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Abstract: It is likely that generalization of implicitly learned sound patterns to 
novel words and sounds is structured by a similarity metric, but how may this 
metric best be captured? We report on an experiment where participants were 
exposed to an artificial phonology, and frequency ratings were used to probe 
implicit abstraction of onset statistics. Non-words bearing an onset that was pre-
sented during initial exposure were subsequently rated most frequent, indicating 
that participants generalized onset statistics to new non-words. Participants also 
rated non-words with untrained onsets as somewhat frequent, indicating gener-
alization to onsets that had not been used during the exposure phase. While gen-
eralization could be accounted for in terms of featural distance, it was insensitive 
to natural class structure. Generalization to untrained sounds was predicted 
better by models requiring prior linguistic knowledge (either traditional distinc-
tive features or articulatory phonetic information) than by a model based on a 
linguistically naïve measure of acoustic similarity.
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1 Introduction
The ability to make generalizations is a fundamental aspect of cognition and a 
crucial property of human language use. More specifically, some type of general-
ization may be implicated in cases of language change whereby a sound pattern 
that applied to one set of sounds at one point in the history of a given language 
(the original set) is extended to additional sounds at a subsequent point in his
tory (the extension set). It is unclear to what extent cognitive constructs, present 
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within individual speakers’ mental phonology, shape such generalization pro-
cesses. Indeed, historical changes could reflect cognitive factors (Kiparsky 2006; 
Labov 2011), but they are also affected by a myriad of other variables (phonetic 
pressures, social changes, chance, etc.; see, e.g., Ohala 1983; Labov 1994, 2001; 
Blevins 2004), which makes it difficult to evaluate the extent to which patterns 
observable in languages reflect cognitive constructs.

Laboratory learning of artificial grammars has begun to provide evidence 
on  cognitive biases shaping phonological acquisition (see Moreton and Pater 
2012 for a recent summary). In that line of work, participants are first exposed to 
some kind of sound pattern, designed by the experimenter on the basis of current 
phonological knowledge. At a second stage, participants are tested to determine 
how/whether they learned that pattern. Importantly, generalization can also be 
gauged, by withholding critical cases from the initial exposure, and presenting 
them at test (Wilson 2006; Finley and Badecker 2009; Becker, Nevins, and Levine 
2012). In the present paper, we report on an experiment that utilized this para-
digm in order to shed light on a central question within phonological generaliza-
tions, regarding the nature of similarity between the original and extension sets.

We illustrate the importance of this question with an example of generaliza-
tion taken from a natural language sound change: /o/-lowering in Northeastern 
Swiss German-speaking communities around Schaffhausen (Keel 1982; Janda 
and Joseph 2003). In the city of Schaffhausen, lowering is triggered by /r m n ŋ/, 
whereas in some nearby villages it is triggered by /r t d ʦ s z ʃ ʒ/. A plausible ex-
planation for this state of affairs is that the original phonetic trigger of lowering 
was /r/ (since only /r/ triggers lowering in all local dialects), and that different 
communities generalized the sound change on the basis of differing aspects 
of  the original trigger (see Janda and Joseph 2003; Mielke 2008, section 5.2.2, 
for a more in-depth discussion). This case of generalization illustrates two im
portant points. First, generalization seems to be constrained by similarity, since 
the pattern did not transfer from /r/ to, say, /ts/, without also applying to an array 
of consonants that are more similar to /r/ than /ts/ is. Second, similarity must 
admit multiple dimensions of comparison, since the same original set led to two 
different generalizations in different populations. But, in both instances, what is 
‘similarity’?

Although no previous artificial grammar work has evaluated the question of 
similarity specifically, one study investigated the kinds of representations that 
allow generalization of newly-learned patterns. Bernard, Onishi, and Seidl (sub-
mitted) explored whether listeners encode sound patterns affecting dimensions 
that are phonemic, as compared to allophonic, in the learners’ native language. 
In their experiment, Quebec French and American English listeners were pre
sented with non-words where nasal vowels were consistently followed by frica-
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tives and oral vowels by stops (or vice versa). Most of the non-words contained 
three specific vowel categories; a fourth vowel was presented rarely and in co-
occurrence with both stops and fricatives. In the test phase, participants heard 
the rare items once more and were asked to rate their frequency during the initial 
exposure phase. Although in these rare items the vowels had occurred equally 
frequently with stops and fricatives, French listeners rated non-words that fol-
lowed the general pattern (nasal+fricative, oral+stop) as having been presented 
more frequently than non-words that did not follow that regularity. In contrast, 
English listeners did not exhibit this behavior, suggesting that generalization 
occurs more readily along phonologically important dimensions. In other words, 
phonological knowledge from the participants’ native language shapes general-
ization evidenced in the laboratory (see also Pajak and Levy 2011 for potentially 
relevant evidence); or, put differently, similarity calculations are based at least in 
part on one’s native phonological grammar.

The present study investigates more closely what kinds of similarity metrics 
operate in phonological generalization. Previous artificial grammar research 
has assumed that the relevant metric involves phonological features (Finley and 
Badecker 2009; Finley 2011, submitted). In traditional generative phonology, 
distinctive features are fundamental building blocks of phonological rules and 
representations (Chomsky and Halle 1968; Kenstowicz and Kisseberth 1979). This 
is motivated in part by the observation that phonological patterns often involve 
familiar natural classes of phonetically similar sounds, which are analyzed as 
sharing one or more feature values (Jakobson, Fant, and Halle 1963; Chomsky 
and Halle 1968; Mielke 2008). For example, the English voiceless obstruents  
/p t k ʧ f Ɵ s ʃ/ form a natural class, because they share phonetic properties such 
as being produced with a substantial oral constriction, with increased intraoral 
pressure, and without vocal fold vibration. Accordingly, they are analyzed as 
being [−vocalic], [−sonorant], and [−voiced]. English voiceless obstruents also 
display common behaviors, such as triggering voicing assimilation in a following 
genitive or possessive affix.

Because traditional natural classes are based on features, and phonological 
features are typically given articulatory and/or acoustic definitions, phonologi-
cal, phonetic, and physical (i.e., independent from language-specific perception) 
notions of similarity could all explain generalizations that are observed in natu-
ral languages. Using an artificial grammar allows us to tease apart some of these 
factors. To investigate how similarity is organized in the adult perceiver, we con-
sider four hypotheses:
–	 Natural Class Generalization. Listeners generalize within traditional natural 

classes.
–	 Featural Distance Generalization. Listeners generalize to featural neighbors.
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–	 Phonetic Distance Generalization. Listeners generalize to phonetically similar 
items, with phonetic similarity depending on language-specific experience 
(for example, using articulatory information).

–	 Acoustic Distance Generalization. Listeners generalize to acoustically similar 
items (using a naïve measure of raw acoustic similarity that does not depend 
on language experience, and could potentially be found even in non-human 
animals).

In the following subsections we motivate each hypothesis and describe its spe-
cific predictions.

1.1 �Natural class generalization

A core empirical observation of phonological theory is that speech sounds pat-
tern together in structured ways that can be related to shared phonetic properties 
and/or shared phonological behaviors (Chomsky and Halle 1968; Frisch 1996; 
Mielke 2008). Quantitative typological studies have shown that the great ma
jority  of sound patterns involve featurally and phonetically natural classes as 
the  targets and/or triggers. Based on a survey of sound patterns in several  
hundred languages (Mielke 2008), Mielke, Magloughlin, and Hume (2011) report 
that typical distinctive feature theories capture 70–73% of phonologically active 
classes. One way of accounting for this distribution is to posit a bias toward 
generalizing along natural class lines – this is the Natural Class Generalization 
hypothesis.

As it stands, the Natural Class Generalization hypothesis is underspecified 
(at least from the learner’s point of view), owing to the fact that natural classes 
overlap. In particular, some natural classes stand in a subset-superset relation-
ship, e.g., voiceless oral stops are a subset of oral stops, which are a subset of 
obstruents. When observing a pattern involving /p t k/, the learner could consider 
any of these three levels of abstraction to encode it (and several more). The clas-
sical linguistic solution in such cases is to invoke the Subset Principle (e.g., Hale 
and Reiss 2003), which states that learners make the most restrictive generaliza-
tion that is compatible with the data and formalizable within the grammar. In 
probabilistic terms, learning may be viewed as allocating probability over com-
peting hypotheses rather than selecting a single one. In this framework, a mild 
generalization of the Subset Principle emerges as the statistically optimal out-
come of learning under uncertainty (Hayes and Wilson 2008): the learner may 
assign some probability to less restrictive hypotheses, but crucially should assign 
more probability to the most restrictive hypotheses. Thus, Natural Class General-
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ization predicts that if a learner were exposed to a sound pattern involving  
/d g v z ʒ/, they would be more likely to generalize the pattern to /b/ than to /k/, 
since /b/ is a member of the smallest natural class that contains all the participat-
ing sounds (voiced obstruents), whereas /k/ is not. It is important to note that 
natural classes could pattern together often in extant language patterns because 
the members of the class are likely to be affected by similar phonetic pressures. 
Therefore, generalization may not be necessary to explain the prevalence of natu-
ral classes in phonological patterns found cross-linguistically (see also Section 
5.2). Nonetheless, it remains plausible that natural classes structure generaliza-
tion if and when this process occurs.

1.2 �Featural distance generalization

In certain phonological theories, distinctive features are the representational 
primitives of phonological processes, such that phonological rules/constraints 
refer to features, rather than to natural classes (e.g., Hall 2001). Featural Distance 
Generalization is the hypothesis that generalization of a sound pattern will be 
strongest for sounds that are featurally similar to one or more sounds already 
in the sound pattern. Thus, generalization need not respect natural class bound-
aries. This may be illustrated with the same example from before (exposure to a 
pattern involving /d g v z ʒ/). According to the Featural Distance Generalization, 
the learner should assign similar probabilities to /b/ and /k/ participating in that 
pattern: both sounds are one feature away from one or more sounds experienced 
in that pattern (e.g., /b/ differs from /g/ in place of articulation, /k/ differs from 
/g/ in voicing). (Please note that to distinguish voiced and voiceless stops and 
fricatives at three places of articulation, we use the traditional features [voice] 
and [continuant] and a ternary place feature.) In contrast, lower probability 
would be assigned to /p/, which is two features away (place and voicing).

1.3 Phonetic distance generalization

Generalization could be dependent on a language-specific phonetic distance 
measure; for instance, based on articulatory experience or on sophisticated 
acoustic similarity metrics that allocate attention to linguistically relevant in
formation only. A recent study has gathered articulatory and acoustic measure-
ments from 12 English obstruents (among other sounds; Mielke 2012; see Sec-
tion  2.1.4 for further details on a similar set of measures). Figure 1 shows the 
distance among these obstruents as a function of a few articulatory and acoustic 
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measurements. Within our recurrent example, a similarity matrix based on vocal 
tract shape would predict equal generalization to /p/ and /b/, since they are 
just  as  distant from the voiced obstruents associated with the exposure set  
(/d g v z ʒ/).

1.4 Acoustic distance generalization

Sound pattern generalization may be conditioned by physical similarity between 
the original and extension items. The rightmost panel in Figure 1 represents a 
linguistically uninformed acoustic similarity measure (based on spectral shape; 
see Section 2.1.4 for further details on a similar set of measures). A learner relying 
on this metric to guide her generalization judgments would respond similarly 
to /b/, /p/, and /k/, all of which are at similar distances from the exposure set  
/d g v z ʒ/. We call this measure ‘uninformed’ because no previous language ex-
perience is necessary, and it can be calculated directly from information that is 
physically present in the speech the learner hears.

1.5 Summary of motivation

Since generalization of sound patterns can be studied in vitro using artificial 
grammars, we adopt this paradigm to test predictions from four hypotheses. The 
first states that natural classes themselves structure and limit generalization 
(Natural Class Generalization); the second is that the likelihood of generaliza-
tion declines as a function of discrete featural distances (Featural Distance Gen-

Fig. 1: Phonetic similarity between 12 obstruents, according to a variety of articulatory and 
acoustic measures (Mielke 2012). See the main text for details.
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eralization); the third is that the likelihood of generalization is dependent on a 
linguistically-informed measure of dissimilarity across the relevant items (Pho-
netic Distance Generalization); finally, the fourth is that raw acoustic similarity 
can account for observed patterns (Acoustic Distance Generalization).

2 Experiment
A subjective frequency task was used to gauge listeners’ encoding and implicit 
extension of static sound patterns (as in Bernard et al. submitted). In the expo-
sure phase, participants heard non-words whose onsets are drawn from a set 
of obstruents sharing voicing, e.g., /d g v z ʒ/, and performed an irrelevant task 
(i.e., rated their overall well-formedness). During the pre-test phase, which was a 
continuation of the exposure phase with no break and the same instructions, par-
ticipants were exposed to each test item once. During the test phase proper, par-
ticipants were again presented with the test items, but this time they were asked 
to give their subjective impression of how frequently they had heard the item be-
fore. There were four types of test items, corresponding to how the onset of the 
test word differed from the onsets of the exposure set. The exposure and test 
stimuli were counterbalanced across participants, as shown in Figure 2 and ex-
plained in more detail below. Table 1 illustrates the relationship between training 
and test stimuli using the onsets that were presented to participants in Exposure 
Condition 1.

Participants in the example condition shown in Table 1 were exposed to non-
words whose initial onset was drawn from the list of all voiced obstruents except 
/b/, as shown on the top panel. At test, they were presented with new non-words 
bearing one of the 4 onsets shown on the bottom panel. These onsets differed 
on whether they belonged to the same natural class as the trained ones in terms 
of the minimum featural distance from the trained set; in the minimum distance 
they spanned along several articulatory dimensions (representing the linguisti-
cally informed phonetic dimensions), and in the minimum raw spectral distance 
(representing the uninformed phonetic dimensions).

The first type of test item is represented in Table 1 by /g/, and it will be re-
ferred  to as Exposure. This first type is constituted by novel non-words whose 
onset was among the set presented during the initial exposure phase. These 
items allow us to ascertain that the paradigm was able to capture differences in 
subjective frequency ratings that were due to encoding of the onset of the test 
items. If participants were indeed affected by the frequency of onsets in their re-
sponses, they should assign the highest subjective frequency ratings to Exposure 
items.
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The second test item type is called Within, represented in this example by 
/b/. We will refer to /b/ as the Within segment, because it is within the Subset 
class (the narrowest natural class that contains all the exposure onsets). This 
Subset is predicted to bound generalization by the Natural Class hypothesis. A 
mixed model with regressors for each type of trial was used to test the Natural 
Class prediction, by which Within items should get higher familiarity ratings than 
the other untrained types.

Like the Within onset, the Near onset /k/ differs in one feature from an Expo-
sure onset; but unlike the Within onset, the Near onset does not belong to the 
Subset class. That is, /k/ differs only in one feature from /g/, but it is voiceless. 
Predictions made from the Featural distance hypothesis can be tested with these 
items, which should receive ratings comparable to those of the Within items, but 
higher than items whose onset is two features away from the set used in exposure. 

Fig. 2: Counterbalancing orders used in Experiment 1. Each row is an exposure condition 
(there were two participants per condition); 12 conditions were generated in order to fully 
counterbalance the assignment of segments to types across participants. This assignment is 
represented with the following codes: x indicates that the onset in that column was part of the 
exposure set only; E that the onset was used in both exposure and test (so it was an Exposure 
onset, but recall that different non-words were used in the two phases). All others were 
presented only at test: W is a Within onset (within the narrowest natural class to which all the 
members of the exposure set belonged); N is an onset that is Near (different voicing than every 
member of the exposure set, but sharing manner and place with an exposure onset), and F the 
Far onset (differing in both voicing and place).
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The baseline in ratings is thus provided by items whose onset is at least two fea-
tures from any of the onsets used during initial exposure, called Far onsets. In the 
example in Table 1, the Far onset (/p/) differs from one of the exposure onsets 
(e.g., /g/) in both voicing and place.

Additionally, the distance between each of the test onsets and those in the 
training set can be measured phonetically along a number of dimensions. In 
Table 1, we show distances derived from the articulatory and acoustic measure-
ments plotted in Figure 1, which are calculated from data reported in Mielke 
(2012). Naturally, the Exposure onset has a distance of zero, because it was in the 
training set. For the distances derived from vocal tract shape, Near /k/ is fairly 
close to /g/, which is part of the training set, while Within /b/ and Far /p/ are in 
fact further from any exposure onset than Near /k/ was to /g/. Thus, a learner 
relying on this dimension in her calculation of similarity should be most inclined 
to a extend a sound pattern observed on /d g v z ʒ/ to Near /k/, and just as likely 
to extend it to Within /b/ and Far /p/. For the distance measure derived from 
larynx activity, only /b/ is close to the (voiced) consonants in the training set. Not 
surprisingly, the distance measure derived from airflow does not help distinguish 
among the test onsets.

Additionally, we illustrate the different predictions made from an unin-
formed phonetic measurement, in this case a raw spectral distance. Along this 

Table 1: Example of the mapping of individual obstruents to each test type, and value for the 
regressors of interest, in one counterbalancing condition. For the purposes of illustration in this 
table, both articulatory and acoustic measures are taken from Mielke (2012) (the units are 
standard deviations along a first principal component). For more details, see the main text and 
the Procedure section.

EXPOSURE PHASE

Onsets /d g v z ʒ/

Natural class voiced obstruents (/b/ held out)

TEST PHASE

Name Onset Narrowest 
natural 
class?

Minimum 
featural 
distance?

Minimum 
vocal tract 
distance?

Minimul 
larynx 
distance?

Minimum 
airflow 
distance?

Minimum 
acoustic 
distance?

Exposure /g/ yes 0 0 0 0 0
Within /b/ yes 1 1.68 0.15 0.09 0.97
Near /k/ no 1 0.96 1.26 0.06 0.7
Far /p/ no 2 1.63 1.23 0.03 0.82
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dimension, the Near onset /k/ is closest to the trained onset /g/, and the Far onset 
/p/ happens to be somewhat closer than the Within onset /b/. A learner relying on 
this measure should extend the pattern to Near /k/ more than Within /b/ or Far 
/p/ onsets.

Each of these distance measurements, introduced in more detail below (Sec-
tion 2.1.4), could potentially predict participants’ generalization patterns. Impor-
tantly, whereas predictions made from the Natural Class and Featural Distance 
hypotheses are mutually incompatible, either of them is potentially compatible 
with some amount of generalization being related to the other distances. There-
fore, we analyze the predictive value of the phonetic measures in a separate sec-
tion, where linear mixed models are fitted using a variety of phonetic measures 
as  regressors. For each of these models, we computed proportion of variance 
explained (a measure of predictive value) and model fit (a measure of predictive 
value taking into account model complexity). Further details are provided in Sec-
tion 2.1.5.

2.1 Methods

2.1.1 Participants

Twenty-four native, monolingual French speakers were tested. Participants 
had  volunteered for perceptual studies after hearing about the Laboratoire de 
Sciences Cognitives et Psycholinguistique through fliers, ads on websites, and 
word of mouth. They were paid 5€ for their participation. All procedures were 
performed in compliance with relevant laws and institutional guidelines.

2.1.2 Procedure

Participants were tested one at a time in a sound-attenuated booth. They sat in 
front of a computer, wore headphones, and responded through a buttonbox, 
whose buttons were labeled 1 through 5. They were told that: (1) they would make 
judgments on non-words, and we would use these judgments in future studies 
focusing on how children learn language; (2) they would hear one item at a time 
over their headphones, and they would have to answer questions that would 
show on the screen; (3) the first question would focus on well-formedness, but 
there would be other questions later on. They were not explicitly told what the 
other questions were, nor how many sections the study had. In the initial instruc-
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tions, they were asked to respond quickly. Thus, no reference was made to artifi-
cial grammars.

The experiment consisted of three phases. During the first phase (the expo-
sure), training items were presented in a random order, and participants had 
to judge each item’s well-formedness (yes/no answer). In the second phase (the 
pre-test), the test items were presented in a random order with the same well-
formedness instructions. This phase followed the previous one without interrup-
tion; from the participants’ point of view, the first two phases were one and the 
same. In order to prevent participants from attempting to memorize  the indi
vidual items, or to repeat them overtly or covertly during the well-formedness 
portion, a reminder written in red was displayed each time they took longer than 
500 ms to answer. Finally, during the third phase (the test proper), the test items 
were presented twice again, interspersed with the training items, and partici-
pants were asked to rate how frequently they had heard each item before, on a 
scale from 1 (= very seldomly) to 5 (= very frequently). No feedback (on the re-
sponse or the response time) was given at this stage. Thus, two judgments were 
collected for each test item. The presence of the training items in this test phase 
served to help maintain the statistical patterns heard in the initial exposure; re-
sponses to these items were not analyzed. Note also that all test items were pre-
sented exactly once before these frequency instructions were given, so that varia-
tion in the ratings cannot possibly reflect variation in the item’s true frequency. 
Finally, item effects could not reflect their frequency in French (since no item was 
a real French word), and, due to counterbalancing, an effect of trial type could not 
respond to potential differences in frequency of the item’s diphones, triphones, 
etc. The experiment lasted about 30 minutes.

It may be relevant to ponder a moment how participants may have ap-
proached the task, and particularly the test phase, when they were asked to pro-
vide subjective frequency scores. Naturally, any difference in ratings across items 
is factually incorrect, and a ‘perfect listener’ performing this task should rate all 
test items as ‘very infrequent’. We nonetheless expected differences in ratings 
because human memory is susceptible to false alarms and intrusions (Deese 
1959). This property of human cognition to overestimate the incidence of certain 
past events has been exploited in several lines of psychological research. For ex-
ample, ‘false recall’ has been used to shed light on the semantic and phonologi-
cal structure of the lexicon (McDermott 1996), and to assess whether shape and 
color are encoded together when they occur in a list of visual objects (Deese 1998). 
Tasks relying on factually incorrect responses have already been used to tap naïve 
participants’ intuitions implicitly in artificial grammar learning studies applied 
to phonology (Wilson 2003). Previous readers of this manuscript have proposed a 
range of alternative interpretations for how participants could approach the task. 
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However, no alternative interpretation offered to us to date has been able to ex-
plain why participants would consistently rate Exposure and Far items differ
ently. Moreover, the inclusion of these two types facilitates the interpretation of 
the ‘intermediate’ Near and Within items. The only way in which these can be 
intermediate in terms of ratings is if raters have generalized the subjective fre-
quency of the consonants that were part of the training set.1

2.1.3 Stimuli

Stimuli were designed so as to maximize the variability participants would expe-
rience (which facilitates abstraction; Pierrehumbert, Beckman, and Ladd 2001) 
while still maintaining control of possible confounds, such as the frequency of 
individual sounds and diphones. Items were of the form CV1NV2, where C was an 
obstruent in /p t k f s ʃ b d g v z ʒ/, V1 in /a e i o u/, N in /m n l/, and V2 in /a i u/. 
Every combination of 12 onsets and the 45 ‘frames’ (5 V1 × 3 N × 3 V2) (for a total of 
540 items) was generated. The 540 items were distributed into 5 arbitrary lists 
(which had 9 items per onset), balanced in diphone frequency.

The stimuli were designed to eventually allow for a cross-linguistic compari-
son between English and French, since obstruent voicing classes are different 
phonologically (e.g., Jansen 2007) and phonetically (e.g., Keating 1984) in those 
two languages. In this paper we report data only from French participants. A 
sonorant coda (/l/ for words where N was /m/, /m/ otherwise) was added to all 
items that were actual words in French or English, and to all of its place and voic-
ing counterparts. For example, /demi/ is a real word in French meaning “half”, 
so it received a final coda to become /demil/, as did its voicing (/temil/), manner 
(/zemil/), and voicing+manner (/semil/) counterparts. Final codas were added in 
other quadruplets to balance their frequency across the lists to an average of 39% 
of closed final syllables. All of the items were recorded by a single native French 
female speaker.

Of the 5 lists, one was held out for the test, so that (a) all participants were 
faced with novel items at test; and (b) all participants were tested with subsets of 
the same list, so that any difference across conditions had to be due to initial ex-
posure. The remaining four lists were used for the exposure phase. Since there 
were 5 onsets × 4 lists × 9 items per onset per list in the exposure phase of the 
study, participants heard a total of 180 different non-words during this phase. At 

1 It goes without saying that the question of how results ensuing from the present paradigm bear 
on ‘real’ language is just as open for this task in particular as it is for any other experimental 
paradigm.
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test, they were presented with 9 items of each of 4 onsets. Twelve exposure condi-
tions (represented in Figure 2) were designed such that each of the 12 consonants 
served as Exposure, Within, Near, and Far the same number of times across par-
ticipants. By virtue of this complete counterbalancing, we ensured that effects 
could never be reduced to differences in the frequency of onsets or sequences in 
the participants’ native language, since every test item was presented mapped 
onto the Exposure type for one quarter of the participants who heard it at test; 
onto Within for another quarter; onto Near for a third quarter; and onto Far for the 
fourth quarter.

2.1.4 Distance measures

Being conservative in which models were evaluated could have meant that we 
were missing the dimension that learners actually relied on, which would have 
led to an inaccurate statement about how much one or another metric influenced 
generalization. Therefore, we considered 20 possibilities spanning the four hy-
potheses set out above. We would like to be the first to point out that this consti-
tuted rather extreme repeated testing, and thus results, particularly for the pho-
netic dimensions, should best be viewed as tentative, to be corroborated by future 
work with more focused hypotheses. Nonetheless, we believe that it is important 
to report this initial exploration, as it shows to what extent this avenue of re-
search is promising, and should be followed up through ad hoc investigation.

2.1.4.1 Natural class distances
The strongest version of this hypothesis states that Exposure and Within items 
would have a null distance, whereas the other two types would have a non-null 
distance; a weaker version holds that Within will have a smaller distance than 
both Near and Far.

2.1.4.2 Distinctive features distance measures
Three types of featural distance were considered. First, distance was measured as 
explained above as the number of feature changes needed to convert one onset 
into another. Thus, this measurement could have the ordinal values 0 (Exposure), 
1 (Within and Near), and 2 (Far). By treating these levels as ordinals, a linear fit is 
imposed (that is, two features away should be the same as two times one feature). 
Second, fit was calculated for a non-linear feature distance, where the three  
levels are viewed as three independent levels. The third variant took into account 
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interpolation between places of articulation (e.g., /t/ is 0 features away from 
/p  k/, whereas /p/ is 1 feature away from /t k/; see Wilson 2003; Finley and 
Badecker 2009).

2.1.4.3 Linguistically informed distance measures
It is difficult to decide how to define a linguistically informed distance matrix, 
since language-specific phonetic space is multidimensional. As a first approxima-
tion, we used distance measures derived from articulatory data collected for an 
independent study, reported in Mielke (2012). In that study, four phonetically 
trained American English native talkers produced common sounds of the world’s 
languages in three vocalic contexts (a_a, i_i, u_u). These measurements are not 
ideal since they were taken from a different set of speakers, who had a different 
native language, and were producing the sounds in a different context. Neverthe-
less, salient articulatory differences between the consonants in question (differ-
ent places of articulation, more vocal fold vibration in voiced consonants, more 
airflow during the constriction phase of fricatives, etc.) are expected to hold up. 
For the present analyses, articulatory phonetic representations for the relevant 
consonants were generated by isolating the instances of /p t k f s ʃ b d g v z ʒ/ and 
performing separate Principal Component Analyses on measures of vocal tract 
shape, airflow, and larynx activity. The first two principal components of vocal 
tract shape (derived from mid-sagittal ultrasound images) were retained. Oral 
and nasal airflow were highly correlated for these consonants (which are all oral); 
therefore, only the first principal component of the two airflow measurements 
was used. Similarly, the first principal component of electroglottograph signal 
amplitude and larynx height was used to represent the larynx data. More details 
on the methods can be found in the source article (Mielke 2012). For the present 
study, we calculated a minimum distance (between the test onset and the closest 
training onset) and an average distance (between a given test onset and the train-
ing onsets). For comparison with other regressors which collapse across different 
dimensions (e.g., the one representing the Featural Distance hypothesis), it was 
reasonable to calculate an additional set, defined as the sum over all of the ar-
ticulatory dimensions. This procedure yielded 10 regressors (average/minimum ×  
(4 dimensions + sum)).

2.1.4.4 An uninformed distance measure
A set of acoustic distances was calculated directly from the stimuli used in the 
present study. This process went in several steps, as follows. The first step was to 
extract a psychoacoustically motivated spectral representation, Mel-Frequency 
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Cepstral Coefficients (MFCC), for each sound file. Secondly, the spectral distance 
Sij between sound files i and j was computed using Praat’s Dynamic Time Warping 
(DTW) method (further details can be found in the Praat manual; Boersma and 
Weenink 2005). Since this DTW algorithm abstracts away from duration, the tem-
poral distance Tij between sound files i and j was also calculated, defined as the 
absolute magnitude of the difference in duration. This resulted in two distance 
matrices: a spectral one, and a temporal one. To calculate a single measure of 
distance, in the third step these two matrices were each submitted to Principal 
Components Analysis (PCA), a linear statistical method that identifies coordi-
nates for each item in a low-dimensional subspace representing an orthogonal-
ization of the greatest dimensions of variance. An abstract four-dimensional 
coordinate was assigned to each stimulus item by concatenating the first three 
components of the spectral PCA (pS

1, pS
2, pS

3) and the first component of the tem-
poral PCA (pT

1). Finally, the Euclidean distance between every two tokens was 
calculated. We considered several measurements within the umbrella of un
informed acoustic distances: (1) the average and minimum distance between the 
item under consideration and all of the exposure items; (2) those distances be-
tween the item under consideration and the centroid of the exposure distribution 
in the four-dimensional space. All three distances were estimated also when 
the initial sound (and not the whole sound file) was considered. This procedure 
yielded 6 additional regressors (average/minimum/centroid × onset/word).

2.1.5 Statistical analyses

A linear mixed model was used to predict subjective frequency rating, declaring 
participant and item as random effects. Statistical analyses were carried out in R 
(R Development Core Team 2011), with lmer, part of the lme4 package (Bates and 
Maechler 2009); significance was estimated with pvals.fnc in the languageR 
package (Baayen 2008b). Similar methods have been used in previous laboratory 
phonology work (e.g., Moreton 2008; Daland et al. 2011). It is important to point 
out that we have over-tested these data by fitting many distance models. The re-
sults of the comparison of different distance measures should be replicated in a 
different dataset.

3 Results
Before analyzing results to explore the representations allowing for generaliza-
tion, we first checked that the paradigm led to reliable variation in subjective 
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frequency ratings. Average ratings by Test Item Type (Exposure, Within, Near, 
Far) are represented in Figure 3.

We used Far as the baseline, since it is easier to assess whether the task 
worked at all: if there is any learning, at least one other type should differ sig
nificantly from Far items. Indeed, the estimate for Exposure items was positive 
and highly significant ( β = .542, SE = .067; t = 8.09, p < .05; confidence interval 
estimated with Highest Posterior Densities [HPD]: 0.3944–0.6621). Additionally, 
participants tended to estimate the frequency of Within ( β = .150, SE = .067; 
t = 2.25, p < .05) and Near ( β = .188, SE = .067; t = 2.80, p < .05) items as higher than 
that of Far items. This confirmed that the paradigm could tap implicit learning 
and generalization: variation in subjective frequency among novel non-words 
must have been caused by variation in the frequency of occurrence of their on-
sets and similar onsets. We now turn to the specific predictions made from each 
hypothesis.

One prediction made from the Natural Class Hypothesis was that generaliza-
tion would be bound by the Subset Principle to Within, and not extend to Near. 
Since participants were being asked to rate subjective frequency, highest ratings 
were expected for Exposure, and lowest for Far. Declaring Near as the baseline 
level makes it easier to see whether Near ratings differed from those for Within. 
This prediction was not met, as the estimate for Within did not differ from that of 
the Near baseline ( β = −.037, SE = .067; t = 0.55, p > .05). Thus, the Natural Class 
Hypothesis was not supported.

Fig. 3: Ratings by item type; error bars indicate standard errors.

Brought to you by | Max-Planck-Gesellschaft - WIB6417
Authenticated

Download Date | 10/18/16 6:47 PM



Similarity in the generalization   275

The Featural Distance Hypothesis stated that generalization would respond 
to featural distance between the onsets in the exposure phase and the test onsets. 
Indeed, a model with featural distance as a regressor with three levels (Exposure 
0, Within and Near 1, Far 2 features away) reveals that the estimates for both 1 
and  2 depart from that of 0-distance (1: β = −0.373, SE = .058; t = 6.43, p < .05; 
2:  β = −0.542, SE = .067; t = 8.09, p < .05; treating this regressor as continuous 
naturally also yields a significant estimate for each unit of distance: β = −0.270, 
SE = .033; t = 8.08, p < .05). The estimate is negative, in keeping with the idea that 
listeners rated as less frequent items that were at a greater featural distance from 
the training ones. These results clearly support the Featural Distance Hypothesis 
over the Natural Class Hypothesis.

Finally, we investigated to what extent different distance models predicted 
listeners’ frequency ratings. Given that regressors may be somewhat correlated, 
and in view of the sheer number of regressors considered, it was not ideal to 
incorporate them all into a single model. Therefore, each regressor was entered 
into a separate model, and models were compared in terms of the proportion 
of  variance explained (the square of the correlation between fitted and real 
values) and the model fit as gauged by Bayes Information Criterion (BIC) (Pin-
heiro and Bates 2000; Baayen 2008a; Johnson 2008). Results from the top three 
models are shown in Table 2. The best model is one in which the minimum dis-
tance summed across articulatory dimensions was used to predict measures of 
similarity, which can explain approximately the same percentage of variance 
as any other model with good performance albeit at a lower BIC (or model cost). 
In contrast, the models including the uninformed phonetic measurements (raw 
acoustics) of the stimuli do little to improve the model fit over a baseline model 
with no fixed effects. For a full list of model performances, please refer to the 

Table 2: Summary of variance explained and BIC (a measure of goodness of fit) of some 
representative models. In all cases, a linear mixed model was used to predict subjective 
frequency rating, declaring participant and item as random effects. The ‘test type’ model 
is that where the four levels of trial type (Exposure, Within, Near, Far) are entered as fixed 
effects.

Regressor Variance BIC

Random effects only 26.2 5072
Test type 29.5 5025

Linear feature-distance 29.5 5018
Sum of minimum articulatory distances 29.9 5008
Minimum acoustic distance, only onset 26.8 5066
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Supplementary Materials, located at https://sites.google.com/site/acrsta/talks/
generalizingphonotactics.

4 Discussion
In this study, participants were first presented with non-words whose onsets were 
restricted to five obstruents sharing voicing, and then asked to rate how fre
quently a non-word had been presented before. Crucially, all non-words had been 
presented the same number of times. Nonetheless, listeners gave lower frequency 
ratings to non-words whose onset differed in both voicing and place from all the 
word-initial sounds used during exposure than to non-words whose onset shared 
voicing and manner, or place and manner, with one of the exposure onsets. This 
effect confirms that the current design leads to the implicit acquisition of sound 
patterns which are reflected in the dependent measure used. Therefore, this para-
digm can capture the variability in ratings that can help us answer the questions 
motivating the present experiment, as follows.

First, listeners’ ratings of novel onsets that shared either voicing and manner 
or place and manner with one of the exposure onsets were higher than those 
attributed to onsets who shared neither place nor voicing. This study extends pre-
vious findings on adult learners’ generalization of sound patterns to untrained 
consonants (Finley and Badecker 2009; Finley 2011, submitted), using a more 
implicit design (as in Bernard et al. submitted), thus providing clear laboratory 
evidence of the process of generalization. We observed that participants implic-
itly generalized the statistics of a group of obstruents to both place and voicing 
analogues. Such diverse generalization patterns may constitute the basis for di-
verging generalization patterns different language users make when faced with a 
similar change in progress. In the introduction, we discussed one such example: 
the triggers of /o/-lowering appear to have been extended from only /r/ to other 
non-lateral sonorants in the city of Schaffhausen, and to all coronals in some 
neighboring communities.

This brings us to our second question. While not all phonological patterns 
involve phonetically or featurally natural classes exclusively, a statistical major
ity of phonologically active classes are indeed natural according to traditional 
distinctive feature theories (Mielke 2008). While this observation may be largely 
attributable to the fact that sound change operates on phonetically-defined 
groups of sounds, it is reasonable for language users to encode productive phono-
logical patterns in terms of featurally- or phonetically-defined classes of sounds. 
From this perspective, we would expect listeners to encode the observation that 
‘/d g v z ʒ/ occur word-initially’ using the Subset class, the minimal natural class 
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that contains these segments, to yield the more parsimonious constraint ‘voiced 
obstruents occur word-initially.’ If this was indeed the representation that lis
teners used in the present experiment, we should have observed higher ratings 
for the Within onsets (which belong to the Subset class) than for the Near ones 
(which do not). In the absence of such a difference, we are inclined to conclude 
that generalization in the current study operated not through a more abstract rep-
resentation, but rather as a spread of the characteristics associated with an indi-
vidual sound to sounds that are similar to it.

As for how similarity is measured, a feature-based classification of the test 
items explained a great deal more of the ratings than an uninformed distance di-
mension, based on wholesale acoustic measurements. However, using somewhat 
indirect articulatory measures produced as good a fit as a feature-based distance 
calculation. The articulatory measures were indirect because they were collected 
from a completely different set of stimuli. This leads to two important consider-
ations. First, one would expect that more direct articulatory measures may even 
outperform the categorical feature-based distance measures. We hope future work 
may explore this possibility. Second, the fact that such distal articulatory mea-
sures fit responses better than direct acoustic measurements suggests to us that 
participants brought their own mental representations to the task. That is, they 
were not simply responding to proximity in the physical stimuli presented to them, 
as a machine or perhaps a non-human animal would have. On the contrary, they 
responded using knowledge, evoked by the stimuli, but crucially derived from 
their previous experience. The latter consideration reinforces findings of one’s 
native language shaping generalization in the lab (Bernard et al. submitted).

5 Implications
Language is characteristically productive. At the level of phonology, this is evi-
denced by a rich implicit knowledge of the sound patterns present in our native 
language, which allows differential processing of novel wordforms depending on 
the extent to which they conform to those patterns. In this paper, we investigated 
how listeners represent newly extracted patterns, through the way this know-
ledge is reflected in subjective frequency ratings. We documented robust implicit 
learning of the frequency of occurrence of individual sounds and investigated 
some of the factors that govern the spreading of subjective frequency to similar 
sounds. Our results bear more generally both on the units of representation that 
allow comparison between sounds, and the relevance of sound classes for the 
description of phonologies in language and the language user’s mind. We discuss 
each of these topics in turn.
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5.1 �The dimensions and units of phonological similarity

Our results indicated that similarity is related to categorical features and/or 
related informed phonetic parameters, but did not seem to reflect uninformed 
phonetic distances. The success of models employing distance metrics based on 
the former factors (relative to models based on the latter factor) indicates that 
generalization is mediated by linguistic knowledge. We can also speculate that a 
more sophisticated acoustic measure targeting particular acoustic cues (such as 
presence of low-frequency or a voicing bar) would also be more successful than 
our naïve acoustic measure.

Naturally, conclusions may be different for other tasks. For example, a re-
cent  study reports that the well-established phonological similarity effects in 
verbal working memory reflect primarily acoustic interference at the stage of 
recall for a  purely perceptual task, and articulatory similarity when produc-
tion  is  involved  (Schweppe, Grice, and Rummer 2011). Similar (partial) dis
sociations in the way adults represent subsegmental similarity have been evi-
denced in second-language learners by de Jong and colleagues (de Jong, Silbert, 
and Park 2009; de Jong, Hao, and Park 2010). In terms of perception, learners 
were asked to identify consonants varying in place, manner, and voicing in 
their  second language, and identification was scored for each feature sepa
rately. If individual variation in perception is due to different individuals being 
better at detecting a given feature (all else being equal), one would expect 
accuracy for voicing among labial stops to be correlated with accuracy for voic-
ing  in coronal stops. In fact, participants were more internally consistent 
across  place of articulation for manner than for voicing. A similar design was 
pursued in a production study, which revealed that internal correlations 
across  place of articulation were higher for voicing than for manner. Thus, 
complementary patterns of internal consistency were documented for percep-
tion and production. Modeling work suggests that this diversity in the behavior 
of  phonological features is not due exclusively to cognitive biases in humans, 
since it is clearly represented in the phonetic signal and can be captured in
strumentally. Indeed, Lin and Mielke (2008) found that manner features could 
be extracted easily from the acoustic signal, whereas features representing place 
of articulation were hard to extract automatically based only on acoustic mea-
surements. In contrast, place could be easily captured through articulatory mea-
surements of vocal tract shape, while manner was more elusive in this type of 
signal.

Therefore, different strands of the literature on phonological representations 
(our artificial grammar generalization study above, perception and production 
data from L2, and modeling work) begin to converge in the suggestion that simi-
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larity is not unidimensional. Instead, the sound patterns evidenced in language 
are likely the effect of both diachronic perceptual and articulatory pressures and, 
perhaps to a more limited extent, cognitive biases emergent from online calcula-
tions of similarity along articulatory and perceptual dimensions. There remain 
three outstanding questions now facing this literature.

First, there are important gaps in our empirical knowledge, particularly with 
respect to how adult listeners/speakers come to represent similarity the way they 
do. While cross-linguistic studies demonstrate that similarity measures for identi-
cal stimuli differ across language backgrounds (e.g., Nishi et al. 2008), the devel-
opmental timeline of such effects remains to be documented. This developmental 
timeline could shed light on the relative importance of perceptual and articula-
tory dimensions affecting similarity effects.

Second, it is important to determine whether there is any effect of an addi-
tional dimension of similarity, namely similarity in functional (phonological and 
lexical) properties. An example of phonological similarity is the following: imag-
ine two languages having identical phonetic inventories, but the sounds X and Y 
pattern together (i.e., can occur in the same positions, trigger similar phonologi-
cal processes) in only one of them. If functional behavior is a third dimension af-
fecting similarity, one would predict greater perceptual similarity between X and 
Y in the first language, and for this to be evidenced only by native speakers of that 
language. Recent work documents the impact of functional behavior on similarity 
judgments through the comparison of linguistic populations in which a given 
pair of sounds is only weakly contrastive (Boomershine et al. 2008; Johnson and 
Babel 2010). For example, Johnson and Babel (2010) argue that Dutch listeners 
rate identical tokens of [s] and [ ʃ  ] as more similar and have a harder time dis-
criminating them than English listeners do because in Dutch [ ʃ  ] occurs either as 
the surface realization of /s/ before /j/ or in some loanwords. These results sug-
gest that phonological and lexical experience can affect cognitive representations 
through the increase of functional pressures to maintain or lose a distinction.2 
Therefore, it would be of interest to test how functional properties from one’s 
native language constrain generalization. Bernard et al.’s (submitted) report that 
phonemic experience is crucial to the generalization of newly learned sound pat-
terns fits in with the idea that functional properties also play an important role in 
structuring similarity.

2 Of course, this conclusion rests on the assumption that the sounds under study are acousti-
cally equally discriminable across the languages being compared, and that only their functional 
roles differ. Boomershine et al. (2008) and Johnson and Babel (2010) get around this problem by 
testing all linguistic groups with a single set of stimuli.
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Finally, these insights should be integrated into models that quantify the ex-
tent to which these different factors explain language processing and phonological 
patterns. In particular, we would like to tease apart the effect of historical pres-
sures and cognitive biases, a goal that at present can only be achieved through 
computational and statistical models.

Once the dimensions along which similarity is computed have been estab-
lished, the next step is to determine how space is structured along each di
mension. There are few studies in which parametric variations have been imple-
mented, but in this sparse literature there seems to be some disagreement 
concerning the units of similarity. Informal inspection of our results suggests that 
most of the effect is brought about by the first feature, whereas the second feature 
seemed to yield a smaller effect (although the precise size difference should be 
studied directly in a different design). In contrast, White and Morgan (2008) doc-
ument that the effects of distance along featural dimensions are linear in infants’ 
word recognition. Even within artificial grammar studies on adults’ learning of 
alternations, the metrics of similarity are unclear. Peperkamp, Skoruppa, and 
Dupoux (2006) and Peperkamp and Dupoux (2007) trained participants on an 
alternation between two sounds that differed in either only one feature (/p/ turn-
ing into /b/), or three features (/p/ turning into /ʒ/, where place, manner, and 
voicing change). In a perception task, participants succeeded in learning both the 
one-feature and the three-feature changes (Peperkamp and Dupoux 2007), while 
only the one-feature alternation was learnable in a production task (Peperkamp 
et al. 2006). Extending these results, Skoruppa, Lambrechts, and Peperkamp 
(2011) showed that talkers can quickly acquire a one-feature change in a pro
duction task with feedback, and that performance reaches an asymptote more 
quickly for these minimal changes than for a two- or three-feature change, with 
no difference among the latter two conditions. Evidently, this is a matter deserv-
ing further investigation. An equally important question, on which there is little 
research, is whether similarity is asymmetric (Chang, Plauche, and Ohala 2001; 
Garrett and Johnson 2013; McGuire and Babel 2012).

5.2 Natural classes

There appears to be a mismatch between our findings (no bias for Subset general-
ization) and observed phonological patterns (typically involving sound classes). 
If natural class–based encoding is not an automatic consequence of exposure to 
a phonological pattern, as the results of the present experiment suggest, then 
why are natural classes so prevalent in phonology? We put forward three, not 
mutually exclusive, explanations.
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First, natural-class based patterns could emerge as the consequence of lan-
guage use, since similar sounds face similar phonetic pressures. As Mielke (2008: 
90) puts it, “phonetic similarity [may be] relevant for the initiation of the parallel 
sound changes rather than in the extension of the result of one sound change to 
a larger class”.

Second, there could be additional cognitive pressures that we did not target 
in the present study, but which would bias language users toward natural classes. 
One clear candidate involves greater learnability of multi-sound patterns when 
they share many phonetic characteristics. The present study cannot speak to this 
question, because all exposure conditions were based on natural classes. How-
ever, many other studies have documented that adults find it easier to learn pat-
terns involving a natural class than to learn patterns involving an arbitrary set of 
sounds (Pycha et al. 2003; Wilson 2003; Moreton 2008; Endress and Mehler 2010; 
Skoruppa and Peperkamp 2011). For example, participants in the natural class 
condition in Wilson (2003) were capable of learning that the onsets of the second 
and third syllables agreed in nasality: either both were nasal (dumena) or neither 
was (tukola, sutola). Participants in the arbitrary condition, in contrast, were un-
able to learn that, e.g., /m/ and /t/ were followed by /l/, whereas /k/ was followed 
by /n/ (dumela, tukona, sutola). Thus, if a language has a sound pattern that af-
fects a random set of sounds, even a small difference in ease of learning should 
translate to a higher chance of the pattern being lost over the course of several 
generations.

Third, learners’ acquisition of patterns may be restricted by natural class 
boundaries only during early first language acquisition. Numerous studies have 
documented that young infants readily learn and generalize sound patterns to 
within-class sounds, although the ability to generalize may decline by about 
14 months of age (see Cristia, Seidl, and Francis 2011 for a recent review). There 
is  a strong version of the Subset Learning Hypothesis, which predicts that re
sponses for the Within onsets should be equivalent to those for Exposure on-
sets,  since both of them fulfill the represented pattern based on the natural 
class to the same extent. As evident in the experiment reported here, and every 
other comparable study, this is clearly not the case for adults, for whom there 
seems to be a cost in generalization to untrained sounds. In contrast, Cristia 
and  Peperkamp (2012) report that this precise pattern of results obtains in 
6-month-olds, who encode the sound class rather than the specific sounds. 
During familiarization, infants heard many different non-words with three dif
ferent onsets (e.g., /b d ʒ/). At test, half of the infants were presented with 
new  items having the three exposure onsets and items with three untrained, 
but within-class, obstruents (i.e., /g v ʒ/). These infants showed no preference, 
as  if unable to detect the novelty in the Within trials. The second half of the 
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infants, who were given the choice between Within and Near (i.e., /k f s/) items, 
showed a robust novelty preference for the Near items. Even though the methods 
used with infants and adults are clearly not the same, it is intriguing that with 
similar stimuli, 6-month-olds and adults appear to encode sound patterns in 
very different ways. If the behavior recorded for infants in this artificial grammar 
learning study replicates their learning of the sound patterns found in their na-
tive language, then the prevalence of class-based patterns in language would not 
be at all surprising, as infants would automatically code patterns in terms of the 
subset class involved.

6 Conclusion
In this article, we sought to shed light on the factors affecting generalization of 
newly learned sound patterns to untrained non-words and untrained consonants. 
Our results suggest that generalization to untrained non-words is robust. When 
generalization to untrained consonants occurs, it does not seem to be constrained 
by the Subset Principle, because generalization targets are not limited to mem-
bers of the narrowest natural class encompassing all sounds with similar pho
nological behavior. Instead, generalization to untrained sounds follows from 
pairwise similarity between consonants present in the exposure and the target 
consonants. This similarity is better captured through dimensions that rely on 
preexisting phonetic and phonological knowledge, whereas uninformed mea-
sures of acoustic similarity contribute little to shaping listeners’ judgments. Fur-
ther research should continue to explore the dimensions and units structuring 
similarity matrices, a crucial factor shaping phonological generalization.
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