On the number of relevant operators in asymptotically safe gravity

Dario Benedetti
Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Am Mühlenberg 1, D-14476 Golm, Germany

In this short note we answer a long standing question about the asymptotic safety scenario for quantum gravity. The term asymptotic safety refers to the conjecture that (i) the quantum field theory of gravity admits a non-trivial ultraviolet fixed point, and that (ii) this has only a finite number of relevant perturbations, i.e. a finite number of UV-stable directions (or in other words, a finite number of free parameters to be fixed experimentally). Within the \( f(R) \) approximation of the functional renormalization group equation of gravity, we show that assuming the first half of the conjecture to be true, the remaining half follows from general arguments, that is, we show that assuming the existence of a non-trivial fixed point, the fact that the number of relevant directions is finite is a general consequence of the structure of the equations.

The main problem with perturbative non-renormalizability of gravity is notoriously the proliferation of couplings to be determined by experiments. From a renormalization group point of view, this is understood as the fact that Newton’s constant is techni-
cally an irrelevant coupling (i.e. it is on a UV-unstable trajectory) for the free (Gaussian) fixed point of Ein-
stein’s theory, and if we want to keep it finite in the continuum limit, we have to deal also with the infinitely
many other irrelevant couplings. One solution to this problem was suggested long ago by Weinberg [1, 2],
who dubbed it asymptotic safety: our near-Gaussian unstable trajectory could be the stable trajectory of a
new non-Gaussian fixed point (NGFP). In order to be effective, such scenario requires that (i) there exists a
NGFP, and that (ii) the number of parameters needed to uniquely determine one such trajectory among all the
possible ones be finite. We associate such parameters to relevant directions, i.e. to a basis of independent
trajectories spanning the UV-stable surface of the NGFP. If the dimension of the UV-stable surface was
infinite, we would of course be confronted again with a problem similar to the one we started from. On the
other hand, if it was finite, we would have the possibility of constructing a nonperturbatively renormalizable
quantum field theory of gravity.

An important amount of evidence has been collected in recent years in favor of the asymptotic safety scenario,
mainly by studying truncations of a functional renormalization group equation (FRGE) [3, 4]. The adopted strategy
(avoiding a perturbative expansion in the couplings) is to truncate the infinite-dimensional theory space of
all possible effective actions to a finite-dimensional subspace, to look for fixed points and their relevant direc-
tions, and eventually, after subsequently increasing the truncation, and repeating the procedure, to look for ev-
idence of convergence. Such program has been carried out to a certain extent, in particular with truncations
of the effective Lagrangian to a polynomial in the Ricci

\[
\Gamma_k = \frac{1}{2} \text{STr} \left[ (\Gamma^{(2)}_k + \mathcal{R}_k)^{-1} \frac{d}{dt} \mathcal{R}_k \right].
\]

For its derivation, meaning and usage, we refer to the
Here we emphasize only some aspects which are important for our work. \( \mathcal{R}_k \) is an IR cutoff operator defining the coarse graining scheme. The FRGE clearly depends on the choice of such scheme, however a number of universal properties of the flow should be independent of it, in particular the critical exponents, and hence the number of relevant directions at a fixed point. Unfortunately, approximations spoil universality to some extent, and one has to be careful in analyzing different schemes in order to pinpoint eventual artifacts of particular schemes. Scheme dependence can also be used to our advantage, optimizing the convergence of approximations to the exact results \[17\]. In any case, a good cutoff should ensure that \( \Gamma^{(2)} + \mathcal{R}_k \) be invertible. More precisely, being the second variation of a Legendre transform, it should be positive (remember that \( \Gamma_k \) on its own is not a Legendre transform, thus it needs not be convex), and have a gap at finite \( k \) \[17\].

Our approximation consists in projecting the FRGE for gravity on a maximally symmetric background, in particular on a four-dimensional sphere. As a result, any action terms depending on the Weyl tensor, on the traceless Ricci tensor, or on derivatives of the Ricci scalar, vanish identically, and we will only be able to study the running of an \( f(R) \) theory. We will not make any further approximation, and we will not truncate the Lagrangian to a polynomial in \( R \). Our effective action is \( \Gamma_k = \int d^4x \sqrt{f_k(R)} \) plus gauge-fixing and ghosts \[4\].

For technical convenience, in gravity the common cutoff choice is \( \mathcal{R}_k = \Gamma_k - \Gamma^{(2)}(\Delta) \), where \( \Gamma_k \equiv \Delta + k^2 r(\Delta/k^2) \), \( \Delta \) is a Laplace-type operator appearing in the second variation of the action (at least when gauge-fixing, field decompositions and background choice allow us to reduce all the differential operators to Laplace type), and \( r(z) \) is a cutoff profile function. Such choice brings many advantages in the evaluation of the functional traces, however it also leads to a number of complications from the point of view of the resulting differential equation for \( f(R) \). In order to avoid such complications, we will differ here from previous works on the \( f(R) \) approximation in the choice of cutoff scheme, by choosing a cutoff independent of \( f(R) \). Our choice has a crucial consequence: the resulting fixed-point differential equation will be of second order (as explained in \[4\], the equations derived so far were of third order precisely because of cutoff choices with an \( f(R) \) dependence).

We adopt the same notation as in \[3\], where the reader can find all the details omitted here (field components, functional variations, gauge-fixing, etc.), only differing for the choice of absorbing Newton’s constant inside \( f(R) \), and for the cutoff. Defining the operators \( \Delta_0 \equiv -\nabla^2 - R/3 \), \( \Delta_1 \equiv -\nabla^2 - R/4 \), and \( \Delta_2 \equiv -\nabla^2 + R/6 \), for the scalar, vector and tensor modes, respectively, the fixed-point FRGE in the \( f(R) \) approximation reads

\[
\frac{384\pi^2}{R^2} \left( 4\tilde{f}_k(\hat{R}) - 2\hat{R}\tilde{f}_k(\hat{R}) \right) = T_2 + T_1 + T_0^{np} + T_0^h, \tag{2}
\]

where \( \tilde{f}_k = k^{-4}f_k(k^2\hat{R}) \) is dimensionless, and we have subdivided the rhs into the contributions of the transverse traceless tensor modes (we define \( E(R) = 2f(R) - Rf'(R) \), which is zero on shell)

\[
T_2 = \text{Tr} \left[ \frac{12 \frac{d}{dr} R^T_k(\Delta + \alpha_2 R)}{f'(R)\Delta_2 - 6E(R) + 24R^T_k(\Delta_2 + \alpha_2 R)} \right], \tag{3}
\]

the transverse vector modes

\[
T_1 = -\frac{1}{2} \text{Tr} \left[ \frac{4 R^V_k(\Delta_1 + \alpha_1 R)}{\Delta_1 + R^V_k(\Delta_1 + \alpha_1 R)} \right], \tag{4}
\]

the non-physical scalar modes (by which we mean all the scalars but the gauge-invariant trace mode \( h \))

\[
T_0^{np} = \frac{1}{2} \text{Tr} \frac{4 R^{S_1}_k(\Delta_0 + \alpha_0 R)}{\Delta_0 + 4 R^{S_1}_k(\Delta_0 + \alpha_0 R)} - \text{Tr} \frac{2 R^{S_2}_k(\Delta_0 + \alpha_0 R)}{(3\Delta_0 + R) \Delta_0 + 4 R^{S_2}_k(\Delta_0 + \alpha_0 R)}, \tag{5}
\]

and finally the contribution of the trace mode \( h \)

\[
T_0^h = \text{Tr} \left[ \frac{8 \frac{d}{dr} R^h_k(\Delta_0 + \alpha_0 R)}{9f''(R)\Delta_0^2 + 3f'(R)\Delta_0 + E(R) + 16R^h_k(\Delta_0 + \alpha_0 R)} \right]. \tag{6}
\]

Note that the traces are dimensionless despite being written in terms of dimensionful variables. A crucial observation is that we should choose the \( \alpha_s \) parameters such that \( \Delta_s + \alpha_s R > 0 \) for all the modes, \( s = 0, 1, 2 \) (we remind that on the sphere \( \Delta_s \propto R \)). In \[3\] we had chosen \( \alpha_s = 0 \) in order to avoid certain poles that appeared in previous equations. However, the appearance of such poles is associated to the cutoff scheme in which we implement the rule \( \Delta \to P_k(\Delta) \) on a Laplace-type operator. We noticed in \[3\] that, in order to avoid poles in the rhs of \[14\], \( \Delta \) had to be chosen to be \( \Delta_s \) for fields of rank \( s \). In the present work we do not implement such rule, hence there will be no such type of concern. For tensor and vector modes it is safe to take \( \alpha_2 = 0 \) and \( \alpha_1 = 0 \), as
the spectra of $\Delta_2$ and $\Delta_1$ are strictly positive, while we have to be more careful with the scalar modes: the trace in the $h$ sector includes a constant mode $\tilde h^{(0)}$ for which $\Delta_0 \tilde h^{(0)} = - \frac{\Delta_0}{3} \tilde h^{(0)}$, hence we need to take $a_0 > 1/3$.

We now choose the simple cutoff form $\mathcal{R}_k^2 (\Delta_e) = k^{\nu_X} c_X r(\frac{\Delta_e}{\tilde R})$, where $X$ labels a rank-$s$ field to which the cutoff is associated, $r(z)$ is a dimensionless profile function, identical for all the fields, $c_X$ is a (positive) free parameter, and the power $m_X$ is to be chosen so that the cutoff has the same dimension as the Hessian to which it is associated. The profile function should satisfy some basic requirements that make it a good IR cutoff, in particular $\lim_{z \to 0} r(z) > 0$ and $\lim_{z \to \infty} r(z) = 0$, and it should be non-negative and monotonically decreasing. Common choices of profile functions are $r(z) = z (\exp(a z^b) - 1)^{-1}$ (with $a > 0$, $b \geq 1$) [13], or $r(z) = (1 - z)\theta(1 - z)$ [17], but many more are of course possible. We will exclude power-law profile functions [19], and we will assume that the approach to zero for $z \to \infty$ is faster than any power (power-law profile functions could however be used taking care of choosing a sufficiently high power). Special care should also be taken for non-analytic cutoffs (e.g. with step functions), and for simplicity we will assume strictly positive profile functions.

For our purpose, it will be sufficient to study here only the large-$\tilde R$ properties of the FRGE, for which we will not need to actually choose a specific cutoff profile and to perform the traces. In this respect, one should notice that unlike in other applications of the FRGE, in the case of gravity there is a field dependence also in the operator with respect to which modes are being cut off (this aspect has been highlighted in a simple setting in [20], in particular $\Delta_s \propto \tilde R$ on the sphere, hence the large-field limit is peculiarly intertwined to the large mode suppression.

In analyzing the asymptotic behavior of the NGFP solutions, we will assume that this is power-law. A justification both from experience and from physical considerations, as only for such behavior we can associate a familiar interpretation in terms of couplings [13] [21].

Given such assumption on the asymptotics of the solution, we can study the dominant balancing of terms in the FRGE in the asymptotic regime. We find that the lhs of (2), as well as the cutoff-independent parts of the denominators on its rhs, contribute in the large $\tilde R$ limit with a power-law behavior. On the other hand, most cutoff choices imply a faster fall-off of the rhs at large $\tilde R$. As a consequence, the leading asymptotic behavior of the solution is dictated only by the lhs, and at leading order the large-$\tilde R$ equation reduces to

$$ \frac{384 \pi^2}{\tilde R^2} \left( 4 \tilde f_k(\tilde R) - 2 \tilde R \tilde f_k'(\tilde R) \right) = 0. \quad (7) $$

Note that this equation corresponds to the statement that the action is scale invariant in the classical sense: the lhs is nothing but $-2 \tilde R \partial_{\tilde R} \Gamma_k$ on a sphere, which is proportional to the derivative of the action with respect to the scale factor. We recover the leading order $\tilde f^* (\tilde R) \sim \tilde R^2$ of the asymptotic expansion found in [4] [15]. We would need to study the full equation, not just its asymptotics, in order to determine whether a global solution with such asymptotic behavior exists. We leave this problem to future work (and refer to preliminary studies in alternative schemes [6] [13]), and take the existence of such a global solution as our main assumption here.

Next, we use the asymptotic behavior of the FP solution in order to study the equation for the linear perturbations in the large-$\tilde R$ limit. Linearization in the neighborhood of the fixed point is performed by writing

$$ \tilde f_k(\tilde R) \sim \tilde f^*(\tilde R) + \epsilon \tilde v(\tilde R) e^{-\theta t}, \quad (8) $$

and expanding the FRGE to linear order in $\epsilon$. The zeroth order is identically zero by construction, while the first order provides the equation for the perturbations, which takes the form of an eigenvalue equation ($\lambda \equiv 4 - \theta$):

$$ -a_2(\tilde R) v''(\tilde R) + a_1(\tilde R) v'(\tilde R) + a_0(\tilde R) v(\tilde R) = \lambda v(\tilde R). \quad (9) $$

In the large-$\tilde R$ limit, $a_0$ and $a_2$ go to zero faster than power-law, while $a_1 \sim \tilde R$, and as a consequence at leading order $\tilde v(\tilde R) \sim \tilde R^{2 - \theta/2}$ for power-law perturbations.

Perturbations with $\mathrm{Re}(\theta) > 0$ correspond to relevant directions, hence we want to prove that there is a finite number of eigenfunctions with $\lambda < 4$. We will actually show that the eigenvalues $\lambda$ form a real and discrete spectrum, bounded from above, and with a finite number of eigenfunctions with positive $\theta$. In order to accomplish that, we need only few more general properties of the coefficients $a_0$, $a_1$ and $a_2$.

First we note that the coefficients have no singularities, a direct consequence of the assumption that a global solution $\tilde f^* (\tilde R)$ exists, and of the presence of the IR cutoff in the FRGE. Second, we observe that, due to the positivity and monotonicity of $r(z)$,

$$ a_2 = \frac{3 c_\nu h}{8 \pi^2 \tilde R^2} \mathrm{Tr} \left[ \frac{\Delta_0^3 (2 r(\Delta_0 + a_0 R) - (\Delta_0 + a_0 R) r' (\Delta_0 + a_0 R))}{(9 f''(\tilde R) \Delta_0^3 + 3 f'(\tilde R) \Delta_0 + E(\tilde R) + 16 c_\nu r (\Delta_0 + a_0 R))^2} \right] > 0, \quad (10) $$

hence [9] is a Sturm-Liouville problem, written with the usual sign convention. The boundary conditions on the
half-line $\tilde{R} \in [0, +\infty)$ are provided by fixing the arbitrary normalization of the eigen-perturbations, i.e. setting $\nu(0) = \gamma v(0)$ (and we are free to choose $\gamma = 1$), and by the requirement that the asymptotic behavior be power-law. The latter is equivalent to requiring square integrable solutions of (9) with respect to the weight function $w(R) = a_0^2 \exp(- \int R \, d\tilde{R})$. Together, these two boundary conditions ensure that the Sturm-Liouville operator is self-adjoint, hence its spectrum is real.

In order to prove the existence of a discrete spectrum we can transform (9) to a standard Schrödinger operator is self-adjoint, hence its spectrum is real. The potential has no singularities at finite $x$, and by the requirement that the asymptotic behavior be $\theta$, the number of relevant directions is finite, thus lending theoretical understanding to the empirical observation that the number does not seem to grow with the order of the truncation in the polynomial case [3–8]. Importantly, we found here that the exponents $\theta$ are all real, contrary to what observed in polynomial truncations, but compatibly with what observed in [14, 15] and in [23–24], and we conclude that complex exponents are probably an artifact of the truncations.

We close with some general remarks. Studying the limit $R \to \infty$ of the fixed point solution, as explained in [8] (see also [13] for a clear explanation of this aspect in the scalar case), means studying the limit $k \to 0$ at fixed $R$. As argued in [8], the asymptotic behavior $f^*(R) \sim R^2 \psi$ of the fixed point solution implies that the full effective action (obtained for $k \to 0$, i.e. with all the modes integrated out) at the fixed point is the scale invariant theory defined by $\Gamma^* = \Gamma^*_{k=0} = A^* \int d^4x \sqrt{g} R^2$, with the constant $A^*$ to be determined by the requirement that $\Gamma^*$ be non singular at all $R$ (or at all $k$). Note that this expression is valid only on the sphere, hence it should be interpreted with care: if we expect the fixed point to have conformal (or Weyl) invariance, then the only local Lagrangian satisfying such criterion, and reducing to $R^2$ on the sphere, is given by the Gauss-Bonnet term, corresponding to a purely topological theory. While this might stimulate some speculations on the possibility of a topological fixed point, one should refrain from attaching much interpretation along these lines in our case as in the $f(R)$ approximation we are of course not seeing other possible terms like the Weyl-squared one, $C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma}$, which we know is non-zero at the NGFP in some truncations [23–24].

Going back to (8), an infinitesimal $\epsilon$ ensures that at $t = 0$, i.e. at the initial scale $k = \Lambda$, $f_k(R)$ is very close to the fixed point solution. Integrating towards $k = 0$, and discarding deviations from the linearized flow, we obtain the effective action

$$\Gamma_k \to \int d^4x \sqrt{g} \left\{ AR^2 + \sum_i \epsilon_i A_i R^{2-\theta_i/2} \right\}.$$  \hspace{1cm} (12)

In order to take $\Lambda \to \infty$ while keeping the action finite, in the case of positive $\theta$, we need to take $\epsilon \sim (m_{\phi}/\Lambda)^{\theta}$, for some finite mass parameter $m_{\phi}$. For negative $\theta$, the perturbations are automatically small in the large-$\Lambda$ limit, without any fine tuning, i.e. they are irrelevant. Finally, for marginal perturbations with $\theta = 0$ one needs to go beyond the linear expansion. We thus recover a very similar picture to the standard perturbative framework, but with a finite number of free couplings parametrizing the deviation from a NGFP.