) 

Also, we see from eq. (20) that [s ' (a ,  t) ] 2 has terms 
of  order a 2, at, and t 2. Therefore we estimate 

¢rmax /max 

Jan] ~ f do- ; dt(cr2, at, t 2 ) ~ E  -3/4. (23) 
-- ffmax --/max 

We now note that the stationary phase approxi- 
mation will remain valid if  we add a term linear in 
t provided that for t =  tma~ this term is less than order 
one. Hence we can allow kl and k2 to lie within a 
small angle E ofg. Then to leading order in e and mh, 

E-k~~mZhE -1 +EE 2 , kx, k y ~ E e .  (24) 

We have the new conditions that each of  the follow- 
ing expressions have absolute value less than order 
o n e "  

m~E-ltmax, E ~ Z t m a x ,  Eet2max, 

E~o'ma x . (25) E ~ t m a x  O'max, 2 

The last four o f  these restrictions yield, for fixed E, 

Ernax ~ E -  1/3 , ( 2 6 )  

while the first gives 

Brain ~ m~ '2 • (27) 

Thus eq. (23) remains valid for e<  em~,, and E > E ~ , .  
We now use all this in the formula for Pn, eq. (17 ): 

P~ = 2~z Jd~'ka d~'k2E] an ] 2 3 ( E - 4 n n )  

f 0 0 0 0 ~-n kadkak2dk2d~ldQz [a,,I 2 

× 6 ( k  ° + k  ° - 4 ~ n )  . (28) 

In the second line we have ignored all numerical fac- 
tors. Since both kl and k2 are within an angle emax of  
~, we have ~ 2 d,-Qi ~ d ~ 2  emax, and so 

~ . - 4 . 4  [ 2  en tt ema x l a x  1. ( 2 9 )  

Obviously the sum over n will diverge. Of  course, our 
formalism of  an infinitely thin string in inadequate 
to deal with emission of  particles with E~> V. There- 
fore we should cut off  the sum at n ~ V~/t  1/2. Pro- 
vided that 3/2 V>Emin~ mh , we get 

P ~ ( V L ) - a l z ,  (30) 
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where we have restored appropriate factors of  L. 
This power is negligible compared to the gravita- 

tional power ofeq .  (1). For V~ 1016 GeV and L,-, 1 
kpc, P,-, 10-  51 /t whereas P~av ~ 10-  5/z for typical 
values of  ?,. Furthermore, we cannot increase the 
result by considering emission of  other types o f  par- 
ticles. I f  the coupling of  ~0 to the associated fields does 
not involve derivatives, we simply reproduce eq. 
(30).  I f  there are derivatives, extra factors like 
kl"kz/V 2 appear in the matrix element. These factors 
invariably suppress the power output  even more. 

One should be aware, though, that our methods are 
essentially perturbative. For  example, they do not 
uncover the fact that strings resulting from sponta- 
neous breakdown of  a global symmetry copiously 
emit the corresponding Goldstone boson [ 8 ]. This 
effect is due to coherent radiation and is found by 
making a classical analysis. Thus it is still possible 
that there may be nonperturbative effects leading to 
rapid decay of  string loops into particles other than 
gravitons or (in the case of  global symmetry break- 
ing) Goldstone bosons. We hope to return to this 
question in the future. For now, though, our conclu- 
sion confirms the conventional wisdom [5] that 
strings resulting from the breakdown of  a local sym- 
metry disappear only by gravitational radiation. 

We acknowledge helpful discussions with D.P. 
Bennett and K.A. Olive. We thank A. Vilenkin for 
suggesting eq. (4) as the proper starting point. This 
work was supported in part  by the National Science 
Foundat ion under Grant  No. PHY83-13324. 
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