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Abstract: Studying the interaction between brain regions is important to increase our understanding of
brain function. Magnetoencephalography (MEG) is well suited to investigate brain connectivity,
because it provides measurements of activity of the whole brain at very high temporal resolution. Typ-
ically, brain activity is reconstructed from the sensor recordings with an inverse method such as a
beamformer, and subsequently a connectivity metric is estimated between predefined reference
regions-of-interest (ROIs) and the rest of the source space. Unfortunately, this approach relies on a ro-
bust estimate of the relevant reference regions and on a robust estimate of the activity in those refer-
ence regions, and is not generally applicable to a wide variety of cognitive paradigms. Here, we
investigate the possibility to perform all-to-all pairwise connectivity analysis, thus removing the need
to define ROIs. Particularly, we evaluate the effect of nonhomogeneous spatial smoothing of differen-
tial connectivity maps. This approach is inspired by the fact that the spatial resolution of source recon-
structions is typically spatially nonhomogeneous. We use this property to reduce the spatial noise in
the cerebro-cerebral connectivity map, thus improving interpretability. Using extensive data simula-
tions we show a superior detection rate and a substantial reduction in the number of spurious connec-
tions. We conclude that nonhomogeneous spatial smoothing of cerebro-cerebral connectivity maps
could be an important improvement of the existing analysis tools to study neuronal interactions nonin-

vasively. Hum Brain Mapp 32:426—437, 2011.
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INTRODUCTION

The brain’s remarkable property of being able to perform
a huge amount of different cognitive operations critically
depends on the coordinated interplay between functionally
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specialized brain regions. Interregional anatomical connec-
tions obviously provide the necessary pathways through
which such interactions can occur. Yet, it is the dynamics of
the activity within and between anatomically connected
regions that eventually determines what we perceive, think,
or do [Varela et al., 2001]. The study of connectivity has
therefore received a lot of interest from the neuroscientific
community recently. For this purpose, electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) have been
employed, because these techniques can provide a whole-
brain estimate of brain activity in healthy human subjects, at
a superior temporal resolution compared to functional mag-
netic resonance imaging (fMRI).

Analysis of connectivity from noninvasively obtained
recordings of brain activity is severely complicated due to the
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fact that the electromagnetic field generated by a given neural
source is measurable at multiple measurement sites [Schoffe-
len and Gross, 2009; Srinivasan et al., 2007]. Many commonly
used connectivity measures are sensitive to this so-called field
spread, which complicates the interpretation of the results. To
attenuate these effects, analysis of connectivity should ideally
be done at the level of the underlying sources.

Typically this approach consists of two steps. In the first
step, the activity of the underlying sources is reconstructed
using an inverse method such as a beamformer [Van Veen
et al.,, 1997] or a minimum norm estimate [Hamaldinen and
IImoniemi, 1994]. This step yields either a three-dimensional
volumetric representation of estimated neuronal activity, or a
two-dimensional image in which the source elements are con-
strained to the cortical sheet, using anatomical information.
The number of elements in the source reconstruction is usu-
ally in the order of a few thousand. From these activity maps
regions-of-interest (ROIs) are selected based on specific crite-
ria such as synchronization to an external reference channel
[Gross et al., 2002; Jerbi et al., 2007; Schoffelen et al., 2008], or
task-dependent modulation in activity [Gross et al., 2004].
Alternatively, ROIs can be selected based on a connection
density estimate (CDE) between each source element and all
other elements [Kujala et al., 2007, 2008]. In the second step,
connectivity is assessed between all pairs of ROIs, or between
one or more reference ROIs and the elements of the whole
source volume/cortical map. Statistical significance is inferred
using a baseline condition, an experimental contrast, or shuf-
fling the original time series [Pollok et al., 2005; Timmermann
et al., 2003]. Any of these measures are necessary to account
for spurious values of connectivity which are most pro-
nounced in the vicinity of the reference ROI. Clearly, the va-
lidity of the interpretation of the results crucially depends on
the adequate choice of the ROIs and on whether the spurious
connectivity is properly accounted for.

Essentially, the ROIl-approach could be problematic
because relevant nodes in the functionally connected neu-
ral network may be missed, or because identified nodes
are falsely identified as such, due to unaccounted spatial
structure in the activity maps or in spurious connectivity.
As an alternative to the ROI-approach one could simply
compute connectivity between all pairs of source elements,
which is nowadays feasible in a reasonable amount of
time, even with a couple of thousand voxels. Connectivity
maps between all pairs of source elements have been suc-
cessfully utilized for ROI-selection based on connection
density estimates [Kujala et al., 2007]. Here, we propose to
directly infer functional interactions from the full spatial
structure in the connectivity maps. Results obtained this
way are not dependent on the choice of the reference ROIs
and it allows for a more thorough evaluation of the spatial
structure of spurious connectivity. Yet, this all-to-all pair-
wise approach may suffer from its own interpretational
problems. Because of the very high number of source ele-
ment pairs there is a risk of obtaining false positive results,
or sensitivity may be reduced when applying rigorous cri-
teria to avoid false positives.

This article investigates the applicability of all-to-all pair-
wise connectivity mapping using simulated MEG-data in
combination with beamformers for inverse modeling. We
used the correlation coefficient as a functional connectivity
metric for computational efficiency, and evaluated the spa-
tial structure of six-dimensional differential connectivity
maps. These differential maps were computed by subtract-
ing source-level connectivity maps obtained from simulated
data in two conditions (connected sources versus uncon-
nected sources). We identified hits and false positives based
on the comparison between the locations of the interacting
regions, identified from the reconstructed connectivity map,
and the locations of the actual target sources. As a key step
in our approach, we propose to apply nonhomogeneous
spatial smoothing to the all-to-all pairwise connectivity
maps, to account for excessive spatial noise in the recon-
structed images. We show that nonhomogeneous spatial
smoothing leads to superior detection sensitivity and a
reduction in false positives under a variety of simulation
conditions, as compared to unsmoothed connectivity maps.
Yet, we show that the performance of this approach is
decreased when the signal-to-noise ratio (SNR) of the
sources fluctuates across the conditions.

MATERIALS AND METHODS
MEG Data Simulation

MEG sensor-level covariance matrices were simulated for
a 248-sensor magnetometer array (4D Neuroimaging, San
Diego). We used a realistic volume conductor model based
on the brain surface of an anatomical MRI. The triangulated
inner skull surface was projected inward by a distance of 1
cm. Of the 1,339 vertices of this mesh we selected 992 verti-
ces as potential source locations, excluding locations at the
base of the brain, the cerebellum, and the mesial surface.
The coordinates of the candidate locations were rounded to
the nearest grid point on an 8-mm regular grid (to avoid spa-
tial sampling issues in the beamformer analysis, see later).
The orientation of the potential sources was constrained to
be orthogonal to the local brain surface and pointing inward.
Orientation constrained leadfields were computed using a
quasi-static approximation with the brain surface as a single
shell [Nolte, 2003]. We simulated MEG sensor covariance
matrices according to the following equation:

CoVsensor = [l1 - - - In)-

T p - P
1
diag([as .. .a,)) - Pa1 -diag([a] ...a}])
P e e 1

. [ll o ln]T ~+ Choise (1)

in which [[;...],] denotes the concatenation of the colum-
nar leadfield vectors corresponding to simulated sources 1
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through n with fixed orientation, diag([a;...a,]) is a diago-
nal matrix with the amplitudes of the sources on the main
diagonal. The coefficients p,, represent the correlation
coefficient between source a and source b, and Cyise rep-
resents the sensor-level noise covariance matrix.

A typical simulation consisted of simulating the activity
of two dipoles in two conditions. In condition 1 the
dipoles were correlated with a nonzero p;,, and in condi-
tion 2 this parameter was set to 0, fixing the amplitudes a4
and a, of both sources and both conditions at 1. The noise
covariance matrix was scaled according to the frobenius
norm of the noise-free simulated sensor-level covariance
matrix with the simulated dipoles uncorrelated. For most
of the simulations we assumed the noise to be white and
equal for all sensors, which translates into Cyise = A-I. The
parameter A was kept constant across the conditions and
determined the signal-to-noise ratio (SNR). The locations
of the simulated dipoles were chosen such that the correla-
tion coefficient between the leadfield vectors was within a
range of 0.005 of a prespecified value. This set up allowed
us to systematically vary the signal-to-noise ratio, the spa-
tial correlation of the simulated sources (through simulat-
ing the sources at different pairs of locations, thus
changing the leadfield correlation), and the temporal corre-
lation between the sources (through the coefficient p,). To
account for variability introduced by the specific positions
of the dipoles with respect to the sensor array we repeated
the simulation for each parameter triplet (spatial correla-
tion, temporal correlation, and SNR) 10 times.

The simulations described so far represent idealized sit-
uations and it would be important to verify the perform-
ance of all-to-all approach in more “realistic” simulations.
First of all, the all-to-all pairwise approach to the differen-
tial connectivity maps may critically depend on the spatial
structure in the noise. In real experimental data, noise is
never spatially white due to finite measurement time and
due to the fact that background brain activity and signals
from non-neural origin impose structure on the sensor-co-
variance matrix which affects the properties of the spatial
filters. Second, when using differential connectivity maps,
one implicitly assumes that voxel pairs showing spurious
values of connectivity in the active condition also show
spurious connectivity to a similar extent in the control con-
dition. This assumption may not always be valid, and
depends on the spatial structure in the noise across the
conditions compared. Important in this respect is also that
changes in SNR caused by modulations in the amplitudes
of the active sources may critically affect the spatial profile
of the point spread function of the spatial filters and thus
of the outcome of the analysis. We addressed these issues
two additional sets of simulations.

We investigated the effect of more realistic noise by
replacing the scaled identity matrix in the variable Cpise
(representing spatially white noise) with a covariance ma-
trix obtained from real MEG-data. The selected data were
taken from 500 epochs in which a participant was fixating
on a fixation cross on the screen. These epochs were of

variable length with a range between 1 and 1.5 s, and digi-
tized at 256 Hz. We randomly partitioned the 500 epochs
into two sets of 250, and computed 2 covariance matrices,
which we added to the correlated and uncorrelated simu-
lation conditions respectively.

We also investigated the effect of a conditional change
in SNR due to the active sources’” amplitudes. For these
simulations, we modulated the amplitude of the active
sources in the uncorrelated condition with respect to their
amplitude in the correlated condition by changing the pa-
rameters a; and a, from 0.8 to 1.2 in steps of 0.1. The am-
plitude of the sensor noise was kept constant across
conditions.

Beamformer Analysis

The brain compartment was divided into a regularly
spaced grid with a resolution of 8 mm, resulting in 3,371
locations. The leadfield at each of the grid locations was
computed according to [Nolte, 2003]. Spatial filters were
computed using a vectorized linearly constrained mini-
mum variance (LCMYV) algorithm [Van Veen et al., 1997],
using the following formula:

W;r = (L;rcovsielnsorLr)_ILECOV;:lnsor

where L, denotes the leadfield matrix for a dipolar source
at location r, and Covgensor denotes the sensor level covari-
ance matrix. No regularization was applied. We estimated
the activity of the reconstructed sources in the orientation
in which the output of the spatial filter W' was maxi-
mized. To this end we performed an eigenvalue decompo-
sition of the dipole covariance matrix WTCOoVeensor WV, and
the spatial filters were projected onto the orientation of the
first eigenvalue.

All-to-All Pairwise Connectivity Analysis

We defined our connectivity metric to be the correlation
coefficient between any pair of reconstructed source ele-
ments, which allowed for an efficient computation of all-
to-all pairwise connectivity in the following way:

s W

T
COVsource = [wlu B 7wm} : COVsensor . [101, ..

Psource = diag(COVsource)

COVSOUTCG

/ T
p Sourcepsource

where Coviensor Tepresents the sensor-level covariance ma-
trix, and [w; ... w,,] contains the spatial filters concatenated
in the columns. Consequently, the matrix Covsoyurce repre-
sents the source-level covariance matrix, of which the ele-
ments c; correspond with the covariance between a source
at location 7 and a source at location j. The vector psource
represents the power estimated at each of the grid

Csource =
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locations, and is used in the normalization step to obtain
the source-level correlation matrix Cgyyree- The matrix
Csource contains a two-dimensional representation of a six-
dimensional volume. Each of the rows/columns in the ma-
trix corresponds with a volume representing the correla-
tion between the estimated activity of a given reference
location with the activity estimated at all other locations.

Because of spatial leakage of activity, spurious connec-
tivity leads to a considerable spatial structure in estimated
connectivity maps. In particular, voxels in the vicinity of
the reference location show spuriously high connectivity
values. To account for these artificially high values, rather
than inferring “true” connectivity and statistical signifi-
cance from the connectivity map directly, the difference in
connectivity between an active condition and a control
condition (baseline or experimental contrast) is usually
computed. In the simulations we used a “control” condi-
tion in which the activity of the dipoles was temporally
uncorrelated. We subtracted the connectivity map obtained
from this control condition from the connectivity map
computed for the active condition.

Nonhomogeneous Smoothing

Because of the high number of voxel pairs in the all-to-
all pairwise connectivity map there may be false positives
and/or sensitivity issues due to too stringent thresholding
to account for false positives. To reduce the spatial noise
underlying both potential confounds we analyzed the
effect of nonhomogeneous smoothing of the six-dimen-
sional connectivity maps. This step is motivated by the
fact that the point spread (or spatial leakage) of activity
from a given location to neighboring locations is always
present to some extent, and that the resulting spatial reso-
lution is highly nonhomogeneous across the source recon-
structed volume. Using beamformers as an inverse
method, and provided the beamformer is capable at realis-
tically “capturing” the true activity coming from a given
region, a locally high spatial resolution is usually associ-
ated with neuronal activity in that region, whereas a
locally low spatial resolution reflects the absence of neuro-
nal activity in that region. The local spatial resolution of
the inverse solution can be expressed in terms of the full
width at half maximum (FWHM) of the spatial filter at
each location [Barnes and Hillebrand, 2003; Gross et al.,
2003]. We used these FWHM-estimates to compute iso-
tropic three-dimensional Gaussian smoothing kernels for
each source location and smoothed each element in the
six-dimensional connectivity map with the Gaussian ker-
nels corresponding to the elements constituting that given
voxel pair. The rationale for this approach is that spuri-
ously high values of differential connectivity occurring
between voxels in regions with relatively low spatial reso-
lution (high FWHM) are smoothed to a greater extent than
true high values of connectivity between voxels in active
regions with relatively high spatial resolution (low

FWHM). FWHM maps were computed according to
Barnes and Hillebrand [2003] and for each grid point i we
computed a three-dimensional Gaussian kernel repre-
sented as a column vector k;, which was normalized such
that the summed value of the elements was equal to 1.
The connectivity maps were smoothed according to:

Csmoothed = KT -C-K

where the smoothing matrix K consists of a concatenation
of the location-specific Gaussian kernels, and the matrix C
represents the source-level correlation matrix. As a result,
each element ¢} . . consists of a weighted sum of the
original connectivity matrix C, weighted with the voxel
pair ij specific smoothing kernels.

We compared the effect of nonhomogeneous smoothing
to the effect of homogeneous smoothing for a subset of the
simulations by applying homogeneous smoothing kernels
to the connectivity maps. This was achieved by computing
smoothing matrices from fixed value FWHM maps.

Assessment of Performance with
Six-Dimensional Spatial Clustering

We analyzed the spatial structure in the differential con-
nectivity maps by means of thresholding and spatial
clustering.

Thresholding of the connectivity maps

The differential connectivity maps were thresholded to
obtain binary maps. Our goal was to compare the sensitiv-
ity of the all-to-all approach with and without nonhomo-
geneous spatial smoothing. To be able to make an
unbiased comparison between the smoothed and
unsmoothed scenarios we applied thresholds such that a
fixed number of voxel pairs exceeded this threshold,
because the dynamic range in the differential connectivity
was different for the unsmoothed and smoothed maps
(see later). We assessed the effect of different thresholds
on the outcome by varying the number of suprathreshold
pairs. We applied a two-sided test, which means that each
map was thresholded and postprocessed twice, once with
a positive threshold to assess the spatial structure in the
binary map containing the voxel pairs with differential
correlations larger than the threshold, and once with a
negative threshold to assess the spatial structure in the bi-
nary map containing the voxel pairs with differential cor-
relations smaller (more negative) than the threshold. The
rationale for this two-sided test was that although in our
simulations the connectivity in the active condition always
exceeded the connectivity in the control condition, in ex-
perimental data this can not generally be assumed. In
practice, the differential correlation values at threshold
were obtained by sorting (from large to small) the magni-
tude of the differential correlation values between all voxel
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pairs and taking the value at the Nth voxel pair as thresh-
old, where N is the number of extra-threshold pairs.

Suppression of spurious connections

To account for spurious connections between a given
voxel and voxels in its vicinity, we removed these voxels
from the binary maps by repeating the following proce-
dure for each column of the binary map: the columnar
vector i was reshaped into a three-dimensional matrix to
get a volumetric representation of the extrathreshold con-
nectivity with respect to the ith voxel. The ith voxel was
explicitly set to a value of 1, and a three-dimensional spa-
tial clustering algorithm was applied to identify those vox-
els spatially connected to the ith voxel. The identified
voxels were subsequently set to 0, and the three-dimen-
sional matrix was reshaped into its equivalent columnar
representation and placed back in the all-to-all binary
map.

Six-dimensional spatial clustering

The all-to-all binary map was then reshaped into a six-
dimensional matrix and we applied a six-dimensional spa-
tial clustering algorithm, yielding six-dimensional clusters
of functionally connected voxels. These clusters were
finally analyzed in three-dimensional space, and either
consisted of two “blobs” of voxels in three-dimensional
space, representing two physically disconnected extra-
threshold regions, or consisted of only one spatially con-
tiguous “blob” of voxels.

Distance of clusters to target dipole locations

Finally, for each of the clusters we computed a distance
metric to the simulated voxel pair, by summing the mini-
mum Euclidean distance between each of the target dipole
locations and the suprathreshold voxels. A six-dimensional
cluster consisting of two physically separated blobs of vox-
els was classified as a hit if the distance metric was below
a certain threshold. We counted the total number of supra-
threshold clusters, which in combination with the hitrate
determined the number of false positives. The threshold
distance was set to 2 cm, which allowed for clusters to be
classified as a hit when the two blobs of voxels in three-
dimensional space were connected through a voxel pair
consisting of neighbors of the actual target pair.

RESULTS

In all sets of simulations, we explored four dimensions
of the parameter space: dipole correlation, leadfield corre-
lation, SNR, and cluster threshold. Table I shows the val-
ues used on each of these dimensions for the first set of
simulations. For each value of leadfield correlation we
picked 10 dipole pairs with a leadfield correlation within
0.005 of the specified value and performed the simulation

TABLE I. Values of the parameters used for the
simulations shown in Figure 2

Parameter Values used

-0.9, -0.5, -0.2, —0.1, —0.05,
0.05, 0.1, 0.2, 0.5, 0.9

-0.9, -0.5, —0.2, =0.1, —0.05,
0, 0.05, 0.1, 0.2, 0.5, 0.9

2, 5,10, 15,20

2,000, 1,000, 500, 200,

100, 50, 20, 10

Dipole correlation
Leadfield correlation

Signal-to-noise ratio
Cluster threshold

for all combinations of values on the other three dimen-
sions. For each simulation and threshold we obtained a
binary map from the thresholded (smoothed and
unsmoothed) differential connectivity maps, representing
the voxel pairs which were assumed to be functionally
connected given the threshold. We spatially analyzed this
binary map and obtained spatially clustered groups of
voxels. If one of these six-dimensional clusters was classi-
fied as a hit, the total number of false positives was the
total number of six-dimensional clusters minus 1, other-
wise the number of false positives was set to the total
number of six-dimensional clusters. A cluster was consid-
ered to be a hit if the summed minimal euclidean distance
of the two voxels in that six-dimensional cluster (one in
each of the blobs) to the target dipole pair, was less than
2 cm.

Figure 1 shows the results of an illustrative example of
a simulation. The simulation parameters used were a lead-
field correlation of 0 and a dipole correlation of 0.05. Fig-
ure 1A shows a scatter plot of the differential correlation
for all reconstructed dipole pairs as a function of the geo-
metrical mean of the FWHM of the spatial filters at the
voxels constituting the dipole pair. The black dots repre-
sent the results without nonhomogeneous smoothing, the
red dots represent the nonhomogeneously smoothed case.
The large gray and pink dot represent the reconstructed
differential correlation value at the location of the simu-
lated dipole pair in the unsmoothed and smoothed case,
respectively. The SNR was set to a value of 10. The
unsmoothed data show that (1) the reconstructed differen-
tial correlation value at the target dipole pair location is
close to the simulated value (0.04 versus 0.05 in this case)
(2) several dipole pairs have values of differential correla-
tion exceeding the reconstructed value at the target dipole
pair, and that (3) several dipole pairs actually show nega-
tive values of differential correlation which have a similar
magnitude as the largest positive pairs. After application
of nonhomogeneous smoothing the differential correlation
values are generally closer to 0 and the reconstructed
value at the simulated dipole pair is now one of the most
extreme values in the distribution. The inset of Figure 1A
shows the spatial structure in the 1/FWHM map. This so
called roughness image shows a high roughness (locally
low FWHM) in the vicinity of the simulated dipole pair.
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Figure 1.

Example of the effects of nonhomogeneous smoothing on the
differential all-to-all pairwise source correlations. (A) Scatter-
plot of differential correlation of all reconstructed dipole pairs
as function of the geometric mean of the FWHM at the same
locations. Black dots represent the unsmoothed differential
correlation values, red dots represent the smoothed correla-
tions. The thick dots represent the estimated differential corre-

Figure 1B,C show the pairs of voxel clusters for the
unsmoothed (B) and smoothed (C) case which are closest
to the simulated dipole pair, as a function of SNR.

Figure 2 summarizes the results of the 5,500 simulations
that were carried out using the settings in Table I. Each
graph shows the marginal means of the hitrate (left col-
umn) and of the number of false positives (middle col-
umn), for the unsmoothed (black bars) and smoothed
(gray bars) connectivity maps, as a function of one of the
dimensions of the simulated parameter space. The right
column shows the pairwise significant differences for the
hitrate and number of false positives, and for the
smoothed and unsmoothed analyses separately. Overall,
the nonhomogeneous smoothing resulted in a significantly
higher hitrate and a lower number of false positives. The
marginal mean hitrate as a function of the magnitude of
the correlation between the target dipoles (Fig. 2A-C)
ranged from 6.6 to 10% in the unsmoothed case, whereas
it fluctuated between 50 and 60% in the smoothed case,
and was maximal when the target dipole correlation was
0.5. The average number of false positives ranged from 7.2
to 15.6 in the unsmoothed case, and this value dropped to
about 1.2 (range 1.0-1.4) in the smoothed case. Moreover,
in the smoothed case, the number of false positives was

lation at the location of the simulated dipole pair, for the
unsmoothed (gray) and smoothed case (pink). The inset shows
a glass brain projection of I/FWHM, highlighting the regions of
high spatial resolution. (B, C) Glass brain projection of the
pairs of voxel clusters closest to the simulated dipole pair
(white circles), as a function of SNR, for the unsmoothed (B)
and smoothed case (C).

not significantly modulated by the dipole correlation. An
increase in the SNR (Fig 2D-F) led to an increased hitrate
in both the smoothed (ranging from 21 to 72%) and the
unsmoothed case (ranging from 0 to 26%). The number of
false positives was slightly reduced at high SNR, dropping
from 10.2 to 9.6, and from 1.6 to 1.0 in the unsmoothed
and smoothed case, respectively. The effect of the spatial
correlation between target dipoles (Fig. 2G-I) was quite
variable. The marginal mean hitrate as a function of lead-
field correlation ranged from 1.7 to 20% in the
unsmoothed case, and from 20 to 75% in the smoothed
case. The number of false positives ranged from 8.7 to 11.9
(unsmoothed), and 0.7 to 1.8 (smoothed). The inset in
panel H shows the relation between the spatial correlation
and the distance between the target dipoles. Increasing the
cluster threshold (Fig. 2J-L) led to a decrease in both the
hitrate and the number of false positives. The hitrate
dropped from 21% to 2.5% in the unsmoothed case, and
from 64% to 41% in the smoothed case. The number of
false positives steeply declined from 25 to 1.7, and from
22 to 0.7 for the unsmoothed and smoothed cases,
respectively.

The overall increase in sensitivity after nonhomogeneous
smoothing raises the question whether homogeneous

* 431



A B
. 25
08} 56
' 2
5205: EE 15
© 3
204} 210
- 2
02| ¥ o
0

lowaall

-90-50-20-10 -5 5 10 20 50 90
dipole correlation

-90-50-20-10 5 5 10 20 50 90
dipole correlation

(9]

hitrate

]
=
=

@

o

a

[}
@8
8

5 .'.nbh'g
SSomhood

Quna

o

FBITTOCKBE FPITTOSRBI
smoothed unsmoothed

D E F
| 25
0.8t 20| %
g z h H
06} o
o | % 15¢
3] o] 8
204 S 10} 2
I o 3
0.2} = 5l g
I 8
0 NBeLg Wwewg
: . . - - smoothed  unsmoothed
2 5 10 15 20
snr snr
G H |
25
I '& * E%g u
0.8¢ 20 * * ﬁ -1% |
L @ = 5
0.6} o B < B 1
e | = 15 “gggevoreRas &
o o 2 B
204 S 10] 2 3
' = g 3
0.2t “ s} 3 B
I s
0 §8R29°°9R28 §RRIIO°2RER
i n n " i " " i n n " lh d th d
-90-50-20-10 -5 0 5 10 20 50 90 90-50-20-10 -5 0 5 10 20 50 90 RS e
leadfield correlation leadfield correlation
J K L
25}
08¢ 20} 2
06} @ el =
o | = 15
i o] @
2 041 3 10} :g
L © g
[
0.2¢ = sl g
- 8
2238833 3BIYzEE
smoothed unsmoothed

2e3 1e3 5e2 2e2 162 5el 2e1 1el
cluster threshold

263 1e3 5e2 2e2 162 5e1 2e1 1el
cluster threshold

Figure 2.

Results of 5,500 simulations showing the mean hit rate (left col-
umn), the average number of false positives (middle column), for
the unsmoothed cases (black bars), and the smoothed cases
(gray bars). The right column shows the pairwise significant dif-
ferences for the hitrate and false positives, separately for the
smoothed and unsmoothed cases [P < 0.05, corrected for mul-
tiple comparisons (Tukey-Kramer test)]. A-C: Marginal mean
hitrate, number of false positives and pairwise significant differ-
ences, as a function of simulated dipole correlation. D—F: Mar-

ginal mean hitrate, number of false positives and pairwise
significant differences, as a function of signal-to-noise ratio. G-I:
Marginal mean hitrate, number of false positives and pairwise
significant differences, as a function of leadfield correlation of
the simulated dipoles. The inset in panel H shows the relation
between the leadfield correlation and the distance between the
target dipoles. J-L: Marginal mean hitrate, number of false posi-
tives and pairwise significant differences, as a function of cluster
threshold.
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Figure 3.

Comparison of hitrate and number of false positives for
unsmoothed and nonhomogeneously smoothed cases, as well as
for different homogeneous smoothing schemes. Significant differ-
ences between the unsmoothed (black bars) and the homogene-
ously smoothed, and between the nonhomogeneously smoothed
(white bars) and the homogeneously smoothed are shown by
the connecting lines underneath the bars.

smoothing in itself would lead to a similar improvement
in detection rate and decrease in false positives. We tested
this by applying homogeneous spatial smoothing to the
connectivity maps, for a subset of the simulations
described earlier. We smoothed the connectivity maps
with homogeneous Gaussian convolution kernels with a
FWHM of 12, 1.6, 2.4, and 4.0 cm. Figure 3 shows the
marginal means for the hitrate and the number of false
positives for a fixed cluster threshold (200) and SNR (15),
averaged across a range of values for the dipole correla-
tion and the leadfield correlation. Compared to the
unsmoothed case, homogeneous smoothing led to a signif-
icant increase in hitrate and a significant decrease in the
number of false positives, suggesting that in general ho-
mogeneous smoothing may be beneficial for the interpret-
ability of the connectivity maps. Compared to the
nonhomogeneously smoothed case, however, the hitrate
was significantly reduced for all of the homogeneous
smoothing schemes tested, and the number of false posi-
tives was significantly increased. Only with relatively high
(4.0 cm FWHM) homogeneous smoothing the number of
false positives was not significantly different from the non-
homogeneously smoothed case. Yet, the hitrate dropped
from 70% with nonhomogeneous smoothing to about 20%
with homogeneous smoothing.

We have shown so far that the interpretability of all-to-
all pairwise connectivity maps constructed from “ideal”
simulated data is improved when these maps are
smoothed and that this improvement is optimized when
data dependent nonhomogeneous smoothing kernels are
applied. The following paragraphs describe the perform-
ance of our approach in more “realistic” simulations. Fig-
ure 4 shows the effect of adding “realistic noise” to the
simulated covariance matrices. We repeated a subset of
the simulations described earlier (see Table II for the pa-
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Figure 4.

Performance of the all-to-all pairwise approach with nonhomo-
geneous smoothing in the presence of spatially correlated brain
noise. Hitrate (A) and number of false positives (B) with spa-
tially white (black bars), and with spatially correlated (gray bars)
noise.

rameter space searched), and added to the simulated sen-
sor-level covariance of any given unit amplitude dipole
pair the covariance obtained from MEG-data in which a
subject was sitting in the MEG without a specific task. Fig-
ure 4A,B summarize the results of these 2,340 simulations,
comparing the hitrate and average number of false posi-
tives with and without the addition of the realistic noise,
as a function of SNR and averaged across the other dimen-
sions of the simulation. Given the definition of SNR we
used here, both the hitrate and the number of false posi-
tives were significantly increased. Compared to the same
analysis using the unsmoothed connectivity maps, the per-
formance after smoothing was still superior (results not
shown).

The effect of a conditional change in SNR due to the
active sources” amplitudes is shown in Figure 5. For these
simulations, we modulated the amplitude of the active
sources in the uncorrelated condition with respect to their
amplitude in the correlated condition from 80 to 120%, in
steps of 10%. The hitrate was decreased and the number
of false positives was increased in the situations where the
sources” amplitudes were modulated.

TABLE Il. Values of the parameters used for the
simulations shown in Figures 4 and 5

Parameter Values used

-0.5, -0.2, 0.1, —-0.05, 0.05, 0.1, 0.2, 0.5
-0.5, -0.2, -0.1, —0.05, 0, 0.05, 0.1, 0.2, 0.5
5,10, 15

2,000, 1,000, 500, 200, 100, 50, 20, 10

Dipole correlation
Leadfield correlation
Signal-to-noise ratio
Cluster threshold
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Figure 5.

Comparison of hitrate and number of false positives after non-
homogeneous smoothing, when the amplitude of the simulated
dipoles changes from the correlated to the uncorrelated condi-
tion. Significant differences between the unmodulated case
(centre gray bar), and the modulated cases are shown by the
connecting lines underneath the bars.

DISCUSSION

In this article, we explored the applicability of all-to-all
pairwise connectivity analysis to noninvasively obtained
electrophysiological data. In particular, we propose to
apply nonhomogeneous smoothing to the obtained connec-
tivity maps, as an essential step to reduce spurious con-
nectivity. Results from extensive simulations show that
nonhomogeneous smoothing leads to a significant increase
in the hitrate and a significant decrease in the number of
false positives, under a range of idealized simulation
conditions.

The core of the simulations consisted of the estimation
of differential connectivity maps and spatial postprocess-
ing of these maps to obtain spatially disconnected clusters
of voxels showing a modulation in connectivity. The appli-
cation of nonhomogeneous smoothing to the connectivity
maps proved to be an essential step in the all-to-all pair-
wise approach, in order to achieve a reasonably high
hitrate and a low number of false positives. The rationale
for the smoothing is based on the fact that the spatial reso-
lution of source reconstructed images is relatively low and
that this resolution is spatially nonuniform. This property
of spatial filters is well known and has been investigated
elsewhere in the context of beamformers as an inverse
method [Barnes and Hillebrand, 2003; Gross et al., 2003].
Specifically, Barnes et al. use the estimated spatial nonuni-
formity to correct the statistical threshold for detecting
univariate activations. Here, we actually manipulated the
reconstructed images by applying spatial resolution de-
pendent smoothing prior to postprocessing them. More-
over, the images were smoothed in a bivariate fashion,
which means that for each voxel pair the all-to-all pairwise
connectivity map was smoothed with a pair of filter ker-
nels, with FWHM specific to that voxel pair. Essentially,

the estimated FWHM for a spatial filter at a given voxel
quantifies the volume into which the activity of a source at
that location is spread out. Conversely, the estimated ac-
tivity at a given voxel consists of the activity which truly
comes from a source at that location, and of the activity
which has “leaked” into that location from sources in
other brain regions. Replacing any metric on the voxel
level with an appropriately weighted average (i.e., nonho-
mogeneously smoothed) value of that metric therefore
may lead to a reduction in spatial noise, which is
smoothed to a greater extent than the underlying effect of
interest. In this article, we present results indicating that
this indeed seems to be the case for a simple bivariate
metric (correlation coefficient) in simulated data, using
beamformers for the inverse modeling. In general, we
expect that this approach is applicable to other bivariate
connectivity metrics as well, such as coherence, phase
locking value, or directed measures of interaction. More-
over, it should be noted that nonhomogeneous smoothing
may also have a beneficial effect on the statistical evalua-
tion of reconstructed source images representing univari-
ate metrics (such as T-statistics between conditions). It
remains to be seen however, to what extent other popular
inverse methods will benefit from the nonhomogeneous
smoothing. For example, minimum norm estimates are
generally nonadaptive, which means that the local spatial
resolution of the inverse solution is not that much depend-
ent on the underlying spatial structure in the data. There-
fore, the structure in the FWHM-maps will not lead to a
selective focal smoothing close to the active source loca-
tions, at the expense of a more vigorous smoothing in
“silent” locations. Yet, it will probably not only depend on
the actual values in the FHWM maps whether the all-to-all
approach as such (with our without nonhomogeneous
smoothing) will be feasible in these cases. Of course the
quality of the all-to-all connectivity maps obtained with a
particular inverse method will be an important determi-
nant as well.

Another key element in the all-to-all pairwise approach
is that we evaluated differential connectivity maps. The
reason for this is that there is generally a distinct spatial
structure in the leakage of estimated activity. This could
lead to misinterpreting a distant local maximum as true
connectivity if only a single condition were evaluated.
Essentially, in a single condition the spatial structure of
estimated connectivity with respect to a given reference
location consists of a “mountain” of high connectivity val-
ues around the reference location and various spatial
“sidelobes” reflecting the leakage of activity. The occur-
rence of sidelobes is a well-known phenomenon in the
application of beamformers in radar technology [Yu and
Yeh, 1995], but in general any inverse method leads to
spatial leakage [Liitkenhoner, 2003; Mitra and Maniar,
2006]. This can be taken into account by subtracting the
connectivity map estimated from an appropriate baseline
condition. Clearly, the implicit assumption is that the spa-
tial structure of spurious connectivity is similar across the
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two conditions. We will refer to this assumption as the
“equal bias assumption.” The reason for the low sensitivity
of the all-to-all approach when the differential connectivity
maps are not smoothed may well lie in the fact that the
equal bias assumption is violated in many cases.

In our simulations, we explored the influence of differ-
ent parameters on the outcome of the all-to-all connectivity
analysis. These parameters either directly affected the
quality of the simulated sensor-level covariance matrices
and thus the quality of the spatial filters (dipole correla-
tion, leadfield correlation, and SNR), or influenced the out-
come of an essential step in the postprocessing of the
connectivity maps (cluster threshold). Overall, application
of nonhomogeneous smoothing consistently improved the
hitrate and the number of false positives (Fig. 2). Next to
this, pairwise comparison of the different values of the
simulation parameters revealed variable effects on the dif-
ferent outcome measures. In the following, we will briefly
discuss the effects of the different parameters.

Effect of Correlation Strength

The marginal mean hitrate was significantly modulated
by the temporal correlation between the activity of the
underlying sources in the smoothed case, but not in the
unsmoothed case. In our simulations, the maximal hitrate
was achieved when the magnitude of the source correla-
tion was 0.5. From a theoretical point of view, reconstruc-
tions of source activity using beamformers in the presence
of correlated source activity are expected to be spatially
blurred and temporally distorted [Sekihara et al., 2002;
Van Veen et al., 1997]. Yet, it has been shown that beam-
formers are able to adequately reconstruct the magnitude
of the simulated correlation up to a relatively high level of
source correlation, and a relatively low SNR [Gross et al.,
2001; Sekihara et al., 2002]. Next to this, from a practical
point of view, it is hardly to be expected that the temporal
correlation between brain sources in physiological data
will be within the range as to cause significant distortion
and spatial blurring such that the successful identification
of interacting sources is hampered by the correlation. The
present analysis relies on the fact that the beamformer is
capable of retaining the spatial structure of the correlated
sources in the differential connectivity map. Particularly, it
relies on the fact that the reconstructed differential connec-
tivity shows a local maximum at the location of the target
dipole pair, and that the value of this local maximum sur-
vives the thresholding scheme. The fact that the smoothed
hitrate was maximal at a dipole correlation of 0.5 may
reflect the opposing effects of the magnitude of the corre-
lation on the spatial distortion of the connectivity maps
and on the elevation of the reconstructed connectivity at
the simulated voxel pair beyond the noise threshold. The
low unsmoothed hitrate in combination with the high
number of false positives (which significantly increased
with increasing magnitude of dipole correlation) most

likely reflects the fact that the unsmoothed differential con-
nectivity maps not only show a high number of spurious
connections, but that the magnitude of the spurious corre-
lations exceeds the magnitude at the target locations. The
low hitrate does not mean, however, that the reconstructed
differential connectivity at the target dipole pair is not
adequately estimated in the unsmoothed case.

Effect of SNR

Increasing the SNR resulted in a systematic increase in
hitrate without strongly affecting the number of false posi-
tives. This may be caused by the fact that an increased
SNR leads to a more robust source reconstruction in the
vicinity of the target source locations. The quality of the
reconstruction outside these locations is not strongly
affected, because those regions are “silent” to begin with.
As a consequence of the better reconstruction of the target
sources, the hitrate is increased, whereas the number of
spurious connections is less affected by changes in SNR.

Effect of Spatial Correlation

Varying the spatial correlation between the underlying
sources resulted in a considerably variable marginal
hitrate and number of false positives, both in the
unsmoothed and smoothed analysis. One likely explana-
tion for this variability may be that only 10 dipole pairs
per spatial correlation value were simulated, which in this
case may be too low a number to smooth out random fluc-
tuations. These fluctuations may be brought about by
unaccounted variability introduced by factors such as spa-
tial proximity of the target dipoles, and differences in the
depth bias affecting the relative SNR of one dipole with
respect to the other one. Irrespective of the underlying
cause, our results indicate that the sensitivity of the all-to-
all pairwise approach clearly depends on the locations of
the interacting sources. This is an important finding for
two reasons. First, it indicates that in simulation studies
multiple source configurations should be assessed in order
to evaluate a particular method. Second, true interactions
may be missed in experimental data, depending on the rel-
ative locations of the interacting sources.

Effect of Threshold Selection

Increasing the cluster threshold (i.e., allowing fewer vox-
els to exceed the threshold) resulted in a reduction of both
the hitrate and the number of false positives. This relative
decline appeared to be steeper in the unsmoothed case.
Admittedly, our choice for the cluster threshold is an arbi-
trary one, and it would be useful to investigate different
ways of thresholding. We evaluated the connectivity maps
by means of a six-dimensional clustering algorithm, neces-
sitating the generation of binary maps through the applica-
tion of a threshold. In real data applications, this threshold
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could be determined based on statistical arguments. One
potentially interesting approach would be to apply
threshold-free cluster enhancement (TFCE) [Smith and
Nichols, 2009], which has been shown to be effective in
boosting the sensitivity of three-dimensional image
analysis, and which does not rely on the a priori definition
of a threshold. Essentially, the TFCE algorithm assigns
to each voxel a value, which is the result of a weighted
summation given a range of thresholds. For each threshold
value, a measure of the difference between the metric
at each location and the threshold is obtained and
negative differences are set to 0. This difference is then
weighted with a measure of the spatial extent of the
cluster to which each suprathreshold voxel belongs. Typi-
cally, a range of thresholds is assessed, and the results are
integrated.

Figure 3 compares the effect of nonhomogeneous
smoothing to variable amounts of homogeneous smooth-
ing. In general, homogeneous smoothing was found to be
beneficial for the interpretability of the connectivity maps.
There was a significant reduction in the number of false
positives and a significant increase in the hitrate compared
to the unsmoothed case, for all the homogeneous smooth-
ing schemes tested. In particular, homogeneous smoothing
with 1.6 and 2.4 cm FWHM smoothing kernels seem to
offer a good trade off between achieving a reasonable hit
rate and a relatively low number of false positives. Yet,
nonhomogeneous smoothing offered an even better trade
off between the hitrate and the number of false positives.
This is most likely a consequence of the fact that homoge-
neous smoothing fails to strike an adequate balance
between favoring the locations of interest, while simultane-
ously effectively smoothing the noise and sidelobes. For
example, homogeneous smoothing with a high FWHM is
effective in smoothing the spatial noise at locations of no
interest (low number of false positives), but it reduces sen-
sitivity because the true effect at the location of interest is
buried in the smoothed noise.

The results discussed so far explored the applicability of
all-to-all pairwise connectivity analysis arguably in “unre-
alistic” situations. The simulated sensor-level covariance
matrices represented ideal situations in which only two
sources were active, and in which the background noise
was spatially white (and reflecting infinite measurement
time). Moreover, the amplitude of the sources between the
correlated and uncorrelated condition was kept constant.
We are fully aware that real experimental data is generally
less well behaved, but we believe that the simulations pre-
sented so far are relevant for two reasons. First, simulating
“ideal” sensor-level covariance matrices allowed us to iso-
late the effects of different dimensions in the parameter
space on the outcome. Second, it is important to evaluate
the limitations of the method in the “ideal” case. However,
we repeated a subset of the simulations in which we
included noise estimated from an experimental recording,
where a subject was fixating. The noise estimate in this
case therefore contained both background brain activity

and sensor noise. This resulted in a small increase in the
hitrate and to a concurrent increase in the number of false
positives. The increased hitrate may be caused by the fact
that the magnitude of the spurious connections is less dra-
matic in the presence of realistic noise, as a consequence
of which the voxels in the vicinity of the target locations
survive the thresholding. The increased number of false
positives is suggestive of the fact that the spurious connec-
tions are less clustered in space.

These findings seem to indicate that including more re-
alistic noise affects the performance of the all-to-all pair-
wise approach to some extent, but that it does not lead to
a dramatic reduction in sensitivity.

In a final set of simulations, we modulated the ampli-
tudes of the active sources between the correlated and
uncorrelated conditions. In contrast to the manipulations
described earlier, the modulation of the sources” amplitude
affected the sensitivity of the all-to-all pairwise approach.
More precisely, a change in amplitude across the two con-
ditions led to a substantial decrease in the hitrate and an
approximate doubling of the number of false positives.
This may be caused by the fact that the “equal bias
assumption” is violated in the amplitude-modulated case.
It is conceivable that amplitude modulations lead to con-
siderable nonrandom spatial structure in the differential
connectivity maps which is not effectively dealt with by
nonhomogeneous smoothing.

This finding is important for several reasons, and it
affects not only the interpretability of the outcome of the
all-to-all pairwise approach but it also affects the tradi-
tional region-of-interest approach. In real experimental
data, the amplitudes of the interacting sources cannot be
assumed to be more or less constant across the experimen-
tal conditions. As a matter of fact, one strategy often
employed to identify reference regions-of-interest is using
amplitude modulation as the selection criterion.

The confounding effect of amplitude modulations raises
the question whether a conditional difference is appropri-
ate to investigate connectivity, and whether other meth-
ods may be more appropriate to assess the spatial
structure in the spurious connections. Surrogate data or
data shuffling [Lachaux et al., 1999] is often used to
assess the significance of interactions. Although these
techniques may ensure amplitude constancy at the
expense of destroying the true interactions, they also
destroy spurious interactions due to spatial leakage, and
therefore may not be sufficiently conservative. Alterna-
tively, a stratification approach may be adopted when
investigating an experimental contrast, in which for each
reconstructed dipole pair the marginal distributions of
the amplitudes are stratified across conditions after which
the connectivity metric is computed from the trials
remaining after stratification. A stratification approach
may better preserve the spatial structure in the spurious
connectivity while removing the confound of amplitude
modulations. Yet, this will be a computationally very ex-
pensive approach, because each dipole pair has to be
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evaluated separately, potentially limiting its practical
applicability.

The results presented so far were concerned with the sit-
uation in which a network of only two interacting nodes
was simulated. It would be very relevant to investigate the
applicability of the all-to-all approach to situations in
which more “realistic” networks are simulated consisting
of 3 or more interacting nodes. Although we expect that in
such cases the all-to-all approach with nonhomogeneous
smoothing will be able to extract meaningful structure
from the data, more work is needed to investigate this.

CONCLUSIONS

Using extensive data simulations, we have shown that it
is feasible to study all-to-all pairwise connectivity in MEG-
data. A crucial step in our approach is to apply nonhomo-
geneous smoothing to source reconstructions of connectiv-
ity. This is necessary to reduce the number of spurious
connections at the benefit of the detectability of the truly
interacting source regions. Amplitude changes of the inter-
acting sources have been shown to limit the sensitivity of
our approach. Future work needs to address this issue.
We strongly believe that despite the current limitations the
all-to-all pairwise approach is a viable one, which should
be further developed in order to use it on experimental
data.
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