Metric perturbations from eccentric orbits on a Schwarzschild black hole. I. Odd-parity Regge-Wheeler to Lorenz gauge transformation and two new methods to circumvent the Gibbs phenomenon

Seth Hopper
Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany

Charles R. Evans†
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA

We calculate the odd-parity, radiative ($\ell \geq 2$) parts of the metric perturbation in Lorenz gauge caused by a small compact object in eccentric orbit about a Schwarzschild black hole. The Lorenz gauge solution is found via gauge transformation from a corresponding one in Regge-Wheeler gauge. Like the Regge-Wheeler gauge solution itself, the gauge generator is computed in the frequency domain and transferred to the time domain. The wave equation for the gauge generator has a source with a compact, moving delta-function term and a discontinuous noncompact term. The former term allows the method of extended homogeneous solutions to be applied (which circumvents the Gibbs phenomenon). The latter has required the development of new means to use frequency domain methods and yet be able to transfer to the time domain while avoiding Gibbs problems. Two new methods are developed to achieve this: a partial annihilator method and a method of extended particular solutions. We detail these methods and show their application in calculating the odd-parity gauge generator and Lorenz gauge metric perturbations. A subsequent paper will apply these methods to the harder task of computing the even-parity parts of the gauge generator.

DOI: 10.1103/PhysRevD.87.064008
PACS numbers: 04.25.dg, 04.30.−w, 04.25.Nx, 04.30.Db

I. INTRODUCTION

The increasing maturity of space-based gravitational wave detector concepts [1,2] has in part motivated considerable work in the last fifteen years on self-consistent calculations of extreme-mass-ratio inspirals (EMRIs). Such a system consists of a small compact object of mass $\mu \approx 1\text{–}10M_\odot$ (e.g., neutron star or black hole) moving on a decaying orbit about, and ultimately into, a supermassive black hole of mass $M \sim 10^2\text{–}10^9M_\odot \gg \mu$. Irrespective of when a detector might launch, there is also simply considerable theoretical interest in the problem of motion of a point mass in a background geometry in general relativity, influenced by its own self-force [3].

The extreme mass ratio lends itself to use of black hole perturbation theory. In the limit of $\mu \to 0$, the small mass orbits on a geodesic of the massive black hole background with constants of motion. At next order the small mass draws up a small perturbation in the metric, which results in gravitational radiation fluxing to infinity and down the horizon of the massive black hole. The metric perturbation (MP) also acts back on the small body locally (through a self-force), giving rise to dissipative effects that cause the orbit to decay and to small conservative corrections to the motion. The perturbation problem is singular in several respects [4], with a divergence in the MP at the particle location making the motion correction also formally divergent. A general understanding of how to treat the self-force (i.e., regularize it) in an arbitrary spacetime was given by Mino et al. [5] and Quinn and Wald [6]. Practical procedures for regularizing the self-force in numerical calculations followed (e.g., Ref. [7]).

The physical retarded field $p^\text{ret}_{\mu \nu}$ can be conveniently split into regular (R) and singular (S) parts, as first introduced by Detweiler and Whiting [8]. The advantage of this split is that while the singular contribution to the MP $p^S_{\mu \nu}$ satisfies the inhomogeneous field equations, it does not contribute at all to the self-force. On the other hand, the regular contribution, $p^R_{\mu \nu}$, is a smooth, homogeneous solution to the field equations and, through a projected gradient, is entirely responsible for the self-force. Indeed, when interpreted this way, the regular field can be thought of as an external field which sources the deviation from geodesic motion on the background metric $g_{\mu \nu}$. The motion of the particle is then geodesic on the spacetime $g_{\mu \nu} + p^R_{\mu \nu}$. The singular part of the MP is calculated analytically in Lorenz gauge, and an expansion provides the regularization parameters [7]. The singular part is then subtracted from the full retarded field mode by mode in a spherical harmonic expansion, allowing the difference ($p^R_{\mu \nu}$) to converge. While in principle [9,10] the full retarded field could be calculated in a variety of gauges, in practice most calculations [11–13] have also used Lorenz gauge to find $p^\text{ret}_{\mu \nu}$.
we are developing a set of techniques and assembling a computer code to calculate with high accuracy the first-order MPs from a small compact object in a generic orbit about a Schwarzschild black hole. The need for high accuracy is related to a set of arguments that have been made for years that EMRIs should be calculated through second order in perturbation theory [3,14–17]. One particular argument centers on calculating the phase evolution of an EMRI and using it in interpreting data from a detector. For a small mass ratio $\epsilon = \mu/M$ (and in the absence of transient resonances [18] which may occur during EMRI evolution on a Kerr black hole), we expect that as an EMRI evolves through a detector passband, the gravitational waveform will accumulate (schematically) a phase of

$$\Phi = \kappa_1 \frac{1}{\epsilon} + \kappa_2 \epsilon^0 + \kappa_3 \epsilon^1 + \cdots,$$

(1.1)

where the κ’s are coefficients of order unity that depend upon, among other things, the lower and upper limits in frequency of the detector response. The first term reflects the dissipative effects of the first-order self-force in spurrying a decay of the orbit. The second term would result from second order in perturbation theory. For example, with $\epsilon = 10^{-6}$, an EMRI might be observed to accumulate a total phase of $\Phi \sim 10^6$. For matched filtering purposes we might need to compute the phase to an accuracy $\delta \Phi \leq 0.1$ and thus a fractional error of $\leq 10^{-7}$. However, the error in phase in using the first-order calculation alone is $\sim O(1)$. Hence, the need for a second approximation to take full advantage of a detector output. However, there is a corollary to this argument. We cannot possibly hope to make use of a second-order calculation if we have not already computed the first-order self-force to a relative accuracy much better than $O(\epsilon)$. The requirement might be at least several orders of magnitude better than $O(\epsilon)$ to make a second order calculation worthwhile (say 10^{-9} to 10^{-8} in the example). Furthermore, given that computation of the self-force is a numerically subtractive procedure, the first-order regularization field contributions likely need to be known even more accurately (perhaps 10^{-11} to 10^{-10}).

An accurate calculation strongly suggests use of Fourier decomposition and frequency domain (FD) methods to gain the benefit of integrating ordinary differential equations. Ultimately we are interested in the time-dependent self-force and must transfer back to the time domain (TD). For that step, a linchpin of the effort has been use of the recently developed method of extended homogeneous solutions (EHS) [19], which allows partial Fourier series sums for the perturbations to avoid the Gibbs phenomenon and to converge exponentially even at the location of the point mass and despite loss of differentiability there. This conclusion has guided others as well [20,21].

Like other recent calculations, we want to determine the first-order MP in Lorenz gauge. However, our approach is indirect. In an earlier paper [22], we calculated radiative modes ($\ell \geq 2$) of the MP in Regge-Wheeler (RW) gauge by applying EHS to solutions of the master equations of the Regge-Wheeler-Zerilli (RWZ) formalism and then determining the metric from the master functions. The new aspect of that work was being able to use FD techniques and nevertheless determine the metric amplitudes in the TD with accuracy right up to the location of the particle $r = r_p(t)$, an essential requirement for computing the self-force accurately. EHS works by recognizing that the solution of a master equation with a moving singular source (in the RWZ case, the source has both a delta function term and a derivative of delta function term) is a weak solution of the form $\Psi(t, r) = \Psi^+(t, r)\theta[r - r_p(t)] + \Psi^-(t, r)\theta[r_p(t) - r]$, where Ψ^+ and Ψ^- are in turn obtained as Fourier sums of properly normalized Fourier-harmonic modes that solve the source-free master equation. Ψ^+ and Ψ^- are in turn obtained as Fourier sums of Fourier-harmonic modes that solve the source-free master equation in the FD. Since the functions in the separate Fourier sums are smooth everywhere, the lack of differentiability of Ψ is captured entirely by the θ functions. We can in turn then calculate the MPs from Ψ. The result, however, is in RW gauge. This paper, and a subsequent one, address the calculation of the infinitesimal gauge generator that transforms $p_{\mu\nu}^\text{RW}$ in RW gauge to its counterpart $p_{\mu\nu}^\text{L}$ in Lorenz gauge.

This paper is restricted to finding the odd-parity part of the gauge generator, which for each spherical harmonic mode has an amplitude that is a solution to a single inhomogeneous wave equation. While the wave equation is simple to express, what is more challenging is to find a way to generalize the underlying idea behind EHS to equations with noncompact source terms. A substantial part of this paper is devoted to laying out two new analytic/numerical methods [method of partial annihilators (PA) and method of extended particular solutions (EPS)] we have developed for solving differential equations of this type. We present results from each of these methods, including a comparison of the two, showing that they agree to a high accuracy. These techniques will play a central role in a subsequent paper where we present the more involved procedure, based on analysis by Sago et al. [23], for determining the even-parity parts of the RW-to-Lorenz gauge generator. The Sago et al. approach takes the gauge generator equations for even parity, which are most naturally expressed as a set of three coupled equations for the vector spherical harmonic amplitudes, and transforms them to an altered set of equations in terms of different amplitudes. The resulting equations are a hierarchical set of second-order equations, in which solutions to preceding steps in the hierarchy form source terms for subsequent steps. The result is a system of equations that, while containing more steps (amplitudes), lends itself to the immediate application of the techniques developed here.
One might ask, why two new methods? In part, partial annihilators is the easier of the two methods to implement but requires that the partial annihilator operator be found. In some applications that may be difficult. In contrast, EPS is straightforward if somewhat more involved in terms of the number of steps. Ultimately, the main advantage of finding two methods is that they provide a powerful check on each other and confirmation that the solution has been obtained. We demonstrate this comparison in Sec. IV.

The discussion above begs the question, why the need to transform to Lorenz gauge? In part we know that the MP amplitudes in Lorenz gauge are C^0 in the TD at the particle location. As we discussed in Ref. [22] the MP amplitudes in RW gauge are one or two orders of continuity worse behaved (i.e., some amplitudes are C^{-1}, or discontinuous, and some have a delta function term at $r = r_p(t)$). Figure 1 demonstrates this problem graphically for the $\ell = 2, m = 1$ (odd parity) RW amplitudes h^{RW}_t and h^{RW}_r. The insets show discontinuities in the MP amplitudes at the particle’s location. The plots also show the $\propto r$ growth in the wave pulse amplitude as $r \to \infty$, reflecting the fact that RW gauge is not asymptotically flat [24]. Transformation to Lorenz gauge not only improves the behavior of the modes at $r = r_p(t)$, it also removes the nonasymptotically flat behavior seen in the radiative modes of RW gauge.

Lastly, we note that for nonradiative ($\ell = 0, 1$) modes, the RWZ formalism breaks down. Various researchers have used different gauges to solve the Einstein equations for these modes. Considering generic motion on a Schwarzschild background, Zerilli [25] solved for these modes analytically in his own gauge which exhibits C^{-1} behavior for certain modes. For circular orbits Detweiler and Poisson [26] showed how to transform Zerilli’s solutions to Lorenz gauge. Barack and Sago [13] solved the Lorenz gauge field equations directly for these modes (and higher radiative modes). The nonradiative modes provide a crucial contribution to the conservative piece of the self-force. In this paper, though, we are solely concerned with transforming our RW gauge ($\ell = 2$) MP amplitudes to Lorenz gauge. However, we note that while RW gauge is not defined for $\ell < 2$, there is no such restriction on the gauge transformation. Indeed, the work presented here can be directly extended to handle the transformations of nonradiative mode solutions from other gauges to Lorenz.

Throughout this paper we use the sign conventions and notation of Misner et al. [27] and use units in which $c = G = 1$. The background geometry is a nonrotating black hole which is described in terms of Schwarzschild coordinates $x^\mu = (t, r, \theta, \varphi)$.

II. FORMALISM

Consider the motion of a small compact object of mass μ in orbit about a static black hole of mass M, with $\mu/M \ll 1$. The small body gives rise to a perturbation
The Einstein field equations can be expanded about the background geometry. Once the stress-energy tensor \(T_{\alpha\beta}^{(0)}\) associated with the motion of the small compact object has been specified, the first-order linear equations

\[
G_{\alpha\beta}^{(1)}(\tilde{P}_{\mu\nu}) = 8\pi T_{\alpha\beta}^{(0)}
\]

(2.3)

can be solved to determine \(\tilde{P}_{\mu\nu}\). The small body is approximated as a point particle and the stress tensor is that of the particle moving on a geodesic of the Schwarzschild black hole (i.e., zeroth-order approximation).

In this work, we are interested in bound eccentric motion. The orbit is parametrized by a pair of constants, which can alternately be taken to be Darwin’s [28] eccentricity \(\epsilon\) and dimensionless semilatus rectum \(p\), or the bounding values of radial motion \(r_{\text{min}}\) and \(r_{\text{max}}\), or the specific energy \(E\) and angular momentum \(L\). The first integrals of motion are integrated using Darwin’s curve parameter \(\chi\) and are converted to functions of the form \(r = r_0(t), \varphi = \varphi_0(t), \text{and } \tau = \tau_0(t)\) (with \(\theta = \pi/2\)). The orbit has two fundamental frequencies with a rate \(\Omega\), associated with radial libration and a mean rate of azimuthal advance \(\Omega_\varphi\). See Darwin [28] for the orbital integration and Cutler et al. [29] for first application to black hole perturbations from bound motion.

A. Harmonic decomposition of the field equations

The usual route to solving the field equation (2.3) on a Schwarzschild background is to introduce tensor spherical harmonics and decompose the equations into individual angular harmonic modes. This approach was followed by Regge and Wheeler [30] and Zerilli [25] in solving for certain master functions that represent the odd- and even-parity parts, respectively, of the gravitational field. The MP is then derived from these master functions in Regge-Wheeler gauge. In Ref. [22], we used a variant of this approach, with slightly different versions of the two master functions, and combined it with a new analytic/numerical method for finding convergent solutions near the location of the point particle.

In that paper we followed Martel and Poisson [31] in using their definitions of the tensor spherical harmonics. We recap those definitions here. The unit two-sphere \(S^2\) is covered by coordinates \((\theta, \varphi)\). Upper-case latin indices \(A, B, \text{etc.}\) denote these two angular coordinates and associated tensor components. The coordinates \((t, r)\) cover the submanifold \(M^2\). For these coordinates and tensor components, we use lowercase latin indices \(a, b, \text{etc.}\) The full Schwarzschild spacetime is \(M = M^2 \times S^2\). The usual scalar spherical harmonic functions are \(Y^\ell m(\theta, \varphi)\). From these we define even-parity \(Y^\ell m = D_A Y^\ell m\) and odd-parity \(X^\ell m = -e_A^B D_B Y^\ell m\) vector harmonics, where \(D_A\) is the covariant derivative on \(S^2\). The metric on the unit sphere is \(\Omega_{AB} = \text{diag}[1, \sin^2 \theta]\) and the Levi-Civita tensor is \(e_{AB}\). Both are compatible with \(\Omega_{AB} = \text{diag}[1, \sin^2 \theta]\) and \(\text{det} \Omega = 1\). They are \(e_A = D_A Y^0 = 0\). Martel and Poisson define the two even-parity tensor spherical harmonics as \(\Omega_{AB} Y^\ell m\) and \(Y^\ell m = [D_A D_B + \frac{1}{2} \ell (\ell + 1)] Y^\ell m\), where the latter is trace-free and thus differs from that used by Regge and Wheeler \((D_A D_B Y^\ell m) [30]\). They take the odd-parity tensor harmonic to be \(X_{AB} = -\frac{1}{2} (e_A C D_B + e_B C D_A) Y^\ell m\), which differs by a minus sign from that of Regge and Wheeler [30].

Using these definitions, the MP is split into even- and odd-parity parts. Each parity is decomposed into sums over \(\ell\) and \(m\) of their respective harmonics. For even parity there are seven amplitudes that Martel and Poisson define, which can be related to those of [25,30]. They are \(h_{ij} = f H_{ij}, h_{rr} = H_r, j_i = h_0, j_r = h_1, G_{\text{here}} = G_{\text{RW}}, \text{and } K_{\text{here}} = K_{\text{RW}} - \ell (\ell + 1) G/2\). (Note: here and on many occasions later in the text we suppress the spherical harmonic scripts \(\ell\) and \(m\) for brevity when no confusion should arise.) Then the even-parity MP is

\[
p_{ab} = \sum_{\ell,m} h^\ell_0 m Y^\ell m, \quad p_{AB} = \sum_{\ell,m} h^\ell_0 m Y^\ell m,
\]

\[
p_{AB} = \tau^2 \sum_{\ell,m} (K^\ell_0 m \Omega_{AB} Y^\ell m + G^\ell_0 m Y^\ell m). \tag{2.4}
\]

For odd parity there are three amplitudes, \(h_1 = h_0, h_r = h_1, \text{and } h^\ell_{\text{here}} = -h_{\text{RW}}^\ell\), which are equivalent to the original definitions up to sign. The odd-parity MP is then

\[
p_{aB} = \sum_{\ell,m} h^\ell_1 m X^\ell m, \quad p_{AB} = \sum_{\ell,m} h^\ell_1 m X^\ell m, \tag{2.5}
\]

along with the fact that \(p_{ab} = 0\). For the balance of this paper we are only concerned with odd parity.

Regge-Wheeler gauge places the (algebraic) condition on the metric that \(h^\ell_{\text{RW}} = 0\). In this gauge the odd-parity field equations become
\[-\partial_t \partial_t h_{t}^{RW} + \alpha^2 \partial_t h_t^{RW} - \frac{2}{r} \partial_r h_t^{RW} - \frac{\ell (\ell + 1) r - 4M}{r^3 f} h_t^{RW} = P^t,\]
\[-\partial_t \partial_r h_r^{RW} + \partial_r h_r^{RW} - \frac{2}{r} \partial_r h_r^{RW} + \frac{\ell (\ell + 2)(\ell - 1) f}{r^3} h_r^{RW} = P^r,\]
\[-\frac{1}{f} \partial_t h_t^{RW} + f \partial_r h_r^{RW} + \frac{2M}{r^2} h_r^{RW} = P_t^{},\]

(2.6)

where the source amplitudes P^t, P^r, and P (for each ℓ and m) are odd-parity projections of the stress tensor,

\[P^t(t, r) = \frac{16\pi r^2}{\ell (\ell + 1)} \int T^{AB} X_{AB} d\Omega,\]

\[P(t, r) = \frac{16\pi r^4}{(\ell - 2)! (\ell + 2)!} \int T^{AB} X'_{AB} d\Omega.\]

(2.7)

We use an asterisk to denote complex conjugation. The source amplitudes in turn satisfy the contracted Bianchi identity

\[\frac{\partial P^t}{\partial t} + \frac{\partial P^r}{\partial \rho} + \frac{2}{r} P^r - \frac{(\ell - 1)(\ell + 2)}{r^2} P = 0,\]

(2.8)

and the stress tensor itself is taken to be that of a particle in geodesic motion on the background geometry.

While in principle the coupled equations (2.6) might be solved to yield the metric in RW gauge, the usual approach involves defining and using one of several odd-parity master functions and solving a lone wave equation (master equation) for this function. The odd-parity part of the metric then is derived from the master function. An equivalent master function representation is used for even-parity in RW gauge. In our previous paper [22] we used the odd-parity Cunningham-Price-Moncrief (CPM) function [32], which we refer to here as Ψ_o. This gauge-invariant master function is defined in Regge-Wheeler gauge by

\[\Psi_o(t, r) = \frac{2r}{(\ell - 1)(\ell + 2)} \left[\partial_t h_t^{RW} - \partial_r h_r^{RW} - \frac{2}{r} h_t^{RW} \right].\]

(2.9)

In terms of the tortoise coordinate $r_\ast = r + 2M \ln (r/2M - 1)$, Ψ_o satisfies the wave equation

\[\mathcal{W}_2 \Psi_o(t, r) = S_o,\]

(2.10)

where \mathcal{W}_2 is the spin-2 Regge-Wheeler operator, a particular case of the spin-s operator

\[\mathcal{W}_s = \frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial r_\ast^2} - f \left[\frac{\ell (\ell + 1)}{r^2} + \frac{2M(1 - s^2)}{r^3} \right].\]

(2.11)

Later, we will need for the Fourier transform of this operator $\partial_t \to -i\omega$, which we will denote \mathcal{L}_ω. The source term for the master equation involves a combination of moments of the stress tensor,

\[S_o(t, r) = \frac{2rf}{(\ell - 1)(\ell + 2)} \left[\frac{1}{f} \partial_t P^r + f \partial_r P^t + \frac{2M}{r^2} P^t \right] \]

\[= \tilde{G}_o(t) [r - r_\omega(t)] + \tilde{F}_o(t) \delta[r - r_\omega(t)],\]

(2.12)

and is a distribution (see Ref. [22] for details). Once the CPM master function is known, the MP amplitudes in RW gauge can be reconstructed via the expressions

\[h_t^{RW}(t, r) = \frac{f}{2r} \partial_t \Psi_o - \frac{r^2 f}{(\ell - 1)(\ell + 2)} P^t,\]

\[h_r^{RW}(t, r) = \frac{r}{2f} \partial_r \Psi_o + \frac{r^2}{(\ell - 1)(\ell + 2)} f P^r.\]

(2.13)

Their numerical determination in the time domain with a convergent and accurate behavior everywhere including the vicinity of the moving particle was the subject of our previous paper.

Because we have reason to consider it in what follows, it is worthwhile noting that the original master function of Regge and Wheeler, Ψ_{RW}, is not the CPM master function we use. They are related by

\[\Psi_{RW}(t, r) = \frac{f}{r} h_r^{RW}(t, r) = \frac{1}{2} \partial_t \Psi_o + \frac{r}{(\ell - 1)(\ell + 2)} P^t.\]

(2.14)

The RW master function satisfies an almost identical wave equation,

\[\mathcal{W}_2 \Psi_{RW}(t, r) = S_{RW},\]

(2.15)

with the only difference being the source term

\[S_{RW}(t, r) = \frac{f}{r} \left[-P^r + f \partial_r P - \frac{2}{r} \left(1 - \frac{3M}{r} \right) f P \right].\]

(2.16)

B. Gauge transformations

The exact form of the field equation (2.3) will depend upon specifying a gauge. As mentioned in the Introduction, two frequent choices are RW gauge and Lorenz (L) gauge. The small gauge generator Ξ^μ that transforms the coordinates $x^\mu_L = x^\mu_{RW} + \Xi^\mu$ between the two gauges is on the same order of magnitude as the MP, that is $|\Xi^\mu| \sim |\bar{p}_\mu^L| \ll 1$. The MP then transforms as

\[\bar{p}_\mu^L = \bar{p}_\mu^{RW} - \Xi^\mu|_\nu - \Xi^\mu|_\nu + g^\nu_\rho \Xi^\mu|_\rho,\]

(2.17)

where stroke $|\mu$ indicates covariant differentiation with respect to the background metric. Lorenz gauge requires the following condition on the MP,

\[\bar{p}_\mu^L|_\nu = 0.\]

(2.18)

Using this condition in Eq. (2.17) then provides a wave equation that must be satisfied by the gauge generator,

\[\Xi^\mu|_\nu = \bar{p}_\mu^{RW|_\nu}.\]

(2.19)
A gauge generator that satisfies this equation is unique only up to some Ξ_μ that satisfies the homogeneous version of \Eq{2.19}. Specifying the initial data and boundary values (if any) removes the residual gauge freedom and fully determines the gauge.

We consider next the spherical harmonic decomposition of the gauge vector. Momentarily considering both even and odd parity, Ξ_μ can be broken down into
\begin{equation}
\Xi_a = \sum_{\ell, m} [\delta_{\ell, m} \xi_{\ell m}^e(t, r) + \delta_{\ell, m}^+ \xi_{\ell m}^+ (t, r)] Y_{\ell m},
\end{equation}
\begin{equation}
\Xi_A = \sum_{\ell, m} [\xi_{\ell m}^e(t, r) Y_{\ell m}^e + \xi_{\ell m}^o(t, r) Y_{\ell m}^o].
\end{equation}

There are three even-parity amplitudes and one odd-parity amplitude. We will concern ourselves with determining ξ_ℓ, ξ_r, and ξ_ℓ^+ in a subsequent paper. In this paper we seek to obtain ξ_ℓ^o. Substituting the decomposition of Ξ_μ into \Eq{2.19}, we find after a bit of calculation that ξ_ℓ^o satisfies the differential equation
\begin{equation}
W_1 \xi_\ell^o(t, r) = 2 f \Psi_{RW} + f P.
\end{equation}

Once the gauge generator amplitude is known, we decompose Eq. (2.17) in harmonic amplitudes and see that the odd-parity MP amplitudes are transformed by
\begin{equation}
\begin{aligned}
h_1^o(t, r) &= h_{1RW}^R - \frac{\partial}{\partial r} \xi_\ell^o, \\
h_2^o(t, r) &= h_{2RW}^R - \frac{\partial}{\partial r} \xi_\ell^o + \frac{2}{r} \xi_\ell^o, \\
h_3^o(t, r) &= -2 \xi_\ell^o.
\end{aligned}
\end{equation}

C. Local nature of the metric perturbation and gauge generator at $r = r_p(t)$

The rhs of Eq. (2.21) is singular at the location of the particle. In this sense \Eq{2.21} is very similar to Eq. (2.10). In Ref. [22] we examined Eq. (2.10) to determine the local behavior of Ψ_ℓ. Assuming $\Psi_\ell = \Psi_\ell^+ \theta [r - r_p(t)] + \Psi_\ell^- \theta [r_p(t) - r]$, we calculated jumps in the field, $\|[\Psi_\ell]_p\|_p$, and in its radial derivative, $\|[\partial_r \Psi_\ell]_p\|_p$. We use a subscript p to indicate that a function of r is evaluated at the location of the particle, $r = r_p(t)$, becoming a function of time.

Following the same logic here, we postulate a form for the gauge amplitude of $\xi_\ell^o = \xi_\ell^+ \theta [r - r_p(t)] + \xi_\ell^- \theta [r_p(t) - r]$. Then, similar analysis to that found in Ref. [22], indicates that ξ_ℓ^o is C^0, i.e., $\|[\xi_\ell^o]_p\|_p = 0$. Further, we find the jump in the first radial derivative is
\begin{equation}
\|[\partial_r \xi_\ell^o]_p\|_p(t) = \frac{f_p}{f_p - r_p} p.
\end{equation}

Here $p(t)$ comes from the source amplitude P. All three source amplitudes are delta distributions with time-dependent amplitudes, $P = p(t) \delta [r - r_p(t)]$, $P' = p'(t) \delta [r - r_p(t)]$, and $P'' = p''(t) \delta [r - r_p(t)]$.

III. TWO EHS-LIKE METHODS FOR EQUATIONS WITH NONCOMPACT SOURCES

In Ref. [22] we solved Eq. (2.10) for a variety of eccentric orbits. We used a FD approach to find the Fourier harmonic modes of Ψ_ℓ and transformed back to the TD using the EHS method. The EHS method was first applied to wave equations with delta function sources. It allows TD reconstruction of the spherical harmonic amplitudes with exponential convergence, circumventing the Gibbs phenomenon that otherwise arises from solving equations with discontinuous or singular sources. Our application of the method also demonstrated it could be applied to sources with a derivative of a delta function.

With only a change in spin parameter, Eq. (2.21) has a similar differential operator as Eq. (2.10). Where the two equations differ markedly is in their source terms. While the source in Eq. (2.10) is point-singular and compact, the source in Eq. (2.21) is both distributional and noncompact. We can use the linearity of the equation to split off the singular part and split the generator into two parts, $\xi_\ell^o = \xi_\ell^{sing} + \xi_\ell^{ext}$, that satisfy separate equations,
\begin{equation}
W_1 \xi_\ell^{sing}(t, r) = f_p p(t) \delta [r - r_p(t)],
\end{equation}
\begin{equation}
W_1 \xi_\ell^{ext}(t, r) = 2 f \Psi_{RW}.
\end{equation}

While the former equation can be solved using the EHS method, the latter’s extended source term is more problematic. The extended source is both noncompact and has a
time-dependent discontinuity that moves periodically between \(r_{\text{min}} \) and \(r_{\text{max}} \) as the particle orbits. In this section we present two equivalent methods for solving Eq. (3.2) using FD methods, both of which provide exponential convergence upon returning to the TD.

As discussed earlier, an eccentric orbit on Schwarzschild provides two fundamental frequencies. When we Fourier transform Eq. (3.2), we have a twofold countably infinite frequency spectrum,

\[
\omega = \omega_{\text{min}} = m\Omega_{\phi} + n\Omega_{r}, \quad m, n \in \mathbb{Z}.
\]

The Fourier transform and standard TD reconstruction of \(\xi_o^{\text{ext}}(t, r) \) is then

\[
\xi_o^{\text{ext}}(r) = \frac{1}{T_r} \int_0^{T_r} dt \xi_o^{\text{ext}}(t, r)e^{i\omega t}; \\
\xi_o^{\text{ext}}(t, r) = \sum_{n=-\infty}^{\infty} \xi_o^{\text{ext}}(r)e^{-i\omega t}.
\]

Note that in addition to the already suppressed indices \(\ell \) and \(m \), FD quantities have a third implied index, \(n \). Equivalent expressions are used for the Fourier transforms and series representations of the other fields that we consider below. Note that while we use the standard tilde notation with \(\xi_o^{\text{ext}} \) to indicate a FD quantity, for other quantities we try to maintain consistency with previous tags. We have multiplied back through by \(\xi_o^{\text{ext}} \) to indicate a FD quantity, for other quantities we try to maintain consistency with previous tags.

A. First approach: Partial annihilator method

Our first method for solving Eq. (3.2) is a generalization of the standard method of annihilators used for solving inhomogeneous differential equations. It hinges on finding an “annihilator,” a differential operator that gives a vanishing result after acting on the source. Then, one can act with the annihilator on both sides of the differential equation. What results is a homogeneous differential equation of higher order. Our strategy for solving Eq. (3.2) is essentially the same, except that because the initial source is discontinuous the operator that we find does not completely annihilate the rhs but instead converts it to a distribution. Hence, we refer to the operator as a partial annihilator.

The rhs of Eq. (3.2) is well suited to the method of partial annihilators because the Regge-Wheeler variable satisfies its own wave equation with a point-singular source, (2.15). Therefore, upon dividing Eq. (3.2) by \(f \), we can take \(W_2 \) as the partial annihilator and act on both sides of the equation

\[
f W_2 \left(\frac{1}{f} W_1 \xi(t, r) \right) = f S_{\text{RW}}(t, r, p(t)) = 2f G_{\text{RW}}(t) \delta[r - r_p(t)] + F_{\text{RW}}(t) \delta'[r - r_p(t)].
\]
\[c_{h2/h4}^+(r) = 2 \int_{r_{\text{min}}}^{r_{\text{max}}} \left[\frac{1}{T} \int_{0}^{T} (\hat{G}_{\text{RW}}(t)) \delta[r' - r_p(t)] + \hat{F}_{\text{RW}}(t) \delta'[r' - r_p(t)] \right] W_{h2/h4}^+(r') W(r') \, dr'. \]

\[\text{(3.11)} \]

Likewise, for the two “-” equations (note the change on the limits of integration),

\[c_{h2/h4}^-(r) = 2 \int_{r_{\text{max}}}^{r_{\text{min}}} \left[\frac{1}{T} \int_{0}^{T} (\hat{G}_{\text{RW}}(t)) \delta[r' - r_p(t)] + \hat{F}_{\text{RW}}(t) \delta'[r' - r_p(t)] \right] W_{h2/h4}^-(r') W(r') \, dr'. \]

\[\text{(3.12)} \]

The EHS method requires knowing only the terminal values of the four functions \(c_{h2/h4}^\pm \), i.e., \(C_{h2/h4}^+ = c_{h2/h4}^+(r_{\text{max}}) \) and \(C_{h2/h4}^- = c_{h2/h4}^-(r_{\text{min}}) \). Switching the order of integration and integrating by parts, we find

\[C_{h2/h4}^\pm = \frac{2}{T} \int_{r_{\text{min}}}^{r_{\text{max}}} \left\{ \hat{G}_{\text{RW}}(t) \frac{W_{h2/h4}^\pm(r_p)}{W(r_p)} - \hat{F}_{\text{RW}}(t) \right\} \left[-\frac{W_{h2/h4}^\pm(r_p)}{W(r_p)^2} \partial_r W(r_p) + \frac{\partial^2 W_{h2/h4}^\pm(r_p)}{W(r_p)} \right] e^{i\omega t} \, dt. \]

\[\text{(3.13)} \]

At this point we define the EHS in the FD to be

\[\xi_h^-(r) = C_{h2}^r \xi_h^-(r) + C_{h4}^r \xi_h^+(r), \]

\[\xi_h^+(r) = C_{h2}^r \xi_h^-(r) + C_{h4}^r \xi_h^+(r), \]

and the EHS in the TD are defined by the Fourier sums (recall the suppressed \(\ell, m, n \) indices)

\[\xi^\pm(t, r) = \sum_n \xi_h^\pm(r) e^{-i\omega t}. \]

\[\text{(3.15)} \]

The extension of these solutions to \(r = r_p(t) \) then gives the desired solution to Eq. (3.2),

\[\xi_o^{\text{ext}}(t, r) = \xi^+(t, r) \delta[r - r_p(t)] + \xi^-(t, r) \delta[r_p(t) - r]. \]

\[\text{(3.16)} \]

B. Second approach: Method of extended particular solutions

Now we look for a solution to Eq. (3.2) that does not require a partial annihilator. In the FD the equation transforms to

\[\mathcal{L}_1 \xi_o^{\text{ext}}(r) = 2 f R_{\text{RW}}. \]

\[\text{(3.17)} \]

Again, for notational simplicity we drop the \(\xi_o^{\text{ext}} \) tags for the remainder of this section. In the end we want solutions to Eq. (3.17) that allow us to form an exponentially converging solution to Eq. (3.2) when we transfer to the TD. This will require a new technique, which we call extended particular solutions, and is closely analogous to the EHS method. First, though, we consider how to get the correct causal solution to Eq. (3.17) from a “standard” approach.

In the subsequent sections we make a distinction between quantities with \(\infty \) and \(H \) tags which designate functions computed from a “standard” rhs source [Eq. (3.23) below] and those quantities with + and − tags which designate functions computed from an “extended” rhs source [Eq. (3.32) below]. Because the homogeneous solutions do not depend on the source, we always tag them with + or −. We distinguish between particular and homogeneous solutions by using the respective subscripts \(p \) and \(h \).

1. Finding standard FD solutions with causal boundary conditions

By examining the source, \(2 f R_{\text{RW}} \), and the differential operator, \(\mathcal{L}_1 \), we can obtain asymptotic and Taylor expansions of the particular solution \(\xi_p \) near infinity and the horizon, respectively. The expansions are useful numerically but for our purposes here we need only consider the leading asymptotic dependence. (See the Appendix for discussion of the asymptotic expansion \(r \to \infty \) of \(\xi_p \) and how it couples to the expansion of \(R_{\text{RW}} \).

Consider first the spatial infinity side. Let the RW function have an asymptotic amplitude \(C_{\text{RW}} \), so \(R_{\text{RW}} = C_{\text{RW}} e^{i\omega t} \) as \(r \to \infty \). We then make the ansatz that \(\xi_p = C_p^\infty r^e e^{i\omega t} \) as \(r \to \infty \). Using an asymptotic approximation to Eq. (3.17) we find

\[\left(\frac{d^2}{dr^2} + \omega^2 \right) (C_p^\infty r e^{i\omega t}) = 2 C_{\text{RW}} e^{i\omega t} \Rightarrow C_p^\infty = \frac{1}{i\omega} C_{\text{RW}}. \]

\[\text{(3.18)} \]

Therefore, the asymptotic form of \(\xi_p^\infty \) is

\[\xi_p^\infty = -i \frac{1}{\omega} C_{\text{RW}} r e^{i\omega t}, \quad r \to \infty. \]

\[\text{(3.19)} \]

Next we consider the horizon side. The RW function is asymptotically \(R_{\text{RW}} = C_{\text{RW}} e^{-i\omega t} \) as \(r \to -\infty \). In this case we expect the particular solution to behave as \(\xi_p = C_{p}^H r e^{-i\omega t} \) as \(r \to -\infty \). Again, acting with the near-horizon leading parts of the differential operator, we find

\[\left(\frac{d^2}{dr^2} + \omega^2 \right) (C_p^H r e^{-i\omega t}) = 2 f C_{\text{RW}} e^{-i\omega t} \Rightarrow C_p^H = 2 \left(\frac{1}{4M^2} - i\frac{\omega}{M} \right)^{-1} C_{\text{RW}}. \]

\[\text{(3.20)} \]

Therefore, the near-horizon form of \(\xi_p^H \) is

\[\xi_p^H = 2 \left(\frac{1}{4M^2} - i\frac{\omega}{M} \right)^{-1} C_{\text{RW}} r e^{-i\omega t}, \quad r \to 2M. \]

\[\text{(3.21)} \]
We can use Eqs. (3.19) and (3.21) to set boundary conditions (B.C.’s) for two separate integrations of the inhomogeneous differential equation (3.17) (yielding two different particular solutions that differ by some homogeneous solution). This integration requires the source \(R_{\text{RW}} \), which is itself the solution to the differential equation

\[
L_2 R_{\text{RW}}(r) = Z_{\text{RW}}(r). \tag{3.22}
\]

We find it by variation of parameters, which yields

\[
\tilde{R}_{\text{RW}}^\lambda(r) = c_{\text{RW}}^+(r) \tilde{R}^+(r) + c_{\text{RW}}^-(r) \tilde{R}^-(r), \tag{3.23}
\]

where \(\tilde{R}^\pm(r) \) are unit-normalized homogeneous solutions to Eq. (3.22). Note that \(c_{\text{RW}}^+(r \geq r_{\text{max}}) = C_{\text{RW}}^+ \) and \(c_{\text{RW}}^-(r \leq r_{\text{min}}) = C_{\text{RW}}^- \). Furthermore, the solution \(R_{\text{RW}}^\lambda(r) \) is not the same as the EHS to Eq. (3.22).

Having solved Eq. (3.22) for the source term in Eq. (3.23) and determined the B.C.’s, we are ready to solve Eq. (3.17). The idea is to find the two different particular solutions, neither of which has the proper causal behavior, and then correct for the acausality by adding appropriate homogeneous solutions. The result of this process is a solution to Eq. (3.17) with causal behavior on both sides. The details follow in a series of steps.

1. Solve for the particular solution from the spatial-infinity side (see Fig. 2).
 We set a B.C. to Eq. (3.17) using Eq. (3.19) and integrate to large positive \(r_s \). We set a B.C. on the horizon (see Fig. 2). The particular solution integrated from the spatial infinity side has the asymptotic behavior,

\[
\tilde{\xi}^\infty_{\text{p}} = \begin{cases}
C_p \text{e}^{i\omega r_s}, & r_s \to +\infty, \\
C_H \text{e}^{-i\omega r_s}, & r_s \to -\infty.
\end{cases} \tag{3.24}
\]

The term with coefficient \(C_H \) is the part directly dependent on the source and it is subdominant in comparison to the homogeneous solutions. The coefficients \(\kappa^\pm \) are to be determined. Importantly, \(\kappa^+ \text{e}^{i\omega r_s} \) is an acausal term (upgoing from the past horizon).

2. Solve for the particular solution from the horizon side (see Fig. 3).
 We set a B.C. to Eq. (3.17) using Eq. (3.21) and integrate to large positive \(r_s \) using Eq. (3.23) as the source. Although the starting B.C. specified no homogeneous contribution, homogeneous solutions on the spatial infinity side will be excited. The effect can be seen on the right side of Fig. 3. The particular solution dominates, but the constant offset between real and imaginary parts indicates the presence of asymptotically constant-amplitude homogeneous terms. Analysis shows that the particular solution integrated from the horizon will behave as

\[
\tilde{\xi}^H_{\text{p}} \to \begin{cases}
C_H \text{e}^{-i\omega r_s}, & r_s \to -\infty, \\
C_p \text{e}^{i\omega r_s} + \lambda \text{e}^{-i\omega r_s} + \lambda^+ \text{e}^{i\omega r_s}, & r_s \to +\infty.
\end{cases} \tag{3.25}
\]

The coefficients \(\lambda^\pm \) are to be determined, and again we find an acausal term (\(\lambda^\pm \text{e}^{-i\omega r_s} \)), which in this case is ingoing from past null infinity.

3. Solve for the homogeneous solution from the spatial infinity side.
 Next, we set an outgoing B.C. to the homogeneous version of Eq. (3.17) at large positive \(r_s \). We integrate to solve the scattering problem for reflection and transmission amplitudes \(R^+ \) and \(T^+ \) [34]. In the terminology of Gal’tsov [35], this is an “up” mode,

\[
\tilde{\xi}^+_{\text{h}} \to \begin{cases}
T^+ \text{e}^{i\omega r_s}, & r_s \to +\infty, \\
R^+ \text{e}^{-i\omega r_s} + T^+ \text{e}^{i\omega r_s}, & r_s \to -\infty.
\end{cases} \tag{3.26}
\]

Scaled appropriately, this solution can be added to Eq. (3.24) to remove its acausality.

4. Solve for the homogeneous solution from the horizon side.
We set a downgoing B.C. to the homogeneous version of Eq. (3.17) at large negative \(r/C_3 \) and integrate to solve the scattering problem for reflection and transmission amplitudes \(R/C_0 \) and \(T/C_0 \). This is an “in” mode,

\[
\tilde{\xi}_h = \begin{cases}
T e^{i\omega r}, & r_+ \to -\infty, \\
R e^{i\omega r} + e^{-i\omega r}, & r_+ \to +\infty.
\end{cases}
\] (3.27)

Scaled appropriately, this solution can be added to Eq. (3.25) to remove its acausality.

5. Resolve the acausality in the particular solutions (see Fig. 4).

The acausal piece in Eq. (3.24) is \(\kappa^+ e^{i\omega r} \). Using Eq. (3.26), we can remove this by subtracting \(\kappa^+ \tilde{\xi}_h \).

\[
\tilde{\xi}_p - \kappa^+ \tilde{\xi}_h = \begin{cases}
C_p^0 r e^{i\omega r} - \kappa^+ T e^{i\omega r}, & r_+ \to +\infty, \\
C_p^0 f e^{-i\omega r} + \kappa^- e^{-i\omega r} - \kappa^+ R e^{-i\omega r}, & r_+ \to -\infty.
\end{cases}
\] (3.28)

The acausal piece in Eq. (3.25) is \(\lambda^- e^{-i\omega r} \). Using Eq. (3.27), we can remove this by subtracting \(\lambda^- \tilde{\xi}_h \).

\[
\tilde{\xi}_p - \lambda^- \tilde{\xi}_h = \begin{cases}
C_p^H r e^{i\omega r} - \lambda^- T e^{-i\omega r}, & r_+ \to -\infty, \\
C_p^H e^{i\omega r} + \lambda^+ e^{i\omega r} - \lambda^- R e^{i\omega r}, & r_+ \to +\infty.
\end{cases}
\] (3.29)

Equations (3.28) and (3.29) are both solutions to Eq. (3.17) and both satisfy the causal nature of the problem. Therefore they must be equal. In order to form them, we must know \(\kappa^+ \) and \(\lambda^- \). We find them by setting Eqs. (3.28) and (3.29) and their first derivatives equal at any point,

FIG. 3 (color online). Integration from large negative \(r_+ \) of the particular solution, \(\tilde{\xi}_p \). Dotted lines indicate the source libration region.

FIG. 4 (color online). Causally correct solution to Eq. (3.17), \(\tilde{\xi}_{\text{std}} \). Dotted lines indicate the source libration region.
found by taking the constants C/C_{24} above. We then define the correctly scaled homogeneous solutions found in Step III B 1 above. We then define

$$\tilde{C}_p^{\ast} = \tilde{C}_p^{\ast} = \tilde{C}_p^{\ast} = \tilde{C}_p^{\ast},$$

where we showed the RW amplitudes ht and h (Fig. 4). The difference in TD convergence between these two solutions is shown later in Fig. 8.

$$\tilde{C}_p^{\ast} - \lambda_+ \tilde{C}_h^{\ast} = \tilde{C}_p^{\ast} - \kappa^{+} \tilde{C}_h^{\ast},$$

We solve these equations for κ^{+} and λ_- and form $\tilde{C}_p^{\ast} - \lambda_+ \tilde{C}_h^{\ast}$ and $\tilde{C}_p^{\ast} - \kappa^{+} \tilde{C}_h^{\ast}$, which are equivalent. In principle, one could pick any point and expect the same result. In practice, slight numerical differences occur. In fact, we use several points to determine these constants and use the discrepancies that are found as a measure of the order of magnitude of the error. Cumulative numerical error in the solutions is addressed in Sec. IV.

The function $\tilde{C}_p^{\ast} = \tilde{C}_p^{\ast} - \lambda_+ \tilde{C}_h^{\ast} = \tilde{C}_p^{\ast} - \kappa^{+} \tilde{C}_h^{\ast}$ represents the standard solution to Eq. (3.17). If the TD source were differentiable, we would be able to find the corresponding TD solution via an exponentially converging Fourier synthesis. However, the source in this case is non-differentiable, and we need an EHS-like trick to complete the method.

2. Restoring exponential convergence with extended particular solutions

The EHS of the Regge-Wheeler equation, Eq. (3.22), are found by taking the constants C_{RW}^{\ast} and scaling the unit-normalized homogeneous solutions,

$$R_{\ast}^{\ast}(r) = C_{RW}^{\ast}R^{\ast}(r).$$

These solutions are defined for all $r > 2M$. In like fashion we seek to find FD EPS of Eq. (3.17) and denote these by ξ^{\ast}. We first find ξ^{\ast} by separately integrating Eq. (3.17) with the modified source terms R_{\ast}^{\ast}. The solutions are each made to match the exterior behavior of ξ^{\ast} by adding the correctly scaled homogeneous solutions found in Step III B 1 above. We then define

$$\xi^{\ast} = \xi^{\ast} - \lambda_+ \xi^{\ast}, \quad \xi^{\ast} = \xi^{\ast} - \lambda_+ \xi^{\ast}.$$

We solve these equations for κ^{+} and λ_- and form $\xi^{\ast} - \lambda_+ \xi^{\ast}$ and $\xi^{\ast} - \kappa^{+} \xi^{\ast}$, which are equivalent. In principle, one could pick any point and expect the same result. In practice, slight numerical differences occur. In fact, we use several points to determine these constants and use the discrepancies that are found as a measure of the order of magnitude of the error. Cumulative numerical error in the solutions is addressed in Sec. IV.

The support for this claim has three legs. Firstly, the same arguments about EHS, based on analytic continuation, made by Barack et al. in Ref. [19] appear to apply in extension to Eq. (3.2) as well. Secondly, we demonstrate existence numerically by integrating the equation, with causal boundary conditions, and checking that the jump conditions (internal boundary conditions) at the particle are satisfied. One then appeals to the linearity of the equation to establish uniqueness. Finally, we have an independent numerical solution found through the method of partial annihilators and given in Eq. (3.16). We have confirmed that the two methods give entirely consistent solutions. These results are covered in detail in the next section.

IV. RESULTS

The methods of the previous section allow us to transform odd-parity solutions of the first-order Einstein equations from RW to Lorenz gauge. As an example, we consider an orbit with eccentricity $e = 0.764124$ and semilatus rectum $p = 8.75455$. This orbit was used in Fig. 1 where we showed the RW amplitudes h_1 and h_2 for $\ell = 2$ and $m = 1 (h_2 = 0)$. The MPs can be evaluated at any time...
but we chose to display results at $t = 93.58$ (where $t = 0$ is at the periapsis). The RW modes are discontinuous at $r = r_p(t)$ and lack asymptotic flatness. The gauge generator to go from RW to Lorenz gauge is computed for this same orbit and at the same time in the TD. It is used to obtain the MPs in Lorenz gauge using Eq. (2.22). Figure 6 shows the $\ell = 2, m = 1$ mode of the odd-parity RW-to-Lorenz gauge generator amplitude ξ_o. The Lorenz gauge MP amplitude h_2 differs from ξ_o only by a factor of -2. Dotted lines indicate the region of libration. Orbital parameters are given in the text. While the field h_2 grows asymptotically, upon transforming to an orthonormal frame, it would contribute a term that falls off as $1/r$.

Of key importance to our method is the exponential convergence of the TD solutions. We can first consider self-convergence of the modes for all r. As an example we choose an orbit with $e = 0.188917$ and $p = 7.50478$ at time $t = 96.44$. In Fig. 8 we show the self-convergence of $\xi_o(r)$ for a set of partial Fourier sums over n from $-N \leq n \leq +N$ for various N. The right panel of this figure shows amplitudes h^L_t and h^L_r for the same mode. The MPs are now C^0 at $r = r_p(t)$ and are asymptotically flat.

FIG. 6 (color online). The $\ell = 2, m = 1$ mode of the odd-parity RW-to-Lorenz gauge generator amplitude ξ_o. The Lorenz gauge MP amplitude h_2 differs from ξ_o only by a factor of -2. Dotted lines indicate the region of libration. Orbital parameters are given in the text. While the field h_2 grows asymptotically, upon transforming to an orthonormal frame, it would contribute a term that falls off as $1/r$.

FIG. 7 (color online). The $\ell = 2, m = 1$ mode of the Lorenz gauge MP amplitudes h^L_t and h^L_r for the same mode. The MPs are now C^0 at $r = r_p(t)$ and are asymptotically flat. Dotted lines indicate the region of libration. Orbital parameters are given in the text. Note (comparing to Fig. 1) the discontinuity at the location of the particle has vanished and the wave no longer grows asymptotically. We plot fh^L_t so we can see the wave behavior near the horizon.
exponential self-convergence of the EPS method as a function of \(r \), including at the particle. This result is in contrast with the left panel which shows that the standard method is only algebraically convergent in the source libration region. Note that the convergence is initially exponential before becoming algebraic around an error level of \(10^{-4} \). This transition is due to the equation for \(\xi_o \) having singular and extended parts [see Eqs. (3.1) and (3.2)]. We find the singular part using EHS, which converges exponentially. This part of the solution dominates the self-convergence in the left panel at first. Eventually, the lack of differentiability of the extended source and the use (for comparison) of the standard Fourier series for that part of the field manifests itself. The appearance of Gibbs behavior stalls the convergence in the libration region.

Beyond self-convergence, we can check absolute convergence to the analytically known jump conditions. This test can be applied to both the MP amplitudes and their first radial derivatives. As shown in the left panel of Fig. 9, we find exponential convergence to the analytically computed values in Eq. (2.24), in this case using the partial annihilator method. Here the orbit is the more eccentric one with \(e = 0.764124 \) and \(p = 8.75455 \). Each partial Fourier sum ranges over all harmonics from \(-N \leq n \leq +N \) for different values of \(N \) as seen on the horizontal axis. The jump conditions are time dependent and thus we compare our results at several moments in time (in this case at 20 points)

FIG. 8 (color online). Self-convergence of the \(\ell = 2, m = 1 \) mode of \(\xi_o \). We show results for the standard method in the left panel and our (equivalent) partial annihilators and EPS on the right. The orbital parameters are \(e = 0.188917 \) and \(p = 7.50478 \), and the fields are calculated at time \(t = 96.44 \).

FIG. 9 (color online). Convergence of the jump conditions as a measure of solution error. In the left panel the partial annihilator method was used to compute the gauge generator and MPs for a high eccentricity orbit with \(e = 0.764124 \) and \(p = 8.75455 \). Partial Fourier sums over \(n \) are computed with \(-N \leq n \leq +N \) and for various \(N \). Exponential convergence is exhibited in the various sums. See text for further discussion. In the right panel a comparison is made of discrepancies between the EPS method and the PA method as a function of time about the orbit. See further discussion in the text.
throughout the orbit. The left panel plots the maximum error encountered in each quantity throughout an orbit. Since the Lorenz gauge amplitudes are all C^0, we plot absolute convergence for the jumps in the amplitudes themselves (which are expected to converge to 0) and relative convergence for the jumps in the r derivatives of the amplitudes. The convergence appears to bottom out around 10^{-12} to 10^{-11}.

In the right panel of Fig. 9, we compare the accuracy of the EPS and PA methods. For the jumps in Lorenz gauge MP amplitudes and their radial derivatives, we show the relative error between the two methods as a function of M_P amplitudes and their radial derivatives. For the jumps in Lorenz gauge, we show the relative convergence for the jumps in the EPS and PA methods. For the jumps in Lorenz gauge, we show the absolute convergence for the jumps in the amplitudes. The convergence appears to bottom out around 10^{-12} to 10^{-11}.

Although we have only displayed results in this paper for the $\ell=2$, $m=1$ mode, we have run the code on many different modes and for different orbits. We have no difficulty in computing the gauge transformation from RW to Lorenz for odd-parity modes with high accuracy. It now remains for us to apply these methods to the even-parity part of the gauge transformation, a somewhat more involved procedure. We will turn to that issue in a subsequent paper.

V. CONCLUSION

This paper is the first of two on the transformation of metric perturbations from Regge-Wheeler gauge to Lorenz gauge. This first paper was confined to treating the odd-parity part of the MPs and devoted much of the discussion to the development of two new analytic/numerical methods for using frequency domain methods to find accurate solutions in the time domain. The follow-on paper will be primarily devoted to discussing the analytic problem of finding the even-parity part of the gauge transformation and will draw upon the numerical methods which we have detailed here.

ACKNOWLEDGMENTS

The authors thank Chad Galley and Ian Hinder for helpful discussions. We also appreciate suggestions made by the referee. C.R.E. acknowledges support from the Bahnson Fund at the University of North Carolina-Chapel Hill.

APPENDIX: ASYMPTOTIC EXPANSIONS AND BOUNDARY CONDITIONS

In the RWZ formalism it is useful to compute asymptotic expansions of the master functions about $r=\infty$ to provide boundary conditions for starting numerical integrations at finite radius. In this paper, the inhomogeneous equation for the gauge generator, Eq. (3.17), has a source term that is noncompact. This fact leads to an inhomogeneous recurrence relation for the asymptotic expansion of ξ_o that requires as input the asymptotic expansion of the source term.

We start by writing

$$\xi_o = rJ_o(r)e^{i\omega r},$$

(A1)

where $J_o(r)$ is the Jost function [34], which goes to 1 at infinity. We use Eq. (2.14) to express the rhs of Eq. (3.17) in terms of the CPM function. Then we Fourier transform that function and plug in Eq. (A1) to obtain

$$rf^2 \frac{d^2}{dr^2} J_o + 2 \left(1 + i\omega r - \frac{M}{r} \right) \frac{d}{dr} J_o$$

$$+ \left(2i\omega + \frac{2M}{r} - \ell(\ell+1) \right) J_o = -i\omega J_R.$$ (A2)

Here $J_R = J_{\ell \text{ in}}$ from Appendix D of Ref. [22]. Now, we assume the following forms of J_o and J_R:

$$J_o(r) = \sum_{j=0}^{\infty} \frac{a_j^o}{(r\omega)^j}, \quad J_R(r) = \sum_{j=0}^{\infty} \frac{a_j^R}{(r\omega)^j}. \quad (A3)$$

Plugging these in and assuming the equation is satisfied order-by-order gives the coupled recurrence formula,

$$2i(j-1)a_j^o = [(j-2)(j-1) - \ell(\ell+1)]a_{j-1}^o$$

$$+ 2M\omega[1 - (j-2)^2]a_{j-2}^o + ia_j^R. \quad (A4)$$

The coefficients $a_j^R = a_j$, given in Eq. (D5) of Ref. [22]. Assuming $a_j^o = 0$ for $j < 0$, this recurrence allows for the calculation of all a_j^o. Note that this recurrence fails at $j = 1$, which represents the homogeneous solution to Eq. (A2). We can choose that coefficient to be anything.

The particular solution here is identical to the homogeneous solution to the fourth-order equation, given asymptotically in Eq. (3.8). We can use this asymptotic expansion for both situations.

On the horizon side, where the potential falls away exponentially, it is enough to use the expression in Eq. (3.20) and a sufficiently large and negative r, starting location for integration. A Taylor expansion could be used if the starting location were farther from the horizon. The boundary conditions to the second-order homogeneous solutions are exactly analogous to those given in the odd-parity recurrence of Appendix D in Ref. [22]. The only difference is a change from 2 to 1 of the spin parameter in the potential.
METRIC . . . I. ODD-PARITY REGGE- . . .
