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1. Introduction

A remarkable development in theoretical physics was the discovery of a close relation-

ship between the laws of thermodynamics and certain laws of black hole physics. The

black hole represents the equilibrium end state of gravitational collapse, so on general

grounds we might expect it to be the state of maximum entropy for a self-gravitating

system. The relationship between thermodynamic entropy and the area of an event

horizon is one of the most robust and surprising results in gravitational physics.

In a very basic sense, gravitational entropy can be regarded as arising from the

Gibbs-Duhem relation applied to the path-integral formulation of quantum gravity [1].

In the semiclassical limit this yields a relationship between gravitational entropy and

other relevant thermodynamic quantities, such as mass, angular momentum, and other

conserved charges.

This relationship was first explored in the context of black holes by Gibbons and

Hawking [2], who argued that the thermodynamical potential is equal to the Euclidean

gravitational action multiplied by the temperature. In this approach, the partition

function for the gravitational field is defined by a sum over all smooth Euclidean ge-

ometries with a period β in imaginary time. The integral is computed by using the

saddle point approximation.

When applying this method to Schwarzschild black hole, the calculation is purely

gravitational (no additional ‘matter’ fields are present) and the entropy is one-fourth

of the horizon area. Therefore, this result confirms that the entropy is an intrinsic

property of black holes.

It is well known that, due to the equivalence principle, a local definition of energy

in gravity theories is meaningless. One of the most fruitful approaches in computing

conserved quantities has been to employ the quasilocal formalism [3]. The basic idea of

Brown and York was to define a quasilocal energy. That is to enclose a given region of

spacetime with some surface, and to compute the energy1 with respect to that surface.

For an asymptotically flat spacetime, it is possible to extend the quasilocal surface

to spatial infinity without difficulty, provided one incorporates appropriate boundary

terms (counterterms) in the action to remove divergences [7, 8, 9]. This method was

inspired by the holographic renormalization method in AdS spacetimes [10] (see, e.g.,

[11, 12] for counterterms in more general theories) and the counterterms were obtained

by considering the flat space limit (the AdS radius is infinite).

Subsequently, the authors of ref. [13] proposed a renormalized stress-tensor for a

general class of stationary spacetimes which are locally asymptotic to flat space — it

was computed by varying the total action (including the counterterms) with respect

1In fact, one can compute all relevant thermodynamic quantities [4, 5, 6].
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to the boundary metric. The conserved quantities can be constructed from this stress

tensor via the algorithm of Brown and York [3]. As an example, this method was

applied in ref. [13] to understand the thermodynamics of the dipole ring [14].

However, there are subtleties in taking the flat spacetime limit and the references

[7, 8, 9] did not present a rigorous justification for considering these counterterms.2

In flat spacetime the usual gravity covariant action supplemented with the bound-

ary Gibbons-Hawking term does not satisfy a valid variational principle. Mann and

Marolf have constructed a valid covariant variational principle by adding an appropriate

local boundary term [16] (see, also, [17, 18]). This counterterm makes direct contact

with the background subtraction procedure. They have also demonstrated that the

conserved quantities related to the boundary stress-tensor agree with the usual ADM

definitions3 [20] (see, also, [21]). In particular, this work provides a rigorous justification

for the proposal of the renormalized stress tensor of [13].

In the asymptotically flat case, the only neutral static black hole is the five dimen-

sional Schwarzschild-Tangherlini solution [22]. The rotating case is more involved and

includes both Myers-Perry black holes [23] and black rings [24, 25].

In this paper we apply the method of [13] in a systematic way to study the thermo-

dynamics of asymptotically flat black objects. We will restrict our considerations to five

dimensions, although a similar formalism should be valid for any spacetime dimension

(see [18] for a similar analysis in four dimensions).

The remainder of this paper is organized as follows. Section 2 contains a review

of the results of [3, 13] and also the complex instanton method [26, 27]. In Section

3, we investigate in detail the thermodynamic properties of neutral black ring (with

one angular momentum) and black hole. In Section 4 we examine a few charged black

objects. In particular, we present a discussion of the balance condition for the thin

dipole-charged black rings. Section 5 closes with a comprehensive discussion and some

observations about our results.

2. General method

In this section we review the basic framework that we will use to study the thermo-

dynamics of asymptotically flat black objects. First, we present an overview of the

quasilocal formalism and counterterm method. Then, we discuss the complex instan-

2One problem with the flat spacetime is that its holographic description seems to be nonlocal [15].
3The conserved quantities defined in this way also generalize the usual definitions to allow, e.g.,

non-vanishing NUT charge in four-dimensions — see, also, [19] for a different approach to compute

the NUT charge.
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ton method and the role of the quasi-Euclidean section in understanding black ring

thermodynamics.

2.1 Quasilocal formalism

The action functional for general relativity contains a contribution IG[g] from the grav-

itational field gµν and a contribution IM [Ψ; g] from the matter fields, which we col-

lectively denote Ψ. In the early days of studying the path integral for gravity, the

gravitational action for some region M was written as a sum of a Hilbert term IH [g],

a term evaluated on its boundary ∂M , IB[g], and a nondynamical term Iref [gref ]:

IG[g] ≡ IH [g] + IB[g] − Iref [gref ]

=
1

16πG

∫

M

R
√
−g d5x+

ǫ

8πG

∫

∂M

(K −K0)
√
−h d4x . (2.1)

Here, K is the extrinsic curvature of ∂M , ǫ is equal to +1 where ∂M is timelike

and −1 where ∂M is spacelike, and h is the determinant of the induced metric on ∂M .

The existence of a boundary term in the gravitational action is an atypical feature

of field theories — it appears due to the fact that R, the gravitational Lagrangian

density, contains second derivatives of the metric tensor. This term is required so that

upon employing the variational principle with metric variations fixed at the boundary,

the action yields the Einstein equations.

Let us elucidate now the role of Iref . Clearly it affects the numerical value of the

action but not the equations of motion. The main observation is that even at tree-level,

the gravitational action contains divergences that arise from integrating over the infinite

volume of spacetime. Hence one should regularize the action to get finite results.

One way to do this is by subtracting a new term Iref [gref ,Ψref ] from the action

[3]. The action and conserved quantities are calculated with respect to this reference

spacetime which is interpreted as the ground state of the system. An important diffi-

culty with this approach is that it is not always possible to embed a boundary with a

given induced metric into the reference background [28].

Fortunately, there is a second way [8, 9, 13, 16] to regularize the gravitational action

and the stress-energy of gravity. Namely, one supplements the quasilocal formalism of

Brown and York [3] by including boundary counterterms. This method was inspired

from the stringy AdS/CFT correspondence [10], where the infrared divergences of the

gravity in the bulk (due to integration over infinite volumes) are dual to ultraviolet

divergences in the dual boundary conformal field theory. These divergences can be

removed by adding additional boundary terms that are geometric invariants of the

induced boundary metric, leading to a finite total action.
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The counterterms are built up by curvature invariants of the boundary ∂M (which

is sent to infinity after the integration) and thus, obviously, they do not alter the

bulk equations of motion. Rather than employ the counterterm proposal in ref [16],

for asymptotically flat solutions (on the Euclidean section)4 we consider the following

counterterm expression

Ict[h] = − c

8πG

∫

∂M

d4x
√
−h

√
R , (2.2)

where R is the Ricci scalar of the induced metric on the boundary hij . The constant c

that enters the above relation depends on the boundary topology — one finds c =
√

3/2

for a boundary topology S3 × S1 and c =
√

2 for a S2 ×R × S1 topology. This choice

of boundary term yields an action that is stationary on solutions, so long as the spatial

cut-off induces a boundary of the form Sn × R
d−n−1 [16].

Varying the total action, I = IH [g] + IB[g] + Ict[h], with respect to the boundary

metric hij , we compute the divergence-free boundary stress tensor [13]

τij ≡
2√
−h

δI

δhij
=

1

8πG

(

Kij − hijK − Ψ(Rij −Rhij) − hij�Ψ + Ψ;ij

)

, (2.3)

where Ψ = c√
R .

The boundary metric can be written, at least locally, in ADM-like form

hijdx
idxj = −N2 dt2 + σab (dy

a +Na dt)(dyb +N b dt), (2.4)

where N and Na are the lapse function and the shift vector respectively and the ya are

the intrinsic coordinates on the closed surfaces Σ.

Provided the boundary geometry has an isometry generated by a Killing vector ξi,

a conserved charge

Qξ =

∮

Σ

d3y
√
σni τij ξ

j, (2.5)

can be associated with a closed surface Σ (with normal ni). Physically this means that

a collection of observers on the hypersurface whose metric is hij all observe the same

value of Qξ provided this surface has an isometry generated by ξi [6, 29]. For example,

if ξ = ∂/∂t then Q is the conserved mass/energy M.

One of the appealing features of this approach is that it provides elegant ‘natural’

definitions of quasilocal energy and angular momentum.

4The action is computed on the Euclidean section but the stress tensor can be computed on the

Lorentzian section.
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Gravitational thermodynamics is then formulated via the Euclidean path integral

Z =

∫

D [g]D [Ψ] e−I[g,Ψ] ≃ e−I ,

where one integrates over all metrics and matter fields between some given initial and

final Euclidean hypersurfaces, taking τ to have some period β. The period is determined

by requiring the Euclidean section be free of conical singularities. Semiclassically,

the total action is evaluated from the classical solution of field equations, yielding an

expression for the entropy

S = β(M − µiCi) − I, (2.6)

upon application of the Gibbs-Duhem relation to the partition function [1] (with chem-

ical potentials Ci and conserved charges µi). The first law of thermodynamics is then

dS = β(dM − µidCi). (2.7)

2.2 Complex instanton

The thermodynamic properties of a dipole black ring were derived by using the coun-

terterm method [13]. Also, using the Gibbs-Duhem relation, a non-trivial check of the

entropy/area relationship for the dipole ring was obtained.

However, a key point regarding one’s intuition about the Euclidean section does

not apply to black rings. Naively, one expects to find a real Euclidean section for a

black ring solution. However it was shown in [13, 30] that the situation is more subtle:

there is no real non-singular Euclidean section in this case. Nevertheless, as argued

in [27], these configurations still can be described by a complex geometry and a real

action5.

As in [13], we adopt the ‘quasi-Euclidean’ method of [27] in which the Wick trans-

formations affect the intensive variables, such as the lapse and shift (N → −iN and

Nk → −iNk), but for which the extensive variables (such as energy) remain invari-

ant. It is worth mentioning that the Cauchy data and the equations of motion remain

invariant under this complexification.

Now, let us recapitulate the general formalism from [26, 27]. We begin with the

standard ADM-decomposition: first, select an arbitrary foliation of spacetime by spec-

ifying the lapse function N and the shift vector Na. Defining γij to be the induced

metric on the spacelike hypersurfaces of constant time, the full spacetime metric is

given by:

ds2 = gµν dx
µdxν = −N2 dt2 + γij (dxi +N i dt)(dyj +N j dt) . (2.8)

5This method was also used in [29].
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Next we choose initial values for the tensor fields γij and Kij , where Kij is the extrinsic

curvature of the spacelike hypersurfaces. The initial values must be solutions of the

constraint equations and so the choice is not entirely arbitrary. Then, the appropriate

complexification that preserves the constraints and the dynamical equations of motion

of stationary spacetimes is given by replacing N with −iN and also changing the shift

vector N i and the gauge potential A0 from real to imaginary. The complex Euclidean

metric becomes

ds2 = N2 dτ 2 + γij (dy
i − i N i dτ)(dyj − i N j dτ) . (2.9)

The key point is that the energy, angular momentum, and electric charge are defined

by surface integrals of the Cauchy data and so they remain real with their physical

values.

Armed with this formalism, we will be able to investigate the thermodynamics of

black rings. To check consistency, we shall also apply this method to other examples.

2.3 Temperature and angular velocity

An asymptotically flat spacetime is stationary if and only if there exists a Killing vector

field, ξ, that is timelike near spatial infinity — it can be normalized such that ξ2 → −1.

It has been shown that stationarity implies axisymmetry [31] and so the event horizon

is a Killing horizon.

The general stationary metric6 with an ‘axial’ vector Killing, ∂
∂φ

, can be written

as

ds2 = gtt(~x)dt
2 + 2gtφ(~x)dt dx

φ + gij(~x)dx
i dxj . (2.10)

A stationary spacetime is static, at least near spatial infinity, if it is also invariant under

time-reversal (i.e., gtφ(~x) = 0).

We rewrite the metric (2.10) in the ADM form (2.8), and so we obtain:

N2 =
(gtφ)

2

gφφ
− gtt, Nφ =

gtφ
gφφ

, γij = gij. (2.11)

The shift vector evaluated at the horizon reproduces the angular velocity of the horizon:

Ωφ
H = − Nφ

∣

∣

H
= − gtφ

gφφ

∣

∣

∣

∣

H

. (2.12)

To compute the temperature, we should eliminate the conical singularity in the (τ, r)

sector. Let us define a new radial coordinate R =
√
N2. Thus we have dR =

6We use the conventions and compute the temperature and the angular velocity as in [32].
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1
2
(N2)−1/2(N2)′dr, and we get

ds2 = N2dτ 2 + grrdr
2 = grr

4N2

[(N2)′]2

[

dR2 +
[(N2)′]2R2

4N2grr
dτ 2

]

.

Hence, in the vicinity of r = rH , we see that R = 0 is like the origin of the polar

coordinates provided that we identify τ with period ∆τ given by

(N2)′

2
√

N2grr

∣

∣

∣

∣

∣

H

∆τ = 2π,

and so the temperature is

T =
1

∆τ
=

(N2)′

4π
√

N2grr

∣

∣

∣

∣

∣

H

. (2.13)

The lapse N and shift Nφare not dynamical quantities – they can be specified freely

and correspond to the arbitrary choice of coordinates. It is important to emphasize that

the lapse determines the slicing of spacetime and the choice of shift vector determines

the spatial coordinates.

Note that, with this foliation of spacetime, the black hole horizon is at N2 = 0.

3. Vacuum solutions

In this section we apply the counterterm method to five-dimensional vacuum solutions

of Einstein gravity. We explicitly show how to compute the action and the conserved

charges for the Myers-Perry black hole and for the black ring. By using the action

computed on the quasi-Euclidean section we also present a detailed analysis of the

thermodynamic stability in canonical and grand canonical ensembles.

3.1 The model

The existence of non-spherical horizon topologies in dimensions higher than four implies

that the notion of black hole uniqueness is very much weaker in higher dimensions. In

fact, the existence of a black ring with the same conserved charges as the black hole

is a counterexample to a straightforward extension of the 4-dimensional black hole

uniqueness theorems.

We start by discussing the spinning vacuum solutions of Einstein field equations:

the black hole [23] and the black ring [24] — a detailed discussion of black ring physics

can be found in [25].
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Using the conventions in [33] we can write a general line element representing both

solutions as follows

ds2 = −F (x)

F (y)

(

dt+R
√
λ ν (1 + y) dψ

)2

(3.1)

+
R2

(x− y)2

[

−F (x)

(

G(y) dψ2 +
F (y)

G(y)
dy2

)

+ F (y)2

(

dx2

G(x)
+
G(x)

F (x)
dφ2

)]

with

F (ξ) = 1 − λξ , G(ξ) = (1 − ξ2)(1 − νξ) . (3.2)

R, λ and ν are parameters whose appropriate combinations give the mass and angular

momentum.

The variables x and y take values in

−1 ≤ x ≤ 1 , −∞ < y ≤ −1 , λ−1 < y <∞ . (3.3)

As shown in [33], in order to balance forces in the ring one must identify ψ and φ with

equal period

∆φ = ∆ψ =
4π
√

F (−1)

|G′(−1)| =
2π

√
1 + λ

1 + ν
. (3.4)

This eliminates the conical singularities at the fixed-point sets y = −1 and x = −1 of

the Killing vectors ∂ψ and ∂φ, respectively.

However there still is the possibility of conical singularities at x = +1. These can

be avoided in either of two ways. Fixing

λ = λc ≡
2ν

1 + ν2
(black ring) (3.5)

makes the circular orbits of ∂φ close off smoothly also at x = +1. Then (x, φ)

parametrize a two-sphere, ψ parametrizes a circle, and the solution describes a black

ring. Alternatively, if we set

λ = 1 (black hole) (3.6)

then the orbits of ∂φ do not close at x = +1. Then (x, φ, ψ) parametrize an S3 at

constant t, y. The solution is the same as the spherical black hole of [23] with a single

rotation parameter. Both for black holes and black rings, |y| = ∞ is an ergosurface,

y = 1/ν is the event horizon, and the inner, spacelike singularity is reached as y → λ−1

from above.
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The parameters ν and λ have the range

0 ≤ ν < λ < 1 . (3.7)

As ν → 0 we recover a non-rotating black hole, or a very thin black ring. At the opposite

limit, ν → 1, both the black hole and the black ring get flattened along the plane of

rotation, and at ν = 1 approach the same solution with a naked ring singularity.

Asymptotic spatial infinity is reached as x → y → −1.

3.2 Boundary stress-tensor and conserved charges

To evaluate asymptotic expressions at spacelike infinity, it is convenient to introduce

coordinates in which the asymptotic flatness of the solutions becomes manifest. Our

choice for this transformation is

x = 1 − 2α2 r2

α2 r2 +R2 cos2 θ
, y = 1 − 2(α2 r2 +R2)

α2 r2 +R2 cos2 θ
, α =

√
1 + ν

(1 + λ)
, (3.8)

r corresponding to a normal coordinate on the boundary, 0 ≤ r <∞, 0 ≤ θ ≤ π/2. In

this coordinates, the black ring approaches asymptotically the Minkowski background

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dψ2 + cos2 θ dφ2) , (3.9)

where φ and ψ are angular coordinates rescaled according to (3.4).

The mass and angular momentum can be computed by employing the quasilocal

formalism and we obtain from eq. (2.3) the following relevant boundary stress-tensor

components:

τtt =
1

8πG

(

−3R2λ(1 + λ)

1 + ν

1

r3
+ F0

cos 2θ

r3
+ O(1/r5)

)

,

τtψ ≡ τψt =
1

8πG

(

−4R3
√
λν(1 + λ)5/2

(1 + ν)2

sin2 θ

r3
+ O(1/r5)

)

, (3.10)

where

F0 = −R
2(1 + λ)(5 + 13ν − 17λ− 9νλ)

3(1 + ν)2
. (3.11)

Thus, the mass and angular momentum of this solution are

M =
3πR2

4G

λ(λ+ 1)

1 + ν
, J =

πR3

2G

√
λν(λ+ 1)5/2

(1 + ν)2
, (3.12)

As expected, the mass and angular momentum computed from the boundary stress

tensor according to (2.5) agree with the standard ADM expressions [24].
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3.3 Pseudo-Euclidean section and thermodynamic stability

As discussed in Section 2.2, the analytic continuation t → −iτ leads to a complex

Euclidean metric. After performing this action on the line-element (3.1), the lapse

function is

N2 =
F (x)

F (y)

[

G(y)F (y)

λν(1 + y)2(x− y)2 −G(y)F (y)

]

, (3.13)

and the shift vector is

Nψ =
1

R

√
λν(1 + y)(x− y)2

λν(1 + y)2(x− y)2 −G(y)F (y)
. (3.14)

The angular velocity at the horizon reads

Ω =
1 + ν√
1 + λ

Ωψ
H =

1

R

√

ν

λ(1 + λ)
, (3.15)

where Ωψ
H is obtained from eq. (2.12). Using the results in Section 2.3 it is straightfor-

ward to prove that the temperature and the horizon area are given by

A = 8π2R3λ
1/2(1 + λ)(λ− ν)3/2

(1 + ν)2(1 − ν)
, T =

1

4πR

1 − ν

λ1/2(λ− ν)1/2
. (3.16)

Now, we would like to compute the renormalized action that is related to the free

energy of the system. The scalar curvature R vanishes so only the surface terms give

a contribution to the action. To evaluate these terms, it is convenient to use the (r, θ)

coordinate system. One finds that

lim
r→∞

√
−h
(

√

3

2
R−K

)

=
R2(1 + λ)(λ(1 + ν) − 4(λ+ ν + 2λν) cos 2θ) sin 2θ

2(1 + ν)2
+ O(1/r2) ,

which is finite. The expression for the total action is

I =
π2R3

G

λ3/2(1 + λ)(λ− ν)1/2

(1 − ν2)
. (3.17)

It can be verified that

I = β(M − ΩJ) − A
4G

, (3.18)

with M, Ω, J and AH given above, while β = 1/T . Therefore the entropy of this

solution is the event horizon area divided by 4G, as expected. Also, the first law of

thermodynamics, dM = T dS + Ω dJ , is satisfied.
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To study the phase structure and stability of black objects we must analyze the

potentials and the response functions in different thermodynamic ensembles. We

will briefly describe the potentials, response functions, and stability conditions in the

canonical and grand-canonical ensembles. Previous related studies can be found in

[13, 30, 36].

In the grand-canonical ensemble (i.e. for fixed temperature, angular velocity, and

gauge potential), by using the definition of the Gibbs potential G[T,Ω] = I/β and the

expression for the angular velocity we obtain

G[T,Ω] = M − Ω J − TS, (3.19)

As expected, G[T,Ω] is indeed the Legendre transform of the energy M [S, J ] with re-

spect to S, J — the Legendre transform simply exchanges the role of the variables

associated with the control and response of the system. A detailed discussion of ther-

modynamic stability in different ensembles is given in [35] (we respect the conventions

in this book) — a nice review of different methods in the context of black hole objects

is given in [36].

The physical implication of the stability conditions is that they constrain the re-

sponse functions of the system. In analogy with the definitions for thermal expansion

in the liquid-gas systems, the specific heat at constant angular velocity, the isother-

mal compressibility, and the coefficient of thermal expansion at the horizon are defined

respectively as follows

CΩ = T

(

∂S

∂T

)

Ω

= −T
(

∂2G
∂T 2

)

Ω

, ǫT =

(

∂J

∂Ω

)

T

, α =

(

∂J

∂T

)

Ω

. (3.20)

The conditions for the stability of a thermodynamic configuration in the grand canonical

ensemble are

CΩ > 0 , ǫT > 0 , (3.21)

as well as

CΩ ǫT − α2 T > 0 . (3.22)

On the other hand, when considering a canonical ensemble, the variables are the

temperature T and angular momenta J. The potential is the Helmholtz free energy

defined as

F [T, J ] = M − TS , (3.23)
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and the entropy is S = − (∂F/∂T )J . In this case, one finds the following expressions

for the response functions for the specific heat at constant angular momentum

CJ = T

(

∂S

∂T

)

J

= −T
(

∂2F

∂T 2

)

J

, (3.24)

and also the inverse of the isothermal compressibility and the coefficient of thermal

expansion defined for the grand canonical ensemble. The stability conditions in the

canonical ensemble have the same consequences on the constraints on the response

functions as in the grand-canonical ensemble. This is due to the equivalence between

the heat capacities, that follow from the mathematical relations derived from the basic

thermodynamic laws,

CJ = CΩ − T ǫ−1
T α2 , (3.25)

Using (3.22) one can easily obtain that CJ > 0.

3.3.1 Black hole

A regular black hole solution with one angular momentum corresponds to setting λ = 1

in (3.1). Thus, the Gibbs potential is given by

G[T,Ω] =
π

8GΩ2

(

1 +
4π2T 2

Ω2

)−1

, (3.26)

and the specific heat is

GΩ3CΩ =
π2x (1 − 3x2)

2 (1 + x2)3 , (3.27)

where x = 2πT/Ω. Thermodynamic stability, CΩ > 0, restricts T/Ω <
(

2π
√

3
)−1 ≃

0.092 which in turns implies ν > 3/5 ≃ 0.6. Although the solution is singular when

ν → 1, in the extremal limit the heat capacity tends to zero, CΩ → 0, as shown in

Fig.1.

The compressibility can be shown to be

GT 4 ǫT =
1 − 3x̄2

64π3 (1 + x̄2)3 , (3.28)

where x̄ = Ω/(2π T ). In Fig.1 we show the compressibility as a function of the angular

velocity for a fixed value of the temperature. Therefore, it is positive for (Ω/T ) >

2π/
√

3 ≃ 3.63 that corresponds to a constraint on the parameters of the solution so
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√
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2π
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4
ǫT

T

Ω

Figure 1: On the right, the heat capacity CΩ as a function of the temperature T (at a fixed

value of Ω) and on the left, the compressibility ǫT as a function of the angular velocity Ω (at a

fixed value of T ) of a five dimensional singly spinning black hole is shown. The heat capacity

is positive in the region where (T/Ω) <
(

2π
√

3
)−1 ≃ 0.092 (or equivalently for ν > 0.6) and

the compressibility is positively defined in the region where (T/Ω) >
√

3/(2π) ≃ 0.276 (or

for ν < 0.14) implying the instability of the black hole in the canonical and grand canonical

ensembles. The heat capacity tends to zero when approaching the singular extremal black

hole solution with T = 0.

that ν < 1/7 ≃ 0.14. As for the limit of Ω → 0 corresponding to Schwarzschild black

hole it is observed that the compressibility is positive.7

The response functions are positive for different values of the parameters implying

no region of the parameter space where both are simultaneously positive. Therefore, the

black hole is thermally unstable in both, the grand-canonical and canonical ensembles.

3.3.2 Black ring

We consider now the dynamical equilibrium condition λ = 2ν/(1+ν2) that corresponds

to a regular black ring with one angular momentum.

The Gibbs potential can be written as a function of the temperature and the angular

velocity as follows

G[T,Ω] =
π

4GΩ2

(

1 +

√

1 +
16π2T 2

Ω2

)−1

. (3.29)

7It is well known that the heat capacity for a Schwarzschild black hole is negative and so it heats

up as it radiates (it is not thermodynamically stable). However, since the compressibility is positive,

it is stable against perturbations in the angular velocity.
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Figure 2: Plot of the heat capacity CΩ as a function of the temperature T for a given

angular velocity (left) and the compressibility ǫT as a function of the angular velocity Ω for

a given temperature (right) for a singly spinning black ring. The black ring is unstable in

the canonical and grand canonical ensembles: the compressibility is always negative and the

heat capacity is only positive when T/Ω <

(

4π
√

2/
√

3

)−1

≃ 0.074. In the extremal limit

(T = 0) the heat capacity of the black ring is zero.

A straightforward computation leads to

GΩ3 CΩ =
π2x

(

1 +
√

1 + x2 − 2x2
√

1 + x2
)

(1 + x2)3/2 (1 +
√

1 + x2
)3 , (3.30)

where x = 4πT/Ω. It turns out that solutions with T/Ω <

(

4π
√

2/
√

3

)−1

≃ 0.074

are stable against thermal fluctuations, CΩ > 0. It is also important to note that in

the extremal limit where T → 0 or ν → 1 the heat capacity goes to zero as shown in

Fig. 2. This behavior for the heat capacity is expected and can be drawn from Nernst

theorem.

Similarly the compressibility can be computed

GT 4 ǫT = − 2 + 3x̄2

1024π3x̄3 (1 + x̄2)3/2
, (3.31)

where x̄ = Ω/(4πT ) and so, for any value of the parameters, it is always negative.

Therefore, the black ring is also thermodynamically unstable in the grand-canonical

and canonical ensembles.

4. Charged black objects

In this section we compute the stress tensor of charged 5-dimensional black objects.

In particular, we discuss the Reissner-Nordstrom black hole, a supersymmetric black
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ring solution, and black string solutions in Einstein-Maxwell-dilaton theories. We also

obtain the equilibrium condition for the black string solutions that are obtained as limit

of black rings in [14].

4.1 Reissner-Nordstrom black hole in five dimensions

As a warm-up exercise, we begin by analyzing the Reissner-Nordstrom black hole. The

static black hole solution of Einstein-Maxwell field equations has the following line

element

ds2 = −V (r) dt2 +
dr2

V (r)
+ r2 dΩ2

3 , (4.1)

where

V (r) = 1 − m

r2
+
q2

r4
. (4.2)

The parameters (m, q) are related to the mass and electric charge respectively. The

coordinates range between 0 ≤ θ < π/2 and 0 ≤ φ, ψ < π.

Using the counterterm method we find the relevant stress energy component

τtt =
1

8πG

(

−3

2

m

r3
+

(

9m2

8
+

3q2

2

)

1

r5
+ O(1/r7)

)

.

As expected, the charge contribution is subleading in the τtt component of the stress

tensor.

From (2.5) we can then calculate the conserved mass associated with the closed

surface Σ

M ≡
∮

Σ

d3y
√
σni τij ξ

j
t =

3m

8G
,

where the the normalized Killing vector associated with the mass is ξt = ∂t, matching

the ADM computation.

4.2 The supersymmetric black ring

This is the solution of the bosonic sector of five-dimensional minimal supergravity with

an action principle

I0 =
1

16πG

∫

M

d5x

(√
−g
(

R− F 2
)

− 8

3
√

3
F ∧ F ∧ A

)

− 1

8πG

∫

∂M
K
√
−h d4x,(4.3)
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and field equations

Rµν −
1

2
Rgµν = 2(FµσF

σ
ν − 1

4
gµνF

2), (4.4)

DµF
µν =

1

2
√

3
√−g

ǫνµσλτFµσFλτ , (4.5)

where F = dA.

The line element of the black ring solution is given by [37] (see also [25, 38, 39, 40])

ds2 = −f 2(dt+ ω)2 + f−1ds2
4 , (4.6)

with the flat space metric written in ring coordinates

ds2
4 =

R2

(x− y)2

[ dy2

y2 − 1
+ (y2 − 1)dψ2 +

dx2

1 − x2
+ (1 − x2)dφ2

]

. (4.7)

where

f−1 = 1 +
Q− q2

2R2
(x− y) − q2

4R2
(x2 − y2), ω = ωψdψ + ωφdφ , (4.8)

and

ωφ = − q

8R2
(1 − x2)

[

3Q− q2(3 + x+ y)
]

, (4.9)

ωψ =
3

2
q(1 + y) +

q

8R2
(1 − y2)

[

3Q− q2(3 + x+ y)
]

. (4.10)

The gauge potential is

A =

√
3

2

[

f (dt+ ω) − q

2
((1 + x) dφ+ (1 + y) dψ)

]

. (4.11)

The coordinates have ranges −1 ≤ x ≤ 1 and −∞ < y ≤ −1, and φ, ψ have period

2π. The black ring has an event horizon at y = −∞. Q and q are positive constants,

proportional to the net charge and to the dipole charge of the ring, respectively. The

electric charge relevant for thermodynamics is Q =
√

3Q/2.

The same counterterm approach can be used to compute the asymptotic conserved

charges. In this computation, it is convenient to use the (r, θ) coordinates, defined by
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(3.8) with α = 1. The relevant components of the boundary stress tensor are

τtt =
1

8πG

(

−3Q

r3
− 5

3
R2 cos 2θ

r3
+ O(1/r5)

)

,

τtφ =
1

8πG

(

−q(3Q− q2)
cos2 θ

r3
+ O(1/r5)

)

,

τtψ =
1

8πG

(

−q(6R2 + 3Q− q2)
sin2 θ

r3
+ O(1/r5)

)

,

τθθ =
1

8πG

(

2

3
R2 cos 2θ

r
+ O(1/r3)

)

, (4.12)

τφφ =
1

8πG

(

2

3
R2(1 + 2 cos 2θ)

cos2 θ

r
+ O(1/r3)

)

,

τψψ =
1

8πG

(

2

3
R2(−1 + 2 cos 2θ)

sin2 θ

r
+ O(1/r3)

)

.

Therefore, the mass and angular momentum as computed from the counterterms are

the same as the ADM values

M =
3πQ

4G
, Jϕ =

π

8G
q(3Q− q2), Jψ =

π

8G
q(6R2 + 3Q− q2) .

For this supersymmetric solution, the surface gravity and the angular velocities of

the event horizon vanish. Despite this, the horizon area is finite and depends on both

the global and dipole charges. We present more details on the role of the charges and

the thermodynamics of the supersymmetric black ring in the Discussion section.

4.3 Black string and balance condition

In this section we discuss the 5-dimensional charged boosted black string solutions in

Einstein-Maxwell-dilaton theory [14] by using the counterterm method. The action is

I =
1

16πG

∫

d5x
√
−g
(

R− 1

2
(∂φ)2 − 1

4
e−αφF 2

)

. (4.13)

It is convenient to express the dilaton coupling as in [14]

α2 =
4

N
− 4

3
, 0 < N ≤ 3 . (4.14)

We will obtain the relevant components of the stress tensor and discuss the balance

condition.8

8A more detailed discussion of the equilibrium condition for thin neutral black rings within the

quasilocal formalism and also the generalization to ‘fat’ black ring solutions was presented in [41].
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The solution, with the boost parameter σ and the event horizon r = r0, is

ds2 = − f̂

hN/3

(

dt− r0 sinh σ cosh σ

rf̂
dz

)2

+
f

hN/3f̂
dz2 + h2N/3

(

dr2

f
+ r2dΩ2

2

)

,(4.15)

where the (magnetic) charge is parametrized by γ.

The gauge potential and the dilaton for the magnetic9 solution are, respectively,

Aφ =
√
N r0 sinh γ cosh γ (1 + cos θ) , eφ = hNα/2 , (4.16)

and

f = 1 − r0
r
, f̂ = 1 − r0 cosh2 σ

r
, h = 1 +

r0 sinh2 γ

r
. (4.17)

The black string solutions that are obtained as limit of black rings should also

satisfy the equilibrium condition. The equilibrium condition is a constraint on the

parameters of the unbalanced ring solution (3.1) that is equivalent with the removing

of all conical singularities in the metric.

A nice physical interpretation was given in [14]: the absence of conical singularities

is equivalent with the equilibrium of the forces acting on the ring. A black ring can be

obtained by bending a boosted black string. Thus, the linear velocity along the string

becomes the angular velocity of the black ring. The equilibrium of centrifugal and

gravitational forces imposes a constraint on the radius of the ring R, the mass, and

the angular momentum. In this way one can see that, indeed, just two parameters are

independent in the solution of the neutral black ring.

Applying the same procedure as before we find that the relevant component of the

boundary stress tensor is

τzz =
1

8πG

(

r2
0

2

(

1 − sinh2 σ +N sinh2 γ
) 1

r2
+ O(1/r3)

)

. (4.18)

From a more general definition of Carter [42], in the absence of external forces

the equations of motion of brane-like objects obey Kρ
µνT

µν = 0, which implies the

component of the stress tensor in the z-direction (the pressure) vanishes Tzz = 0.

Thus, asymptotically, this equality (at first order) constrains the values of the boost

parameter with the charge (parameterized by γ) in the following manner

sinh2 σ = 1 +N sinh2 γ , (4.19)

9The expressions for the two-form potential and dilaton of the dual electric solutions are given in

[14].
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that is in agreement with the regularity constrains in [14] and the equilibrium condition

found in [43] for thin black rings.

By direct integration of the stress energy components the conserved charges, mass

and angular momentum, match exactly those from the ADM definition, namely

M =
π

8G
Rr0 cosh 2σ, J = − π

8G
R2r0 cosh σ sinh σ . (4.20)

5. Discussion

In this paper we systematically have applied the counterterm method for asymptotically

flat spacetimes to 5-dimensional black objects. In this way, we have derived various

thermodynamic relations for several stationary black objects.

We hope that our unified treatment of black holes, black rings, and black strings

with an emphasis on the role of the quasi-Euclidean section for thermodynamics is

useful to the reader.

On the Quasi-Euclidean method

The notion of asymptotic flatness of isolated systems is intimately related to the pos-

sibility of defining the total stress-energy tensor that characterizes the gravity system

[20]. It is well known that a spacetime is asymptotically flat if it is possible to attach to

its corresponding manifold a boundary in null directions (I) — since null rays reach (I)

for an infinite value of their affine parameter, this is called null infinity. Spatial infinity,

ι0 (the part of infinity that is reached along spacelike geodesics), is represented by one

point in the Penrose diagram of conformal compactification for Minkowski space.

It is important to emphasize that it is also possible to foliate the spacetime with

spacelike foliations: spacelike surfaces can be constructed that extend through null

infinity. Such surfaces are called hyperboidal as their asymptotic behaviour is similar to

standard hyperboloids in Minkowski spacetime. In this context, it is better to visualize

ι0 as the hyperboloid of spacelike directions (it is isometric to the unit 4-dimensional

de Sitter space).

From a physical point of view, ι0 can be interpreted as the place where an observer

ends up when shifted to larger and larger distances. However, for studying holography

in stationary flat spacetimes, it seems more natural to impose boundary conditions at

ι0 rather than I.10 Therefore, the renormalized ‘boundary’ stress tensor we used in

this paper is assigned to spatial infinity ι0 of asymptotically flat spacetimes.

10A nice discussion on the role of conformal boundary and boundary conditions for holography can

be found in [15].
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A key point is that one’s intuition about Euclidean sections does not apply to black

rings — there is no real non-singular Euclidean section in this case. Therefore, a black

ring should be described by a complex Euclidean geometry [27] and its associated real

action (‘thermodynamic action’).11

Consequently we employed the quasi-Euclidean method [6, 29], which was applied

to black rings for the first time in [13]. The properties of the black ring interior become

encoded in a set of conditions at the ‘bolt’ of the complex geometry. Thus, the partition

function computed as a functional integral is extremized by a certain stationary complex

black ring metric.

A natural question that arises is if the physical system described by this partition

function is a real Lorentzian black ring. The answer is yes, precisely because the stress

tensors for the complex black ring and for the related Lorentzian black ring coincide.

For example, in the zero loop approximation, the expectation value of energy from the

partition function will coincide with the energy of the complex black ring calculated

from the boundary stress-tensor; in turn, the latter characterizes the energy of the real

Lorentzian black ring.

Further support for using quasi-Euclidean instantons to construct gravitational

partition functions was given in [36]. In this work, the authors discuss the thermody-

namic instabilities of several spinning black objects in the grand-canonical ensemble.

They found that the partition functions of neutral spinning black holes and black rings

in flat spacetime possess negative modes at the perturbative level.

A central result in our work is the computation of the renormalized action (3.18)

on the quasi-Euclidean section. The black ring solutions have been shown to satisfy

the first law of black hole mechanics, thus suggesting that their entropy is one quarter

of the event horizon area. We have made this more precise by computing the grav-

itational action to check the quantum statistical relation as well as the first law of

thermodynamics. Our computation can be considered as an independent check that

the entropy/area relation applies also for the black rings.

On the thermodynamics

The thermodynamics of black rings in different ensembles has been previously pre-

sented in the literature [13, 30, 36]. For completeness, we also present a discussion of

thermodynamic stability within quasilocal formalism.

11A real Euclidean metric associated with the vacuum Kerr black hole was obtained by supple-

menting the analytic continuation t → −iτ by a further transformation in the moduli space of the

parameter space, J → iJ . However, as argued by some authors [27], the resulting metric has little to

do with the physical (Lorentzian) Kerr black hole.
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Four-dimensional black holes are highly constrained objects. That is, an isolated

electrovac black hole can be characterized, uniquely and completely, by just three macro-

scopic parameters: its mass, angular momentum, and charge. Thus, all multipole mo-

ments of the gravitational field are radiated away in the collapse to a black hole, except

the monopole and dipole moments [44] — they cannot be radiated away because the

graviton has spin 2.

There are no black objects with an electric dipole in four dimensions. The black

holes have ‘smooth’ horizons (there are no ripples or higher multipoles) and are clas-

sically stable. Moreover, for asymptotically flat solutions, the event horizons of non-

spherical topology are forbidden.

For vacuum Einstein gravity in more than four dimensions there is no uniqueness

since a richer range of regular black objects inhabit the space. These include not just

black holes [23] with spherical SD−2 horizon geometry, but also black rings [43] with

S1 × SD−3 and blackfolds [46] with topological, i.e. Sp+2 × SD−p−4 when p ≤ D − 7,

horizon geometries.

Many studies on the thermodynamics (some reviews [25, 48, 49, 50]), ergoregions

[47], and combinations of black objects leading to more sophisticated solutions [51]

uphold the exciting richness of black objects. And moreover, as we present here, new

insights into the thermodynamics remain to be unveiled. Perhaps because of the tight

contact with string theory, the most widely employed scheme to explore the thermo-

dynamics of black holes in five [24, 45] and higher space-time dimensions [43] seems to

be the microcanonical ensemble.

In this paper, to study the stability of five dimensional black holes, we have carried

out the thermodynamic analysis mainly in the canonical and grand canonical ensembles.

Not only the thermodynamic stability but also the phase structure depends on the

chosen ensemble.

Already in our case, of the canonical f vs t and grand canonical g vs t ensembles,

some significant differences can directly be noticed from the structure of these phase

diagrams12 for the black hole (dashed line) and the black ring (solid line) in Fig. 3.

The single phases, one for each, of the black hole and ring in the grand-canonical

ensemble contrast the three phases, two for the black hole and a single one for the

12We use (3.12), (3.15) and (3.16) for the black hole/ring to define dimensionless reduced quantities

for the plots. In the microcanonical ensemble, for a fixed value of the mass, the entropy is defined as

s = 3
√

3

8 π

S
√

G5 M3
and the angular momenta j = 27π

32 G5

J
2

M3 . In the grand canonical ensemble, for a fixed

value of the angular velocity, the Gibbs potential is defined as g = G5Ω
2G and the temperature as

t = T/Ω. In the canonical ensemble, for a fixed value of the temperature, the free energy is defined as

f = 32πG5 T 2 F and the angular momenta as j = 256π2G5J T 3. And in the diagram for the enthalpy,

for a fixed value of the mass, h = HM and the angular velocity as ω = 2
√

3π

√
G5M Ω.
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(a)

(b)

(c)

(d)

Figure 3: The phase diagrams of a singly spinning black hole (dashed) and a black ring

(solid) in different thermodynamic ensembles: (a) microcanonical, (b) enthalpy, (c) grand

canonical and (d) canonical.

black ring, of the canonical ensemble. The entropy S[M,Ω] = A/(4G) and the en-

thalpy, H [M,Ω] = M − Ω J are also shown for comparison. For a fixed mass, in the

microcanonical ensemble a swallowtail structure is found for the two black ring phases

with a single phase for the black hole. Leaving the mass fixed, yet a different structure

is found: for the h vs ω each of the single black hole and black ring phases join at a

maximum value of the angular velocity. The plots we present here are new although

the discussions comparing the different structures of the phase diagrams can also be

found in [30].

On the nature of charges

Another case where the classical uniqueness results do not apply is for gravity theories
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with scalar fields non-minimally coupled to gauge fields. Due to the non-minimal

coupling, a black hole solution in Einstein-Maxwell-dilaton gravity can carry also a

scalar charge and the first law gets modified [52].13

The scalar charge is not protected by a gauge symmetry and so it is not con-

served. Since it depends on the other conserved charges it does not represent, though,

a new quantum number associated with the black hole — this kind of charge is called

secondary hair. Furthermore, this charge is not localized and exists outside the horizon.

In Section 4 we studied a supersymmetric ring solution in minimal supergravity.

Since it is an extremal black object a computation of the action is not possible (the

periodicity of the ‘Euclidean time’ cannot be fixed). However, one can compute the

entropy by using the entropy function formalism for spinning extremal black holes [54].

Due to the attractor mechanism the entropy does not depend on scalar charges,

but it depends on both, the global charge and the dipole. Since the dipole is a non-

conserved charge, one may be tempted to make an analogy with the scalar charge.

However, there is an important difference: unlike the scalar charge, the dipole charge

is a localized charge. Thus, it can be measured by flux integrals on surfaces linked

to the black ring’s horizon [14] and has a microscopic interpretation (brane wrapping

contractible cycles of CY).

One important question emerges: what is the interpretation of the dipole within the

quasilocal formalism? In other words, can an asymptotic observer distinguish between

a black hole or a black ring with the same conserved charges? The answer is obviously

yes: analogous to an electric dipole whose moments can be read off from a multipole

expansion at infinity, the subleading terms in the boundary stress tensor should encode

the information necessarily to distinguish between black objects with different horizon

topologies in the bulk.14

There is, though, another subtlety we would like to discuss in detail now. Due

to the existence of the Chern-Simons interaction in the Lagrangian, the equation of

motion for the gauge field is modified. Therefore, the topological density of gauge field

itself becomes the source of electric charge. Consequently, even if it is conserved, the

usual Maxwell charge of a black ring seems to be diffusely distributed throughout the

spacetime. Thus, the ‘Maxwell charge’ in this case is gauge invariant and conserved

but not localized.

13However, this result should be taken with caution: in string theory the asymptotic values of the

moduli ‘label’ different ground states (vacua) of the theory and so it is necessarily an infinite amount

of energy to change the state of the system in this way — see [53] for a more detailed discussion.
14In the supersymmetric case, unlike the black ring, the black hole should have both angular mo-

menta equal. Therefore, an asymptotic observer has to compare just the angular momenta to find out

what is in the bulk.
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The resolution of this problem was provided in [55, 56]: the correct charges that

appear in the entropy are the ‘Page charges’. These charges are conserved and localized

but not gauge invariant (see [57, 58] for a discussion of different kinds of charges). It

was shown in [55] that once the entropy function is expressed in terms of these physical

5-dimensional charges it becomes manifestly gauge invariant (due to a spectral flow

symmetry of the theory).

The near horizon geometry of a black hole should capture the complete information

about its microscopic degeneracy. However, if a black hole does have ‘hair’ (degrees of

freedom living outside the horizon), there are subtle distinctions between the asymp-

totic charges and the charges entering in the CFT [59].

In the case of the susy black ring, one angular momentum is generated by degrees

of freedom living outside the horizon in the form of crossed electric and magnetic

supergravity fields [38, 60].

However, for the supersymmetric black ring the microscopic angular momentum

density is not equal to the angular momentum at infinity. Interestingly enough, the

‘Page’ angular momentum [56] is in fact the intrinsic angular momentum of the susy

black ring and our arguments support the point of view in [61].

While our discussion has focussed on stationary solutions, it will be interesting to inves-

tigate whether similar methods can be useful as well for studying the time-dependent

backgrounds given in [62]. These solutions are obtained by a simple analytic continu-

ation of a black hole geometry. At a first look, it seems that the stress tensor of these

time dependent solutions should be somehow related to the stress tensor of the ‘seed’

black hole solution. However, this case is more subtle since the energy-momentum

carried away by gravitational radiation is associated to null infinity.

Finally, we want to mention that the counterterm method can be also useful in

investigating the thermodynamics of the black rings obtained in [63] (e.g., [64]).
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