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ABSTRACT

Quasi-toroidal oscillations in slowly rotating stars are examined in the framework of
general relativity. The oscillation frequency to first order of the rotation rate is not a
single value even for uniform rotation unlike the Newtonian case. All the oscillation
frequencies of the r-modes are purely neutral and form a continuous spectrum limited
to a certain range. The allowed frequencies are determined by the resonance condition
between the perturbation and background mean flow. The resonant frequency varies
with the radius according to general relativistic dragging effect.
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1 INTRODUCTION

In recent X-ray observation with the Rossi X-Ray Timing
Explorer (RXTE), quasi-periodic oscillations are discovered
in several sources (e.g., van der Klis et al. 1996 and the sub-
sequent papers of the volume). The frequency ranges from
a few Hz to kHz and may be attributed to the phenomena
near a compact object. Several models are proposed as the
oscillations: beat-frequency between a magnetized neutron
star and accretion disc, stellar oscillation, and so on. For ex-
ample, Strohmayer and Lee (1996) considered the excitation
of the g- and r-modes as a result of the thermonuclear flash
and discussed the observational possibility. Their calcula-
tions are however based on the Newtonian gravity. Unlike
the spheroidal modes like f-, p-, and g-modes, the general
relativistic effects are not clear for the r-mode, since the
problem has never been studied so far. The toroidal motion
is trivial in a non-rotating star, but has non-vanishing fre-
quency in a rotating star. The quasi-toroidal mode is called
r-mode and known as the Rossby wave in ocean. Papaloizou
and Pringle (1978) introduced the r-mode in connection with
the variable white dwarfs. See also the subsequent study
(Provost, Berthomieu & Rocca 1981; Saio 1982).

In this paper, we will explore the relativistic effect on
the r-mode. We never discuss the observational implication
of the r-mode in relativistic stars, but theoretical study of
the oscillation frequency may be a useful tool for the future
observation. We use the slow rotation approximation and
linearized Einstein equations. The first-order effect of the
rotation rate is taken into account. In section 2, we present
the perturbation equations describing the r-mode. In section
3, the eigenvalue problem is solved. Finally, section 4 is de-

voted to the discussion. Throughout this paper we will use
units of G = c = 1.

2 PERTURBATION EQUATIONS

We assume a star with a uniform angular velocity Ω ∼ O(ε),
and consider the rotational effect of order ε only. The con-
figuration of the pressure p and the density ρ is the same as
in the non-rotating star, since the centrifugal force deform-
ing the shape is of the order ε2. The metric for the slowly
rotating star is given by (Hartle 1967)

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdφ2)

−2ωr2 sin2 θdtdφ, (1)

where ω ∼ O(ε) is a radial function describing the dragging
of the inertial frame. Introducing a function ̟ = Ω−ω, we
have a differential equation as
(

jr4̟′
)′

− 16π(ρ + p)eλjr4̟ = 0, (2)

where a prime means a derivative with respect to r, and

j = e−(λ+ν)/2. (3)

The function ̟ inside the star is monotonically increasing
function of r, so that the range is limited to

̟0 ≤ ̟ ≤ ̟R, (4)

where ̟0 and ̟R are the values at the center and surface
(r = R), respectively.

The perturbations describing non-radial oscillations
with the small amplitude can be given by the density per-
turbation δρ, pressure perturbation δp, and three compo-
nents of the velocity (U, R,V ). The metric perturbations
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can be expressed by the ten functions, but the number
is reduced to six (h0, h1, H0, H1, H2, K) by the gauge fix-
ing. We here use the same notation for these perturba-
tion functions as in Kojima (1992), but the explicit forms
are not necessary for most of the following discussion. In
this way, the equations governing the oscillations are one
thermo-dynamic relation and ten components of the lin-
earized Einstein equations for these eleven functions. In the
case of non-rotation, two sets are completely decoupled. One
set (U,h0, h1) is called axial perturbation (or “odd-parity”
mode), while the other set (δρ, δp, R, V, H0, H1, H2, K) polar
perturbation (or “even-parity” mode). Notice that the axial
perturbation U describes the toroidal motion, and has zero
frequency in the non-rotating star (Thorne & Campolattro
1967). We expect that with rotation the toroidal oscillations
of the fluids have finite frequencies of the order of Ω like
in the Newtonian pulsation theory (Papaloizou & Pringle
1978; Provost, Berthomieu & Rocca 1981; Saio 1982). There
also exists gravitational wave mode with non-vanishing fre-
quency in the axial perturbation (Chandrasekhar & Ferrari
1991; Kokkotas 1994). The mode can be distinguished from
the r-mode in the non-rotating limit. We never discuss the
gravitational wave mode any more here.

We look for the r-mode oscillations in the relativistic
rotating stars. The perturbation functions are expanded by
appropriate sets of spherical harmonics with index l, m and
exp[−i(σt − mφ)]. The linearized Einstein equations in the
slowly rotating star are schematically given by

Alm + EA × P̃l±1m = 0, (5)

Plm + EP × Ãl±1m = 0, (6)

where A and Ã represent some sets of the axial perturbation
functions, while P and P̃ represent those of the polar per-
turbation functions (Kojima 1992). The symbols, EP and EA

are some operators of the order ε. It is clear that the presence
of the rotation induces the couplings between the axial and
polar modes. The coupling is subject to the selection rule:
the axial mode with l, m is coupled with the polar modes
with l ± 1, m and vice versa. This rule is easily understood
if we notice that the slow rotation perturbation corresponds
to the odd-parity perturbation with l = 1 (Campolattro &
Thorne 1970).

In the previous papers (Kojima 1992, 1993a,b), the pul-
sation equations in the slowly rotating stars are examined,
assuming that the oscillation frequencies in the non-rotating
stars are regarded as non-zero values. This is true for the
spheroidal modes like f-, p-, g-modes and gravitational wave
modes. The eigenvalue problems are solved for the non-
rotating stars, and the rotational corrections are calculated
for these oscillation modes. We instead assume that the fre-
quency σ is of the order of ε. Different manipulation is there-
fore necessary, since the rotation should be included at the
lowest order to obtain the oscillation frequency of the r-
mode. The perturbation functions should be ordered in the
magnitude as,

h0 ∼ O(U), h1 ∼ O(ε1U),
δρ ∼ O(ε1U), δp ∼ O(ε1U),
H0 ∼ O(ε1U), H2 ∼ O(ε1U), K ∼ O(ε1U),
H1 ∼ O(ε2U), R ∼ O(ε2U), V ∼ O(ε2U).

(7)

The velocity perturbations and the metric perturbations
with htj are ’anti-symmetric’ with respect to time and oth-

ers like density perturbations are ’symmetric’. The former
should therefore have even power of ε, while the latter odd
power of ε. The polar perturbation functions should be
of higher order in the quasi-toroidal oscillations. From the
above ordering, the linearized Einstein equations correspond
to those for the axial part, Alm = 0 at the lowest order. The
polar part is induced through the coupling, equation (6) at
higher order level. The corrections to the axial part are also
induced at higher order level. In proceeding to the higher
order, the higher order rotational corrections for the equi-
librium states are necessary, but the corrections of the order
ε are sufficient at the lowest order.

We now solve Alm = 0 for U, h0, h1. The quasi-toroidal
velocity can be expressed as
(

σ − mΩ +
2m̟

l(l + 1)

)

U = −4π(σ − mΩ)(ρ + p)e−νh0. (8)

The relation between the metric perturbations is

h1 = −
ir4e−ν

(l − 1)(l + 2)

[

(σ − mΩ)Φ′ +
2mω′

l(l + 1)
Φ

]

, (9)

where

Φ =
h0

r2
. (10)

The master equation governing the quasi-toroidal oscilla-
tions can be written as

(̟ − µ)

[

1

jr4

(

jr4Φ′
)′

− vΦ

]

= qΦ, (11)

where

v =
eλ

r2
[l(l + 1) − 2] , (12)

q =
1

jr4

(

jr4̟′
)′

(13)

= 16π(ρ + p)eλ̟, (14)

and the eigenvalue

µ = −
l(l + 1)

2m
(σ − mΩ). (15)

In equation (14), we have used the relation (2).

3 SINGULAR EIGENVALUE PROBLEM

The basic equation (11) is not a regular eigenvalue problem.
The coefficient (̟ − µ) becomes singular inside the star for
a certain value of µ. The coefficient also vanishes outside the
star, but the singularity can be removable because q = 0.
This equation is very analogous to the Rayleigh’s equation
for the incompressible shear flow (e.g., Lin 1955). The per-
turbation propagating with the wave number k and speed c
in the mean flow with velocity u can be described as

(u − c)
[

Φ′′ − k2Φ
]

= u′′Φ. (16)

The similar singular eigenvalue problems appear in many
other fields, e.g., differential rotating fluid discs and plasma
oscillations. See e.g., Balmforth & Morrison (1995) for the
methods of solving the singular eigenvalue problem. The sin-
gular point is called as critical layer in the fluid dynamics,
or co-rotating point in the rotating discs. The studies of
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the singular eigenvalue problem indicate that unless there
is an inflection point, u′′ = 0, somewhere within the flow,
the eigenvalue is not discrete, but continuous and neutral
against the stability. All neutral modes must have critical
layers (co-rotation points) that lie within the flow, and there-
fore form a continuous spectrum of intrinsically irregular
eigen-functions.

The parallel argument holds for our problem. The es-
sential points are that the potential v is positive definite for
l > 2 and that there is no inflection point (q > 0) inside the
stars. We can conclude that the eigenvalue of equation (11)
is real number and the range is limited to

̟0 < µ = −
l(l + 1)

2m
(σ − mΩ) < ̟R, (17)

where the range of ̟, (4) is used.

We shall simply show the conclusion by reductio ad ab-

surdum. If there is a non-trivial solution of which the eigen-
value µ is not located within the domain (17), then we have
the integral relation

0 =

∫

∞

0

(

∣

∣Φ′
∣

∣

2
+ v |Φ|2

)

jr4dr

+

∫ R

0

1

̟ − µ
q|Φ|2jr4dr, (18)

where we have assumed that the function Φ tends to zero
both at the center and the infinity. The imaginary part of
equation (18) gives

0 = ℑ(µ)

∫ R

0

1

|̟ − µ|2
q|Φ|2jr4dr. (19)

Since q is positive definite for 0 ≤ r < R as seen in equation
(14), we have ℑ(µ) = 0, except the trivial case Φ = 0. That
is, the eigenvalue µ must be real number. In a similar way,
we introduce Φ = (̟−µ)f to have another integral relation,

0 =

∫

∞

0

(̟ − µ)2
(

∣

∣f ′
∣

∣

2
+ v |f |2

)

jr4dr. (20)

The function within the integral is positive at least for 0 ≤
r < R. We therefore have the contradiction.

If the eigenvalue is located within the domain (17), the
eigen-function has the singular point, say, r∗, inside the
star. The function is approximated by the delta-function
as f ∼ δ(r − r∗). The quasi-toroidal fluid velocity has the
form U ∼ δ(r − r∗) from the equation (8). The function
represents a steep resonance between the perturbation and
the mean flow. The resonance may be more clear, if we con-
sider so-called the Cowling approximation. In the Newtonian
pulsation theory, gravitational perturbations are sometimes
neglected in the oscillations. This trick gives good results
for the spheroidal mode as well as the r-modes. The rela-
tivistic Cowling approximation is given by δT αβ

;β = 0 with
δgαβ = 0. One component of the equations is reduced in the
slow rotation case to

(̟ − µ)U = 0. (21)

It is clear that the solution of this equation is U ∼ δ(r−r∗),
and that the range of eigenvalue is given by equation (17).

Finally, we consider the Newtonian limit, in which ̟ →
Ω. The frequency therefore corresponds to a single value as

σ =

(

1 −
2

l(l + 1)

)

mΩ. (22)

This is the frequency of the r-mode oscillation measured by
inertial frame.

4 DISCUSSION

In this paper, the r-mode oscillation is examined as the
consistent first-order solution to the quasi-toroidal motion.
The frequency forms a continuous spectrum. The oscilla-
tion is caused by a certain resonance between the perturba-
tion and the background rotating flow. The resonance con-
dition is that the co-rotating frequency, (σ − mΩ)e−ν/2 of
the wave should be −2m/(l(l + 1)) times the angular veloc-
ity, ̟e−ν/2 measured by ZAMO (zero-angular-momentum-
observer). The angular velocity depends on the position of
the local inertia frame due to the dragging effect. In this way,
the r-mode oscillations in relativistic stars are much analo-
gous to those in the differential rotating discs, although the
angular velocity, Ω is uniform. The mechanism works every-
where within the rotating star, but the resultant frequency,
σ measured at infinity is not identical. This is the physical
meaning of the continuous spectrum of the r-mode.

The eigen-function of the Newtonian r-mode is not de-
termined to first-order of the rotation, since any functions
for the same µ satisfy the equation governing the oscillation,

(µ − Ω)U = 0. (23)

The modes are degenerated in this sense. In order to deter-
mine the radial structure of the r-modes, calculation of the
next order is necessary. The higher order corrections to the
frequency will remove the degeneracy. As for the relativis-
tic r-mode, the frequencies are distinguished corresponding
to the resonance points. All the positions are on an equal
footing to the first-order of the rotation. Therefore, the nor-
mal frequency forms a continuous spectrum. We expect that
some favored resonance points are selected as a result of the
higher order corrections. That is, the axial part of the first
order drives the density and pressure perturbations at the
second order. The gravitational radiation may be also as-
sociated with the density perturbations. The polar pertur-
bations react on the frequency at the third order. The in-
ternal structure will strongly affect the modes through the
coupling. The relevant second-order rotational corrections
∼ O(ε2) like rotational deformation are of course necessary
to solve the problem. The study beyond the first-order of
the rotation is very important not only for the radial struc-
ture, but also for the stability, although the calculations are
significantly complicated.

The frequency at the first order is a real number, and
the mode represents standing ripple in the rotating flow. The
wave will decay or grow due to the dissipation. The grav-
itational radiation reaction and/or the viscosity cause the
instability of spheroidal modes in the rotating star. Simi-
lar instability may set in for the r-mode, according to the
general argument (Friedman & Schutz 1978; Friedman &
Morsink 1997). Recent numerical calculation suggested the
instability of the r-mode (Andersson 1997). However, these
works are not in agreement as for the growth rate, which is
higher order consequence of εn(n ≥ 2).

c© 199? RAS, MNRAS 000, 000–000



4 Y. Kojima

In conclusion, the second-order effect to the r-mode os-
cillation in the relativistic star is complicated, but quite in-
teresting problem.
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