












tion, in silico analysis revealed a sorting sequencemotif inMega
(Fig. 4F) associated with clathrin-mediated endocytosis of
transmembrane proteins (32). These results indicate a close
contact of Mega with Chc and Mega endocytosis via clathrin-
coated vesicles.
It has recently been shown that theMega interaction partner

Crim is involved in SJ formation. However, the intracellular
localization of Crim was yet unknown. Thus, we generated an
anti-Crim antibody (“Experimental Procedures”) and analyzed
the intracellular Crim distribution (Fig. 5). Crim co-localizes

with the SJ marker Mega in apical membrane regions of tra-
cheal (Fig. 5A), hindgut (Fig. 5B), and salivary gland cells (Fig.
5C). Thus, our results indicate that Crim represents a bona fide
SJ protein and suggest that Crim acts as a binding partner of
Mega within the SJ.

DISCUSSION

This paper presents the first comprehensive proteomic study
of an invertebrate claudin protein complex.We used the highly
specific anti-Megamonoclonal antibody for immunoprecipita-

FIGURE 4. Mega co-localizes with Chc at the membrane. A–E, shown is whole-mount antibody double staining of stage 17 wild-type embryos with anti-Mega
mAB and anti-Chc AB. A, the confocal image shows Mega (red) localization in trachea (tr), hindgut (hg), epidermis (ed), and chordotonal organs (cdo; arrow).
Merged images of Mega (red) and Chc (green) are shown in the trachea (B), the epidermis (C), the hindgut (D), and the chordotonal organ (E). The corresponding
images of Mega (B�–E�) and Chc (B�–E�) are shown in gray. Wheat germ agglutinin marks the apical cell membrane surface (blue in C and D). The arrowheads
indicate Chc-positive vesicles partially co-localizing with Mega. F, shown is a scheme of the predicted Mega protein structure; transmembrane domains are
indicated in blue, intracellular regions are in green, and extracellular regions are in red. A putative sorting signal (YXX� sequence; � is a bulky hydrophobic
residue, and X is any amino acid) (32) that mediates targeting into clathrin-coated vesicles is localized in the intracellular loop (arrow; residue 146 –149; YEWL)
of Mega. CT, C terminus; NT, N terminus. Scale bars represent 5 �m.
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tion of membrane proteins via their interaction with the Dro-
sophila claudin Mega. Although the membrane proteins were
solubilized from the lipid bilayer by two different concentra-
tions of detergent (1% and 0.5% Nonidet P-40), the sets of
Mega-interacting proteins are very similar after immunopre-
cipitation followed by mass spectrometry. However, under the
less stringent 0.5% Nonidet P-40 conditions, a lower total pro-
tein amountwas immunoprecipitated. This led to the detection
of Mega via the very sensitive mass spectrometry analysis but
not via Western blot analysis.
Our immune-precipitation studies revealed a set of 142 pro-

teins that potentially interact with the claudin Mega. These
proteins include 10 bona fide SJ components that represent
most of the SJ components identified so far and, thus, serve as
proof of concept for our analysis. In contrast, the high number
of established and putative ribosomal proteins identified after
immunoprecipitation suggests unspecific binding of these
highly abundant proteins. However, we cannot exclude specific
binding of one or more of such factors to the SJ protein com-
plex. Therefore, to avoid biased results, we performed an in vivo
analysis of the entire repertoire of the 142 proteins identified by
mass spectrometry.
We show that the RNAi-mediated tracheal knockdown of

theMega interaction partner Rho1 reveal tracheal network dis-
ruptions and a lack of tracheal branch interconnection. It has
previously been shown that the RhoGTPase Rho1 acts as a sub-
strate of the RhoGAP enzyme Crossveinless-c (Cv-c) that
affects actin-myosin apical distribution, likely by regulation of
Rho1 activity (33). Embryos mutant for cv-c or rho1 reveal
affected tracheal cell invagination, which generates tracheal

phenotypes similar to the RNAi-mediated Rho1 knockdown
phenotypes. During the later stages of development Rho1 reg-
ulates adherence junctions during morphogenesis (34). How-
ever, additional Rho1 accumulation in the region of SJs (34) and
our finding of the potential Mega-Rho1 interaction may also
suggest regulation of SJs via Rho1 binding to the claudinMega.
It has been proposed that endocytosis is involved in the recy-

cling of the SJ componentMelanotransferrin to the apicolateral
membrane region where it forms complexes with Neurexin IV,
Contactin, and Neuroglian (16). Importantly, our data provide
evidence that Mega participates in this multiprotein complex
formation as all four proteins co-precipitate with Mega. We
further found that the previously characterized protein clathrin
heavy chain (Chc) interacts withMega, and our in vivo analysis
revealed that Chc is essential for normal tracheal morphogen-
esis and gas filling of the tubes. Previous investigations identi-
fied caveolin- and clathrin-mediated forms of endocytosis
important for TJ components in vertebrates (35, 36). For exam-
ple, studies in human alveolar and T84 intestinal cells demon-
strate Claudin internalization via clathrin vesicles (37, 38). In
Drosophila, molecular mechanisms of claudin endocytosis are
poorly understood. Caveolin has not been identified in the fly,
whereas Chc, the main component of clathrin-mediated endo-
cytosis, is expressed in a vesicle-like pattern within the cyto-
plasm and at the plasma membrane (20). Interestingly, the
Mega sequence contains a conserved sorting signal for clathrin-
mediated endocytosis similar to that described in the human
Claudin 4 sequence (37). This motif is usually situated within
cytosolic protein domains (32). Consistently, the Mega sorting
motif is localized within the intracellular loop framed by the
second and third transmembrane domains. However, the short
distance between the sorting signal inMega and the transmem-
brane domain is unusual for such motifs (32). Based on the
co-localization ofMega and Chc and the conserved sorting sig-
nal, we suggest similar clathrin-dependentmechanisms ofDro-
sophila and vertebrate claudin endocytosis and turnover at the
plasma membrane. Thus, Mega internalization may play a cru-
cial role in the remodeling of SJs, as it has been observed for TJ
remodeling by claudins in vertebrates (39).
Our immunoprecipitation experiments indicate an associa-

tion of Mega with all three subunits, Sec61�, Sec61�, and
Sec61�, of the Sec61p complex. Oligomers of the Sec61p com-
plexmake up the protein translocation channel at the endoplas-
mic reticulum. Protein translocation across the endoplasmic
reticulum is the initial step in the biogenesis of secretory and
membrane proteins (40). Because intact SJs are essential for the
secretion of the chitin deacetylases Serpentine and Vermiform
(27, 41), we suggest that these particular secretion processes
depend on an interaction of the SJ component Mega with the
Sec61p complex proteins Sec61�, Sec61�, and Sec61�.We can-
not exclude the possibility that Mega and Sec61p complex pro-
tein interaction occurs during the transport of Mega across the
protein translocation channel. However, we favor the model of
an interaction between the Sec61p complex and SJs via the SJ
component Mega because it integrates the essential require-
ments ofMega for SJ formation and the secretion of Serpentine
and Vermiform via the Sec61p complex as well.

FIGURE 5. Crim represents a bona fide SJ component. Whole-mount anti-
body double staining of stage 17 wild-type embryos with anti-Mega mAB and
anti-Crim AB (see “Experimental Procedures”). Merged images of Mega
(green, A–C) and Crim (red, A�–C�) reveal co-localization of the proteins (yellow,
A�–C�) in the tracheal system (A�), the salivary gland (B�), and the hindgut (C�).
Co-localization with the SJ marker Mega (9) shows that Crim localization is
confined to SJs during embryogenesis. Scale bars represent 10 �m.
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TheMega binding partner Crim is a member of the Ly6 pro-
tein family, whosemembers are characterized by glycosyl phos-
phatidylinositol-anchored, cysteine-rich cell surface mole-
cules. It has recently been shown that at least four members of
this group, Boudin (42), Crim, Crooked, and Coiled (15), are
required for SJ formation. However, in contrast to Crooked and
Coiled, which are required for SJ formation and localized in SJs
(15), it was shown that Boudin requirements for SJ organization
are non-cell-autonomous, and Boudin is secreted extracellu-
larly (42). Thus it was of particular interest to analyze the intra-
cellular distribution of Crim. Our finding that Crim co-local-
izeswith the SJmarkerMega in all analyzed tissues indicate that
Crim represents a bona fide SJ component as shown for the Ly6
family members Crooked and Coiled. Thus, we speculate that
Mega, Crim, and other Ly6 proteins participate in the forma-
tion of multiprotein complexes to mediate their functional SJ
association.
The immune-precipitation experiments show that Mega

interacts with an uncharacterized protein encoded by CG3921.
The RNAi-mediated tracheal knockdown of CG3921 revealed
tracheal phenotypes during embryogenesis that are reminis-
cent of SJ mutant phenotypes. Furthermore, CG3921 tracheal
knockdown embryos fail to perform gas filling of the tracheal
branches as found in embryos with affected SJs. CG3921
encodes a conserved 3115-amino acid long putative scavenger
receptor protein (supplemental Fig. 1 and 2) (43). Thus, we
assume thatCG3921 protein participates in the SJ protein com-
plex at the lateral plasma membrane. Future experiments
including mutant analysis and localization studies of CG3921
protein by specific antibodies will determinewhether this puta-
tive scavenger receptor participates in SJ function and tracheal
morphogenesis.
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25. Tonning, A., Hemphälä, J., Tång, E., Nannmark, U., Samakovlis, C., and
Uv, A. (2005) A transient luminal chitinous matrix is required to model
epithelial tube diameter in the Drosophila trachea. Dev. Cell 9, 423–430

26. Petkau, G., Wingen, C., Jussen, L. C., Radtke, T., and Behr, M. (2012)
Obstructor-a is required for epithelial extracellular matrix dynamics, exo-
skeleton function, and tubulogenesis. J. Biol. Chem. 287, 21396–21405
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