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Abstract: Interactions between functionally specialized brain regions are crucial for normal brain func-
tion. Magnetoencephalography (MEG) and electroencephalography (EEG) are techniques suited to cap-
ture these interactions, because they provide whole head measurements of brain activity in the millisec-
ond range. More than one sensor picks up the activity of an underlying source. This field spread
severely limits the utility of connectivity measures computed directly between sensor recordings. Con-
sequentially, neuronal interactions should be studied on the level of the reconstructed sources. This ar-
ticle reviews several methods that have been applied to investigate interactions between brain regions
in source space. We will mainly focus on the different measures used to quantify connectivity, and on
the different strategies adopted to identify regions of interest. Despite various successful accounts of
MEG and EEG source connectivity, caution with respect to the interpretation of the results is still war-
ranted. This is due to the fact that effects of field spread can never be completely abolished in source
space. However, in this very exciting and developing field of research this cautionary note should not
discourage researchers from further investigation into the connectivity between neuronal sources. Hum
Brain Mapp 30:1857-1865, 2009. ©2009 Wiley-Liss, Inc.
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INTRODUCTION

The goal of cognitive neuroscience is to understand how
the brain is able to perceive, to think, and to behave. These
processes rely on a coordinated interplay between various
specialized brain regions. With the aim of identifying areas
that subserve specific information processing tasks, the
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majority of neuroimaging studies have traditionally investi-
gated task-dependent changes in brain activity. The basic
model justifying the study of such region-specific changes in
activity is based on the concept of functional segregation
[Friston, 1994]. However, to increase our knowledge of how
the brain works, it does not suffice to study the activity and
function of brain regions in isolation. Brain function also
critically depends on functional integration, which relates to
the pattern of interactions between brain regions.
Electroencephalography (EEG) and magnetoencephalo-
graphy (MEG) are techniques that are ideally suited to
study activity of the human brain on the time scale of cog-
nitive processes. As these techniques provide measurements
of brain activity by covering the whole head with a high
number of sensors, they are increasingly used to study net-
works of interacting brain regions. The purpose of this mini-
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review is to highlight some exciting recent methodological
developments that enable researchers to study the interaction
between brain regions based on noninvasively obtained elec-
trophysiological measures of neuronal activity.

Interpretation of estimated connectivity from sensor
level recordings is not straightforward, as these recordings
are severely corrupted by effects of field spread. Source
localization methods are constantly being refined, and
offer the possibility of directly estimating the activity of
the neuronal sources generating the sensor level data,
attenuating the problem of field spread. In addition, neu-
roscientists have an ever increasing set of tools at their dis-
posal to quantify interactions between neuronal signals. In
this article, we will review different approaches that have
been adopted for source level connectivity analysis. Bear-
ing in mind that these approaches yield very promising
results, we would like to emphasize the frequently over-
looked issue that field spread is never completely abol-
ished in source space. In our opinion, this calls for extreme
caution in the interpretation of the results.

The structure of this review is as follows: first we will
discuss the problems related to field spread in the context
of connectivity analysis. Next, we will review the methods
that are commonly used to analyze connectivity in source
space; many different methods have been proposed, and
we made an attempt to structure the literature by grouping
the studies according to connectivity measures used. Fol-
lowing this, we will discuss the identification of regions of
interest (ROIs), which is a crucial step in most studies. Sub-
sequently, we will motivate the opinion that the interpreta-
tion of source level connectivity results should be done
with care due to remaining effects of field spread. We will
conclude this mini-review with an outlook with respect to
where we stand and what we should aim for in the future.

EFFECT OF FIELD SPREAD ON
CONNECTIVITY RESULTS

A central issue in the interpretation of EEG and MEG
data is the problem of field spread. Although it is a well-
known problem and described elsewhere [Nunez and
Srinivasan, 2006], it merits discussion in the context of con-
nectivity analysis because it severely confounds many con-
nectivity measures and therefore complicates the correct
interpretation of the results. In the following section, we
will briefly outline this problem in the context of connec-
tivity analysis, and describe two strategies that attempt to
diminish this problem: the analysis of experimental con-
trasts, and the use of connectivity measures that are less
sensitive to field spread.

Field spread leads to a wide-spread representation of
any source at the sensors (Fig. 1A). This has severe conse-
quences for the interpretability of connectivity measures
estimated between pairs or sensors. To illustrate this, we
simulated the activity of 10 temporally uncorrelated dipoles
(gaussian noise), with an orientation parallel to the axis
between the nasion and the midpoint of the interauricular

line, and that were randomly distributed on the cortical
sheet. Obviously, the orientations chosen are physiologi-
cally not meaningful, but are appropriate to demonstrate
the effect of field spread on connectivity analysis. We simu-
lated 100 s of data for a 248-channel 4D neuroimaging mag-
netometer system, by using a realistically shaped volume
conductor [Nolte, 2003] and uncorrelated sensor noise. Fig-
ure 1B shows the absolute value of the correlation coeffi-
cient between all MEG sensor pairs as a function of their
distance. Figure 1C shows the spatial topography of the
absolute value of the correlation coefficient with respect to
a reference sensor highlighted in white. These panels show
that even though the underlying source activities are tem-
porally uncorrelated, many sensor pairs show very high
values of correlation. Moreover, the topography of correla-
tion shows a distinct pattern with a spatially distant peak
of correlation. This could be erroneously identified as a sig-
nature of two brain regions interacting.

To reduce the interpretational difficulties caused by field
spread, one potential strategy could be to analyze changes
in connectivity caused by an experimental manipulation,
rather than the strength of the connectivity. The rationale
for using experimental contrasts in this context is based on
the assumption that the effects of field spread are identical
across the experimental conditions and therefore subtract
out. Unfortunately, these effects are highly dependent on
the amplitude of the underlying (noise) sources. As a con-
sequence, estimated modulations in connectivity do not nec-
essarily reflect modulations in actual connectivity between
relevant neuronal sources. This fact is illustrated in Figure 2.

The figure schematically shows four simplified scenar-
ios that give rise to identical modulations in estimated
connectivity, which are caused by completely different
changes in the underlying source configuration. Scenario
A shows how an actual increase in source connectivity
leads to an increase in estimated connectivity. However,
the other three scenarios show that an apparent increase
in connectivity (rightmost columns in the panels) can
have different causes as well. Scenario B shows that even
a single neuronal source that changes its amplitude can
cause an increase in estimated connectivity. In scenario
C, the signal-to-noise ratio changes due to a change in
the amplitude of the noise sources. Scenario D shows
that a decrease in connectivity between sources could
actually lead to an estimated increase in connectivity,
due to a concurrent increase in signal-to-noise ratio. The list
of scenarios shown in Figure 2 is not exhaustive, but serves
to illustrate that the interpretation of changes in estimated
connectivity is not straightforward. This is an important
point, and unless effects of field spread are completely sup-
pressed or accounted for, the correct interpretation of the
results of connectivity analysis is often ambiguous.

Field spread is an important motivation to perform the
connectivity analysis at the source level. In addition to
this, there are other important motivations to perform the
analysis on the source level. First of all, there is a more
direct indication of the anatomical location of the interacting
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Figure I.
The effects of field spread confound sensor level estimates of connectivity measures. (A) Sche-
matic representation of how the activity of a neuronal source is picked up by different sensors.
(B) The absolute value of the correlation coefficient between all pairs of measured signals as a
function of magnetometer distance. (C) Topographical representation of the correlation with
respect to a reference sensor (highlighted in white).

Connectivity T, 2 sources

1 source, amplitude

MNoise amplitude +

Source amplitude T, conn 4

Candition 1

At
souUrce SENsar

N
w

conn

ey
—~ W

NN

S

A

B

T~
-~

-

@ -
=

v

-

Condition 2

=
o
o

o

Ci

B

il -\--\--\"\1.

L. — W
| -

.C 2

e
-

(o]

g:ﬁl‘w

L

oo
Wil N F

o >w

ooele| | leeel

o

(=
@

T2

dedd | o

Figure 2.

An estimated increase in connectivity may have different causes.
The left column in each panel represents the sources, which are
arranged in three compartments. Each circle represents a source,
and these comprise the actual neural sources in the central
“brain” compartment, and the irrelevant noise sources in the
upper and lower compartments. The neural sources share a com-
mon component (a degree of connectivity), which is depicted as
the black part of the circles. The circles in the middle column
represent two sensor signals. Each of the sensors picks up a dif-
ferent mixture of the underlying sources. The partitioning of the
sensor signals represents the relative contributions of the respec-
tive sources. The size of the circles represents the amplitude of
the signal picked up at these sensors. The right column in each
panel represents in the total area of the partitioned circle the
degree of connectivity estimated between the two sensor signals.
This degree of connectivity results from the total area of overlap
between the colored partitions in the sensor signals. (Al, A2)
Modulation of estimated connectivity due to a change in connec-
tivity between neuronal sources of interest. The scenario Al
shows 4 sources (four circles in leftmost column). The different
colors represent different uncorrelated signal components. The
time series of the two sources in the middle contain a common
component that makes up a specific part of their individual signal.

Both sources are picked up by two sensors (circles in the middle
column). Because of the noise sources only part of the sensor
signals consists of signals of neural origin. This part is further sub-
divided into the different relative contributions of the two sour-
ces. Because of the fact that the upper sensor is closer to the
upper source than to the lower source, it “sees” more of the
upper source. Therefore, the yellow partition in the upper sen-
sor is bigger than the red partition. The black part of the sensor
signals represents the common component projected from the
sources and has in fact been “diluted” by the noise sources. The
degree of connectivity is derived by assessing the total overlap of
colored partitions between the two sensors. Thus, it consists of
the true common component picked up by the sensors (in black)
and of the overlap in the colored partitions. In scenario A2, the
common component in the activity of the neural sources is
increased. Despite the diluting effect of the noise sources, an
increase in the degree of connectivity can still be detected. (Bl,
B2) Modulation of estimated connectivity due to an increase in
amplitude of a single neuronal source. (Cl, C2) Modulation of
estimated connectivity due to a decrease in amplitude of noise
sources. (DI, D2) Modulation of estimated connectivity due to
an increase in amplitude of the neuronal sources of interest, with
a concurrent decrease of connectivity between them.
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brain regions. Second, source level analysis facilitates sub-
sequent group analysis because the data can be averaged
in a meaningful standardized space.

METHODS OF SOURCE CONNECTIVITY
ANALYSIS

In this section, we will review the main methods that
have been suggested for MEG source connectivity analysis.
Most methods essentially adopt a two-step procedure. First,
an estimate of the activity of the neuronal sources is
obtained by applying an inverse method (for a review, see
[Baillet et al., 2001]). Second, an analysis of connectivity is
performed, in which researchers usually restrict themselves
to a set of prespecified ROIs. A notable exception to this
two-step approach is Dynamic Causal Modelling (DCM),
which will be described in more detail below. It is beyond
the scope of this review to present in a comprehensive dis-
cussion the advantages and disadvantages of all connectiv-
ity measures and inverse methods, and we will restrict our-
selves to highlighting some applications of connectivity
measures in source space. We will first describe the most
commonly used connectivity measures and their applica-
tion in source connectivity studies, followed by an over-
view of the strategies employed to identify ROIs.

Connectivity Measures

One key distinction that is often made in connectivity
studies is that of functional versus effective connectivity
[Friston, 1994]. Measures of functional connectivity quan-
tify statistical dependencies between neuronal signals,
without explicitly addressing directed interactions. On the
other hand, measures of effective connectivity quantify
directed influence that one neuronal system exerts over
another. Another key distinction is that between time and
frequency domain measures of connectivity.

Measures of functional connectivity

Many source connectivity studies used coherence to
quantify oscillatory interdependencies between brain areas
[Gross et al., 2002; Hoechstetter et al., 2004; Pollok et al.,
2004, 2005; Timmermann et al., 2003]. Coherence is the fre-
quency domain analog of the cross-correlation coefficient,
and is usually computed using nonparametric spectral esti-
mation techniques, such as the Fourier transform, or a
wavelet transform. As such, coherence confounds the esti-
mated consistency of a fixed phase difference with the cor-
relation of the signals” amplitudes.

Amplitude effects can be disentangled from the consis-
tency of the phase difference by means of the phase lock-
ing value (PLV). This measure can be obtained by normal-
izing the complex-valued frequency domain single trial
values with respect to their amplitudes, prior to estimating
the interaction between the signals [Lachaux et al., 1999].
This phase synchronization analysis has been used in
source connectivity analysis to complement traditional co-

herence analysis [Jerbi et al., 2007; Kujala et al., 2007; Lin
et al., 2004]. Both coherence and PLV are symmetric meas-
ures and do not allow direct inference about directionality
of information flow between areas. However, time delays
can be estimated from the slope of the cross-spectral den-
sities between time series under favorable conditions [Hal-
liday et al., 1995; Nolte et al., 2008].

Mutual information is a time domain measure to study
linear and nonlinear dependencies between neuronal sour-
ces [loannides et al., 2000; Liu and Ioannides, 2006]. The
inverse method used in these studies was magnetic field
tomography [loannides et al., 1990]. ROIs were identified
from consistently activated areas across subjects. Time se-
ries of activation for each ROI were extracted and sub-
jected to mutual information analysis. Mutual information
was computed with a range of time lags between any pair
of ROI. Although mutual information is a symmetric mea-
sure, application to time-lagged signals can be useful to
give insight into directionality.

Measures of effective connectivity

Frequency-resolved estimates of directed interactions
between brain areas can be obtained from parametric spec-
tral estimators, using multivariate autoregressive models
(MVAR-models) [Schloegl and Supp, 2006]. After fitting
the MVAR-model to the time courses of the estimated
sources, directed interactions can be quantified by means
of the directed transfer function (DTF) [Kaminski and
Liang, 2005], or the partial directed coherence [Baccala and
Sameshima, 2001; Kaminski and Blinowska, 1991]. Essen-
tially, these connectivity measures are designed as fre-
quency domain analog of the concept of Granger causality
[Granger, 1969].

Granger causality analysis in source space has been per-
formed by several groups [Astolfi et al., 2004, 2005, Gow
et al., 2008; Kujala et al., 2007; Supp et al., 2007]. Astolfi
et al. [2004, 2005] used structural equation modeling (SEM)
in addition to DTF to infer effective connectivity from
simulated and recorded high-resolution EEG data. SEM
and DTF analyses were applied to time courses of activa-
tion for anatomically defined ROIs computed from mini-
mum norm solutions. The analysis was recently extended
to allow the computation of time-varying effective connec-
tivity using adaptive MVAR-models [Astolfi et al., 2008].

DCM is conceptually very different from the methods
discussed so far [David and Friston, 2003]. The key differ-
ence is that DCM aims to provide a biophysically plausible
generative model of the measured data. The generative
model specifies how input activates a system of prespeci-
fied interconnected neuronal populations, leading to the
measured signal. As such DCM does not explicitly com-
pute source waveforms separately, but provides an esti-
mate of coupling parameters and source parameters in a
single step [Kiebel et al., 2008]. In contrast with the two-
step procedures, DCM accounts for conditional dependen-
cies between coupling parameters and source reconstruc-
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tion parameters. DCM had originally been devised for the
analysis of evoked responses [Garrido et al., 2007]. Recent
developments have extended the functionality of this
promising technique to induced responses [Chen et al.,
2008] and steady-state responses [Moran et al., 2007].

Identification of Regions of Interest

Almost all methods for MEG source connectivity analysis
compute connectivity measures between every pair of a few
selected ROIs, or between a few ROIs and the rest of the
brain. The selection of ROIs obviously is a critical step as the
quality of the estimated time courses in the ROIs determine
the outcome of the connectivity analysis between them.
Therefore, incorrect specification of ROIs could lead to erro-
neous results. Several strategies have been suggested.

A priori selection

ROIs can be selected based on a priori knowledge of
their involvement in a given experimental task (e.g., from
previous functional imaging studies) [Astolfi et al., 2004,
2005; Babiloni et al., 2005; Gross et al.,, 2001; Lin et al.,
2004]. These areas can be identified in the individual ana-
tomical MRI or coordinates in Talairach-MNI space can be
transformed into individual coordinates. Another approach
has been used by Harle et al. [Hérle et al., 2004]. They
computed the minimum norm solution at 350 locations in
the brain for steady-state auditory responses. Connectivity
was quantified by means of coherence. Using a priori
selection, measures of connectivity can be computed
between all possible pairs of ROIs although the locations
may not be optimal or important regions may be missed.

Cortico-peripheral coherence

This approach uses an estimate of coherence between a
peripheral physiological signal and brain activity recon-
structed at a discretized grid. It allows the identification of
brain areas where the activity is modulated by rhythmic
processes in the peripheral signal. This strategy has suc-
cessfully been used for oscillatory components in move-
ments as recorded with electromyography and movement
tracking devices [Gross et al., 2001, 2002; Jerbi et al., 2007;
Lin et al.,, 2004; Pollok et al., 2004; Schnitzler and Gross,
2005; Schoffelen et al., 2008; Timmermann et al., 2003]. The
areas of maximum cortico-peripheral coherence can be
used as reference areas for the analysis of cerebro-cerebral
coupling. A prerequisite for this strategy is of course the
availability of a meaningful peripheral signal. Moreover,
as one study showed, even in the presence of an adequate
peripheral signal and a reliably identified reference area,
subsequent cerebro-cerebral coupling analysis does not
always yield the expected results [Schoffelen et al., 2008].

Sensor coherence

Gross et al. reported the use of coherence between all
sensor combinations for a MEG system with planar gradi-

ometers. Long-range coherences were identified and the
underlying generators were localized iteratively [Gross
et al., 2001]. Because of field spread outlined above, this
strategy is not expected to work reliably in most cases.

Power maps

Possibly, the most widely used strategy is a selection of
ROIs based on maps of neural activity. Brain areas show-
ing strongest activity in an experimental task or strongest
differences of activity between experimental conditions are
selected for further connectivity analysis.

This approach was applied by David et al. They used a
minimum norm estimate (MNE) to estimate the time
courses of the sources of unaveraged data [David et al.,
2002]. Significantly activated areas were then identified in
relation to surrogate data. An iterative procedure was
employed to reduce the number of active volume elements
(voxels). This final selection of voxels was subsequently sub-
jected to phase synchronization analysis. The technique has
later been adjusted for the analysis of multitrial experiments
[David et al., 2003]. A similar approach has been applied in
a study investigating visuo-motor coupling by Jerbi et al.
[2007]. Subjects were instructed to manipulate a trackball to
counter unpredictable rotations of a visually presented
cube. The MNE was obtained for each sample on unaver-
aged data using a cortically constrained reconstruction with
12,000 points. For each of the locations power, and coher-
ence and phase synchronization to trackball speed was com-
puted. Individual results were spatially normalized to MNI
space and corrected statistics were obtained from maximum
statistics of randomly permuted data. The approach resulted
in ROIs that were used as reference regions for cortico-corti-
cal coherence analysis. Selecting ROIs based on their activity
(or modulation of activity) alone may not be optimal, since
weakly activated or modulated brain areas could be missed
even if they are strongly interacting with other areas.

Coherence-based methods

Kujala et al. suggested a technique that identifies highly
connected areas by computing the connection density
throughout the brain [Kujala et al., 2007, 2008]. The con-
nection density for a given voxel is defined as the number
of long distance connections that exceed a certain coher-
ence threshold. The connection density map can be thresh-
olded and local maxima can be used as ROIs. Differences
in the connection density map between conditions can be
analyzed to identify task-dependent connectivity changes.

Ideally, one would like to drop all assumptions and
avoid arbitrary thresholds by computing the connectivity
measure between all voxel combinations. Although already
moderate voxel sizes lead to several million combinations,
these big matrices can be handled by modern desktop
computers. But, extracting useful information from this
matrix is still a difficult problem.

Recently, a computationally efficient postprocessing of
the voxel correlation matrix by means of a singular value
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decomposition (SVD) has been suggested [Dossevi et al.,
2008]. Source activations were computed using MNE. The
problem of computing the SVD of the (very big) source cor-
relation matrix was reduced to the problem of computing
the SVD of the inverse operator (that maps sensor signals
to source space). The first eigenvectors were thresholded
and taken as correlated areas. Applications to simulated
data demonstrated some robustness to correlated sources.
The suggested method is interesting since it does not rely
on a priori information and makes no explicit use of source
activity. Still, the choice of the number of relevant eigenvec-
tors, the arbitrary thresholding for the eigenvectors, and
the orthogonality constraint of the SVD are problematic
and could be addressed in further developments.

LIMITATIONS

As mentioned before, one important motivation to per-
form connectivity analysis at the source level is the often
implicit assumption that the effects of field spread are miti-
gated. However, unmixing of the sources is never perfect.
This is illustrated in Figure 3. Using the simulated data as
presented in Figure 1, we performed a source level connec-
tivity analysis. We estimated the activity at 1,000 locations,
distributed on the cortical sheet (without orientation con-
straint), and computed pairwise correlation coefficients
between all estimated activities, using two commonly used
inverse methods (Fig. 3A,B). It can be clearly seen that
there is a massive number of dipole pairs showing spuri-
ous correlations. In this simulation, the linearly constrained
minimum variance (LCMV) beamformer seems to perform
somewhat better than the minimum-norm estimate. The
estimated correlation coefficients between the simulated
uncorrelated dipoles are low, and the overall size of the
spurious correlation coefficients is lower than in the mini-
mum-norm estimate. It is important to stress that the out-
come of such a simulation is highly dependent on the pa-
rameters used for the simulation, and no conclusions
should be drawn with respect to the performance of the
different inverse methods from this example alone.

We will briefly discuss the reason why the outcome of
connectivity analysis using experimental contrasts should
be interpreted with care (in principle, the effects illustrated
in Fig. 2 still hold for source connectivity analysis if sen-
sors (middle columns) are replaced by estimates of source
activity (virtual sensors)). Figure 3C,D show the difference
in correlation between two simulated datasets, as a func-
tion of dipole distance. We simulated 10 uncorrelated
dipoles with fixed location, orientation and amplitude,
which were identical for both conditions. Also, the ampli-
tude of the uncorrelated sensor noise was identical across
conditions. The resulting difference in correlation between
all pairs of simulated dipoles was close to 0. Moreover, the
distribution of differential correlation coefficients across all
dipole pairs was quite narrow, although the range was
somewhat bigger for the minimum-norm estimate. Figure
3E,F show the difference in correlation between two simu-

lated datasets, in which the sensor noise was different
across the two conditions (30% difference). The size of the
spurious correlations between nonactive dipoles is sub-
stantially enhanced with both analysis methods. The esti-
mated differential correlation between some of the simu-
lated dipoles was also increased. These findings emphasize
several problematic issues as follows:

1. Even when focusing on the appropriate ROIs it could
be that incorrect conclusions are drawn with respect
to the underlying interactions.

2. Inappropriately selected ROIs could lead to incorrect
conclusions with respect to the underlying interac-
tions.

3. Condition-specific fluctuations in signal-to-noise ratio
due to amplitude changes of the brain signals could
have effects similar to fluctuations in sensor noise.
These effects are difficult to control and may con-
found the interpretation.

Interpretation of connectivity analysis on the source
level is complicated by the confounding effects of field
spread. This holds true irrespective of the connectivity
measure used, provided a “traditional” inverse method
has been used, prior to computing the connectivity mea-
sure. By traditional inverse methods we mean those meth-
ods that do not explicitly dissociate “interactions” due to
field spread from true interactions between the underlying
sources, and which comprise the beamformer, distributed
source models, and the dipole fitting approaches discussed
so far. Recently, two promising techniques have been pro-
posed that are aimed at tackling the effects of field spread
prior to performing the inversion step [Gomez-Herrero
et al., 2008; Marzetti et al., 2008]. One of these techniques
uses the imaginary part of the sensor-level cross-spectral
density matrix to identify spatial topographies of pairs of
interacting neuronal sources [Marzetti et al., 2008]. Using
an additional constraint of minimum overlap, the location
of the interacting sources can be determined. The use of
the imaginary part of the cross-spectral density matrix
ensures that the interaction cannot be explained by field
spread [Nolte et al., 2004]. The authors were able to local-
ize the generators of the p-rhythm and of the parieto-occi-
pital a-rhythm in an example EEG dataset.

The other technique is based on the decomposition into
independent components of the residuals of a MVAR-
model. The MVAR-model is fitted to the sensor data, after
an initial principal component analysis [Gomez-Herrero
et al., 2008]. The residuals of the fitted MVAR-model con-
tain the zero-lag interactions between the sensors, and
thus indirectly of the underlying sources. These zero-lag
interactions comprise the field spread. A subsequent inde-
pendent component analysis (ICA) unmixes the residuals
into a set of statistically independent time series. These
components are assumed to be the residuals of the source
level MVAR-model. The ICA mixing matrix contains the
spatial topographies of the interacting sources and can be
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Figure 3.

Effects of field spread are not totally abolished in source space.
(A, B) Absolute value of the correlation coefficient as a function
of dipole distance between the estimated activity at all pairs of
1,000 dipole locations on the cortical sheet (black), and between
the estimated activity at all pairs of 10 of these locations at
which activity was simulated (red). Two different inverse meth-
ods were used: an LCMV-beamformer (A) and a minimum norm
solution (B). The dipole orientations were unconstrained in both

approaches. No regularization was applied. (C, D) The esti-
mated difference in correlation between two “conditions” of
simulated data, in which the signal-to-noise ratio was equal
across conditions. Same conventions as in (A, B). (E, F) The
estimated difference in correlation between two “conditions” of
simulated data, in which the signal-to-noise ratio was about 30%
lower in the second condition. Same conventions as in (A, B).
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used to determine their locations, as well as the MVAR-
coefficient matrices of these sources. This approach has
been applied to EEG data to identify the directed interac-
tions in an oscillatory network in the a frequency band.

CONCLUSION AND OUTLOOK

Recently, the importance of noninvasive functional con-
nectivity analysis has been increasingly recognized. This
has led to new methodological developments and an
increasing number of connectivity studies. MEG, in partic-
ular, is a very promising tool for connectivity analysis due
to its unique set of features (whole scalp coverage, good
spatial and excellent temporal resolution). Connectivity
analysis on sensor level recordings is very problematic due
to effects of field spread. As illustrated above, a single acti-
vated brain area can lead to long-range interdependencies
between MEG/EEG sensors. Even contrasting connectivity
results between experimental conditions at the sensor level
does not provide an automatic cure for the problem of
field spread. A detected change in coherence (or connectiv-
ity in general) between sensors could arise from many dif-
ferent scenarios. These scenarios may be caused by the
complex interplay of changes of power (and coupling) of
one or several brain areas and noise. Some of these scenar-
ios may not involve any connectivity change between two
brain areas or even the activity of two distinct brain areas
in the first place. These complications lead to the recom-
mendation to perform MEG/EEG connectivity analysis on
the level of source activations.

The combined use of source localization techniques and
connectivity analysis on source waveforms, and the recent
development of a generative model as in DCM, open excit-
ing possibilities in studying the transient interactions
between brain areas, including the nature of these interac-
tions and their directionality. The tools required for this
type of analysis are readily implemented in commercial
and open-source software packages, and thus available to
researchers at all levels of methodological expertise.
Nevertheless, we hope we have presented some evidence
to convince the reader that source connectivity analysis is
far from trivial and that great care has to be taken during
the analysis of MEG/EEG data and the interpretation of
the results. Still, the high relevance of noninvasive connec-
tivity analysis urges us to make every possible effort to-
ward a validated methodology for connectivity analysis on
the level of reconstructed brain sources. Our efforts need
to address the following points:

1. Although source connectivity analysis alleviates the
problem of field spread to a certain extent, it does not
provide a perfect solution. A quantification of field
spread on source connectivity results is needed. This
will most likely include the use of estimates of the
spatial inhomogeneity of the source reconstructions.
This inhomogeneity can be quantified by means of
the full-width half maximum (FWHM) of the inverse

operator [Barnes et al., 2004; Gross et al., 2003] or by
the resolution kernel [Backus and Gilbert, 1968]. In
addition, due to their potentially confounding effects,
power changes between conditions should be rou-
tinely analyzed in connectivity studies and considered
during interpretation of the results.

2. The selection of ROIs often still requires interaction
with the user and/or employs some arbitrarily chosen
parameters. Ideally, the use of any a priori informa-
tion in the selection of ROIs would be replaced by an
evaluation of connectivity between all possible combi-
nations of voxels (possibly preselected according to a
FWHM-estimate).

3. A comprehensive and rigorous comparison of the per-
formance of various combinations of source localization
techniques and connectivity measures is missing and
would represent an important step toward a common
consensus about source connectivity methodology.

The ever increasing interest in noninvasive functional
connectivity analyses with MEG/EEG and the rate of recent
developments justify a fair degree of optimism regarding
the future of this exciting area of research. MEG/EEG
source connectivity analysis maximally exploits the unique
capabilities of state-of-the-art electromagnetic measurement
systems and will undoubtedly lead to new fascinating
insights into the complex relationship between the highly
dynamic interactions of brain areas and human behavior.
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