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Abstract

We study four-dimensional compactifications of type II superstrings on Calabi-
Yau spaces using the formalism of hybrid string theory. Chiral and twisted-
chiral interactions are rederived, which involve the coupling of the compacti-
fication moduli to two powers of the Weyl-tensor and of the derivative of the
universal tensor field-strength.



1. Introduction

In this note we study compactifications of type II superstrings on Calabi-Yau man-

ifolds to four spacetime dimensions using the hybrid formulation of string theory [1,2,3].

The low-energy effective actions of these theories are described by N = 2 supergravity the-

ories coupled to matter. The massless matter fields are organized in N = 2 real chiral or

twisted-chiral superfields, describing vector and tensor multiplets, respectively. Hypermul-

tiplets are related to the latter by dualization. Most of these massless superfields contain

the compactification moduli and are related to complex structure and Kähler structure

deformations of the compactification manifold. Various types of couplings of these fields

have been studied: corrections to the moduli space metric of the hypermultiplet or ten-

sor multiplet sector have been discussed in [4,5,6]. The couplings to the universal sectors

including supergravity that involve higher-derivative interactions are known for situations

where these can be written as chiral or twisted-chiral superspace integrals. Such terms

describe couplings of compactification moduli to two powers of the Weyl tensor or of the

derivative of the universal tensor field-strength. The description of the full, nonlinear in-

teractions in supergravity relies on the existence of a completely off-shell multiplet calculus

for N = 2 supergravity [7,8,9]. In string theory these couplings have been calculated for

vector multiplets by scattering amplitudes at the linearized level, using the RNS formula-

tion in [10] and using hybrid approach in [2]. The moduli dependence of these amplitudes is

thereby given by the partition functions of topological strings on the Calabi-Yau space. The

hybrid formulation of string theory is particularly well-suited for studying the spacetime

properties of string compactifications since it exhibits manifest four-dimensional N = 2

supersymmetry covariance.

Hybrid string theory can be obtained by a field redefinition from the gauge-fixed RNS

string or by covariantizing the GS string in light-cone gauge. In this sense, worldsheet

reparametrizations are gauge-fixed in the hybrid formulation. Nevertheless, there is no

need for ghost-like fields in the formalism since the theory can be formulated as a N = 4

topological theory and amplitudes can computed directly by the methods of topological

string theory [2]. In this setting, the theory consists of two completely decoupled twisted

worldsheet SCFT, one describing the spacetime part, one the internal part. Despite being

twisted, hybrid string theory describes the full theory, i.e., it computes also non-topological

amplitudes. Hybrid type IIA and IIB string theories are distinguished by the relative
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twisting of the left- and right-moving sector of the internal SCFT. When working with

either type one is therefore committed to a given fixed twisting.

The main application of hybrid strings in this note is to extend the analysis of higher

order derivative interactions to the twisted-chiral sector. The procedure is analogous to

the computation in the chiral sector given in [2]. Even though one is working with a fixed

relative twisting, giving rise to either type IIA or type IIB, it is shown that the chiral and

twisted-chiral couplings of each type II theory depend on both the A-model and B-model

topological partition functions.

The outline is as follows: in section 2 we briefly review some of the key elements of

hybrid string theory that are relevant for the computation. We discuss the worldsheet

algebra and vertex operators. In section 3 the definition of amplitudes is reviewed and

several important ingredients for calculating amplitudes are discussed. In section 4 we

turn to the calculation of the chiral and twisted-chiral couplings of the moduli to the

universal supergravity sectors.

2. Hybrid string theory

2.1. The set-up

Hybrid string theory [1,2,3] is a formulation of type II and heterotic string theory

compactified on Calabi-Yau three-folds with manifest four-dimensional supersymmetry

covariance. The four-dimensional spacetime part is described by four bosons xm and two

pairs of left-moving, canonically conjugate Weyl fermions (pα, θβ) and (p̄α̇, θ̄β̇). Both have

conformal weight (1, 0) and are related by hermitian conjugation. In addition there is a

chiral boson ρ with period ρ ∼ ρ + 2πi and

ρ(z)ρ(w) ∼ − ln(z − w) , (2.1)

The background charge for the field ρ is Qρ = −1. This implies the conformal weight

wt(eqρ) = −1
2q(q−1). In type II theories these fields are supplemented by two pairs of right-

moving fermions, their hermitian conjugates, and a periodic right-moving chiral boson.

From the, say, left-moving sector of the spacetime fields one constructs the generators

(T, G±, J) of a twisted N = 2 superconformal algebra with central charge c = −3. As in the

RNS formulation of the compactified superstring, the internal part is an untwisted c = 9,

N = 2 superconformal field theory with generators (TC , G+
C , G−

C , JC) with G−
C = (G+

C)†.

They have trivial OPEs with all spacetime fields. The generators of the combined system
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are obtained by forming the twisted generators (TC + 1
2∂JC , G+

C , G−
C , JC) and adding them

to the spacetime generators,

T + TC +
1

2
∂JC , G± + G±

C , J + JC . (2.2)

These fields generate a twisted c = 6, N = 2 superconformal algebra. The U(1) R-

symmetry current JC of the internal CFT can be written in terms of a free chiral boson

JC = i
√

3 ∂H , H(z)H(w) = − ln(z − w) . (2.3)

The H-system has a background charge QH = −
√

3, i.e. wt(e
i q
√

3
H

) = q
6 (q − 3). The

conformal weights of the fermionic generators are wt(G+) = 1 and wt(G−) = 2. Any

field O of the internal sector with definite U(1) charge can be decomposed as O(q) =

exp( iq√
3
H)O′ where O′ is uncharged with respect to JC . For the generators G±

C this part

is in fact independent of H.

One can embed the twisted c = 6, N = 2 SCFT into a small twisted N = 4 alge-

bra. This leads to the topological prescription of [2,11] for computing the spectrum and

correlation functions of the hybrid string theory.

2.2. Twisted N = 4 algebra

The embedding into a twisted small N = 4 superconformal algebra1 proceeds as

follows: the generators (2.2), which we will denote by T , G±, and J in the sequel, generate

a c = 6, N = 2 algebra. The current J = ∂ρ + JC is augmented to a triplet of currents

(J++, J, J−−) defined by

J±±(z) = e
±(ρ(z)+

∫
z
JC)

. (2.4)

The superscripts ± indicate the total U(1)-charges. The conformal weights of the raising

and lowering operators are wt(J++) = 0 and wt(J−−) = 2. They satisfy the SU(2) relation

J++(z)J−−(w) ∼ 1

(z − w)2
+

J(w)

(z − w)
. (2.5)

There are two SU(2) doublets of fermionic generators: (G+, G̃−) and (G−, G̃+) that trans-

forming in the 2 and 2∗ of SU(2), respectively. The G̃± are defined via the operator

products

J±±(z)G∓(w) ∼ ∓G̃±(w)

z − w
, J±±(z)G̃∓(w) ∼ ±G±(w)

z − w
. (2.6)

1 Our conventions are based on the N = 4 superconformal algebra presented in [12].
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and have wt(G̃+) = 1 and wt(G̃−) = 2. The other OPEs of J±± with the fermionic

generators are finite. Furthermore, one has

G+(z)G̃+(w) ∼ 2J++(w)

(z − w)2
+

∂J++(w)

z − w
, G̃−(z)G−(w) ∼ 2J−−(w)

(z − w)2
+

∂J−−(w)

z − w
. (2.7)

The nontrivial OPEs of the supercurrents are

G+(z)G−(w) ∼ 2

(z − w)3
+

J(w)

(z − w)2
+

T (w)

z − w
, (2.8)

and the very same OPE for G̃+(z) and G̃−(w). The explicit form of the fermionic gener-

ators is2

G− = eρd2 + G−
C ,

G̃− = e
−2ρ−

∫
JC d̄2 + e−ρG̃−−

C ,

G+ = e−ρd̄2 + G+
C ,

G̃+ = e
2ρ+

∫
JC d2 + eρG̃++

C .

(2.9)

Here G̃±±
C are defined as3 G̃±±

C = e
±

∫
z

JC (G∓
C). The currents dα and d̄α̇ are the su-

persymmetrized versions of the currents pα and p̄α̇. They commute with the spacetime

supersymmetry charges.

It is convenient to label the fermionic generators by indices i, j = 1, 2 according to

G+
i = (G+, G̃+) , G−

i = (G−, G̃−) . (2.10)

They satisfy the hermiticity property (G+
i )† = G−

i . Consider general linear combinations

Ĝ−
i = uijG

−
j , Ĝ+

i = u∗
ijG

+
j , (2.11)

where the second equation follows from the first by hermitian conjugation. Requiring

that Ĝ±
i satisfy the same N = 4 relations as G±

i implies that uij are SU(2) parameters:

u11 = u∗
22 ≡ u1 and u∗

21 = −u12 ≡ u2 with |u1|2 + |u2|2 = 1. This shows that the N = 4

algebra has an SU(2) automorphism group that rotates the fermionic generators among

each other. More explicitly, we have

̂̃
G+ = Ĝ+

2 = u1

(
e
2ρ+

∫
JC d2 + eρG̃++

C

)
+ u2

(
e−ρd̄2 + G+

C

)
,

Ĝ− = Ĝ−
1 = u1

(
eρd2 + G−

C

)
− u2

(
e
−2ρ−

∫
JC d̄2 + e−ρG̃−−

C

)
,

(2.12)

2 We are suppressing numerical factors and cocycle factors.
3 The expression A(B(w)) denotes the residue in the OPE of A(z) with B(w) and equals the

commutator [
∮

A, B(w)}, where
∮

A = 1

2πi

∮
dzA(z).

4



and analogous expressions for Ĝ+ = Ĝ+
1 and

̂̃
G− = Ĝ−

2 , which involve the complex conju-

gate parameters u∗
i . The ui’s parameterize the different embeddings of the N = 2 subal-

gebras into the N = 4 algebra. These different embeddings play a role in the definition of

scattering amplitudes, cf. section 3.

For notational simplicity we discuss mostly type IIB string theory. In this case one has

a set of identically defined left- and right-moving generators. We will use the subscripts

“L” and “R” in order to distinguish left-moving from right-moving fields and adopt the

notation |A|2 = ALAR. As mentioned before, for type IIA theories the right-moving part

of the algebra is obtained by the opposite twisting as compared to (2.2). Operationally,

the expressions for IIA can be obtained from those of IIB by replacing (JC)R → −(JC)R

(thereby reversing the background charge) in above definitions of the currents and by

reversing, e.g., (G±
C)R → (G∓

C)R. The spacetime part remains unaffected.

2.3. Vertex operators

Vertex operators are defined in terms of the cohomologies of the operators
∮

Ĝ+ and
∮ ̂̃

G+. Integrated vertex operators have zero total U(1)-charge and can be written in the

form

U =

∫
d2z |Ĝ−Ĝ+|2V . (2.13)

We have
∫

d2z |Ĝ−Ĝ+|2V =
∫

d2z |Ĝ+Ĝ−|2V where one drops a total derivative under the

integral. Further, if V is an SU(2)-singlet one has
∫

d2z |Ĝ−Ĝ+|2V =
∫

d2z | ̂̃G− ̂̃
G+|2V .

Therefore, as will be used later, Ĝ+U =
̂̃
G+U = 0. Of particular interest are the uni-

versal, compactification independent vertex operators contained in the real superfield

V = V (x, θL, θ̄L, θR, θ̄R) which was discussed in [3]. It contains the degrees of freedom

of N = 2 supergravity and those of the universal tensor multiplet. It satisfies the N = 2

primarity constraints which imply transversality constraints and linearized equations of

motion for the component fields. In the amplitude computations of the next section, we

will pick a certain fixed term in the ui expansion of the integrated vertex operators (2.13),

namely U =
∫
|G+G−|2V =

∫
|G̃+G̃−|2V . These operators satisfy the same properties

listed below (2.13) as the full ui-dependent operators (2.13). For this choice, the corre-

sponding integrated vertex operator U contains (among other parts) the field strengths of

the supergravity and universal tensor multiplets:

∫
d2z|d̄α̇D2D̄α̇ + dαD̄2Dα|2V =

∫
d2z(dα

Ld
β
RPαβ + dα

Ld̄
β̇
RQαβ̇) + h.c. , (2.14)
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where Pαβ = (D̄2Dα)L(D̄2Dβ)RV and Qαβ̇ = (D̄2Dα)L(D2D̄α̇)RV are chiral and twisted-

chiral superfields4. As discussed below, on-shell, these superfields describe the linearized

Weyl multiplet and the derivative of the linearized field-strength multiplet of the universal

tensor. For later purposes we also introduce U ′ and U ′′ defined by U = |G+|2U ′ and

U = |G̃+|2U ′′, i.e., U ′ =
∫

d2z|eρdαDα|2V and U ′′ =
∫

d2z|e−2ρ−
∫

JC d̄α̇D̄α̇|2V .

The complex structure moduli are in one-to-one correspondence to elements of

H2,1(CY ) and related to primary fields Ωc of the chiral (c, c) ring [13]. The corresponding

type IIB hybrid vertex operators are5

Vcc = |eρθ̄2|2McΩc , Vaa = (Vcc)
† = |e−ρθ2|2M̄cΩ̄c , (2.15)

where Mc is a real chiral superfield (vector multiplet). Note that in the (twisted) type IIB

theory Ωc has conformal weight hL = hR = 0, while Ω̄c has conformal weight hL = hR = 1.

The complexified Kähler moduli are in one-to-one correspondence to elements of H1,1(CY )

and related to primary fields Ωtc of the twisted-chiral ring (c, a):

Vca = eρL−ρR θ̄2
L θ2

R MtcΩtc , Vac = (Vca)† = e−ρL+ρR θ2
L θ̄2

R M̄tcΩ̄tc , (2.16)

where Mtc are real twisted-chiral superfields (tensor multiplets). The conformal weight of

Ωtc is hL = 0 and hR = 1. The integrated vertex operators are

Ucc =

∫
d2z Mc|G−

C |2Ωc + . . . , Uca =

∫
d2z Mtc(G

−
C)L(G+

C)RΩtc + . . . , (2.17)

where we have suppressed terms involving derivatives acting on Mc and Mtc. These terms

carry nonzero ρ-charge and will not play a role in the discussion of the amplitudes in

section 4.

The vertex operators of IIA associated to elements of the (c, c) (complex structure)

and (c, a) ring (Kähler) are

Vcc = eρL−ρR θ̄2
L θ2

R MtcΩc , Vca = |eρθ̄2|2McΩtc . (2.18)

4 Chiral superfields Mc satisfy D̄α̇LMc = 0 = D̄α̇RMc and twisted-chiral superfields Mtc satisfy

D̄α̇LMtc = 0 = DαRMtc. Dα and D̄α̇ are the covariant fermionic derivatives that commute with

the supersymmetry charges. Real chiral superfield satisfy in addition D2

LMc = D̄2

RM̄c and real

twisted-chiral superfields D2

LMtc = D2

RM̄tc, cf. [3].
5 We are suppressing the indices distinguishing between the different elements of the ring.
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For type IIA the conformal weights of Ωc are hL = 0 and hR = 1 while Ωtc has weight

hL = hR = 0. The integrated vertex operators involve

Ucc =

∫
d2z Mtc(G

−
C)L(G−

C)RΩc + . . . , Uca =

∫
d2z Mc(G

−
C)L(G+

C)RΩtc + . . . . (2.19)

3. Amplitudes and correlation functions

In this section we review the definition of scattering amplitudes on Riemann surfaces

Σg with genus g ≥ 2 as given in [2]. We also collect correlation functions for chiral bosons.

3.1. Amplitudes

Scattering amplitudes of hybrid string theory are defined in [2] for g ≥ 2 as6

Fg(uL, uR) =

∫

M

[dmg]

det(Imτ)

g∏

i=1

〈 ∫
d2vi

g−1∏

j=1

| ̂̃
G+(vj)|2|J(vg)|2

3g−3∏

k=1

|(µk, Ĝ−)|2
N∏

l=1

Ul

〉
.

(3.1)

Since Fg(uL, uR) is a homogeneous polynomial in both uiL and uiR of degree 4g − 4 (we

are taking U to carry no uiL,R dependence as is explained above (2.14)) this definitions

provides a whole set of amplitudes Fn,m
g given by the coefficients in the ui L,R-expansion:

Fg(uL, uR) =
∑

n,m

(
4g − 4

2g − 2 − n

) (
4g − 4

2g − 2 − m

)
Fn,m

g u
2g−2+n
1L u

2g−2−n
2L u

2g−2+m
1R u

2g−2−m
2 R ,

(3.2)

where 2 − 2g ≤ m, n ≤ 2g − 2. We focus on either the left- or right-moving sector in the

following. In view of (2.12) it is clear that Fn
g involves 2g− 2+n insertions of G̃+ and G−

and 2g − 2 − n insertions of G+ and G̃−. It is shown in [2] that up to contact terms all

distributions of G̃+’s, G−’s, G+’s, and G̃−’s satisfying these constraints are equivalent. We

can therefore determine Fn,m
g (3.2) by evaluating a single amplitude with an admissible

distribution of insertions.

In addition there is a selection rule that relies on the cancellation of the R-parity

anomaly [2]. The R-charge is

R =

∮ (
∂ρ − 1

2
θd +

1

2
θ̄d̄

)
, (3.3)

6 This differs by the factor (det(Imτ))−1 from the expression given in [2] and [11]. We will

comment on this below (3.13).
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with background charge 1 − g. In the RNS formulation R precisely coincides with the

superconformal ghost-number (picture) operator. G̃± carry R-charges ∓1 while those of

G± are zero. The contribution to the R-charge of the insertions is g− 1−n. The anomaly

is therefore canceled only if the vertex operators insertions have total R-charge n. Put

differently: given vertex operators
∏N

i=1 Ui with total R-charge n, the only non-vanishing

contribution to (3.2) is Fn
g . This selection rule is completely analogous to the one that

relies on picture charge in the RNS formulation.

It is convenient to rewrite (3.1) in the form

Fg(uL, uR) =

=

∫

M

[dmg]

det(Imτ)

g∏

i=1

〈∫
d2vi

g∏

j=1

| ̂̃
G+(vj)|2

3g−4∏

k=1

|(µk, Ĝ−)|2|(µ3g−3, J
−−)|2

N∏

l=1

Ul

〉
.

(3.4)

This is obtained from (3.1) by contour deformation using Ĝ− =
∮ ̂̃

G+J−− and
̂̃
G+ =

−
∮ ̂̃

G+J and the fact that
∮ ̂̃

G+ has no non-trivial OPE with any of the other in-

sertions except a simple pole with J . Consider the integrand of (3.4). As a func-

tion of, say, v1, it has a pole only at the insertion point of J−−. But the residue

〈∏g
i=2

̂̃
G+(vi)

∏3g−3
j=1 (µj, Ĝ

−)
∏

l Ul〉 vanishes: each of the remaining
̂̃
G+(vi) can be written

as −
∮ ̂̃

G+J(vi) and
̂̃
G+ has no singular OPE with any of the other insertions. Analyticity

and the fact that
̂̃
G+ are Grassmann odd and of weight one, fixes the v-dependence of the

integrand as det(ωi(vj)). The ωi are the g holomorphic one-forms on Σg. In (3.4) we can

thus replace

∏ ̂̃
G+(vi) = det(ωi(vj))

∏ ̂̃
G+(ṽl)

det(ωk(ṽl))
, (3.5)

where ṽk are g arbitrary points on Σg that can be chosen for convenience. Combining left-

and right-movers the v-integrations can be performed with the result

g∏

i=1

∫
d2vi| det(ωk(vl))|2 ∝ det(Im τ) . (3.6)

τ is the period matrix of Σg. Using similar arguments one can rewrite

1

det(Imτ)

(∫

Σg

| ̂̃G+|2
)g

∝
∣∣∣

g∏

i=1

∮

ai

̂̃
G+

∣∣∣
2

. (3.7)

The reason for the insertion
∮ ̂̃

G+ on every a-cycle of Σg was presented in [2,11]: it projects

to the reduced Hilbert space formed by the physical fields of an N = 2 twisted theory.

Amplitudes for these states can be calculated using the rules of N = 2 topological strings.
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3.2. Correlators of chiral bosons

In this section we provide the correlation functions which are necessary to compute the

amplitudes, cf. [14,15,16]. In the hybrid formulation there is no sum over spin structures

and no need for a GSO projection. The correlation functions are with periodic boundary

conditions around all homology cycles of the Riemann surface Σg.

We start with the correlators of the chiral boson H:

〈∏

k

e
i

qk
√

3
H(zk)

〉
= Z

−1/2
1 F ( 1√

3

∑
qkzk − QH∆)

∏

i<j

E(zi, zj)
1
3
qiqj

∏

l

σ(zl)
1

√

3
QHql , (3.8)

where Z1 is the chiral determinant of [14]. The prime forms E(z, w) express the pole

and zero structure of the correlation function while the σ’s express the coupling to the

background charge. Of the remaining part F , which is due to the zero-modes of H, only

the combination in which the insertion points enter will be relevant. It is, in fact, an

appropriately defined theta-function [10]. Also F (−z) = F (z). In the above expression

(and below), z either means a point on Σg or its image under the Jacobi map, i.e., ~I(z) =∫ z

p0
~ω, depending on the context.

The ρ-correlation functions are subtle. The field ρ is very much like the chiral boson

φ which appears in the ‘bosonization’ of the superconformal (β, γ) ghost system in the

RNS formulation, the only difference being the value of its background charge. In the

RNS superconformal ghost system φ is accompanied by a fermionic spin 1 (η, ξ) system.

Expressions for correlation functions of products of eqiφ(zi) which are used in RNS am-

plitude calculations are always done in the context of the complete (β, γ) ghost system.

Following [2] our strategy will be to combine an auxiliary fermionic spin 1 (η, ξ) system

with the ρ-scalar to build a bona-fide spin 1 (β, γ) system. We then compute correlation

functions as in the RNS formulation, which we divide by the contribution of the auxiliary

(η, ξ)-system. Following [16], we obtain

〈∏

k

eqkρ(zk)
〉

(β,γ)
=

Z
1/2
1

θ(
∑

qkzk − Qρ∆)

∏

k<l

E(zk, zl)
−qkql

∏

r

σ(zr)
−Qρqr (3.9)

with Qρ = −1. As in [16], the correlation function had to be regularized due to the

fact that the zero-mode contribution of the ρ-field diverges. The regularization involved

a projection of the ρ-momentum plus the momentum of the regulating (η, ξ) system in

the loops to arbitrary but fixed values. These projections were accompanied by factors∮
ai

η for each a-cycle on Σ and one factor of ξ to absorb its (constant) zero mode. The
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contribution of (η, ξ) has to be divided out in order to obtain the regulated correlators of

the ρ-system. This means that (3.9) must be divided by

〈 g∏

i=1

∮

ai

dzi

2πi
η(zi) ξ(w)

〉
= Z1 . (3.10)

Altogether we thus find

〈∏

k

eqkρ(zk)
〉

reg.
=

Z
−1/2
1

θ(
∑

qkzk + ∆)

∏

k<l

E(zk, zl)
−qkql

∏

r

σ(zr)
qr . (3.11)

A useful identity is the ‘bosonization formula’[14]:

g∏

i=1

E(zi, w)σ(w) =

∏
i<j E(zi, zj)

∏g
i=1 σ(zi)

Z
3/2
1 det(ωi(zj))

θ(
∑g

i=1zi − w − ∆) . (3.12)

Using this identity one finds

〈 g∏

k=1

e−ρ(zk) eρ(w)
〉

reg.
=

1

Z2
1 det(ωk(zl))

, (3.13)

which differs by a factor of det(Imτ) from the corresponding expression used in [2].

4. Topological Amplitudes

4.1. Generalities

The expressions for Fn
g that one obtains by inserting the generators (2.12) into (3.1)

in general are very involved. Certain restrictions are imposed by background charge can-

cellation. Since the total U(1) charge of the vertex operators is zero the insertions of
̂̃
G+

and Ĝ− in (3.1) are precisely such that they cancel the anomaly of the total U(1) current.

It is therefore sufficient to study the constraints imposed by requiring cancellation of the

background charge of the ρ-field.7 A consequence of this constraint is that if the vertex

operators are not charged under ∂ρ then |n| ≤ g − 1. For |n| < g − 1 there are several

possibilities how the various parts of the operators (2.12) can contribute. For |n| = g − 1

and uncharged vertex operators there is only a single amplitude that must be considered.

These cases are studied in the following. We restrict to the case with 2g vertex operator

insertions. There are then just enough insertions of θ and p to absorb their zero modes an

no nontrivial contractions occur.

7 Since the JC current is a linear combination of the ∂ρ and the total U(1)-current, background

charge cancellation for H is then automatic.
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4.2. R-charge (g − 1, g − 1)

This amplitude was computed in the RNS formalism in [10]. In this section we review

the computation in the hybrid formalism of [2]. Imposing ρ and H background charge

saturation (3.1) leads to

Ag =

∫

M
[dmg]

1

| det(ωi(ṽj))|2
〈∣∣∣

m∏

j=1

eρG̃++
C (ṽj)

g∏

j=m+1

e−ρd̄2(ṽj)

×
m∏

l=1

(µl, e
−2ρ−

∫
JC d̄2)

3g−3∏

l=m+1

(µl, G
−
C)

∣∣∣
2

U ′U2g−1
〉

.

(4.1)

We have used the fact that
∮

e−ρd̄2, when pulled off from U ′, only gets stuck at J(vg).

0 ≤ m ≤ g − 1 parametrizes different ways to saturate the background charges.8 We

now use the freedom to choose ṽl = zl for l = 1, . . . , g where zl are the arguments of the

Beltrami differentials µl (which are integrated over). This is possible since the OPEs which

one encounters are the naive products (no poles or zeros). This gives

Ag =

∫

M
[dmg]

∫ g∏

l=1

d2zl
1

| det(ωi(zl))|2
〈∣∣(µl, e

−ρG−
C d̄2(zl))

∣∣2
2g−3∏

k=1

∣∣(µk, G−
C)

∣∣2U ′U2g−1
〉

(4.2)

which is independent of m.9 Its evaluation is straightforward. One easily sees that there

are just enough operator insertions to absorb the p and p̄ zero modes. θ and θ̄ then

also only contribute with their (constant) zero modes. The p zero modes must come

from the explicit d-dependence of the vertex operator. The (p, θ)L and (p, θ)R correla-

tion functions contribute a factor |Z1|4(det Imτ)2, where the integrals over the insertion

points have already been performed. What is left is the integral over the θ zero-modes

which are the Grassmann odd co-ordinates of N = 2 chiral superspace. The spinor

indices arrange themselves to produce (PαβPαβ)g−1PγδD
γ
LDδ

RV . The (p̄, θ̄) correlators

give a term |Z1|4| detωi(zl)|4, leaving only the θ̄ zero-mode integrations. They can be

performed using
∫

(d2θ̄)L(d2θ̄)RΨ = D̄2
LD̄2

RΨ|θ̄L=θ̄R=0. Since D̄α̇Pβγ = 0, the only ef-

fect of this is to convert Dα
LD

β
RV to Pαβ. Finally, the ρ-correlator gives, using (3.11)

and (3.12), (|Z1|4| det ωi(zl)|2)−1. The partition function of the xm contributes a factor

8 For notational simplicity we have chosen the same m for the left- and for the right-movers.
9 This shows that for this amplitude all admissible distributions of vertex operators parametrized

by m indeed lead to the same result and that the only subtleties that arise from contact terms

are the ones analyzed in [17,18]. We are not aware of an argument that this is generally the case.
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|Z1|−4(det Imτ)−2. To the given order of spacetime derivatives, the xm-dependence of the

vertex operators is only through its zero mode. Combining arguments we obtain

Ag =

∫
(d2θ)L(d2θ)R(PαβPαβ)g

∫

M
[dmg]

〈3g−3∏

i=1

|(µi, G
−
C)|2

〉
. (4.3)

The last part of this expression is the string partition function of the topological B-model:

FB
g =

∫

M
[dmg]

〈3g−3∏

i=1

|(µi, G
−
C)|2

〉
. (4.4)

To determine the dependence of FB
g on the chiral or twisted-chiral moduli one inserts the

appropriate expressions (2.17) into these correlation functions. It can be shown, using

the arguments of [17], that FB
g does not depend on perturbations induced by either (c, a)

or (a, c) operators. It therefore depends only on the complex structure moduli and the

amplitudes calculated are therefore vector multiplet couplings (type IIB).

4.3. R-charge (1 − g, 1− g)

Starting from (3.1)and imposing ρ and H-background charge saturation, one obtains,

in close analogy to (4.1),

A′
g =

∫

M
[dmg]

1

| det(ωi(ṽj))|2
〈∣∣∣

m∏

j=1

G+
C(ṽj)

g∏

j=m+1

e
2ρ+

∫
JC d2(ṽj)

m∏

l=1

(µl, e
ρd2)

×
3g−3∏

l=m+1

(µl, e
−ρG̃−−

C )
∣∣∣
2

U ′′U2g−1
〉

.

(4.5)

0 ≤ m ≤ g − 1 parametrizes the different ways of saturating the background charges. By

appropriate choices of the ṽj this amplitude can be brought to the form

A′
g =

∫

M
[dmg]

∫ g∏

j=1

d2zj
1

| detωi(zj)|2
〈∣∣(µ(zj), e

ρd2G+
C(zj))

2g−3∏

k=1

(µk, e−ρG̃−−
C )

∣∣2U ′′U2g−1
〉

,

(4.6)

which shows that also this amplitude is independent of m. However, its evaluation is most

easily done for a different choice of the insertion points ṽj . To fix them, we start from

(4.5) with the choice m = 0 and compute the ρ and the H correlators. Their product is,

using (3.8) and (3.11),

1

Z1
·
F (

√
3

∑
ṽj − 2√

3

∑
zk −

√
3w +

√
3∆)

θ(2
∑

ṽj −
∑

zk − 2w + ∆)
·
∏

k<l E(zk, zl)
1
3

∏
j E(ṽj, w)

∏
k σ(zk)σ(w)

∏
i<j E(ṽi, ṽj)

∏
j σ(ṽj)

,

(4.7)

12



where we have only displayed the holomorphic part. With the help of the identity (3.12)

this is equal to

1

(Z1)
5
2

F (
√

3
∑

ṽj − 2√
3

∑
zk −

√
3w +

√
3∆)

θ(2
∑

ṽj −
∑

zk − 2w + ∆)
· θ(

∑
ṽj − w − ∆)

det wi(ṽj)
·
∏

k<l

E(zk, zl)
1
3

∏

k

σ(zk) .

(4.8)

We now choose the g positions ṽj such that ~I(
∑

ṽj −w−∆) = ~I(2
∑

ṽj −
∑

zk −2w+∆).

Then the theta functions cancel and the remaining terms are

1

(Z1)
5
2 detωi(ṽj)

· F ( 1√
3

∑
zk −

√
3∆) ·

∏

k<l

E(zk, zl)
1
3

∏

k

σ(zk) . (4.9)

This can be written as
1

Z2
1 det ωi(ṽj)

〈 3g−3∏

k=1

e
− i

√

3
H(zk)

〉
. (4.10)

The p, θ, p̄ and θ̄ correlators are as in the previous amplitude (with the roles on barred and

unbarred variables interchanged) and one finally obtains

A′
g =

∫
(d2θ̄)L(d2θ̄)R(P̄α̇β̇P̄ α̇β̇)g

∫

M
[dmg]

〈3g−3∏

i=1

|(µi, Ǧ
−
C)|2

〉
. (4.11)

Here Ǧ−
C = e

− i
√

3
H

G′
C where G′

C is defined to be G+
C = e

i
√

3
H

G′
C . Note that G−

C and Ǧ−
C

both have conformal weight two. The internal amplitude multiplying the spacetime part

is the complex conjugate of the B-model amplitude (4.4): this follows from the fact that

the expression (4.9) can be written as

1

Z2
1 det ωi(ṽj)

〈3g−3∏

k=1

e
i

√

3
H(zk)

〉

QH=
√

3
, (4.12)

where we used (3.8) but with the reversed background charge as compared to (4.10). This

happens if one chooses the opposite twisting in (2.2). Since the operators Ǧ−
C and G+

C both

contain the same operator G′
C , the internal part of the amplitude (4.11) is equal to

〈3g−3∏

i=1

|(µi, Ǧ
−
C)|2

〉

++
=

〈3g−3∏

i=1

|(µi, G
+
C)|2

〉

−−
. (4.13)

The subscripts refer to the two possible twistings T → T + 1
2∂J and T → T − 1

2∂J for left-

and right-movers. Finally, since for unitary theories (G−
C)† = G+

C , the right-hand side of

(4.13) is the complex conjugate of FB
g given in (4.4), and therefore A′

g defined in (4.5) is

the complex conjugate of the chiral amplitude Ag of (4.1).
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4.4. R-charges (g − 1, 1 − g) and (1 − g, g − 1)

The ‘mixed’ amplitudes with R-charges (g − 1, 1 − g) and (1 − g, g − 1) can now be

written down immediately. They are expressed as integrals over twisted chiral superspace

and involve the superfields Qαβ̇ and Q̄α̇β . They are

A′′
g =

∫
(d2θ)L(d2θ̄)R(Qαβ̇Qαβ̇)g

∫

M
[dmg]

〈3g−3∏

i=1

(µi, G
−
C)L(µ̄i, Ǧ

−
C)R

〉
+ c.c. (4.14)

By the same arguments as given before, one shows that this type IIB string amplitude only

depends on deformations in the (a, c) (and (c, a) for the complex conjugate piece) ring,

i.e., on Kähler moduli. In type IIB, these are in tensor multiplets. From the discussion in

section 4.3 it also follows that

∫

M
[dmg]

〈3g−3∏

i=1

(µi, G
−
C)L(µ̄i, Ǧ

−
C)R

〉

++
=

∫

M
[dmg]

〈3g−3∏

i=1

(µi, G
−
C)L(µ̄i, G

+
C)R

〉

+−
= FA

g ,

(4.15)

which is the topological A-model amplitude.

So far we have computed amplitudes of type IIB string theory. To compute type IIA

amplitudes we need to twist the left- and right-moving internal SCFTs oppositely. In the

amplitudes this induces the following changes: (G−
C)R → (G+

C)R and (Ǧ−
C)R → (Ǧ+

C)R

where Ǧ+
C = e

i
√

3
H

Ḡ′
C . Due to the opposite twist, the conformal weights are preserved

under this operation. For instance, the spacetime part of (4.3) gets combined with FA
g ,

that of (4.14) with FB
g . According to (2.19), FA

g depends on the moduli contained in

vector multiplets, FB
g on those contained in tensor multiplets.

4.5. Summary

We have recomputed certain chiral and twisted-chiral couplings that involve g powers

of P 2 or Q2, respectively, using hybrid string theory. The amplitudes involve the topo-

logical string partition functions FA
g and FB

g . FA
g depends on the moduli parametrizing

the (c, a) ring, FB
g on those of the (c, c) ring. In type IIA or type IIB, these are contained

in spacetime chiral (vector) or twisted-chiral (tensor) multiplets, as summarized in the

table. The dependence on the moduli of the complex conjugate rings is only through the

holomorphic anomaly [17].
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type IIA type IIB

(P 2)gFA
g (c, a): vector (P 2)gFB

g (c, c): vector

(Q2)gFB
g (c, c): tensor (Q2)gFA

g (c, a): tensor

As discussed in [3,19], on-shell, the superfield Pαβ describes the linearization of the Weyl

multiplet. Its lowest component is the selfdual part of the graviphoton field strength,

Pαβ| = Fαβ . The θLθR-component is the selfdual part Cαβγδ of the Weyl tensor. The

bosonic components of Qαβ̇ are Qαβ̇| = ∂αβ̇Z, where Z is the complex R-R-scalar of

the RNS formulation of the type II string; its θLθ̄R-component is ∂αα̇∂ββ̇S. The real

component of S is the dilaton, its imaginary component is dual to the antisymmetric

tensor of the NS-NS-sector.These results can be obtained by explicit computation from

the θ-expansion of the superfield V . After integrating (4.3) and (4.14) over chiral and

twisted-chiral superspace, respectively, 2g − 2 powers of Fαβ are coupled to two powers of

Cαβγδ, while 2g − 2 powers of ∂Z are coupled to two powers of ∂2S, with the tensorial

structure discussed in [10]. In [3,20,21] the question is addressed how these (and other)

couplings can be described in an off-shell (projective) superspace description at the non-

linearized level.
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