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Introduction

he function of many proteins is connected toT dynamical processes within these macro-
molecules.1 ] 3 The method of molecular dynamics
Ž . 4 ] 7MD simulation has recently received particu-
lar attention8, 9 due to a number of correct predict-
ions10 ] 14 and is currently considered to be one of
the most promising tools to describe these dynam-
ical processes. However, the MD method exhibits
two severe constraints,15 a physical one, which
excludes certain molecular properties from a
proper description, and a computational one, which
limits its applicability to small systems, as well as
to short time scales.

The physical constraint originates from the ap-
proximate description of atomic motions in terms
of classical mechanics by numerically solving New-
ton’s equations for an effective interaction poten-
tial that partially models the quantum mechanics
of the electronic degrees of freedom. The applica-
bility and quality of these approximations are the
subject of current discussions, but they are outside
the scope of this article.

Instead, we will focus on the computational
problems posed by the method of MD simulation
that make up its second constraint. This constraint
is set by the enormous size of the computational
task associated with MD simulations of proteins
due to the large number of particles involved
Ž 4 5.10 ]10 , as well as the large number of integra-

Ž 6tion steps that have to be carried out e.g., 10 for
.a nanosecond simulation .

The demand to speed up simulations led to the
development and application of special purpose
computers16 ] 18 and methods to reduce the number
of floating point operations required for a certain
simulation time span. Examples of such methods
are the conventional truncation methods19, 20

Ž .cutoff , advanced integration schemes and multi-
ple time stepping,21 ] 41 multipole methods,42 ] 48 as
well as the grid and Ewald methods.49 ] 52 For
reviews of these methods, see refs. 22 and 41. In
this article we will ask: according to what criteria
should such methods to compared, evaluated, and
optimized?

At first sight it may seem that efficient MD
methods should be designed to solve the equa-
tions of motion as fast and as accurate as possible.
However, for a description of protein structure
and function one generally does not have to con-

sider all details of atomic motion. Due to the
approximate character of molecular models, usu-
ally no physical relevance can be attributed to
many of those details. Instead, one typically has to
reliably compute statistical properties like mean
atomic positions and fluctuations, spectra, or cor-
relations of atomic motions. Accordingly, we will
denote such quantities as relevant. The essence of
this application-oriented approach can be summa-
rized by the requirement that MD methods should
provide accurate descriptions of relevant observ-
ables. Algorithmic accuracy in the description of
irrelevant atomic details can be sacrificed.† Be-
cause MD algorithms generally exhibit a trade-off
between efficiency and accuracy, those MD algo-
rithms should be employed, which in that respect
are as inaccurate as possible.

In this article we will evaluate the accuracy
Ž .of six different multiple time step MTS

methods,25, 29, 33, 53 ] 55 as well as a conventional cut-
off method19 in line with the above requirements.
Applying the concept of appropriate accuracy within
the framework of MD, we evaluate the various
methods by computing a set of relevant observ-
ables from extended test simulations of a simpli-
fied protein model and, subsequently, by compar-
ing these observables with those derived from
reference simulations. Another class of quite effi-
cient methods, the fast multipole methods,48, 56, 57

was studied in a previous article57 in a similar
manner.

ERROR ESTIMATION FOR
MD SIMULATIONS

Evaluations of algorithmic accuracy generally
compare selected quantities, which have been
computed using the particular MD algorithm to be
tested, with reference quantities that have either
been computed from an MD algorithm considered
to be more accurate or measured. We develop a
scheme that allows the classification of procedures
for the evaluation of algorithmic accuracy accord-
ing to the types of quantities that they compare.

The method of MD simulation is based on two
subsequent steps involving assumptions and ap-
proximations.

† Clearly, the above definition of ‘‘relevant’’ observables
depends on the particular question one seeks to answer with a
simulation. The crucial point here is that there are many details
of the MDs that can be safely labeled irrelevant for any physical
question one might wish to address.
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The first step is the description of protein
Ždynamics in terms of a physical model see, e.g.,

.ref. 15 defined by a large set of coupled differen-
tial equations of motion with given initial condi-
tions. These have the detailed atomic motions, the
trajectory, as their unique and exact solution.

A numerical approximation‡ has to be computed
in a second step. This task consists of the numeri-
cal integration of Newton’s equations and requires
a frequent determination of the forces acting on
the particles. A method accomplishing the force
computation and the numerical integration will be
referred to as an MD algorithm.

The steps of physical modeling and numerical
integration imply approximations and therefore are
both subject to errors. Approximations inherent in
the physical model cause discrepancies between its
exact solution and the actual MD. Additional devi-
ations of purely numerical origin are introduced at
the second step. Here, the major contribution to
numerical errors is typically due to an approxi-
mate treatment of long-range interactions, in par-
ticular Coulomb forces, which by far represent the
computationally most extensive task of MD simu-
lations. Accordingly, we are mainly concerned
with the evaluation of those MD algorithms, which
aim at an efficient computation of long-range
interactions.§

For a further analysis we will distinguish two
groups of quantities: chaotic quantities and regular
quantities. This distinction is motivated by the ob-
servation that the dynamics of a protein at room
temperature is chaotic: identical systems starting
at almost identical positions in phase space quickly

Žbecome decorrelated i.e., well separated in phase
. 34space within a few picoseconds . All quantities

that share that sensitivity to slight variations of
initial conditions will be termed chaotic quantities.
Examples are the positions and velocities of partic-
ular atoms or the exact timings of conformational
transitions. Those few quantities that do not show
such chaotic behavior will be referred to as regular
quantities. These include averaged quantities, such

‡ We call this task ‘‘numerical approximation’’ in order to
distinguish it from the physical task of developing a molecular
model. Here we include approximations, which rely on or are
derived from specific physical properties of proteins, in our
consideration.

§ The reader might object that for MTS algorithms, for
which resonance phenomena are well known,22, 29, 41, 80 dis-
cretization errors are also of concern. But in our nomenclature
these errors will be covered under a different headline: we
interpret MTS methods as approximate treatments of long-range
forces rather than as more coarse grained discretizations.

as mean atomic positions, radii of gyration, mean
temperatures, vibrational spectra, or free energy
differences.

Obviously, this is not a clearcut distinction; the
assignment may depend on the model employed
or the duration of a simulation. However, experi-
ence shows that, at a given time scale, there are
quantities that can be safely labeled chaotic or
regular. These are the ones considered within the
present context.

Applying the distinction between chaotic and
regular quantities to each of the three following
levels of actual protein dynamics, exact solution,
and approximate solution, one obtains a total of
six distinct types of quantities. These, in turn,
allow six possibilities for comparison. Two of them
are inaccessible, however, because they involve
actual chaotic quantities, which cannot be mea-
sured. The remaining four combinations are all in
common use for quality estimation.

The comparison of chaotic quantities obtained
from the approximate solution with chaotic quan-
tities obtained from the exact solution is expressed
as D . Most estimates of algorithmic accuracy ofc
type D employ comparisons of trajectories or thec
time development of selected atom positions or

Ž .bond or dihedral angles e.g., refs. 28, 35, 58]60 .
Here the deviation of the approximate solution
from the exact solution is studied. An analysis of
the error in the force evaluation for a hierarchical
monopole approximation is given in refs. 42
and 56.

The comparison of regular quantities obtained
from the approximate solution with regular quan-
tities obtained from experiments, bridging both
the physical and the numerical task is expressed as
D . This approach has been applied to study thepn
effect of truncating long-range forces on the dy-
namical behavior of liquids61 and proteins.62 Here
the reference quantities are observables accessible
by experiment such as average atomic positions
and fluctuations as well as thermodynamic proper-
ties like compressibility, specific heat, or diffusion
coefficients.

The comparison of regular quantities obtained
from the approximate solution with regular quan-
tities obtained from the exact solution, bridging
only the numerical task, is expressed as D . Then
most frequently employed test of this type is based
on the total energy of the system as a regular
quantity,6, 19, 60 which is constant for conservative
systems. Other test methods of the type D aren
based on comparisons of temperature and pressure
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of a van der Waals fluid58; on the velocity autocor-
relation function of atomic position30 ; or on radial
distribution functions, compressibility, specific
heat, and self-diffusion coefficients.61

The comparison of regular quantities obtained
from the exact solution with regular quantities
obtained from experiments, bridging only the
physical task, is expressed as D . This type ofp
comparison is of no direct concern within the pre-
sent context, because it provides information on
the quality of molecular models, not on algorith-
mic accuracy.

Test methods of type D are necessarily basedc
on comparisons of irrelevant quantities. By accept-
ing only unnecessarily accurate MD algorithms,
most efficient algorithms would be rejected by
such tests. Furthermore, comparisons of chaotic
quantities may not even provide information on
algorithmic accuracy because minute, irrelevant
algorithmic deviations may be largely amplified
due to the chaoticity inherent in protein dynamics.
Therefore we will base our evaluations on compar-
isons of regular quantities. Recall that these argu-
ments apply solely to the MD description of pro-
tein dynamics. For the study of other many-body
systems, D results may prove quite useful, espe-c
cially in cases in which the detailed trajectory is of

Žinterest e.g., in certain astrophysical computa-
.tions .

Two approaches remain to be considered: those
based on D and D . The latter type of compari-n pn
son, however, involves quantities separated by two
levels of approximation, the physical and the nu-
merical ones, respectively, and therefore the op-
portunity to separately optimize the physical
model, as well as the MD algorithm, is lost.

This disadvantage is avoided by an approach of
type D : only comparisons of regular quantitiesn
obtained using the particular MD method to be
evaluated with corresponding reference quantities
enable a separation of artifacts caused by such an
approximate method from incompatibilities of
simulation results and experimental data and an
optimization of MD algorithms without relying on
the quality of a particular physical model. Specifi-
cally, our test simulations described below, which
aim at an evaluation of approximation for the
Coulomb interaction, are based on reference quan-
tities, which were obtained by exactly computing
that interaction, using an otherwise identical MD
algorithm.

Note that regular quantities are typically aver-
ages of chaotic quantities and are therefore subject

to statistical fluctuations. Accordingly, in our com-
parisons of type D we will have to determine then
size of these fluctuations in order to separate them
from the algorithmic artifacts that we wish to
detect. In particular, the ensemble from which the
average is taken must be sufficiently large, that, in
turn, requires extended test simulations.

From the above discussion it is clear that our
application-oriented approach cannot be expected
to determine the optimal MD algorithm. Rather,
problem-adapted mesures of accuracy are always
defined with respect to a particular set of quantities
and, probably, with respect to the particular physi-
cal model that has been used to carry out the test
simulations. Nevertheless, test simulations on sim-
ilar models should provide qualitatively similar
evaluation results. Accordingly, results from test
simulations on properly chosen protein model sys-
tems should actually provide information on the
suitability of MD methods for the study of protein
dynamics in general.

Methods

Following the above approach, we studied seven
different MD algorithms, which all aim at an effi-
cient, approximate computation of long-range
forces. We proceeded in three steps.

First, a typical test system was selected. By
typical we mean that the system should be similar
enough to proteins so that it ensures relevance of
our evaluation for MD studies of proteins.

Second, each algorithm was used to perform
several MD simulations of the test system. Each
simulation covered the time span of 1 ns. In addi-
tion, reference simulations were carried out with
exact computation of long-range forces.

Finally, selected observables were computed
from the obtained trajectories. As a measure of
problem-adapted accuracy, these observables were
compared with corresponding ones determined
from the reference simulations.

TEST SYSTEM

In principle, any protein model could serve as a
test system. However, to provide significant re-
sults that allow generalizations, the test system
should represent a ‘‘hard’’ test case: in our exam-
ple, in which we evaluate approximations for the
Coulomb interaction, that interaction should sig-
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nificantly contribute to the structure and dynamics
of the test system.

Most quantities that are studied in typical MD
studies of proteins are averages. Therefore, they
are subject to statistical errors. To keep these errors
small enough to enable a separation from the algo-
rithmic deviations we intend to study, extended
simulations are required. The computational effort
for such extended simulation enforces the use of a
small test system.

These criteria led us to the decision to use a
simplified protein model instead of a detailed one.
In a study of the low-frequency conformational
dynamics of proteins, we presented that model63

in a detailed discussion of its design and proper-
ties in that article. Here, we solely want to rehash
those of its aspects that are of relevance for the
present study.

The ‘‘primary’’ structure of the model consists
of 100 heterogeneously charged residues. The in-
ternal structure of the residues is neglected such
that the polypeptide is represented by a covalently
interconnected chain of van der Waals spheres.
Figure 1 shows the primary structure of the model
in a stretched, unfolded conformation; the inset
shows its detailed structure. The force field in-
cludes bond-stretch, bond-angle, van der Waals,
and Coulomb interaction as defined in ref. 19.
ŽParticle masses and force parameters were chosen
from those of CH ‘‘extended atoms’’ and of asso-2

.ciated single bonds. The heterogeneous charge
distribution along the chain shown in Figure 1 by
the bold, wavy curve was chosen to represent
hydrophobic and hydrophilic interactions and, ac-
cordingly, to enable formation of a stable tertiary
structure. Because, in our case, the forces that
maintain the tertiary structure are exclusively of a
Coulombic nature, the model should actually rep-

FIGURE 1. Protein model in a stretched, unfolded
configuration, consisting of 100 CH -like ‘‘atoms’’; their2
partial charges are represented by the bold curve; the
inset shows a zoom of the detailed structure.

resent a ‘‘tough’’ test case for approximations, par-
ticularly of these forces.

Starting from the stretched configuration de-
picted in Figure 1, a folding process was carried
out, including a subsequent relaxation and equili-
bration. The stability of the obtained tertiary struc-
ture on a nanosecond time scale was verified by
dynamics simulations covering several nanosec-
onds. The resulting conformation of the protein
model is depicted in Figure 2. This structure was
used as the initial configuration for all test simula-
tions.

Despite the simplicity of our model, its relevant
structural and dynamical properties were shown
to be quite similar to those of more realistic pro-
tein models.63 Accordingly, the results of our test
simulation should indeed provide information,
whether or not the considered MD algorithms are
suitable for MD studies of proteins.

TESTED MD ALGORITHMS

Test simulations on our simplified protein model
were carried out using seven different MD algo-
rithms. Each of them employs a particular approxi-
mation for the computation of the long-range

FIGURE 2. Equilibrated structure of the protein model
described in the text, shown as a ‘‘ribbon-plot’’; the bold
lines represent chemical bonds, four labeled circles mark
atoms referred to in the text.
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Coulomb interaction and aims at a reduction of the
corresponding computational effort. Thus, all
tested algorithms provide an approximation for
the sum

q qi j Ž .E A 1Ýel ri j² :i , j

² :over all atom pairs i, j , as well as for its spatial
derivatives that are required for computation of
the corresponding forces. Here E denotes theel
Coulomb energy of the system, q and q are thei j
partial charges of atoms i and j, respectively, and
r denotes the distance between the two atoms. Ini j
contrast to the tested MD algorithms, the reference
method, denoted by REF, performs an exact com-

Ž .putation of the sum 1 . Furthermore, it employs
the well-known Verlet algorithm58 for integration
of the equations of motion.

Approximation of the Coulomb interaction is
the key to reducing the total computational work
that has to be spent in REF: the number of floating
point operations necessary for evaluation of Eel
scales with N 2, where N is the number of atoms.
Because the computational effort for the short-
range interaction scales linearly with N, by are
most of the computational work, particularly for
large systems has to spent on the determination of
the Coulomb interaction.

The first approximate method we studied is the
widely used ‘‘cutoff’’ method,19 denoted as CUT.
This method neglects pair interaction of atoms sep-
arated further than a certain distance, the cutoff
radius r . The cutoff is achieved by multiplyingcut
the interaction energy with a ‘‘switching function’’
Ž .f r , which is unity for r s 0 and reduces the

forces to zero, usually in a continuous differen-
Ž .tiable manner. Accordingly, the sum in eq. 1 is

approximated by

q qi jŽ .E f f r .Ýel i j ri j² :i , j cut

Due to the switching function only a small subset
² : ² :i, j of all atom pairs i, j remains to becut

considered, namely, those for which r - r .i j cut
Commonly used values for r are in the range ofcut

˚8]15 A. In our simulation we used the switching
19 Ž . Ž 2 2 .2function f r s 1 y r rr and a cutoff radiuscut

˚r of 10 A.cut
The other six algorithms investigated were dis-

Ž .tance-class DC methods. By approximately ac-

counting for pair interaction beyond r , they arecut
designed to avoid artifacts caused by the cutoff-
type neglect of these interactions. Nevertheless,
they achieve a comparably large reduction of the
computational effort by employing an MTS scheme.
That scheme rests on the observation that the time
derivative of pair interactions decreases with in-
creasing distance r . Accordingly, during numeri-i j

cal integration, the slowly fluctuating, long-range
force contributions need not be explicitly com-
puted as often as the rapidly varying short-range
interactions. Instead, the long-range forces can be
estimated by extrapolation procedures at many
intermediate integration steps.

The frequency of explicit force computation is
defined for each atom pair by its assignment to a
particular DC, which is chosen according to r asi j

� 4follows: let R , . . . , R be a set of radii with0 n

R - R for all j s 0, . . . , n y 1 and R s 0. Thenj jq1 0
² :the set of atom pairs i, k that satisfy R F r -j i k

Ž .R is called DC j. Using eq. 1 and the respec-jq1
tive spatial derivatives, the force F Ž j. acting on a
particular atom and originating from all other
atoms within DC j is computed explicitly once
every n [ 2 j integration steps. All other forces are
estimated from previously computed forces ac-
cording to the linear extrapolation formula

Ž j. Ž j. Ž j. Ž j. Ž j. Ž .F f a F q b F , 2iqk n i k n i Žky1.n

where i s 0, . . . , n y 1 and i q kn is the number
of the current integration step. The principles of
this method and their justification are outlined in
ref. 29. For our simulations, we used four DCs

˚Ž . w x w xcovering the intervals in A : 0 ??? 4 , 4 ??? 7 ,
w x w x7 ??? 11 , and 11 ??? ` .

The six DC algorithms considered here, DC-0,
DC-i, DC-1a, DC-1b, DC-1c, and DC-1d, respec-
tively, differ in the choice of the ‘‘extrapolation
coefficients’’ aŽ j. and bŽ j.. Table I lists the extrapo-i i

lation coefficients that we used. Here, i is the
number of integration steps carried out since the
most recent exact force computation of atom pairs
within class j. As an illustration, Figure 3 shows
for all six DC algorithms under consideration the

Žtime development of extrapolated forces vertical
. Žlines for the fourth DC in our simulations, this is

.the outermost class that enter into the integration
of the Newtonian equations of motion. The corre-
sponding exact forces are drawn as bold lines.

Ž .Method DC-i impulse , which is closely related
to the RESPA algorithm proposed in ref. 30, was
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TABLE I.
Extrapolation Coefficients a( j ) and b( j ) Used for Six Distance-Class Algorithms.i i

( j ) ( j )Algorithm a bi i

DC-i n for i s 0, 0 otherwise 0
DC-0 1 0

2 2( ) ( ) ( ) ( )n y n q 1 y i n y 2 2 y2n q 3n y 1 q 6 i n y 1
DC-1a 6n 22( )( ) 2n q 1n q 1 2n q 1
DC-1b 1 q i / n yi / n

( ) ( )DC-1c n q 1 / 2 for i s 0, 1 otherwise 1 y n / 2 for i s 0, 0 otherwise
2 23n y 2n q 1 n y 1 3n y 2n q 1 n y 1

DC-1d y 3 i 1 y q 3 i
( ) ( ) ( ) ( )n n q 1 n n q 1 n n q 1 n n q 1

We used the abbreviation n [ 2 j; i is the number of integration steps carried out since the most recent exact force computation for
class j.

Ž .derived in ref. 29 called VERLET-I therein using
the so-called ‘‘Verlet criterion’’ that ensures equiv-
alence to exact forced computation in those cases

Žin which only one DC not necessarily the inner-
.most is populated by atom pairs. In fact, no force

extrapolation occurs here. Rather, all forces from n
subsequent integration steps are combined and

Žapplied instantaneously cf. the large spikes de-
.picted in Fig. 3, DC-i . Because the magnitude of

these forces increases exponentially with the num-
ber of DCs, DC-i tends to cause severe artifacts if
more than three DCs are employed.29

Method DC-0, first applied to MD simulations
Ž .in ref. 27 see also ref. 64 , avoids this disadvan-

( )FIGURE 3. Extrapolated forces vertical lines for
distance class j = 3, as defined for the six distance-class

[ ( ) ]algorithms referred to in the text cf. eq. 2 , Table I . For
the numerical integration of the Newtonian equations of
motion, these extrapolated forces are used as an

( )approximation for the exact forces bold lines .

tage. Here, exact forces computed every nth inte-
gration step are constantly applied within all
subsequent n y 1 integration steps. This can be
considered a 0th order extrapolation, which ap-
pears as stair steps in Figure 3, DC-0.

The above two methods estimate forces on the
basis of the most recently computed force; all bŽ j.

i

vanish in these cases. Better approximations may
be obtained if, in addition to the most recently
computed exact forces, ‘‘older’’ forces are consid-
ered, which have been computed n steps before.29

In this case, many possible choices for the extrapo-
lation coefficients exist. The most obvious choice,
which to our knowledge has not yet been used for

Ž .MD simulations, is a linear extrapolation DC-1b .
The corresponding picture in Figure 3 shows the
resulting force development in time.

However, method DC-1b does not obey the
Verlet criterion.29 Among all sets of extrapolation
coefficients, which do fulfill the Verlet criterion,
those that deviate as little as possible from a linear
extrapolation constitute method DC-1a, as derived
in ref. 29. Note that, despite this minimal principle,
the coefficients differ considerably from the ones
in DC-1b: in contrast to the linear extrapolation,
here the a coefficients decrease whereas the b
coefficients rise. This fact becomes apparent in
Figure 3, DC-1a, where increased discontinuities in
the force development can be observed.

Ž .A third set of coefficients DC-1c was proposed
by Skeel and Biesiadecki.65, 66 This method also
obeys the Verlet criterion. In addition, one can
show that DC-1c minimizes the orce discontinu-

Ž .ities not shown in Fig. 3 that arise if atom pairs
move from one DC to another in the course of a
simulation.34 However, this method may suffer
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from artifacts, which are smaller than, but of simi-
Žlar origin as those apparent in DC-i cf. the corre-

sponding pictures in Fig. 3, where sharp peaks are
.visible .

To combine the advantages of the above algo-
rithms while avoiding possible resonant artifacts,
we propose a new method DC-1d, which is the last
method considered here. Although it deviates only
slightly from method DC-1a, we expected it to be
superior, because it additionally avoids, like DC-1c,
force discontinuities caused by atom pairs crossing
DC boundaries. This algorithm is derived and dis-
cussed in detail in ref. 34.

TEST SIMULATIONS

A total of 232 test simulations, each of one
nanosecond duration, were carried out using the
eight MD algorithms described above. Integration
step sizes of 0.5, 1.0, and 2.0 fs were employed.¶

All 232 simulation started with almost identical
initial conditions, which were derived from the
model protein structure described above by apply-
ing minute random modifications of the order of

y6 ˚10 A to atomic positions. The chaoticity inherent
in the dynamics leads to a rapid decorrelation of
the trajectories after a few picoseconds and there-
fore guarantees that the 232 simulation are essen-
tially independent of each other.

A described elsewhere,63 our model system was
found to exhibit several conformational states, be-
tween which rare transitions occur on a time scale
of several hundred picoseconds. That conforma-
tional dynamics, although initially unexpected
by us, resembles a ubiquitous property of low-
frequency protein dynamics67, 68: in many cases
macroscopic observables have been found to be
strongly influenced by the underlying conforma-

Ž .tional state see, e.g., refs. 69, 70 . It was not our
intention to demonstrate that well-known influ-
ence of molecular conformation on a variety of
observables. Instead, we wanted to concentrate on
the influence of different approximation schemes
on the dynamics of proteins in those cases in which
the molecular structure is unaffected by these ap-
proximations. Therefore, those trajectories were se-
lected from our test simulations for further analy-
sis, that did not exhibit conformational transitions.

¶ For the MTS algorithms this choice implies force update
Ž .periods of 1, 2, and 4 fs for the second distance class i s 1 ; of

Ž .2, 4, and 8 fs for the third distance class i s 2 ; and of 4, 8, and
Ž .16 fs for the fourth distance class i s 3 .

The system was considered to stay within the
initial conformation state if the average structure
in the test simulation did not considerably deviate
from the reference structure and if no jumps of
selected atomic distances occurred.

The first criterion was assessed by computing
the maximum deviation of mean atomic positions
from those of the reference simulation. This devia-

˚tion had to be smaller than 2.5 A. For the second
criterion we selected four atoms, a12, a36, a63,
and a87, the location of which within the molecu-
lar structure is indicated by four labeled circles in
Figure 2. Because conformational changes during
the simulation could be monitored by fast, signifi-
cant changes of the distances among these four
atoms, we selected only those simulations that did
not exhibit such distance jumps.

The above selection excludes those trajectories
from our analysis in which deviations from the
reference simulation are simply caused by occa-
sional conformational transitions or by structural
changes induced by algorithmic artifacts. There-
fore, any observed significant deviation actually
reflects an artifact concerning the dynamics of our

wsystem. A similar approach was taken in ref. 57,
xwhere a more detailed protein model was used.

RELEVANT QUANTITIES

For our application-oriented evaluation of the
seven MD algorithms sketched above, we chose a
set of regular quantities that enable comparisons of
the type D . Our choice was guided by the re-n

quirement that the respective regular quantities
should be useful for explanatory purposes in MD
studies of protein function: these quantities should
be relevant. As explained in detail below, these
quantities include atomic fluctuations, vibrational
spectra, autocorrelation functions, and cross-corre-
lations of atomic motions. We also considered con-
figuration space density distributions due to their
close relation to free energy computation and reac-
tion rates. For comparison, we included in our
analysis the drift of total energy as a frequently
employed measure of algorithmic accuracy, al-
though in our view that quantity is of no particu-
lar functional relevance.

Despite the considerable length of the test simu-
lations, certain observables exhibited statistical
errors. To separate deviation caused by the partic-

Žular approximation scheme ‘‘algorithmic devia-
.tions’’ from statistical errors, the latter were
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estimated by comparing independent reference
simulations with each other.

Ž .Note the following abbreviations: r t is thes i
position of atom s at time t at the ith integrationi

5 ² : Ž .step in the simulation ; r [ Ý r t rN is thes t s i ti

average position of atom s, determined from a
Žtrajectory of N coordinate sets i.e., the number oft

.integration steps ; and length T s 1,048,576 fs; the
integration step size is D ; the superscript ref de-t
notes an observable computed from a reference
simulation.

Drift of Total Energy

Due to algorithmic noise forces, we expected
some of the algorithms to cause considerable en-
ergy drifts, amounting to several hundred kilo-
caloriesrmole during a 1-ns simulation. Such drift
would imply a large change of temperature and
prevent further comparisons. Therefore, we de-
cided to compensate energy drifts by a weak cou-
pling to a heat bath. Accordingly, the energy flow
to or from the system was used as a measure for
the algorithmic heat production and, hence, total
energy drift.

Average Spectrum of Atomic Vibrations

Ž .The spectrum r v of atomic vibrations, de-ŝ
rived by a Fourier transform of the trajectory of
atom s, determines the contribution of the motion
of atom s to the infrared spectrum of a protein.
For our evaluation of algorithm is accuracy, we

Ž .used the average power spectrum S v defined by

2Ž . Ž . Ž .S v [ r v . 3ˆÝ s
s

Spectra were computed for two different frequen-
Ž y1 .cy ranges, a high-frequency range 0.5]250.0 ps

Ž y1 .and a low-frequency range 0.001]4.0 ps .

High-Frequency Spectra of Atomic Vibrations. For
the computation of the high-frequency spectra,
each 1-ns trajectory was partitioned into M s 511

� Ž .consecutively overlapping segments r mD , . . . ,M
ŽŽ . .4r m q 2 D , m s 0 ??? M y 1, of length 2D sM M

4096 fs each. According to the procedure described
in ref. 71, all segments were multiplied with a
Hanning window function and then subject to a
Fourier transform. From the resulting M spectra
an average was taken.

5 For technical reasons, all sums over s take only every fifth
atom along the chain into account: s s 1, 6, 11, . . . , 91, 96.

Low-Frequency Spectra of Atomic Vibrations. The
low-frequency Fourier transforms were computed
according to

N y1sm

Ž . Ž . Ž .r v s r t exp iv t , t s ks ,ˆ Ýs s k k k
ks0

Ž .with smoothened trajectories r t ,s

210srD t Ž .1 t y kD tŽ . Ž .r t s r t exp y ,Ýs s 2Z 2sksy10srD t

210srD t Ž .t y kD t
Z s exp y .Ý 22sksy10srD t

The sampling rate of the smoothened trajectory
was chosen in correspondence to the width of the
smoothing window, s s 128 fs. N [ TrN de-sm t
notes the number of smoothened coordinate sets.

Atomic RMS Fluctuations

The average displacement s of an atom s froms
² :its average position r was computed bys

1r2
2Ž Ž . ² :. Ž .s s r t y r rN . 4Ý ž /s s i s t

ti

Here s is a measure for atomic mobility ands
usually depends on the molecular environment of
the particular atom under consideration: atoms, for
example, that belong to solvent-exposed side
groups of proteins, typically show a higher mobil-
ity than backbone atoms.72 Because mobilities can
be determined by X-ray or neutron scattering ex-
periments, that observable is frequently used as a
check for the quality of molecular models.

Correlations of Atomic Motions

Correlation function serve to characterize atomic
motions. Autocorrelation functions of atomic posi-
tions or velocities, on the one hand, provide infor-
mation on the diffusive character of atomic motion
and enable the determination of friction coeffi-
cients.72 Cross-correlations of atomic motions, on
the other hand, serve to detect collective motion
and thus reveal functional, probably causal, inter-
relations between distant parts of a protein. Due to
the widespread use of these quantities, we studied

disŽ .displacement autocorrelation function C t ands
velŽ .velocity autocorrelation function C t , as wells
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as cross correlation functions K , as relevants s1 2

quantities. They were computed according to

Njy1 Ž . ² : Ž . ² :Ý r t y r r t q t y rŽ .Ž .is0 s i s s i j sdis Ž .C t s ,s j 2N y1j Ž Ž . ² :.Ý r t y ris0 s i s

Ž .5

Njy1 Ž . Ž .Ý r t r T q t˙ ˙is0 s i s i jvel Ž . Ž .C t s , 6s j 2N y1j Ž .Ý r t˙is0 s i

k s s1 2 Ž .K s , 7s s 1r21 2 Ž .k ks s s s2 2 2 2

with the covariance matrix

Ž . ² : Ž . ² :k s r t y r r t y r .Ž . Ž .Ýs s s i s s i s1 2 1 1 2 2
ti

Ž .In the above equations, N s T y t rD and t sj j t j
jD ; the overdot denotes the time derivative.t

Projected Configuration Space Density

A fundamental thermodynamic quantity of
many-body systems is the phase space density
Ž N N .r r , p , which is generated by their dynamics.

Here, r N and p N denote the 3N-dimensional vec-
tors of all N atomic position and momenta, respec-
tively; r is rarely used and is determined on its
own, but it is closely related to statistical observ-
ables like entropy, free energy, or reaction rates.
An approximation for r can be computed using an
ensemble, which is generated by means of an MD
simulation, by dividing phase space into volume
elements V k: for long simulation times the fraction
of trajectory points within V k approaches phase
space density at the location of V k.

However, due to the limited length of MD sim-
ulations, as well as due to the high dimensionality
of phase space, such a density estimate generally
does not represent a regular quantity. Even for our
small test system the dimension of phase space is
6N s 600; therefore, the number K of volume ele-
ments V k is extremely large even for coarse reso-
lutions, thus, the average number of points per
volume element is small. Correspondingly large
statistical errors inhibit a straightforward use of
phase space density as a measure for algorithmic
accuracy.

However, if instead of taking all 6N degrees of
freedom into account, only a few degrees of free-
dom are considered, regular quantities can be de-
rived. For this purpose one projects r onto a

low-dimensional subspace spanned by M degrees
� Ž N N .4of freedom, c [ c r , p , i s 1, . . . , M, and ob-i

Ž .tains a projected phase space density r c :c

Ž . N N Ž N N . Ž .r c s dr9 dp9 r r9 , p9 d c y c9 .Hc

Ž .The density r c can be considered a regularc
quantity if the number of trajectory points per
volume element within the subspace is large enough
to allow a statistical analysis. We restrict our dis-
cussion to projections onto conformational degrees

� Ž N .4of freedom, c s c r , usually referred to asi
‘‘conformational coordinates.’’73 For a discussion
of their central role in the statistical mechanics of
conformational transitions, see ref. 74. In particu-
lar, the strict definition of conformational substates
in terms of minima of free energy as a function of
suitably projected configuration space densities led
to an MD based method, ‘‘conformational flood-
ing,’’ to predict microsecond conformational
transitions.71

For our test simulations, we selected projections
onto a number of P s 50 2-, 3-, and 4-dimensional
conformational subspaces, defined by pairs, triples,
and quadruples of interatomic distances, respec-
tively. For the 2-dimensional case, we used dis-

Ž .tance pairs c s d , d among four selectedn n n n1 2 3 4

atoms, n , n , n , and n , respectively. Figure 21 2 3 4
shows the locations of the four selected atoms
Ž .a12, a36, a63, and a87 within the protein model.
Projections onto all 15 2-dimensional subspaces,
which can be defined using the six distances d s1
Ž . Ž . Ž .d a12; a36 , d s d a12; a63 , d s d a12; a87 ,2 3

Ž . Ž .d s d a36; a63 , d s d a36; a87 , and d s4 5 6
Ž .d a63; a87 , were computed, yielding a total of 15

different density distributions. Twenty 3- and 15
4-dimensional projections were similarly defined.

The decision to use projections defined by inter-
atomic distances was inspired by the possibility of
computing conformation-controlled reaction rates
from such projected densities and, corresponding,
of explaining the kinetics of protein function on
the basis of MD simulations. As an example, con-
sider the hypothetical docking process of two en-
zymes A and B depicted in Figure 4. That process
exhibits similarities to the docking reactions of G

Ž .75proteins e.g., transducin to photoreceptors. The
two enzymes are supposed to have three docking
sites. Their mutual distances are d , d , D , and12 23 12
D , as shown in Figure 4. For simplicity, we23
assume enzyme A to be flexible, such that d and12
d show considerable fluctuations, and enzyme B23
to be rigid, such that D and D are constant.12 23
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These properties are indicated by the shapes of the
two enzymes. As the system moves, the probabil-
ity of the occurrence of a docking reaction will be
large if all three active sites simultaneously fit
together, that is, if d f D and d f D ; other-12 12 23 23
wise the docking probability will be small. Hence,
the corresponding reaction rates depend on the
frequency of distance matchings and is thus deter-
mined by the projected configuration space den-

Ž . Ž .sity p d , d in the vicinity of location D , D .12 23 12 23
A similar approach was employed in ref. 76,

where electron transfer rates within a protein were
computed from MD simulations. In that work,
following Marcus theory,77 the probability of an
electron transfer at each instance of time was as-
sumed to be large whenever the corresponding
change of electrostatic energy was small. Because
that energy difference is a function of atomic posi-
tions, the obtained transfer rate is determined by
the projected phase space density onto a conforma-
tional subspace that in this case is a 1-dimensional
one.

The above examples illustrate that projected
configuration space densities can be considered to
be a relevant quantity for a wide range of MD
applications.

For each algorithm a and each test simulation,
we determined r by extracting ensembles S con-c a

sisting of a total of N s 131,072 configurations.c

For this purpose, each of the P s 50 subspaces
was subdivided into K rectangular volume ele-
ments V k , p, k s 1 ??? K , p s 1 ??? P. The subdivi-
sions were set up in such a way that in case of the
ensemble R obtained from the reference simula-1
tion, all rectangles V k , p contained an identical

FIGURE 4. Schematic enzymatic docking process to
illustrate the functional relevance of configuration space
density projections; an explanation is given in the text.

number N [ N rK of configurations. As an il-R c1

lustration, Figure 5 shows such a subdivision into
K s 16 rectangles V 16, p that are separated by bold
lines. The ensemble R is depicted as a cloud of1
dots, each dot representing one particular configu-
ration.**

Using this subdivision, deviations D p of theS yRa 1

projected phase space density from the reference
density were computed by

1r22k , pK N y N1 S Ra 1p Ž .D s . 8ÝS yRa 1 ž /K y 1 NRks1 1

where N k , p is the number of configurations out ofSa

ensemble S that fall into rectangle V k , p for pro-a
jection p.

Nonvanishing deviations D p may resultS yRa 1

from statistical fluctuations of the finite configura-
tion counts N k , p or be caused by the particularSa

MD algorithm to be tested. To decide whether
observed deviations significantly point to an algo-
rithmic artifact, the purely statistical contribution

p wof D has to be estimated. Note that theseS yRa 1

statistical errors of the N k , p must be expected toSa
Ž k , p.1r2be considerably larger than N , because sub-Sa

sequent configurations, temporally separated by
TrN s 8 fs, are strongly correlated and thereforec

xdo not represent independent random events.
We estimated the fluctuations by comparing

ensemble R with a second reference ensemble,1

** For technical reasons, only a fraction of all N configura-c
tions is shown.

FIGURE 5. Ensemble R of configurations generated1
by a reference simulation of the protein model. Points in
configuration space, projected onto the 2-dimensional
subspace defined by two interatomic distances d12;87
and d , are represented by dots; a subdivision V 16,p

3 6;63
( )of this subspace see text is depicted using bold lines.
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R . For the second reference simulation the initial2
atomic velocities were slightly varied to generate
an independent trajectory. Thus, deviation D p

R yR2 1

should solely result from statistical fluctuations.
Based on that assumption, the average devia-

tion of the two reference ensembles

P
p² : Ž .D [ D P 9ÝR yR R yR2 1 2 1ž /ps1

was used to estimate the statistical contribution to
the observed deviations. As a measure for the
error of that estimate we used the variance sR yR2 1

of the D p ,R yR2 1

1r2P1 2p ² :s [ D y D .Ž .ÝR yR R yR R yR2 1 2 1 2 1P y 1 ps1

Ž .10

Similarly, for each algorithm to be tested, a sepa-
rate s was computed on the basis of devia-S yRa 1

tions D p . The significant contribution to theS yRa 1
² p :average deviation D , the algorithmic accu-S yRa 1

racy D , can now be readily obtained bya

² : ² : Ž .D s D y D " s 11a S yR R yR aa 1 2 1

with a certain error range s .a
If the P s 50 phase space projections were inde-

pendent of each other, the error range s could bea
estimated by

1r2min 2 2 Ž .s f s [ s q s rP . 12Ž .a a R yR S yR2 1 a 1

However, because statistical independence cannot
be assumed, one has to consider the upper limit

1r2max 2 2 Ž .s [ s q s . 13Ž .a R yR S yR2 1 a 1

Then one may safely assume s to be in the rangea
between s min and s max.a a

It is not easy to determine a priori which level
of coarse graining should be used for our compar-
isons of r : few large volume elements, on thec
one hand, minimize the statistical fluctuations
² :D but provide no detailed picture of theR yR2 1

density distribution. Many small volume elements,
on the other hand, provide a high resolution pic-
ture of the density distribution but suffer from
large statistical fluctuations. To provide an unbi-
ased analysis, we compared projected phase space

Ždensities using various resolutions i.e., various
k , p.numbers K of volume elements V .

Results

The 232 test simulations of 1-ns duration each
were analyzed. According to the criteria outlined
further above, we selected for each of the eight

ŽMD algorithms REF, CUT, DC-i, DC-0, DC-1a,
.DC-1b, DC-1c, and DC-1d and for each of the

three integration step sizes of 0.5, 1.0, and 2.0 fs,
respectively, a suitable-1]ns trajectory for further
analysis. Wherever appropriate, results of all 24
trajectories are shown, but in most cases only the
eight simulations obtained with a 1.0-fs step size
are considered.

DRIFT OF TOTAL ENERGY

Figure 6 shows the drift of total energy per
picosecond for all 24 1-ns simulations. One can
observe that, for each of the algorithms, the energy
drift increases with the integration step size. CUT
does not significantly affect conservation of total
energy that quite accurately results in the case of
the reference simulation, REF. In contrast, all DC
algorithms are associated with considerable heat
production. Without coupling to a heat bath, that
heat production would cause a denaturation of the
system with a 1-ns simulation.

The large energy drift observed for the DC
algorithms is due to errors associated with the
force extrapolations, as illustrated in Figure 3.
These deviations from the exact forces represent
‘‘noise’’ forces, which transfer kinetic energy into
the molecular system. Note that the magnitude of
noise, which may be estimated by inspecting the
force deviations apparent in Figure 3, does not

FIGURE 6. Drift of total energy per picosecond for the
reference simulation REF, as well as for the seven
investigated algorithms. All eight algorithms were applied
with integration step sizes of 0.5, 1.0, and 2.0 fs.
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completely correspond to the observed energy drift
in Figure 6: large noise may be expected for DC-i,
DC-1c, DC-1a, or DC-1d; however, the latter three
algorithms that all obey the Verlet criterion exhibit
a moderate energy drift only. In contrast, the
largest energy drift is caused by the relatively
small noise forces of DC-0. One may conclude that
the Verlet criterion serves to reduce the total en-
ergy drift caused by algorithmic noise forces in DC
methods, in line with the objectives that led to the
formulation of that criterion.

AVERAGE HIGH-FREQUENCY SPECTRUM OF
ATOMIC VIBRATIONS

As is apparent in Figure 3, the force discontinu-
ities caused by DC algorithms occur at every n s
2 jth integration step in our simulations. Accord-
ingly, their influence on the atomic motion should
become apparent in averaged Fourier spectra of

Ž .atomic vibrations at high frequencies Fig. 7 . We
Ž .computed these spectra according to eq. 3 for the

integration step sizes of 0.5 and 1.0 fs, respectively.
The two spectra obtained from REF are plotted as
dashed lines in the upper left picture in Figure 7.
Due to the absence of algorithmic noise, they van-
ish at frequencies above 100 psy1. In contrast, the

Žcorresponding two spectra obtained from DC-i so-
.lid lines exhibit sharp artificial resonance peaks at

250 psy1 and, in the case of 1.0-fs step size, addi-
tionally at 125 psy1. These are the frequencies
expected for the algorithmic noise forces, because
they represent the durations of four and eight
integration steps, respectively.

The upper right plot in Figure 7 shows the same
data, this time plotted as the relative error of DC-i
with respect to REF, again using 0.5-fs, as well as
1.0-fs, integration step sizes. In a corresponding
fashion, the bottom four plots of Figure 7 show
reltaive errors associated with DC-0, DC-1a, DC-1b,
and DC-1c, respectively. Note, however, the di-
minished error scales caused by the reduced force
discontinuities in these algorithms. Not shown are
high-frequency spectra of CUT, as well as DC-1d:
the former is identical to the reference spectrum,
whereas the latter spectrum is similar to DC-1c.
Due to the extended length of the simulations, no
statistical fluctuation could be observed in the
high-frequency spectra. For all methods, the mag-
nitudes of the algorithmic noise peaks match
the sizes of the force discontinuities illustrated in
Figure 3 quite well.

Are these partially pronounced artifacts rel-
evant? For an answer, first note the peak at

FIGURE 7. High-frequency spectra of atomic mobilities;
(the upper left shows the reference spectrum dashed

) ( )lines and DC-i spectrum solid lines that were both
( )obtained with integration step sizes of 0.5 fs thin lines

( )and 1.0 fs bold lines ; the remaining graphs show the
relative errors S a / S ref of the spectra S a obtained using

{ }the algorithms a g DC-i, DC-0, DC-1a, DC-1b, DC-1c
( )with integration step sizes of 0.5 fs thin lines and 1.0 fs

( )bold lines ; note the different scale for graph DC-k in the
upper right; no significant relative error was found for

( ) (CUT results not shown ; the relative error of DC-1d not
)shown is similar to that of DC-1c.

f30 psy1 in the upper left graph of Figure 7,
which originates from bond stretch vibrations.
These represent the fastest physical degrees of free-
dom in the system. Therefore, at higher frequen-
cies, the spectrum does not represent physical
properties. Because no deviations of the spectra are
observed in the frequency range below 30 psy1 in
which physical properties are monitored, the ap-
parent algorithmic artifacts are of no direct con-
cern. It remains to be clarified, however, whether
the high-frequency noise and the necessary com-
pensation of the energy drift cause errors in the

VOL. 19, NO. 131546



MTS ALGORITHMS FOR MD SIMULATIONS OF PROTEINS

computation of relevant quantities. All further
comparisons serve to answer that question.

AVERAGE LOW-FREQUENCY SPECTRUM OF
ATOMIC VIBRATIONS

We first focus on low-frequency atomic mo-
tions: our extended simulations permitted the
computation of low-frequency spectra, including
frequencies as low as 0.05 psy1 with small statisti-
cal error. The upper part of Figure 8 shows three
spectra, each of which was obtained by averaging
over the three simulations with integration step
sizes 0.5, 1.0, and 2.0 fs. The dashed line represents
the reference spectrum.

None of the DC algorithms shows significant
deviations from REF; the spectrum obtained from

Žalgorithm DC-1d is shown as an example thin,
.solid line . ON the contrary, CUT causes a pro-

nounced suppression of atomic mobilities at fre-
quencies below 0.2 psy1. Inspection of the relative

a ref Ž .deviations, S rS bottom of Fig. 8 reveals a
Žcutoff-induced suppression of up to 40% bold

.line with respect to REF. A noteworthy conse-
quence of this finding is that apparently long-range

˚interaction above 10 A, which are absent in CUT
but present in REF, have a significant impact on
the low-frequency dynamics of our protein model.
In that respect our model reproduces well-known
properties of more realistic protein models.

FIGURE 8. Low-frequency spectra of atomic mobilities;
( ) ( ) (top spectrum obtained using REF dashed , CUT bold,

) ( ) ( )solid , and DC-1d thin, solid ; bottom relative errors
S a / S ref of the spectra S a for the algorithms a g
{ }CUT, DC-1d .

ATOMIC RMS FLUCTUATIONS

To reduce statistical errors, the above spectra
w Ž .xwere averaged over all atoms cf. eq. 3 , thereby

probably hiding algorithmic artifacts related to
motion of individual atoms. For a more detailed
measure of accuracy, we computed the atomic

Ž .mobilities s as defined in eq. 4 . From these wes
determined the RMS deviation D from REF,rms

1r22refŽ .D [ s y s .¦ ;rms s s s

The results for the seven algorithms using the
1-fs step size are shown in Figure 9. Note that the
observed deviation are not exclusively caused by
algorithmic approximations: due to the limited tra-
jectory length, statistical fluctuations contribute to
the observed D . To estimate that statistical con-rms
tribution, two reference simulations were com-
pared with each other. The leftmost column in
Figure 9 shows this estimate; its value is marked
by the dashed line. Only deviations, which clearly
exceed that value, as is the case for DC-i and DC-0,
point toward algorithmic artifacts. For the other
algorithms the observed deviations are insig-
nificant.

One might expect that the large random forces
Ž .caused by DC-i and DC-0 cf. Fig. 3 should in-

crease atomic mobilities. However, a closer analy-
Ž .sis of the data not shown reveals that these two

methods actually decrease the s . We attribute thiss
effect to a decorrelation of atomic motions due to
the algorithmis random forces, resulting in a re-
duction of the inertial character and, hence, of the
amplitude of these motions.

FIGURE 9. Root mean squared deviations of atomic
mobilities from reference mobilities, computed for the
seven different MD algorithms.
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CORRELATION OF ATOMIC MOTIONS

This speculation can be readily verified by
studying correlations of atomic motions. For that
purpose, displacement autocorrelation functions

dis Ž .C were determined according to eq. 5 . Aver-s
ages over 20 atoms are shown in Figure 10. These
autocorrelation functions, like D , are subject torms
statistical fluctuations. To estimate the statistical

FIGURE 10. Average displacement autocorrelation
² dis( ):functions C t of atomic positions; the results ofs

( )two reference simulations thin, solid lines are plotted
for an estimate of statistical fluctuations.

error, autocorrelation functions were computed
Ž .from two reference simulation thin, solid lines .

According to the results in Fig. 10, the tested
algorithms can be classified into three groups: in
agreement with the speculation voiced above, the
DC algorithms DC-i and DC-0 underestimate auto-
correlations. The other algorithms DC-1a, DC-1b,
DC-1c, and CUT entail slight overestimates. No
significant deviation occurs for DC-1d. Thus, the
latter algorithm showed the best performance in
the tests of relevant observables considered so far.

Velocity autocorrelation functions were derived
Ž .according to eq. 6 . For the investigated algo-

rithms there were no significant deviations from
REF observed. This result is explained by the close
relation of autocorrelation functions to spectra of
atomic motions, which are Fourier transformed
C vel. The velocity autocorrelation functions we
studied are determined by the physically relevant
part of the high-frequency spectrum discussed
above, which also did not exhibit any artifacts.

So far, we merely considered dynamical proper-
ties of single atoms but no interatomic relations.
To check whether correlated atomic motion are
described reliably by the various algorithms,
cross-correlation functions K for 190 atom pairss s1 2

Ž .were computed according to eq. 7 . In the eight
pictures in Fig. 11, each of the diamonds repre-
sents one atom pair. The vertical axis measures the

FIGURE 11. Cross-correlation functions of atomic positions; each of the 190 diamonds represents one atom pair; the
vertical axis measures the value of its cross-correlation, the horizontal axis its average distance; in each of the eight
pictures the overall RMSD of the cross-correlation from REF is indicated at the bottom; the RMSD between two
reference simulations, indicated in the upper left picture of the figure, provides an estimate for the statistical error.
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value of its cross-correlation, the horizontal axis its
average distance. In addition, the overall RMS

Ž .deviation RMSD of the cross-correlation from REF
is indicated in each of the eight pictures. The
RMSD between two reference simulations, indi-
cated in the upper left picture of Figure 11, pro-
vides an estimate for the statistical error.

Inspection of the REF cross-correlations shows
that in our protein model motions of close atoms
tend to be correlated, whereas distant atoms ex-
hibit anticorrelations. Whereas this behavior is
qualitatively reproduced by all algorithms, quanti-
tative differences can be readily observed: particu-
larly at large distances, the noisy algorithms

Ž .DC-i and DC-0 tend to suppress anti- correlations.
Considering the overall RMSDs from REF, one
observes that, in addition to DC-i and DC-0, CUT
and DC-1c also provide cross-correlations that dif-

Žfer significantly from the reference values al-
.though the scatterplots look almost identical . No

significant deviations are seen for DC-1a, DC-1b,
and DC-1d. Hence, cross-correlations provide an
accuracy measure that is unable to discriminate
these DC algorithms from REF. As we will show
below, the projected configuration space densities
introduced in the Methods Section provide a more
sensitive measure.

PROJECTED CONFIGURATION
SPACE DENSITY

In our particular choice for the conformational
coordinates defined the projected configuration
space densities r , we took care to monitor low-c
frequency motions of our protein model. To this
aim we selected atoms, which in the tertiary struc-

Ž .ture of our model cf. Fig. 2 exhibit large relative
distances, for the definition of the conformational
coordinates. Thus, the temporal evolution of these
conformational coordinates should be dominated
by collective motions of the backbone and, hence,
should be of low-frequency character. As already
noted in connection with Figure 8, such degrees of
freedom are particularly influenced by long-range
forces.

We determined P s 50 density distributions rc
for each of the two reference simulations and each
of the seven tested MD algorithms. All compar-
isons of density distributions were carried out us-

� k4ing nine different subdivisions V of conforma-
Ž .tional spaces ranging from coarse grained K s 2

Ž .to fine grained resolution K s 512 .
Additionally, a comparison of the two reference

simulations served to estimate statistical errors

Ž . Ž .according to eqs. 8 and 9 . The upper left picture
² : Žof Figure 12 displays that estimate D solidR yR2 1

.line . The horizontal axis measures the level K of
² :graining. The increase of D with K merelyR yR2 1

reflects enhanced statistical fluctuations in the fre-
quency counts of trajectory points within the con-

� k4formation space volumes V . The standard devi-
ation s of our error estimate, determined byR yR2 1

Ž .eq. 10 , is plotted as dashed lines. The small
deviation range indicates that, in our case, pro-
jected configuration space densities actually repre-
sent regular quantities.

The other seven pictures of Figure 12 show the
averaged deviations D of projected phase spacea
densities obtained by the seven MD algorithms a

Ž .with respect to REF. Here, according to eq. 11 ,
² :the statistical contribution D was sub-R yR2 1

² :tracted from the observed deviations D .S yRa 1

Two error ranges are depicted, a lower 2s limit
Ž . Ž .dashed obtained by eq. 12 , as well as an upper

Ž . Ž .limit dashed-dotted obtained by eq. 13 .
In all cases, the most significant deviations are

observed at intermediate levels K of coarse grain-
ing. These levels appear to provide a sufficiently
detailed description of the conformation space
densities r to allow an identification of algorith-c
mic artifacts. In contrast, the coarse grained view
on r at small K levels, as well as the increasedc
statistical errors at large K , prevent a clearcut
distinction of algorithms.

Highly significant deviations D are observeda
for CUT, as well as for DC-1b. The most significant

FIGURE 12. Algorithmic deviations of projected phase
space densities and their statistical significance; the
upper left graph provides an estimate of the statistical
error; the horizontal axis measures the degree K of
coarse graining of conformational space.
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deviations for DC-i, DC-0, DC-1a, and DC-1c are
smaller by a factor of 4]5 and approximately of
size s max, which is 7 times the size of s min. Toa a
comment on the statistical significance of the latter
result, we note that the error range s max repre-a
sents an estimate for the worst case only, in which
all P density distributions employed for the evalu-
ation of D are completely correlated. Therefore,a
one may assume that the actual s is smaller thana
s max and we may attribute statistical significancea
to the r deviations of DC-i, DC-0, DC-1a, andc
DC-1c, too. If we consider s maxr2 a reasonablya
safe estimate for s , then the hypothesis that algo-a
rithmic artifacts are absent in those four cases can
be rejected at a level of significance below 5%.
DC-1d is the only method for which the deviation
stays well even within the s min range; therefore,a
no significant artifact is detected.

Discussion

Aiming at an evaluation of MD methods partic-
ularly designed for a description of protein dy-
namics, we presented problem-adapted measures
for algorithmic accuracy. A closer inspection of the
principles of MD simulation led us to the proposal
that such measures of accuracy should be based on
comparisons of regular, on nonchaotic, and rele-
vant quantities. These comparisons should be of
type D : the quantities derived from test simula-n
tions employing the MD algorithm to be evaluated
should be compared with ‘‘exact’’ reference quan-
tities.

The requirement to compare regular quantities,
which generally are ensemble or time averages

and therefore show slow convergence demanding
extended test simulations, enforced the use of a
simplified protein model as a test system. This
allowed us to separate purely statistical fluctua-
tions from the deviations caused by algorithmic
artifacts.

The requirement to use relevant quantities led
us to select a set of quantities that are considered
useful for descriptions of protein function on the
basis of MD simulations. The chosen quantities
included atomic fluctuations, vibrational spectra,
and various correlation functions of atomic mo-
tions, as well as projections of configuration space
density distributions. In addition, conservation of
total energy representing a conventional, although
in our view irrelevant, measure of accuracy was
studied.

We applied these measures of accuracy to seven
MD algorithms that all achieve a reduction of
computational effort by different types of approxi-
mation for the long-range Coulomb interaction.
The studied algorithms include a conventionally
used cutoff method, as well as a variety of recently
proposed DC algorithms, that belong to the family
of MTS methods. For a majority of the integration
steps, the latter replace exact long-range forces by
extrapolations using forces computed at previous
steps. They differ from each other by the respec-
tive extrapolation method.

As summarized in Table II, we observed that
DC methods, particularly an algorithm denoted as
DC-1d, reproduce the chosen relevant quantities
more accurately than the cutoff method. Specifi-
cally, the latter algorithm was found to artificially
suppress low-frequency atomic motions at fre-
quencies around 0.1 psy1 by up to 40%, in addi-

TABLE II.
Observed Artifacts for Relevant Observables.

Observable CUT DC-i DC-0 DC-1a DC-1b DC-1c DC-1d

vv vv v v v vDE —
hf

vv v vv v vv vvS —
lf

vvS — — — — — —
v vs — — — — —s

dis
v vv vv v v vC —s

velC — — — — — — —s
v v v vK — — —s s1 2

vv v v v vv vr —c

( ) ( hf ) ( lf ) ( )Total energy drift DE , high frequency spectra S , low frequency spectra S , atomic fluctuations s , displacements
( dis) ( vel) ( )autocorrelation C , velocity autocorrelation C , cross-correlation of atomic motions K , and projected configurations s s s1 2

v( ) ( ) ( )space densities r are characterized by — no significant deviation from the reference simulation, deviation observed, andc
vvŽ ) severe deviation; the three vertical lines group methods that show similar deviation patterns.
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tion to the known structural artifacts caused by
this method.78 None of the DC methods showed
that artifact.

By construction, DC methods exhibit a different
type of artifact: as they approximate the long-range
forces, they introduce small errors into the simula-
tions. That algorithmic noise causes a significant
drift of total energy, which was found to be larger
by 3]5 orders of magnitude than the one present
in an ‘‘exact’’ force computation. However, such
energy drift can easily be suppressed by a weak
coupling to a heat bath.41, 79 Our test simulations
served to address the question of whether the
algorithmic noise forces and the necessary temper-
ature correction cause relevant artifacts.

Two of the investigated DC methods, DC-i and
DC-0, exhibited considerably larger noise than the
others. We found that in these two methods noise
decorrelates atomic motions, an effect that be-
comes apparent by inspecting autocorrelation
functions, as well as cross-correlations.

As a particularly sensitive tool to measure algo-
rithmic accuracy with respect to low-frequency
collective motions, we studied projected configura-
tion space densities. Because such quantities are
directly related to statistical observables like en-
tropy, free energy, or reaction rates, we considered
them to be most relevant for protein function.
With respect to the projected configuration space
densities, DC-1d was the only approximation
method that did not show any deviation from an
exact force computation. In contrast, particularly
large artifacts were detected for the cutoff method,
as well as for algorithm DC-1b. The large devia-
tions displayed by the latter method are somewhat
surprising, because they are in contrast to the
other measures of accuracy.

Considering the whole set of relevant quantities
that we studied, DC-1d turned out to be the only
MD algorithm that did not exhibit any algorithmic
artifacts. Because DC methods are generally as
efficient as the cutoff method, algorithm DC-1d
should be preferred for protein dynamics simula-
tions.

Table II also shows that the conventional crite-
rion of total energy conservation yields a signifi-
cantly different ranking of the seven algorithms
considered. Accordingly, our problem-adapted ap-
proach employing regular and functionally rele-
vant quantities also demonstrates that focusing on
energy conservation may provide misleading in-
formation on the suitability of MD methos for
protein dynamics simulations and therefore is in
appropriate for that purpose. Generally, not a sin-

gle observable, but rather the combined considera-
tion of a number of relevant quantities, provides a
comprehensive picture of algorithmic suitability.
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