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Abstract—The study of first language acquisition still strongly
relies on behavioural methods to measure underlying linguistic
abilities. In the present paper, we closely examine and model one
such method, the headturn preference procedure (HPP), which
is widely used to measure infant speech segmentation and word
recognition abilities Our model takes real speech as input, and
only uses basic sensory processing and cognitive capabilities to
simulate observable behaviour. We show that the familiarity effect
found in many HPP experiments can be simulated without using
the phonetic and phonological skills necessary for segmenting
test sentences into words. The explicit modelling of the process
that converts the result of the cognitive processing of the test
sentences into observable behaviour uncovered two issues that
can lead to null-results in HPP studies. Our simulations show that
caution is needed in making inferences about underlying language
skills from behaviour in HPP experiments. The simulations also
generated questions that must be addressed in future HPP
studies.

I. INTRODUCTION

Experimental research into early first language acquisition

has blossomed over the past decades.

Most studies in this line of research use paradigms that rely

on behavioural responses. One example of a method to study

infant’s underlying linguistic abilities using overt behaviour

is the Headturn Preference Procedure (HPP) [6]. With this

method speech processing skills in pre-verbal infants as young

as 4 months can be investigated. The main application of the

HPP concerns investigations into infant segmentation and word

recognition skills. The work by Jusczyk and Aslin [6] serves

as seminal study. The authors showed in HPP experiments

that 7.5-month-olds can memorise recurrent acoustic patterns

(words spoken in isolation or embedded in short paragraphs)

and are subsequently able to recognise these patterns despite

the fact that they are now presented in a different context

(isolated words are now embedded in short paragraphs or vice

versa).

The change between isolated words and sentences intro-

duces variation in the acoustic signal that the infant is able to

cope with. Even within speakers pronunciations of the same

word vary, more so when these words are spoken in different

contexts and in isolation. But the amount of variability that

infants tolerate is limited: if the words are mispronounced

(e.g., ‘cut’ instead of ‘cup’), infants treat these words as if they

were not familiarised [6]. Yet, there is no evidence that infants

at 7.5 months have acquired a phonological system that can

support the detection of language-specific sound contrasts [7].

This is evidenced by findings that changing speaker identity

or voice quality between familiarisation and test leads to

infant behaviour that does not distinguish between familiar

and unfamiliar words [4], [9].

However, it has to be noted that infant studies only can

observe preference and that conclusions about abilities have to

be made with caution. As an example serves the work by van

Heugten and Johnson [12], who found that infants of the same

age range as in previous studies could recognise familiarised

words regardless of speaker change. This finding demonstrates

that the HPP is still not fully understood and the knowledge

about the processes it taps into is limited.

A. The Headturn Preference Procedure

HPP studies are usually split into two parts, where first the

infant is presented with a familiarisation stimulus for a pre-

determined amount of time. Jusczyk and Aslin [6] presented

several tokens of two words (out of four, counterbalanced

across infants) in the form of alternating lists for 30s per word

to ensure that the infants have become sufficiently familiar

with each word. In the subsequent test phase sentences con-

taining either a familiarised or a novel word were presented.

Using the HPP, Jusczyk and Aslin [6] found that 7.5-month-

olds tend to listen longer to sentences that contain familiarised

words. This is interpreted as the ability of the infants to

segment, store, and compare word tokens, even when they

are embedded in continuous speech.

The HPP measures listening times via a behavioural re-

sponse, the eponymous headturns. To this end, the infant is

placed in a booth where lamps are installed to the left and

right of the infant’s position. An additional centre lamp attracts

the infant’s attention at the beginning of each trial. When the

infant’s head is directed towards this centre lamp, one of the

side lamps begins to flash. As soon as the infant turns the

head towards the flashing side lamp with a sufficient angle,

speech is presented from the corresponding side. While the

head remains turned towards this lamp, the sound continues

to play until a trial is finished. Trials can also end early when

the infant’s head was turned away from the lamp for at least

two consecutive seconds (turning away for a shorter time is

measured, but does not end the trial). Thus, the headturn is

both an on-line control during the experiment that can end a

trial and it is the dependent response. A neutral experimenter

monitors the head-direction on-line based on visual inspection

of a live video feed.



B. Goals

Our model of HPP experiments has two goals. First, by

formalising the procedure and implementing these processes

computationally we aim to uncover and evaluate explicit and

implicit assumptions that play a role in HPP studies. Second,

we aim to explain the underlying cognitive processes that

generate the behaviour usually observed in HPP studies.

Linking overt behaviour in HPP experiments to underlying

cognitive processes requires a number of strong assumptions.

First, it is assumed that the amount of time during which

the infants’ head is turned toward a flashing light can be

taken as a measure of interest based on processing of the

acoustic stimuli. Our model is also based on this assumption.

A second, perhaps even stronger, assumption is that longer lis-

tening times for the familiarised words are evidence that these

words are segmented from the sentences and subsequently

‘recognised’. Our model does not require this assumption. On

the operational side, it is assumed that on-line decisions of an

experimenter are unlikely to affect the overall outcome of an

experiment, and that differences between experimenters are

small and systematic, ensuring comparability across coding

protocols and therefore between research groups and studies.

To maximise the explanatory power of the model we abstain

from using knowledge or skills that 7.5-month-olds may not

yet have acquired. Specifically, we assume that infants do not

decode and memorise speech in the form of sequences of

phonemes or similar ‘abstract’ discrete units [7], [9]. Rather,

we follow the proposition that there are episodic represen-

tations at play [3]. The input to the model consists of real

speech. The only meta-level information given is utterance

start and end (c.f. [5] for a similar proposal regarding infant

speech processing). The model’s output allows for analysis of

the continuous behaviour over time and of summed listening

times, the latter being the basic unit of analysis in HPP studies.

Thus, our model makes it possible to investigate the ar-

chitecture of the speech processing mechanism, including the

memory and the matching procedure. At the same time the

model makes the relation between internal processes and overt

behaviour explicit. In this paper we focus on a number of

technical and computational aspects of the model that we are

developing. We will interpret the results of simulation experi-

ments in terms of consequences for the cognitive interpretation

of behavioural HPP experiments as well as in terms of the

execution of those experiments.

II. THE MODEL

The flow of information in the model is depicted in Fig. 1.

Below, all components of the model are explained in detail.

A. Acoustic Preprocessing

Discovering that a novel stimulus is similar to previous ex-

perience requires some mechanism to store ‘old’ information

(at least for the duration of the experiment) and to compare

stored and new stimuli. This capability must be implemented

without taking recourse to phonetic or linguistic knowledge

that the infants in the experiments have not yet acquired [7].

Fig. 1: The Headturn Preference Procedure model, with pro-

cessing stages and flow of information from top (external

input) to bottom (overt behaviour in an experimental setting).

We are following the assumption that the auditory system

of 7.5-month-olds is very similar to the adult auditory sys-

tem [10]. Short-time Mel-frequency spectra and their first and

second order time derivatives can thus be seen as a useful

analogue to human acoustic processing. We used a window

length of 20ms with a frame shift of 10ms. 30 Mel-filter

coefficients were transformed into 12 cepstral coefficients and

log-energy. We assume that the infant auditory processing

system makes it possible to estimate similarities between

short-time spectral representations. This justifies the use of k-

means clustering to build three code books with 250, 250 and

100 labels for the static cepstral coefficients and their first and

second-order time derivatives, respectively, which represent

short acoustic events.

Methods for measuring similarity between stimuli usually

require a representation of the input as equally long vectors.

Therefore, we need to find a way of representing spoken

utterances of variable duration in a fixed-length format. For

this purpose, we borrow an idea from text processing, where

texts are represented as the number of times words from

some index occur. This turns arbitrary texts into vectors the

length of the index. While it is evident that representing the

works of Shakespeare as a list of words and the number of

times they occur destroys the artistic value, it is very difficult

to find higher-level structural information that improves text

processing performance significantly beyond what can be



obtained with such a bag-of-words representation [15].

We use a similar approach to convert arbitrary length

utterances into fixed-length known vectors by means of the

histogram of acoustic co-occurrences (HAC) [13]. A HAC

vector for an utterance is created by counting the number of

occurrences of all individual acoustic events and the number

of times that these acoustic events co-occur (reminiscent of

bigrams in text processing) as a means for covering the most

salient aspects of the temporal structure in the speech signals.

We used pairs of events that are separated by 2 frames (20ms

lag), and by 5 frames (50ms lag). HAC vectors can be built

without using language-specific phonetic knowledge.

Despite the general cognitive plausibility of the procedures

used to create HAC representations, the practical implemen-

tation of the procedure cannot claim neural or cognitive

plausibility, and all details are open to discussion [2]. As with

text comprehension, for which the order of the words does

matter in certain conditions, more mature representations of

the speech signal will need to go beyond HAC encoding.

B. Internal Memory

Using the HAC encoding of individual utterances, we cre-

ated an internal memory that represents what an infant brings

to the task in an HPP experiment. In the present model, the

internal memory consists of two parts. First, to model that

infants have been exposed to the ambient language, we store

HAC-coded utterances randomly selected from a corpus of

infant-directed speech [1]. The second part contains several

HAC-coded tokens of the two words spoken in isolation with

which the infants were familiarised. In addition, one vector

encoding silence was added which can be interpreted as a

non-linguistic noise-filter.

C. Internal Recognition: Non-negative Matrix Factorisation

If we assume some form of episodic memory, we need a

cognitively plausible method for matching new stimuli with

the contents of that memory. We expect that all stored episodes

are activated to some degree and the amount of activation

denotes how well each episode matches with the new input. To

avoid pair-wise comparisons of the input against all episodes,

we chose a machine-learning procedure that considers all

content of the memory simultaneously.

Non-negative Matrix Factorisation (NMF) [8] is a computa-

tional approach by which a new token is interpreted in terms

of stored representations. It is based on the assumption that

new input can be ‘reconstructed’ as a positive weighted sum

of previous experience. Interestingly, NMF can be phrased

in the same terms as activation and inhibition in neural

networks [14], which helps to underpin the claim that NMF

does not violate known restrictions on cognitive processing.

The variant of NMF used in the present paper minimises

the Kullback-Leibler divergence between the HAC vector of

a novel stimulus and the internal memory representing past

experience. During the HPP test the model’s internal memory

does not adapt to new inputs. While this is not entirely

plausible, it simplifies interpretation of the following steps.

D. From Discrete Scores to Continuous Behaviour

NMF decoding of an unknown utterance results in a vector

with positive weights for all episodes in the memory. The

weights are normalised to sum to one to allow comparisons

between the decoding of different utterances (this bears no

relation to probabilities; any constant would be appropriate).

To convert these weights into overt behaviour, we first define

a process to obtain a familiarity score for each test sentence,

which is subsequently turned into a continuous function con-

trolling overt behaviour.

1) Familiarity Score: We devised two processes to obtain

a measure of familiarity based on the normalised weights that

are returned by NMF. Each process implies slightly different

cognitive operations and representations.

The Max approach takes the maximum across all episode

activations corresponding to the familiarised words as the

familiarity score. Thus, the familiarity score is solely deter-

mined by the best matching episode, irrespective of the word

it corresponds to.

In the Words process the stored episodes are first grouped

according to the two familiarised words. The measure of

familiarity of each word is calculated as the sum of the

weights of its corresponding episodes. The output is the

familiarity score of the word that is activated most. This

approach assumes that the infant realises that two different

words are presented during the familiarisation and that all

stored episodes for both words are used during test. Thus,

the Words process postulates an additional internal operation,

both during familiarisation and during recognition in the test

phase that involves grouping stored information according to

the words present in the experiment.

2) Continuous Behaviour: In HPP studies, the headturns

of an infant are measured as an overt sign of underlying

attention to the speech stimuli. In this section we describe

how internal recognition and familiarity can be transformed

into observable, attention-driven behaviour. We assume that

the familiarity score, based on the weights of episodes, is

congruent with attention.

To compute the time during which the infant pays attention

to the test stimuli we need to convert the discrete-time famil-

iarity scores into a continuous function. Since we assume that

the familiarity score is available immediately after the end of

the utterance and we know the duration of all utterances, the

discrete familiarity values can be converted to Dirac δ pulses

with an amplitude equal to the familiarity score, separated

by the duration of the utterances. The sequence of δ pulses

is converted into a continuous attention function by applying

an exponential decay. This is based on the finding that the

exponential function appeared to be a very good choice to

model memory effects in delayed retrieval tasks [11].

The exponential decay function is familiarity(t) = e−αt

in which α is a (positive) parameter specifying the decay

rate and t denotes time. This exponentially decaying attention

function can be interpreted as the degree of headturn. While

the function value is high, we assume that the infant’s head



Fig. 2: Exemplar attention function, after applying exponential

decay with α = 0.3 on a sequence of δ spikes. The attention

at t = 0 reflects the initial interest at the start of the trial. The

horizontal line represents a threshold with θ = 0.42.

is turned towards the flashing light. As the attention value

decreases, the head is gradually turned away from the lamp.

E. Modelling Headturns in an Experimental Setting

During the HPP procedure, the experimenter interprets the

angle of the head relative to the center and side lamps in

terms of discrete states. When the head is turned too far

away for more than two consecutive seconds, the experimenter

ends the trial. In addition, the time spent with the head

turned towards the lamp is measured as the dependent variable

in HPP studies. However, in the usual HPP setting it is

difficult to exactly measure degree of headturn. There are

usually a number of situations in infant experiments where

different decisions are possible regarding what can be counted

toward the total listening time. While these decisions are often

consistent within experimenters, there is little documentation

and exchange regarding this topic across different labs.

In the model, the experimenter’s decisions are implemented

as a Finite State Machine (FSM). The FSM takes the contin-

uous attention function as input and calculates the listening

time (for each ‘paragraph’). To that end, the FSM uses a

threshold θ. If attention values exceed θ, the head is turned

in the direction of the flashing light. As soon as the attention

level drops below θ, it is assumed that the infant is no longer

listening, as indicated by an angle of the headturn that is too far

away from the lamp. If attention stays below θ for more than

two consecutive seconds, the trial is terminated (analogous to

infant HPP).

An additional parameter is used which models the start

attention level. It can be conceptualised as the degree of

interest in the flashing lamp. At t = 0 this value must exceed

θ, since a trial only starts when the infant’s head is turned

towards the lamp. Since we cannot know the absolute value

of the initial attention, this parameter is defined in relative

terms as ρ+ θ, with ρ ≥ 0.

III. EXPERIMENT: PARAMETER INVESTIGATION

We performed a large number of simulations to investigate

whether there is a range of values of the parameters ρ, θ and

α for which a robust difference in listening times between

sentences with familiar or novel words can be established.

Note that the amplitude of the δ pulses that represent the

familiarity value have a maximum value of 1, which only

occurs in the unlikely case that a test sentence would result

in a HAC vector that is exactly equal to the HAC vector

corresponding to one of the tokens of a familiarised word (see

Sec. II-D). The ranges for the free parameters were chosen

between 0 and some positive maximum value. For θ, which

represents the threshold used by the experimenter to decide

whether the degree of headturn towards the side lamp is

sufficient, the maximum value was set to 2. The larger θ is, the

shorter the time during which the experimenter considers the

infant to be listening. The maximum value for α was set to .5.
Larger values of α correspond to faster decay of attention and

thus headturns that suffice to show attention. ρ can take on

values up to .9; this parameter acts as a safety margin above

the threshold θ. In addition, we investigated whether the two

different methods for generating familiarity scores Max and

Words lead to different results in terms of the values for the

three parameters.

A. Material

For each familiarised word stored in memory, we used

five different pronunciations of monosyllabic words spoken

by a female native speaker of English and recorded in a

virtually noise-free environment [1]. The words chosen as

familiarisation stimuli were either frog and doll (words 1, 2)

or duck and ball (words 3, 4). We randomly selected 24 short

sentences for each of these words in variable contexts from the

same corpus and spoken by the same speaker as test sentences.

These test sentences contained all four words and could thus be

used in both familiarisation conditions, as novel or as familiar

stimuli, respectively.

In the simulations we used an internal memory comprising

of 111 slots, 10 containing tokens of the familiarised words,

100 containing sentences spoken by the same female speaker

that did not contain one of the four target words, and one

containing background noise. The 101 non-target slots were

identical in all simulations.

B. Results

1) Words versus Max: As a first step, we ensured that

the familiarity score can indeed differentiate between test

sentences containing either novel or familiar words. The

familiarity scores can be computed independent of the three

parameters α, θ and ρ, all of which affect the conversion of

the familiarity scores to listening times. Two familiarity scores

were computed for each test sentence, one with the tokens

of the word pair frog, doll in the memory and one with the

tokens of duck, ball. The scores were obtained with the Max

and Word methods for computing familiarity.



For the method Max, which uses the highest value of the

familiar word episodes, we found a mean familiarity value

µ = 0.066, and standard deviation σ = 0.04 for the familiar

condition, and µ = 0.055, σ = 0.03 for the novel words. The

familiarity scores are significantly different for familiar and

novel input, according to a Mann-Whitney-U test yielding U =
−453.0, p < 0.001. For the method Words, which requires

grouping of the episodes of the two familiar words, mean and

standard deviation are µ = 0.127, σ = 0.05 for the familiar

words and µ = 0.09, σ = 0.04 for the novel words. These

values are significantly different with U = −112.0, p < 0.001.
We did not further investigate possible differences according

to the specific words used, since the overall discrimination

ability between familiar and novel words was sufficient for

the aims and purposes of the present paper.

2) Behaviour-generating parameters: Since there is no

upfront difference between theMax andWord approaches, we

ran simulations with both to investigate the impact of the three

parameters. We did not find interesting differences between the

two approaches. Therefore, we will drop this distinction in the

analysis of the effect of the parameters α, θ and ρ.

As a means to compare how the model fares when repli-

cating HPP data, we use differences in listening times to test

passages containing either novel or familiar words. Longer

listening times for sentences containing familiarised words

indicate that the model behaviour reflects the familiarity pref-

erence found in [6].

To obtain a reliable measure of model performance, we

generated 30 test passages for each of the four words. To

this end, we randomly chose sets of 6 sentences out of the

24 available sentences per test word. The differences obtained

with the 30 test passages were averaged and form the basis

for the analysis of the impact of the three parameters α, θ and

ρ in the process that converts the familiarity scores into overt

behaviour.

In Fig. 3 an example of the model performance for different

values for α and θ for a fixed value ρ = 0.4 is depicted. The

black squares represent the average difference in listening time

between the familiarised and novel test conditions. The size of

these squares indicates the size of the difference: the larger a

square, the greater the listening time advantage for paragraphs

containing familiar words.

From Fig. 3 it can be seen that the model yields positive

differences in listening times across a wide range of param-

eter settings, but that the differences become smaller as the

parameter values are more extreme. It can be seen that at

high values of α, which correspond to short attention spans,

differences in familiarity scores only become apparent if a very

lenient criterion for head turn direction is used (low values of

θ). If the criterion for headturn direction is very strict (high

values of θ) even moderately long attention spans are no longer

enough to bring about the difference in familiarity scores in

overt behaviour.

Increasing the value of ρ leads to a wider range of values

of α and θ for which positive differences in listening time

are obtained (not depicted). When the initial value of the

Fig. 3: Listening time difference to familiar versus novel

stimuli across different parameters for attention α and headturn

threshold θ. The initial attention is .4 + θ.

familiarity function (θ + ρ) increases, steeper decays can be

tolerated before the value of the function drops below θ. As an

example, for ρ = 0 we obtain positive differences in listening

time for all 0 ≤ θ ≤ .2 and 0 ≤ α ≤ .04; for ρ = .9 the

corresponding values increase to 0 ≤ θ ≤ .6 and 0 ≤ α ≤ .2.

IV. DISCUSSION

In this paper we present a computational model that can

simulate the outcomes of experiments that use the Headturn

Preference Procedure (HPP) to investigate language skills

in infants. Importantly, the model makes no assumptions

about phonetic and phonological skills. The fact that we can

robustly simulate the results of HPP experiments enhances

the credibility of the HPP approach. At the same time it

calls into question the cognitive interpretations in terms of

word segmentation skills that are attached to the results of

experiments using the HPP. After all, positive differences in

listening times can be obtained within the model using only

very general perception and matching skills. This need for

caution is emphasised by the fact that the target behaviour

can be simulated without assuming that repeated tokens of

the same word are clustered to a unique representation of

that word. Furthermore, we use different conditions between

familiarisation and test, where words familiarised in isolation

have to be ‘recognised’ when they are embedded in running

speech. The model overcomes this obstacle despite the fact

that no explicit segmentation procedure is implemented. Two

assumptions are made within the model. First, auditory stimuli

can be stored in an episodic memory, where they are encoded

as a histogram of acoustic events and their co-occurrences.

Second, we assume a procedure for matching incoming new

to stored stimuli.

Our model includes an explicit account of the process that

converts the matching score to overt behaviour. Thus, we

uncovered two factors that can lead to null-results, despite

infants’ ability to treat familiar and unfamiliar stimuli differ-

ently. First, if infants are easily distracted leading to a short

attention span, modelled as decay with a large value of α, the

difference between internal processing of familiar and novel



stimuli can become invisible in the overt behaviour. Second,

our simulations drew attention to a possible experimenter

effect: if the experimenter is too critical in scoring the angle of

the headturn, (which in our simulations corresponds to a high

value of θ), possible differences in the internal processing of

familiar and novel stimuli can also become invisible in the

overt behaviour.

A. Future Work

The HPP model presented in this paper offers many op-

portunities for future investigation of specific aspects of the

procedure. The results reported here for one female speaker

of English need to be repeated with more speakers and more

languages. We are confident that this will confirm our findings.

As a next step, we envision a replication of experiments with

mispronunciations [6]. We plan to also replicate experiments

where speakers change between familiarisation and test [4],

[12]. These experiments might yield smaller ranges of the

parameters α, θ and ρ within which behavioural results can be

reproduced and will help unite seemingly conflicting results

across studies [4], [12].

The present model was designed to only produce familiarity

effects. However, there are a number of conceivable ways to

model the novelty preference that has been found in some

HPP studies [12]. The model will be able to shed light on

the factors that give rise to either a familiarity or a novelty

preference within one framework.

Another extension concerns the possibility that the infants’

internal representations change during an experiment. This can

be implemented in the model with additional processing and

learning steps that were omitted for simplicity in the present

paper.

Last but not least, our model makes specific predictions that

have to be tested in behavioural experiments. First, we will

examine how the individual experimenter factor, modelled as

θ, influences outcome. Second, we need to devise indepen-

dent methods for estimating the infant’s attention span, the

parameter α, and its effect on behaviour in HPP experiments.

V. CONCLUSION

We presented an end-to-end model that successfully sim-

ulates behaviours observed in experiments that use the HPP

to investigate language skills of pre-verbal infants. End-to-end

means that the input of the model is real speech, and the output

can be interpreted as observable behaviour, the headturn angle.

The HPP model demonstrates that the familiarity preference,

a behavioural pattern that is usually interpreted as an indication

that at 7.5 months infants are able to segment words from

continuous speech, can be simulated without assuming such

language skills. Our model shows that to exhibit this behaviour

it suffices that the model (or the infant) is able to form

uninterpreted episodic representations of spoken words and to

match new stimuli with stored representations of previously

heard stimuli.

Next to providing an explicit account of auditory processing

and matching procedures, we also examine the processes that

convert the result of the match into observable behaviour

(headturn) and the experimenter’s scoring of this behaviour.

We identify two issues that can lead to null-results despite the

fact that infants process familiarised stimuli in a different way

than new ones. The first issue concerns the attention span of

the infants: if that span is very short, potential differences

between the processing of the two types of stimuli will

not yield observably different behaviours. The second issue

concerns the potential measurement bias introduced by the

experimenter. This factor has implications for comparisons

between research groups and reproducibility of experiments.

The effects of these issues must be investigated in future HPP

experiments.

Future model research will simulate headturn behaviour in a

wider range of experiments. In addition, we plan to extend the

model in such a way that it can simulate a novelty effect, along

with the familiarity effect, both of which have been observed

in published HPP studies [4], [9], [12].
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