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In this brief note, we consider a wave equation that has both trapping and a complex

potential. For this problem, we prove a uniform bound on the energy and a Morawetz

(or integrated local energy decay) estimate. The equation is a model problem for cer-

tain scalar equations appearing in the Maxwell and linearized Einstein systems on the

exterior of a rotating black hole.

1 Introduction

We consider the Cauchy problem:

(−∂2
t + ∂2

x + V(Δω − N)+ iεW)u= 0, (1)

u(0, x, ω)=ψ0(x, ω), ∂tu(0, x, ω)=ψ1(x, ω), (2)
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Complex Potentials and Trapping 549

on (t, x, ω) ∈ M = R × R × S2 with smooth, compactly supported initial data. Here, u is a

complex function u= v + iw,

V = 1

x2 + 1
,

W is a smooth, real-valued, compactly supported function which is nonvanishing at

x = 0 and uniformly bounded by 1, and ε > 0 is a small parameter. Finally, Δω is the

Laplacian in the angular variables and N is a number chosen to be sufficiently large to

allow us to avoid certain technical problems.

Equation (1) has both trapping, which occurs at x = 0, and a complex potential,

which does not vanish at the trapped set. The interaction of these creates problems,

which appear to frustrate the use of energy and Morawetz estimates at the classical

level. By adapting known pseudodifferential methods, we show how to overcome these

problems. We now state our main result in terms of the energy

E(t)= 1

2

∫
{t}×R×S2

|∂tu|2 + |∂xu|2 + V(|∇ωu|2 + N|u|2)dx d2ω.

Theorem 1. There is a constant C such that, if ψ0 and ψ1 are such that E(0) is

finite, then

∀t ∈ R : E(t)≤ C E(0), (3a)

∫
M

|∂xu|2
x2 + 1

+ x2

1 + x2

( |∇ωu|2
1 + |x|3 + |∂tu|2

x2 + 1

)
+ |u|2

1 + |x|3 dt dx d2ω≤ C E(0), (3b)

∫
M

|u||∂tu|
1 + |x|3 dt dx d2ω≤ C E(0). (3c)

�

Since Equation (1) has t independent coefficients, one might naively think

that Noether’s theorem provides a positive conserved energy. However, for the

Lagrangian L1[u, ∂u] = −(∂tu)2 + (∂xu)2 + V(∇ωu · ∇ωu+ Nu2)− iεWu2, which has the

wave Equation (1) as its Euler–Lagrange equation, the conserved quantity associated

to the time translation symmetry is indefinite, being approximately the energy of the

real component of u minus the energy of the imaginary component (plus ε times a term

involving Wvw). On the other hand, a Lagrangian of the form L2[u, ∂u] = −|∂tu|2 + |∂xu|2 +
V(|∇ωu|2 + N|u|2), which corresponds to the energy expression considered above, does

not yield Equation (1) as its Euler–Lagrange equation.
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550 L. Andersson et al.

In our proof, it is crucial that the three estimates (3a)–(3c) are proved simulta-

neously, since the decay estimates (3b)–(3c) are required to prove the energy bound (3a),

and the decay estimates require a uniform bound on E(t). To establish these, we com-

bine a Fourier-transform-in-time technique (as in [7, 26]) with a “modulation” (or Fourier-

rescaling) technique (from [5]).

The wave Equation (1) is a model for equations arising in the study of the

Maxwell and linearized Einstein equations outside a Kerr black hole. The geometry of

the Kerr black hole has trapping. Certain components of the Maxwell and linearized

Einstein equations can be shown to satisfy wave equations with complex potentials.

The imaginary part of these potentials vanishes linearly in the parameter a, which is

explained below.

The Kerr black holes are a family of Lorentzian manifolds arising in general

relativity, and they are characterized by a mass parameter M and an angular momentum

parameter a. Black holes are believed to be the enormously massive objects at the center

of most galaxies. The case |a| ≤ M is the physically relevant one. The case a= 0 is the

Schwarzschild class of black holes.

It is expected that every uncharged black hole will asymptotically approach a

Kerr solution under the dynamics generated by the Einstein equations of general rela-

tivity. The wave, Maxwell, and linearized Einstein equations on a fixed Kerr geometry

are a sequence of increasingly accurate models for these dynamics. By projecting on a

null tetrad, the Maxwell and linearized Einstein fields can be decomposed into sets of

complex scalars, the Newman–Penrose (NP) scalars [14, 20, 21]. It is well known that the

NP scalars with extreme spin weights satisfy decoupled wave equations, known as the

Teukolsky equations, and that the solutions to these reduced equations can be used to

reconstruct the full system [27].

For the Maxwell field on the Kerr background, the spin weight 0 NP scalar can

be treated in the same way, and the resulting equation is known as the Fackerell–Ipser

equation [11]. For linearized gravity on the Schwarzschild background, it is also well

known that the imaginary part of the spin weight 0 NP scalar is governed by a wave

equation, the Regge–Wheeler equation [22, 24]. The corresponding equation for the real

part is more complicated, cf. [19, 32], see also [1].

It was recently shown [1] that in the general (|a|< M) Kerr case, by imposing a

gauge condition related to the wave coordinates gauge, the equation for both the real

and imaginary parts of the spin weight 0 NP scalar of the linearized gravitational field

may be put in a form analogous to the Regge–Wheeler and Fackerell–Ipser equations.

Explicitly (in the Kerr space-time with signature − + ++, working in Boyer–Lindquist
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Complex Potentials and Trapping 551

coordinates) these take the form

(
∇α∇α + 2s2 M

(r − iacos θ)3

)
u= 0, (4)

where s = 0 corresponds to the free scalar wave equation, s = 1 corresponds to the

Maxwell (Fackerell–Ipser) case, while s = 2 corresponds to the linearized gravity (gen-

eralized Regge–Wheeler) case. In particular, for the a �= 0 cases, the analogues of the

Regge–Wheeler equations have complex potentials, with the imaginary part depending

continuously on a.

For the wave equation in the Schwarzschild case, the use of the energy esti-

mate [30], like (3a) with C = 1, and Morawetz estimates (which are also called integrated

local energy estimates) are well established [3, 4, 6, 8, 16]. In the Morawetz estimate (3b),

there is a loss of control of time and angular derivatives near x = 0, in the sense that

the integrand cannot control |x|p(|u|qt |∂tu|2−qt + |u|qω |∇ωu|2−qω ) with both p= 0 and either

qt = 0 or qω = 0. The presence of trapping makes some loss unavoidable [23]. By applying

“angular modulation” and “phase space analysis”, the range for the angular parameter

qω can be refined to p= 0 and q> 0 [5]. This type of refinement is crucial in the current

paper, since estimate (3b) is insufficient to establish the energy bound (3a). Alternatively,

certain pseudodifferential operators have been used to obtain refinements near x = 0, to

p> 0 and qt = qω = 0 [18].

For the wave equation in the general (|a|< M) Kerr case, it is possible to apply

Fourier transforms first in the φ and t variables (Here φ is the azimuthal angle, which

would be one component of ω in the notation of this paper.) and then the remaining vari-

ables. The individual φ modes decay pointwise [12]. Although the problem has a time-

translation symmetry, because the generator of time translations fails to be a time-like

vector with respect to the Lorentzian inner product of the Kerr geometry, there is no

positive, conserved energy. A major advance was the proof that, in the slowly rotating

case |a| � M, there is a uniform energy bound, like estimate (3a). The first proof used an

estimate similar to (3b), but with additional restrictions on the support of the Fourier

transform [7]. Independent work [26] established estimates similar to (3a) and (3b), but

with no restriction on the Fourier support, and there were subsequent pseudodifferen-

tial refinements [28]. Also, the first two authors have proved similar results using meth-

ods which require two additional levels of regularity but which completely avoid the use

of Fourier transforms. Morawetz estimates and refinements are a crucial step in proving

pointwise decay estimates [5, 6, 8, 9, 17] and Strichartz estimates [18, 28], including the

long-conjectured, inverse-cubic, Price law [25, 29].
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552 L. Andersson et al.

The study of the Maxwell and linearized Einstein systems in the Kerr geometry

is still in its infancy. For the general Kerr case, a certain transformed, separated version

of the Teukolsky system has no exponentially growing modes [31]. In the Schwarzschild

case, the φ modes of the Teukolsky equation decay pointwise [13]. Recently, improved

decay estimates for the Regge–Wheeler-type Equation (4) on the Schwarzschild back-

ground, giving decay rates of t−3, t−4, and t−6, respectively, for s = 0,1,2, have been

proved [10].

Weighted energy estimates have been used to prove decay estimates for the

Maxwell field in the Schwarzschild case [2] and for the full (not merely linearized) Ein-

stein equation on asymptotically Schwarzschildean space-times [15]. The estimates for

the Maxwell equation used a strategy based on the observation that the spin weight

0 NP scalar is the only one needing to be controlled in weighted energy estimates in

order to gain control over the full system. More precisely, it is possible to first prove

energy and Morawetz estimates for the spin-weight zero component and then to use

these to establish decay for the full Maxwell system. This process of studying the (spin

1) Maxwell system by first studying an equation similar to the (spin 0) wave equation

is known as spin reduction. A similar process of spin reduction, involving Maxwell-like

and wave-like equations, was used in [15].

The Maxwell field outside a Kerr black hole fails to have a positive, conserved

energy. In seeking to prove an energy bound and a Morawetz decay estimate simultane-

ously for it and the Fackerell–Ipser equation, we have considered two model problems,

two causes for the absence of a positive, conserved energy for a time-independent wave

equation, and two obstacles to proving a sufficiently strong Morawetz estimate in the

presence of trapping. First, for the wave equation in the Kerr geometry, the generator

of the time-translation symmetry fails to be time-like everywhere, and the orbiting null

geodesics (analogous to trapped rays) fill an open set in the manifold, although their lift

to the tangent bundle does not. Second, for a wave equation with a complex potential,

there is no positive, conserved energy because no variational argument can provide an

energy-momentum tensor that satisfies the dominant energy condition. Furthermore, if

there is trapping when the potential is nonzero, a classical Morawetz estimate, of the

form (3b), is insufficient to control the growth of the energy, E(t). Any attempt to treat

the Maxwell or linearized Einstein equations in the Kerr geometry via spin reduction

will have to treat all four of these problems, as well as others, such as the existence of

stationary solutions. To treat all four of these problems simultaneously, the variable x

would have to be replaced by some pseudodifferential measure of the distance from the

trapped geodesics.
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Complex Potentials and Trapping 553

As is common, C will be used to denote a constant which may vary from line

to line, but which is independent of the choice of u or T . The notation A� B is used

to denote that there is some C such that A< C B, with C independent of u and T , and

similarly for �.

2 A Preliminary Energy Estimate

We derive an estimate for an energy for the wave Equation (1) by integrating by parts

against ∂tū and following the standard procedure for getting an energy estimate:

0 = Re((∂tū)(−∂2
t + ∂2

x + V(Δω − N)+ iεW)u)

= − 1
2∂t|∂tu|2 + ∂x Re((∂tū)∂xu)− 1

2∂t|∂xu|2 + ∇ω · Re((∂tū)∇ωu)

− 1
2∂t(V(|∇ωu|2 + N|u|2))− εWIm((∂tū)u).

Introducing an energy which we denote by

E(t)= 1

2

∫
{t}×R×S2

|∂tu|2 + |∂xu|2 + V(|∇ωu|2 + N|u|2)dx d2ω,

assuming that u decays sufficiently rapidly as |x| → ∞, and integrating the previous

formula over a region [t1, t2] × R × S2, we find

E(t2)− E(t1)=
∫

[t1,t2]×R×S2
−εWIm((∂tū)u)dt dx d2ω. (5)

In particular, note that the energy fails to be conserved and that an estimate of the

form (3b) would be insufficient to control the right-hand side. There is, however, a trivial

exponential bound:

E(t2)≤ eε(t2−t1)E(t1).

3 The Morawetz Estimate

Following the standard procedure for investigating the wave equation, we derive a

Morawetz estimate by multiplying the wave equation by ( f(x)∂xū+ q(x)ū), where f and

q are real-valued functions.

In performing this calculation, it is useful to observe that

q′(x)Re(ū∂xu)= ∂x

(
q′

2
ūu

)
− 1

2
q′′ūu.
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554 L. Andersson et al.

Using this and applying the product rule term-by-term, one finds

Re(( f∂xū+ qū)(−∂2
t u+ ∂2

xu+ V(Δω − N)u+ iεWu))

= ∂t pt + ∂x px + ∇ω · pω + (− 1
2 f ′ + q)|∂tu|2 − ( 1

2 f ′ + q)|∂xu|2

+ (( 1
2 f ′ − q)V + 1

2 f(∂xV))|∇ωu|2

+ (N(( 1
2 f ′ − q)V + 1

2 f(∂xV))+ 1
2q′′)|u|2 − ε fW Im((∂xū)u), (6)

where

pt = pt( f,q; u)= −Re(( f(∂xū)+ qū)(∂tu)),

px = px( f,q; u)= 1
2 f |∂tu|2 + 1

2 f |∂xu|2 − 1
2 fV |∇ωu|2 + qRe(ū∂xu)− 1

2 (N fV + q′)|u|2,

pw = pw( f,q; u)= fV Re((∂xū)(∇ωu))+ qV Re(ū∇ωu).

We take f = − arctan(x), for which f ′ = −(x2 + 1)−1 = −V , f ′′ = 2x(x2 + 1)−2,

and f ′′′ = −2(3x2 − 1)(x2 + 1)−3. We take q = f ′/2 + δ(1 + x2)−1 arctan(x)2 for some suf-

ficiently small δ.

We use the notation

E f∂x+q(t)=
∫
{t}×R×S2

Re( f(∂xū)∂tu)+ Re(qū(∂tu))dx d2ω,

and observe that, by a simple Cauchy–Schwarz argument, there is the estimate

|E f∂x+q| ≤ C E .

Observing that the left-hand side of (6) vanishes, we have

0 = ∂t pt + ∂x px + ∇ω · pω + δ
arctan(x)2

1 + x2
|∂tu|2 + 1

1 + x2
(1 − δ arctan(x)2)|∂xu|2

+
(

x arctan(x)− δ arctan(x)2

(1 + x2)2

)
|∇ωu|2 +

(
N

(
x arctan(x)− δ arctan(x)2

(1 + x2)2

)
+ 1

2
q′′

)
|u|2

− ε fWIm((∂xū)u).

Taking ε sufficiently small, N sufficiently large, and δ sufficiently small, the factors in

front of |∂xu|2 and |u|2 are nonnegative and one can dominate the term involving W using

these two terms. (These estimates are uniform, in the sense that, if the estimate holds
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Complex Potentials and Trapping 555

for choices of ε0, N0, and δ0, then it remains valid for ε < ε0, N = N0, and δ = δ0.) Thus, by

integrating over a time-space slab M[t1,t2] = [t1, t2] × R × S2, one can conclude that there is

a constant C such that

E(t2)+ E(t1)�
∫

M[t1 ,t2]

|∂xu|2
x2 + 1

+ | arctan(x)|2
( |∇ωu|2

1 + |x|3 + |∂tu|2
x2 + 1

)
+ |u|2

1 + |x|3 dt dx d2ω. (7)

4 Pseudodifferential Refinements

4.1 The wave equation for an approximate solution

We define a smooth characteristic function of an interval [a,b] to be a function which

is identically 1 on [a,b], which is supported on [a − 1,b + 1], and which is monotonic

on each of the intervals [a − 1,a] and [b,b + 1]. A smooth characteristic function of a

collection of intervals, each of which are separated by distance at least two, is defined

to be the sum of the smooth characteristic functions of each interval.

Let T > 0 be a large constant. (Here, large means larger than − log |ε| and 2.) Let

χ1 be a smooth characteristic function on [0, T ], and let χ2 be a smooth characteristic

function of [−1,0] ∪ [T, T + 1]. Let χ|x|≤2 be a smooth characteristic function of [−1,1].

We use χ1, χ2, and χ|x|≤2 to denote χ1(t), χ2(t), and χ|x|≤2(x), respectively.

Since χ1 is smooth, there is a uniform bound on its derivative and second deriva-

tive, each of which are supported on [0,1] ∪ [T, T + 1], so that there is a constant C such

that |∂tχ1| + |∂2
t χ1| ≤ Cχ2.

The functions

u1 = χ1χ|x|≤2u,

u2 = χ2χ|x|≤2u,

u3 = χ1u

satisfy the equation

(−∂2
t + ∂2

x + V(Δω − N)+ iεW)u1 = F (u2,∇u2, t, x)+ G(u3,∇u3, t, x), (8)

where

F (u2,∇u2, t, x)= −2(∂tχ1)(∂tu2)− (∂2
t χ1)u2,

G(u3,∇u3, t, x)= 2(∂xχ|x|≤2)(∂xu3)+ (∂2
xχ|x|≤2)u3.
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Since all functions of t in this equation are smooth and supported in t ∈ [−2, T + 2],

they are Schwartz class in t, so we may take the Fourier transform in t and remain in

the Schwartz class. We will use ˆ to denote the Fourier transform in t, and τ for the

argument of such functions. We will typically use the word “functions” to describe u, u1,

u2, and u3 and the words “Fourier transforms” to describe their Fourier transforms. We

will use L2 to denote L2(dω dx dt) for functions and to denote L2(dω dx dτ) for Fourier

transforms. We will use ‖ · ‖ for ‖ · ‖L2 unless otherwise specified.

We introduce the following space-time integrals

I (T)=
∫T+2

−2

∫2

−2

∫
S2

x2|∂tu|2 + |∂xu|2 + |u|2dω dx dt,

J(T)=
∫

R×R×S2
|τ |6/5|û1|2 dω dx dτ.

The dependence of J upon T is through the smooth cutoff χ1 in u1. Typically, the argu-

ment T will be clear from context and will be omitted. From the Morawetz estimate (7)

and the exponential bound on the energy, it follows that I � E(T)+ E(0).

We now aim to prove a Morawetz estimate using the Fourier transform. We take

f = − arctan(|τ |αx),

q = f ′

2
= 1

2

|τ |α
1 + |τ |2αx2

with α ∈ [0, 1
2 ]. We multiply the Fourier transform of Equation (8) by ( f∂x + q) ¯̂u1, and inte-

grate the real part over R × R × S2. This integral is convergent because all the functions

are compactly supported in time, so the Fourier transforms are Schwartz class.

4.2 Controlling the terms arising from the cutoff

We consider first the integral arising from the right-hand side of (8). This is

∫
R×R×S2

Re((( f∂x + q) ¯̂u1)(F̂ + Ĝ))dω dx dτ ≤ ‖( f∂x + q) ¯̂u1‖‖F̂ + Ĝ‖.

The terms on the right can be estimated by

‖( f∂x + q) ¯̂u1‖ ≤ ‖ f∂xû1‖ + ‖qû1‖,
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‖ f∂xû1‖ � ‖∂xû1‖ � I 1/2,

‖qû1‖ � ‖|τ |αû1‖ � ‖û1‖ + ‖|τ |1/2û1‖ � I 1/2 + J1/2,

and
‖F̂ + Ĝ‖ ≤ ‖F̂‖ + ‖Ĝ‖.

Because G is supported only for t ∈ [−1, T + 1] and x ∈ [−2,2], we have

‖Ĝ‖ � I 1/2.

Similarly, because F is supported only for t ∈ [−1,0] ∪ [T, T + 1] and x ∈ [−2,2], we have

that at each instant in t, the function F is bounded in L2(dx dω) by either C E(0)1/2 or

C E(T)1/2. Since we are considering two intervals in t of length 1, we have

‖F̂‖ = ‖F‖ ≤ C (E(0)1/2 + E(T)1/2).

Thus, the terms on the right-hand side of the Fourier transform of (8) are bounded by
∫

R×R×S2
Re(( f∂x + q) ¯̂u1)(F̂ + Ĝ)dω dx dτ

≤ C (E(0)1/2 + E(T)1/2 + J1/2)(E(0)1/2 + E(T)1/2). (9)

4.3 The Morawetz estimate for the approximate solution

If we multiply the left-hand side of the Fourier transform of the wave Equation (8) by

( f∂x + q) ¯̂u1 and take the real part, then we have the analog of (6)

Re(( f∂x
¯̂u1 + q ¯̂u1)(τ

2û1 + ∂xû1 + V(Δω − N)û1 + iεWû1))

= ∂x px + ∇ω · pω + (− 1
2 f ′ + q)|τ û1|2 − ( 1

2 f ′ + q)|∂xû1|2

+ (( 1
2 f ′ − q)V + 1

2 f(∂xV))|∇ωû1|2 + (N(( 1
2 f ′ − q)V + 1

2 f(∂xV))+ 1
2q′′)|û1|2

− ε fW Im((∂x
¯̂u1)û1), (10)

where

px = px( f,q; u)= 1
2 f |∂tû1|2 + 1

2 f |∂xû1|2 − 1
2 fV |∇ωû1|2 + q Re( ¯̂u1∂xû1)− 1

2 (N fV + q′)|û1|2,

pω = pω( f,q; û1)= fV Re((∂x
¯̂u1)(∇ωû1))+ qV Re( ¯̂u1∇ωû1).
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Note that there is no pt term because, for Fourier transforms, the analog of the product

rule is simply −iτ û1û1 = ¯̂u1iτ û1.

When this equality is integrated over a space-time slab, the px and pω terms

integrate to zero, and the remaining terms are all nonnegative except for those arising

from q′′ and from W. The integral of the term involving W is bounded by I .

We now consider the term involving q′′:

1

2
q′′|û1|2 = |τ |3α 1 − 3|τ |2αx2

(1 + |τ |2αx2)3
|û1|2.

From the positivity of the remaining terms and the bound (9) of the terms coming from

the right-hand side of the wave Equation (8) for u1, we have that

∫
R×R×S2

|τ |3α 1 − 3|τ |2αx2

(1 + |τ |2αx2)3
|û1|2 dω dx dτ ≤ C (E(0)1/2 + E(T)1/2 + J1/2)(E(0)1/2 + E(T)1/2).

This can be combined with an additional factor of MI , where M is a large constant (700

is sufficient). The integral I dominates the integral of (|τ |2 + 1)x2|û1|2 and is bounded by

C (E(T)+ E(0)). Thus, we have

∫
R×R×S2

(
|τ |3α 1 − 3|τ |2αx2

(1 + |τ |2αx2)3
+ M(|τ |2 + 1)x2

)
|û1|2dω dx dτ

≤ C (E(0)1/2 + E(T)1/2 + J1/2)(E(0)1/2 + E(T)1/2).

By considering the two cases |τ |α|x|< M−1/2 and |τ |α|x| ≥ M−1/2, one can see that if

2 − 2α = 3α (i.e., α = 2/5), then

(
|τ |3α 1 − 3|τ |2αx2

(1 + |τ |2αx2)3
+ M(|τ |2 + 1)x2

)
χ|x|≤2 ≥ C |τ |3αχ|x|≤2

and, therefore, we find

C (E(0)1/2 + E(T)1/2 + J1/2)(E(0)1/2 + E(T)1/2)

≥
∫

R×R×S2

(
|τ |3α 1 − 3|τ |2αx2

(1 + |τ |2αx2)3
+ M(|τ |2 + 1)x2

)
|û1|2 dω dx dτ ≥ J,

which implies

J ≤ C (E(T)+ E(0)). (11)
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4.4 Closing the energy estimate

It is now possible to estimate the integral on the right-hand side of the energy esti-

mate (5). For |x| ≥ 1, the right-hand side (using the compact support of W and the Cauchy-

Schwarz estimate) can be dominated by I ≤ C (E(T)+ E(0)). For |x| ≤ 1, we would like to

dominate the integral over R × R × S2 of |WIm(ū1∂tu1)| by the integral J. However, this

is not entirely correct, because in J there is a contribution arising from the support

of u in the region t ∈ [−1,0] ∪ [T, T + 1]. The error in this approximation is bounded by

C (E(T)+ E(0)). Thus, we have

E(T)− E(0)≤ C ε
(

E(T)+ E(0)+
∣∣∣∣
∫

R×R×S2
WIm(ū1∂tu1)dω dx dt

∣∣∣∣
)
.

We can also take the Fourier transform to obtain an estimate by

C ε
(

E(T)+ E(0)+
∣∣∣∣
∫

R×R×S2
W Im( ¯̂u1∂̂tu1)dω dx dt

∣∣∣∣
)

≤ C ε
(

E(T)+ E(0)+
∫

R×R×S2
W|τ ||û1|2 dω dx dt

)
.

The integrand is now controlled by I + J, which, from estimates (7) and (11), we know can

be estimated also by the sum of the initial and final energies. This leaves the estimate

E(T)− E(0)≤ C ε(E(T)+ E(0)).

By taking ε sufficiently small relative to the constant, we obtain a uniform bound on the

energy

E(T)≤ C E(0).

We note that, since all the constants were independent of T , the estimate holds uni-

formly in T . This proves the first statement (3a), in Theorem 1. Combining this with

estimate (7) (and estimating x2(1 + x2)� arctan(x)2) gives the second, (3b). Finally, the

arguments of this section and the bound on I + J, from estimates (7) and (11), give the

third result (3c).

Remark 2. Using the method given in [5], the stronger Morawetz estimate (11) can be

improved to control the integral of |τ |2−ε|û|2 for any ε > 0. Because of the presence of

trapping, it is not possible to improve this to |τ |2|û|2. �

 at M
PI G

ravitational Physics on February 4, 2014
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/
http://imrn.oxfordjournals.org/


560 L. Andersson et al.

Funding

P.B. was funded by CANPDE, which was funded by an EPSRC Science and Innovation grant. J.-P.N.

was funded by ANR grant number ANR-08-BLAN-0228.

References
[1] Aksteiner, S. and L. Andersson. “Linearized gravity and gauge conditions.” Classical Quan-

tum Gravity 28, no. 6 (2011): 065001, 24 pp.

[2] Blue, P. “Decay of the Maxwell field on the Schwarzschild manifold.” Journal of Hyperbolic

Differential Equations 5, no. 4 (2008): 807–56.

[3] Blue, P. and A. Soffer. “Semilinear wave equations on the Schwarzschild manifold. I. Local

decay estimates.” Advances in Differential Equations 8, no. 5 (2003): 595–614.

[4] Blue, P. and A. Soffer. Errata for “Global existence and scattering for the nonlin-

ear Schrodinger equation on Schwarzschild manifolds”, “Semilinear wave equations on

the Schwarzschild manifold I: Local decay estimates”, and “the wave equation on the

Schwarzschild metric II: Local decay for the spin 2 Regge Wheeler equation”, 2006: preprint

arXiv.org:gr-qc/0608073.

[5] Blue, P. and A. Soffer. “Phase space analysis on some black hole manifolds.” Journal of

Functional Analysis 256, no. 1 (2009): 1–90.

[6] Blue, P. and J. Sterbenz. “Uniform decay of local energy and the semi-linear wave equation

on Schwarzschild space.” Communications in Mathematical Physics 268, no. 2 (2006): 481–

504.

[7] Dafermos, M. and I. Rodnianski. “A proof of the uniform boundedness of solutions to the

wave equation on slowly rotating Kerr backgrounds.” Inventiones Mathematicae 185, no. 3

(2011): 467–559.

[8] Dafermos, M. and I. Rodnianski. “The red-shift effect and radiation decay on black hole

spacetimes.” Communications on Pure and Applied Mathematics 62, no. 7 (2009): 859–919.

[9] Dafermos, M. and I. Rodnianski. “The black hole stability problem for linear scalar pertur-

bations.” (2010): preprint arXiv.org:1010.5137.

[10] Donninger, R., W. Schlag, and A. Soffer. “On pointwise decay of linear waves on a

Schwarzschild black hole background.” (2009): preprint arXiv.org:0911.3179v3.

[11] Fackerell, E. D. and J. R. Ipser. “Weak electromagnetic fields around a rotating black hole.”

Physical Review D 5, no. 10 (1972): 2455–8.

[12] Finster, F., N. Kamran, J. Smoller, and S.-T. Yau. “Decay of solutions of the wave equation in

the Kerr geometry.” Communications in Mathematical Physics 264, no. 2 (2006): 465–503.

[13] Finster, F. and J. Smoller. “Decay of solutions of the Teukolsky equation for higher spin in

the Schwarzschild geometry.” Advances in Theoretical and Mathematical Physics 13, no. 1

(2009): 71–110.

[14] Geroch, R., A. Held, and R. Penrose. “A space-time calculus based on pairs of null directions.”

Journal of Mathematical Physics 14, no. 7 (1973): 874–81.

 at M
PI G

ravitational Physics on February 4, 2014
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/
http://imrn.oxfordjournals.org/


Complex Potentials and Trapping 561

[15] Holzegel, G. “Ultimately schwarzschildean spacetimes and the black hole stability problem.”

(2010): preprint arXiv.org:1010.3216.

[16] Łaba, I. and A. Soffer. “Global existence and scattering for the nonlinear Schrödinger

equation on Schwarzschild manifolds.” Helvetica Physica Acta 72, no. 4 (1999): 274–94.

[17] Luk, J. “A vector field method approach to improved decay for solutions to the wave equation

on a slowly rotating Kerr black hole.” (2009): preprint arXiv.org:1009.0671v2.

[18] Marzuola, J., J. Metcalfe, D. Tataru, and M. Tohaneanu. “Strichartz estimates on

Schwarzschild black hole backgrounds.” Communications in Mathematical Physics 293, no.

1 (2010): 37–83.

[19] Moncrief, V. “Gravitational perturbations of spherically symmetric systems. I. The exterior

problem.” Annals of Physics 88 (1974): 323–42.

[20] Newman, E. and R. Penrose. “An approach to gravitational radiation by a method of spin

coefficients.” Journal of Mathematical Physics 3, no. 3 (1962): 566–78.

[21] Newman, E. and R. Penrose. “Errata: an approach to gravitational radiation by a method of

spin coefficients.” Journal of Mathematical Physics 4 (1963): 998.

[22] Price, R. H. “Nonspherical perturbations of relativistic gravitational collapse. II. Integer-

spin, zero-rest-mass fields.” Physical Review D 5 (1972): 2439–54.

[23] Ralston, J. V. “On the construction of quasimodes associated with stable periodic orbits.”

Communications in Mathematical Physics 51, no. 3 (1976): 219–42.

[24] Regge, T. and J. A. Wheeler. “Stability of a Schwarzschild singularity.” Physical Review (2)

108 (1957): 1063–9.

[25] Tataru, D. “Local decay of waves on asymptotically flat stationary space-times.” to appear

in American Journal of Mathematics, 2009: arXiv.org:0910.5290.

[26] Tataru, D. and M. Tohaneanu. “A local energy estimate on Kerr black hole backgrounds.”

International Mathematical Research Notices 2011, no. 2 (2011): 248–92.

[27] Teukolsky, S. A. “Rotating black holes: Separable wave equations for gravitational and elec-

tromagnetic perturbations.” Physical Review Letters 29, no. 16 (1972): 1114–8.

[28] Tohaneanu, M. “Strichartz estimates on Kerr black hole backgrounds.” Transactions of the

American Mathematical Society 364, no. 2 (2012): 689–702.

[29] Tohaneanu, M., J. Metcalfe and D. Tataru. “Price’s law on nonstationary spacetimes.” (2011):

preprint arXiv.org:1104.5437.

[30] Wald, R. M. “Note on the stability of the Schwarzschild metric.” Journal of Mathematical

Physics 20, no. 6 (1979): 1056–8.

[31] Whiting, B. F. “Mode stability of the Kerr black hole.” Journal of Mathematical Physics 30,

no. 6 (1989): 1301–5.

[32] Zerilli, F. J. “Effective potential for even-parity Regge–Wheeler gravitational perturbation

equations.” Physical Review Letters 24, no. 3 (1970): 737–8.

 at M
PI G

ravitational Physics on February 4, 2014
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/
http://imrn.oxfordjournals.org/

	Introduction
	A Preliminary Energy Estimate
	The Morawetz Estimate
	Pseudodifferential Refinements
	The wave equation for an approximate solution
	Controlling the terms arising from the cutoff
	The Morawetz estimate for the approximate solution
	Closing the energy estimate

	References

