
Chapter 14
Hybrid Mechanical Systems
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Martino Poggio and Peter Rabl

Abstract We discuss hybrid systems in which a mechanical oscillator is coupled
to another (microscopic) quantum system, such as trapped atoms or ions, solid-state
spin qubits, or superconducting devices. We summarize and compare different cou-
pling schemes and describe first experimental implementations. Hybrid mechanical
systems enable new approaches to quantum control of mechanical objects, precision
sensing, and quantum information processing.

14.1 Introduction

The ability of functionalized mechanical systems to respond to electric, magnetic
and optical forces has in the past led to widespread applications of mechanical res-
onators as sensitive force detectors. With improved technology the same principle will
apply for resonators in the quantum regime and allow the integration of mechanical
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oscillators with a large variety of other (microscopic) quantum systems such as atoms
and ions, electronic spins, or quantized charge degrees of freedom. The benefits of
such hybrid quantum systems are quite diverse. On the one hand, the motion of the
resonator can be used as a sensitive probe and readout device for static and dynamic
properties of the quantum system. On the other hand, coupling the resonator to
a coherent and fully controllable two-level system provides a way to prepare and
detect non-classical states of mechanical motion. Finally, the mechanical system can
serve as a quantum transducer to mediate interactions between physically quite dis-
tinct quantum systems. This can be used to coherently couple e.g. an electronic spin
to charge or optical degrees of freedom with various potential applications in the
context of (hybrid) quantum information processing.

From a practical point of view the combination of mechanical resonators with
microscopic quantum systems faces considerable challenges. Often the functionali-
zation of mechanical resonators with electrodes, magnets, or mirrors competes with
the requirement of a small mass to achieve a sufficient coupling strength on a single-
quantum level. At the same time both the resonator and the other quantum system
must be exceptionally well isolated from the environment to avoid decoherence. Vari-
ous hybrid setups have been proposed that address those challenges, and some have
already been implemented in experiments. This includes solid-state systems such as
spin qubits, quantum dots, and superconducting devices, as well as atomic systems
such as trapped atoms, ions, and molecules. In this chapter we give a brief overview
of the different approaches towards mechanical hybrid quantum systems and discuss
some basic examples from the fields of solid-state and atomic physics.

14.2 Solid-State Quantum Systems Coupled to Mechanics

Within the field of solid-state physics, a large variety of microscopic two- or few-level
systems have been identified that are well isolated from the environment and allow
for a coherent manipulation of their quantum state. Examples range from electronic
or nuclear spin states associated with naturally occurring defect centers [1] to elec-
tronic states of so-called artificial atoms such as quantum dots [2] or superconducting
Josephson devices [3]. Nanomechanical systems are naturally integrated with such
solid-state quantum systems by fabricating them on the same chip, where they may
interact with spins or charges via strong magnetic or electric forces. In contrast to
most of the atomic implementations described below, the system dimensions are
usually not limited by optical properties or trapping requirements, and without those
restrictions strong interactions between an individual two-level system and a mechan-
ical mode can be achieved more easily. On the other hand, it is more challenging to
achieve long coherence times in the solid state. In combination with cryogenic tem-
peratures the solid-state approach to mechanical hybrid systems offers a promising
route towards manipulating mechanical motion on a single-phonon level.

We first present a brief overview of different physical mechanisms that have been
suggested for achieving strong coupling between solid-state systems and mechanical
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Fig. 14.1 Different schemes for coupling solid-state qubits and mechanical resonators. a Electro-
static coupling to charge qubits. b Lorentz force interactions with current states of a flux qubit.
c Magnetic coupling to spins. d Deformation potential coupling to quantum dots or defect centers

motion. For the specific examples of superconducting charge qubits and electronic
spin qubits we then describe mechanical sensing techniques and quantum control
schemes as basic applications of these systems in the weak and strong interaction
regime.

14.2.1 Overview of Systems and Coupling Mechanisms

The coupling of mechanical motion to other harmonic oscillators has been treated in
other chapters of this book and we restrict the discussion in this section to microscopic
two-level systems with a ground and excited state |g〉 and |e〉. In solid-state systems
the energy separation Eeg between the two states is strongly dependent on the local
electrostatic and magnetic fields, which also provides a way to couple to mechanical
motion. For example, by fabricating an oscillating electrode or a vibrating magnetic
tip, the system energy Eeg(x̂) = E0

eg + ∂xEegx̂ + (1/2)∂2
x Eegx̂2 + · · · now explicitly

depends on the resonator displacement x̂ = xZPF(b̂+ b̂†). Even for nanoscale devices
the zero point motion xZPF ≈ 10−13 m is still much smaller than other system
dimensions and corrections beyond the linear coupling term are usually negligible.
Therefore, the generic Hamiltonian for the qubit-resonator system is given by

Ĥ(t) = Ĥq(t) + �ΩMb̂†b̂ + �λ(b̂ + b̂†)σ̂z, (14.1)

where σ̂z = |e〉〈e| − |g〉〈g| is the Pauli operator and Ĥq(t) denotes the unperturbed
Hamiltonian for the solid-state qubit. The relevant parameter in Eq. (14.1) is the
coupling strength λ = ∂xEegxZPF/2�, which is the frequency shift per vibrational
quantum.

While the basic form of the interaction in Eq. (14.1) has been derived from quite
general considerations, the origin and the magnitude of the qubit-resonator cou-
pling λ depends on the specific physical implementation. Figure 14.1 illustrates
four basic mechanisms for coupling different charge and spin qubits to mechanical
motion. In Fig. 14.1a two states encoded in quantized charge degrees of freedom,
e.g. an electron on a quantum dot [4–7] or a Cooper pair on a small superconducting
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island [8–11], are coupled to a vibrating gate electrode. The energy for a total charge
Q on the island is EQ = (Q − Qg)

2/2CΣ where CΣ = C0 + Cg is the total capac-
itance of the island, Cg the gate capacitance and Qg = VgCg the gate charge. For
small displacements Cg(x) ≈ Cg(1−x/d) where d is the gate separation, the typical
coupling strength is

�λel ≈ eVgCg/CΣ × xZPF/d. (14.2)

For d ≈ 100 nm and voltages up to Vg = 10 V this coupling is quite substantial and
can reach values in the range of λel/2π ≈ 5 − 50 MHz [8].

Instead of using charge states, a two-level system can alternatively be encoded in
clockwise and anti-clockwise circulating currents in a superconducting loop [12–17]
as shown in Fig. 14.1b. Here an interaction with a freely suspended arm of the loop
can arise from the Lorentz force created by a magnetic field B0 perpendicular to the
bending motion [14–16]. For circulating currents of magnitude Iq and a length l of
the resonator we obtain

�λLor ≈ B0IqlxZPF. (14.3)

Although the applied magnetic field is limited by the critical field of the supercon-
ductor, B0 ≤ 10 mT, typical values of Iq ≈ 100 nA and l = 5 µm still result in a
coupling strength of λLor/2π ≈ 0.1 − 1 MHz [14–16].

Qubits encoded in electronic or nuclear spin states can be coupled to the motion
of a magnetized tip [18–22] as shown in Fig. 14.1c. Here strong magnetic field
gradients ∇B lead to a position dependent Zeeman splitting of the spin states and for
an electron spin,

�λmag ≈ gsμBxZPF∇B/2, (14.4)

where μB is the Bohr magneton and gs ≈ 2. On the scale of a few nanometers,
magnetic field gradients can be as high as ∇B ∼ 107 T/m [23, 24], which corresponds
to a coupling strength of λmag/2π ≈ 10 − 100 kHz [22]. Due to a smaller magnetic
moment, the coupling to a single nuclear spin is reduced by a factor ∼10−3, but is
partially compensated by the much longer coherence times of nuclear spin qubits.

Mechanical resonators cannot only modulate the configuration of externally
applied fields, but for example also couple to quantum dots or defect centers by
changing the local lattice configuration of the host material [25]. This deformation
potential coupling is illustrated in Fig. 14.1d where flexural vibrations of the res-
onator induce a local stress σ ∼ z0xZPF/l2, where l is the resonator length and z0 the
distance of the defect from the middle of the beam. The corresponding level shift is
given by

�λdef ≈ (De − Dg)z0xZPF/l2, (14.5)

where De and Dg are deformation potential constants for the ground and excited
electronic states. For quantum dots a coupling strength of λdef /2π ≈ 1 − 10 MHz
can be achieved [25], but competes with radiative decay processes of the same order.



14 Hybrid Mechanical Systems 331

In summary, this brief overview shows that various different mechanisms lead
to interactions between solid-state two-level systems and mechanical resonators. In
many cases the single-phonon coupling strength λ can be comparable to or even
exceed the typical decoherence rate of the qubit T−1

2 as well as the mechanical
heating rate Γth = kBT/�Q. As we describe now in more detail this enables various
applications ranging from measurement and ground state cooling schemes for weak
coupling to quantum control techniques in the strong coupling regime.

14.2.2 Superconducting Devices and Mechanics

Solid-state qubits which are encoded in a quantized charge degree of freedom can
be coupled to mechanical motion via electrostatic interactions. A prototype example
is the Cooper Pair Box (CPB), i.e. a small superconducting island where Cooper
pairs are coherently coupled to a large reservoir via a Josephson tunnel junction (see
Fig. 14.1a). The CPB belongs to a larger class of superconducting qubits [3, 26] and
is—in its simplest realization—described by the number N of excess Cooper pairs on
the island and its conjugate variable δ which is the difference of the superconducting
phase across the Josephson junction. As discussed in more detail in the chapter by
Konrad Lehnert and the chapter by Aaron O’Connell and Andrew Cleland, the cor-
responding quantum operators obey the standard commutation relations [N̂, δ̂] = i
and the Hamiltonian operator for the CPB is

ĤCPB = EC(N̂ − Ng)
2 − EJ cos(δ̂). (14.6)

Here EC = 4e2/2CΣ is the charging energy for a total island capacitance CΣ ,
EJ is the Josephson energy, and Ng = CgVg/(2e) the dimensionless gate charge
which can be adjusted by the voltage Vg applied across the gate capacitance Cg. The
CPB is usually operated in a regime where the charging energy EC/h ∼ 50 GHz
is the dominant energy scale and the dynamics of the CPB is restricted to the two
energetically lowest charge states. For example, by setting Ng = n + 1/2 + ΔNg with
integer n and ΔNg < 1, these two states are |g〉 = |N = n〉 and |e〉 = |N = n+1〉 and
form the basis of a so-called ‘charge qubit’ [26]. The states |g〉 and |e〉 are separated
by an adjustable charging energy Eeg = 2ECΔNg and coupled by the Josephson
tunneling term 〈g|ĤCPB|e〉 = −EJ/2.

When the gate electrode is replaced by a vibrating mechanical beam the capaci-
tance Cg(x) ≈ Cg(1 − x/d) varies with the beam displacement x and the resulting
change in the charging energy Eeg(x) introduces a coupling between the qubit states
and the mechanical resonator. The Hamiltonian for the combined system is then
given by [8, 9]

Ĥ = EcΔNgσ̂z − EJ

2
σ̂x + �ΩMb̂†b̂ + �λ(b̂ + b̂†)σ̂z , (14.7)
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and we recover the general form of Eq. (14.1) of the qubit-resonator coupling
with a single phonon coupling constant λ ≡ λel as defined in Eq. (14.2). Due
to the electrostatic nature of the interaction the achievable coupling strength λel/

2π ∼ 10 MHz between a charge qubit and a mechanical resonator can be substan-
tially larger than the corresponding magnetic interactions with spin qubits discussed
in Sect. 14.2.3. However, for the same reason charge states are also more suscepti-
ble to random interactions with the environment and typical dephasing times T2 for
charge superposition states are in the pico- to nanosecond regime. An exception to
this rule occurs when the CPB is operated at the charge degeneracy point ΔNg = 0.
Here the eigenstates of ĤCPB, namely |g̃〉 = (|g〉 + |e〉)/√2 and |ẽ〉 = (|g〉 − |e〉)/√

2, are combinations of different charge states and therefore highly insensitive to
ubiquitous sources of low frequency electric noise [27]. By assuming ΔNg = 0 and
re-expressing Eq. (14.7) in terms of the Pauli operators σ̃j for the rotated basis states
|g̃〉, |ẽ〉 we obtain

Ĥ = EJ

2
σ̃z + �ΩMb̂†b̂ + �λ(b̂ + b̂†)σ̃x , (14.8)

as our final model for the coupled resonator charge-qubit system. Indeed, by using
optimized charge qubit designs dephasing times T2 > 1 μs have been demon-
strated [27, 28]. This makes the CPB a promising candidate to achieve strong coupling
λT2 > 1 with a mechanical resonator.

Equation (14.8) is familiar from related models studied in the context of cav-
ity QED [29] or trapped ions [30], where usually a resonant exchange of excita-
tions between the qubit and the resonator is used for cooling or quantum control of
the resonator mode. However, with the exception of the high frequency dilatation
modes described in the chapter by Cleland et al., mechanical frequencies of μm
sized beams are typically in the range of 10−100 MHz and Eq. (14.8) describes a
highly non-resonant coupling to a qubit with a transition frequency EJ/h ∼ 5 GHz.
Therefore, in the following we briefly outline two possibly strategies for potential
quantum applications in the present system. First, we remark that in the relevant
regime λ 
 ΩM < EJ second order perturbation theory can be used to approximate
Eq. (14.8) by an effective Hamiltonian [9, 11]

Ĥ � EJ

2
σ̃z + �ΩMb̂†b̂ + �χ(b̂†b̂ + 1/2)σ̃z . (14.9)

The resulting coupling term with a strength �χ = (�λ)2×2EJ/(E2
J −(�ΩM)2) can be

interpreted as a shift of the qubit frequency proportional to the phonon number b̂†b̂.
Under the condition χT2 > 1 this frequency shift can in principle be detected and the
charge qubit can be used to implement a quantum non-demolition measurement of the
number of vibrational quanta of the mechanical mode. To resolve a single vibrational
level in time the coupling χ must also exceed the rate Γth at which the environment
induces jumps between different vibrational states of the resonator. Estimates show
that in this setting the combined condition χ > Γth, T−1

2 for a phonon resolved
measurement is experimentally feasible [9].
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To go beyond passive measurement applications a second strategy is to real-
ize effective resonance conditions by applying an oscillating gate voltage Vg(t) ∼
cos(ω0t) such that the microwave frequency ω0 = EJ/� − ΩM is used to gap the
energy between vibrational and qubit excitations [10, 31]. In the interaction picture
with respect to the free evolution Ĥ0 = EJ/2σ̃z +�ΩMb̂†b̂ the resulting Hamiltonian
is then of the form

Ĥ � λ(σ̃+b̂ + σ̃−b̂†) + O
(

e±i2ΩMt, e±i2ω0t
)

, (14.10)

where for λ 
 ΩM, ω0 the oscillating terms can be neglected by using a rotating
wave approximation. Hamiltonian (14.10) reduces to the resonant Jaynes-Cummings
model which allows a coherent exchange of qubit and vibrational excitations. Appli-
cations of this model such as sideband cooling, state preparation and detection have
been discussed in different areas of quantum optics [32]. The driven CPB provides the
tool to implement similar applications [10, 31] for the vibrational modes of macro-
scopic mechanical resonators. We close this section by noting that strong coupling of
a superconducting phase qubit to a mechanical oscillator has been observed experi-
mentally [33], as discussed in more detail in the chapter by O’Connell and Cleland.

14.2.3 Spin Qubits and Mechanics

As discussed in Sect. 14.2.1, electronic and nuclear spin states can be coupled to
mechanical motion by way of a magnetic field gradient. In the solid state, this situation
is realized by positioning a spin qubit—typically residing in the lattice of some
material—in close proximity to a strongly magnetized tip. One of the two elements,
the tip or the qubit, is then rigidly affixed to a cantilever or other mechanical resonator.
The most prominent examples of such experiments include mechanically detected
magnetic resonance and optical experiments on nitrogen-vacancy defects in diamond.

14.2.3.1 Mechanical Detection of a Single Electron Spin

The first experiments demonstrating coupling between a nanomechanical cantilever
and the spin of an isolated single electron appeared in 2004. In a landmark experiment,
Rugar et al. measured the force of flipping a single unpaired electron spin contained in
a silicon dangling bond (commonly known as an E’ center) using a NEMS cantilever
[19]. This achievement concluded a decade of development of a technique known
as magnetic resonance force microscopy (MRFM) and stands out as one of the first
single-spin measurements in a solid-state system.

The principle behind MRFM is simple (see Fig. 14.2). Magnetic moments—such
as those associated with single electron or single nuclear spins—produce a force when
in a magnetic field gradient: F = μ∇B, where μ is the spin’s magnetic moment and
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Fig. 14.2 Schematics of an
MRFM apparatus. a “Tip-
on-cantilever” arrangement,
such as used in the single
electron MRFM experiment
of 2004 [19]. b “Sample-on-
cantilever” arrangement, like
the one used for the nanoscale
virus imaging experiment
in 2009 [20]. In both cases
the hemispherical region
around the magnetic tip is the
region where the spin reso-
nance condition is met—the
so-called “resonant slice”

(a)

(b)

∇B is the spatial field gradient. This force can couple the deflection of a compliant
cantilever to the spin if either the spin or the gradient source, such as a small magnet,
are fixed to the cantilever. If the magnetic field gradient is large enough (i.e. the
coupling is strong enough), the spin polarization and the cantilever’s motion will be
coupled.

Most MRFM techniques utilize this coupling to make measurements of spin
density on the micro- or nanometer scale [34]. They employ extremely compliant
cantilevers capable of detecting forces as small as 1 aN/

√
Hz and optical interfer-

ometers that can measure the cantilever’s displacement to resolutions of 1 pm/
√

Hz.
Furthermore, magnetic resonance techniques are used in order to selectively address
ensembles of spins in a sample, allowing for both spatial and chemical selectivity. For
example, a pulse sequence known as a rapid adiabatic passage can be applied using
a radio-frequency (rf) source. Each adiabatic passage pulse causes only the spins
on resonance with the rf carrier frequency to flip. Using a periodic pulse sequence,
a small ensemble of spins—at a particular region in space—can be made to flip at
nearly any desired frequency. By choosing the flip frequency to be at the cantilever’s
mechanical resonance, the periodic spin oscillations will in turn drive the cantilever
into oscillation. Because this spin force is made to occur at the cantilever’s resonant
frequency and at a particular phase, it can be distinguished from all other random
electro-static and thermal forces disturbing the cantilever’s motion.

We should note that the force sensitivity required for the single electron spin
measurement imposed several limitations. Since the single-shot signal-to-noise ratio
(SNR) was 0.06, up to 12 h of averaging per data point were required [19]. In addi-
tion to making useful imaging prohibitively time-consuming, this small SNR pre-
cludes the technique from following the dynamics of the single electron spin. Large
SNRs would allow for shorter measurement times. If the measurement time could
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be reduced below the correlation time of the electron spin, which is related to the
relaxation time of the electron spin in its rotating frame, real-time readout of the spin
quantum state would become possible. Such readout would enable a wide variety of
quantum measurement experiments. In the case of the electron spin E’ centers, the
correlation time was measured to be 760 ms. Until the SNR improves dramatically,
real-time readout of spins will only be possible for small ensembles of electrons
rather than for single electrons. One example is the real-time measurement of the
direction of spin polarization for an ensemble of spins (∼70 electron spins) [35]. In
contrast, due to low SNR, the single-spin measurement [19] could not discern the
direction of the measured spin; it could only ascertain its position.

14.2.3.2 Mechanical Detection of Nuclear Spins

Using this technique to couple and detect a single nuclear spin is far more chal-
lenging than to detect a single electron spin. The magnetic moment of a nucleus
is much smaller than that of an electron: a 1H nucleus (proton), for example, pos-
sesses a magnetic moment that is only ∼1/650 of an electron spin moment. Since
the measured force, F, is directly proportional to the magnetic moment of the spin,
a significantly higher force resolution is required for nuclear spin experiments than
for electron spin experiments. Other important nuclei, such as 13C or a variety of
isotopes present in semiconductors, have even weaker magnetic moments than 1H.
In order to observe single nuclear spins, it is necessary to improve the state-of-the-art
sensitivity by another two to three orders of magnitude. While not out of the question,
this is a daunting task that requires significant advances to all aspects of the MRFM
technique.

14.2.3.3 Strong Magnetic Coupling

The strong magnetic coupling achieved between spins and the cantilever enables
the high sensitivity of MRFM. This coupling is mediated by field gradients that can
exceed 5 × 106 T/m [23, 24]. For the cantilevers and magnetic tips used in these
experiments this corresponds to λmag/2π ≈ 10 kHz for a single electron spin and
10 Hz for a proton. Such high gradients have been achieved using micro-fabricated Dy
or FeCo magnetic tips and by the ability to make stable measurements with the sample
positioned less than 50 nm from the apex of the tip. The strong interaction between
spins and the mechanical sensor has been the subject of a number of theoretical
studies, and is predicted to lead to a host of intriguing effects. These range from
shortening of spin lifetimes by “back action” [36, 37], to spin alignment by specific
mechanical modes either at the Larmor frequency or in the rotating frame [38], to
a mechanical analog of a laser [18], and to long-range mediation of spin couplings
using charged resonator arrays [39].

The first direct experimental evidence for accelerated nuclear spin relaxation
induced by a single, low-frequency mechanical mode was reported in 2008 [40].
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In these experiments the slight thermal vibration of the cantilever generated enough
magnetic noise to destabilize the spin. Enhanced relaxation was found when one
of the cantilever’s upper modes (in particular the third mode with a frequency of
about 120 kHz) coincided with the Rabi frequency of the 19F spins in CaF2. In this
regime, the spins are more tightly coupled to one mechanical resonator mode than
to the continuum of phonons that are normally responsible for spin-lattice relax-
ation. Interestingly, these initial experiments showed a scaling behavior of the spin
relaxation rate with important parameters, including magnetic field gradient and
temperature, that is substantially smaller than predicted by theory.

14.2.3.4 Nano-MRI and Potential Practical Applications

The coupling of small nuclear spin ensembles to a compliant mechanical oscillator
through strong magnetic tips has resulted in the highest magnetic resonance imag-
ing (MRI) resolution achieved by any method. In 2009, Degen et al. demonstrated
three-dimensional (3D) MRI of 1H nuclear spins in a biological specimen (tobacco
mosaic virus) with a spatial resolution down below 10 nm [20]. This resolution repre-
sents a 100 million-fold improvement in volume resolution over conventional MRI
and shows the potential of MRFM as a tool for elementally selective imaging on
the nanometer scale. If the development of such techniques continues, these results
indicate that force-detected spin resonance has the potential to become a significant
tool for structural biologists.

14.2.3.5 Nitrogen Vacancy Centers and Mechanics

Recently, single nitrogen vacancy (NV) centers hosted in diamond have been pro-
posed as solid-state qubits amenable to mechanical coupling [22]. Again, as in the
case of MRFM, the coupling rests on bringing the qubit—in this case a single NV—in
close proximity to a strongly magnetized tip. Then, either the NV or the tip must be
affixed to a mechanical oscillator. NV centers appear especially attractive qubits due
to their excellent optical and electronic properties. A single NV spin can be readily
initialized and measured by optical means, manipulated using resonant rf pulses, and
excellent coherence times up to a few milliseconds persist even in ambient conditions
[41, 42]. As a result NVs have been proposed and used as ultra-sensitive scanning
magnetic sensors [43–46].

First experiments have recently demonstrated the coupling of the NV spin to
mechanical motion. Arcizet et al. coupled an NV to the motion of a SiC nanowire
using field gradients around 7 × 103 T/m [47]. The NV was fixed to the tip of the
nanowire while the magnet was placed near to it. Nanowire vibrations of a few tens
of nanometers in amplitude were detected through a change in the lineshape of the
NV spin resonance. More recently, Kolkowitz et al. used an NV spin to sense the
vibrations of a cantilever resonatorwith a magnetic tip [48]. A sequence of coherent
manipulation pulses was applied to the spin in order to enhance its sensitivity to
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the resonator vibrations while suppressing noise from other sources. In this way,
mechanical vibrations down to a few picometers in amplitude were detected without
phase locking NV spin dynamics and resonator vibrations. In these initial experi-
ments, the spin-resonator coupling strength was λmag/2π = 70 Hz [47] or lower
[48]. Coupling strengths in the kHz range could be reached by combining a strong
magnet with a nanoscale oscillator with large zero-point motion [48].

14.2.3.6 Increasing the magnetic coupling strength

The prospects of improving hybrid mechanical systems based on spin qubits depend
on progress in increasing the magnetic coupling strength λmag. First, the magnetic tips
can and must be improved with the use of cleaner materials and lithographic process-
ing techniques. Second, the development of experimental techniques designed to
bring the spin qubit and the gradient source as close together as possible without
destroying either qubit coherence or introducing mechanical dissipation should also
yield significant gains in coupling strength.

14.3 Atoms, Ions, and Molecules Coupled to Mechanics

Atoms, ions, and molecules are quantum systems par excellence, and a sophisti-
cated toolbox exists for coherent manipulation of their electronic, spin, and motional
degrees of freedom [49, 50]. It is therefore natural to ask whether such atomic quan-
tum systems can be coupled to mechanical oscillators. Through the coupling, the
tools of atomic physics could become available for quantum control of mechanical
devices. On the other hand, mechanical oscillators could find new applications in
atomic physics experiments, such as optical lattices with vibrating mirrors.

Compared to the solid-state based approaches discussed in the previous sections,
coupling atomic systems to mechanical oscillators creates a qualitatively different
setting. Atoms in a trap can be regarded as mechanical oscillators themselves. Acting
as a dispersive medium inside an optical cavity, an interesting variant of cavity opto-
mechanics in the quantum regime can be realized (see the chapter by Stamper Kurn).
Atomic systems offer both the continuous degree of freedom of their motion in a
trap as well as a discrete set of internal electronic and spin states that can be reduced
to two-level systems. Both the internal and motional state can be initialized, coher-
ently manipulated, and detected on the quantum level with high fidelity, using tech-
niques that have been developed in experiments on atomic clocks and interferometers
[51, 52], Bose-Einstein condensation [53–55], and quantum information processing
[56]. Coherence times of atomic systems are typically in the range of milliseconds up
to many seconds [57], and thus much longer than those of most solid-state quantum
systems discussed in the previous sections. Moreover, many properties of atomic sys-
tems can be widely tuned in-situ with external fields, including trapping frequencies,
laser cooling rates, and even the strength of atom–atom interactions.
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While the good isolation of atoms trapped in a vacuum chamber enables long
coherence times, it renders coupling to mechanical oscillators more challenging.
Various coupling mechanisms have been proposed, such as electrostatic coupling
to the motion of trapped ions [58–60] and molecules [61], magnetic coupling
to atomic spins [62–66], and optomechanical coupling to atoms in free space
[67–69] and in optical cavities [70–80]. Remarkably, some of these schemes predict
strong atom-oscillator coupling even for a single atom [73, 74]. First experimen-
tal implementations of hybrid atom-oscillator systems have recently been reported
[81–84]. In the following, we discuss several of these proposals and experiments (see
also the review in [85]).

14.3.1 Direct Mechanical Coupling

The conceptually most straightforward approach is to directly couple the vibrations
of a mechanical oscillator to the vibrations of an atom or ion in a trap with the
help of a “spring”, i.e. a distance-dependent force between the two systems [85].
We consider an atom of mass mat in a trap of frequency Ωat and a mechanical
oscillator of mass meff and frequency ΩM. The coupling force derives from a potential
Uc(d) that depends on the distance d between the oscillator and the atom. For small
displacements x̂, x̂at 
 d, the resulting coupling Hamiltonian is of the form Ĥc =
U ′′

c (d)x̂ x̂at , where U ′′
c (d) is the curvature of Uc evaluated at the mean atom-oscillator

distance d. The oscillator displacement can be written as x̂ = xZPF(b̂ + b̂†) in
terms of creation/annihilation operators [b̂, b̂†] = 1 and the zero-point amplitude
xZPF = √

�/2meffΩM. Similarly, the atomic displacement is x̂at = xat,0(âat + â†
at)

with [âat, â†
at] = 1 and xat,0 = √

�/2matΩat . The Hamiltonian of the coupled system
is then given by

Ĥ = �Ωat â
†
at âat + �ΩMb̂†b̂ + �λ(âat + â†

at)(b̂ + b̂†), (14.11)

with a single-phonon atom-oscillator coupling constant

�λ = U ′′
c (d)xZPF xat,0 � ε

�Ωat

2

√
mat

meff
, (14.12)

for near-resonant coupling Ωat � ΩM. It is important to note that Uc also modifies the
atomic trapping potential by contributing a term of order U ′′

c (d)x̂2
at [85]. We therefore

introduce the dimensionless parameter ε = U ′′
c (d)/(matΩ

2
at), which compares U ′′

c (d)

to the curvature of the atom trap. To avoid strong trap distortion, we typically have
ε 
 1. In the special case where Uc itself provides the atom trap, we have ε = 1. To
achieve ε > 1, the effect of Uc on the trap has to be partially compensated, requiring
sophisticated trap engineering. For direct mechanical coupling, we thus find that λ

scales with Ωat but is reduced by the atom-oscillator mass ratio, which is typically
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very small (
√

mat/meff ∼ 10−8 − 10−4). To achieve significant coupling strength,
oscillators with small meff are advantageous.

Several theoretical proposals consider direct mechanical coupling between a
trapped ion and an oscillator with a metallic electrode on its tip [58–60]. In this
case, Uc = eq/(4πε0d) is the Coulomb interaction between the ion of elementary
charge e and the charge q = CqVq on the oscillator tip. For a nanoscale oscillator
with meff = 10−15 kg coupled to a single 9Be+ ion in a trap with Ωat/2π = 70 MHz,
we obtain λ/2π = ε × 150 Hz assuming ΩM = Ωat [85]. A value of ε = 1 can be
achieved e.g. with d = 10µm and a metallic tip with a capacitance Cq = 10−17 F
and an applied voltage Vq = 90 V.

Stronger coupling is possible if N  1 atoms are simultaneously coupled to the
mechanical oscillator. In this case, âat and â†

at refer to the atomic center-of-mass
(COM) motion. The coupling is collectively enhanced by a factor

√
N , so that

λN = λ
√

N = ε
Ωat

2

√
Nmat

meff
. (14.13)

This result can be intuitively obtained by replacing mat → Nmat in Eq. (14.12), for
a derivation see [68]. An example of such collective coupling where λN can reach
several kHz is given in Sect. 14.3.3.

In the experiment of [82], a direct mechanical coupling between a cantilever
oscillator and ultracold atoms was demonstrated for the first time. An atomic Bose-
Einstein condensate (BEC) of N = 2 × 103 atoms was placed at about one microm-
eter distance from the surface of the cantilever and used as a probe for cantilever
oscillations (see Fig. 14.3a). The coupling potential Uc is due to attractive atom-
surface interactions, which substantially modify the magnetic trapping potential Um

at such small distance. One effect of the surface force is to reduce the potential depth
(see Fig. 14.3b). In addition, it shifts the trap frequency and minimum position.
When the cantilever oscillates, the trapping potential is modulated at the cantilever
frequency ΩM, resulting in mechanical coupling to the atoms as described above.

In the experiment, the vibrating cantilever induced large-amplitude atomic motion
that was detected simply via atom loss across the barrier U0, see Fig. 14.3c. The
observed atom-cantilever coupling depends strongly on the trap parameters and
shows resonant behavior if ΩM = Ωat . Coupling to collective mechanical modes of
the BEC other than the COM mode was observed as well [82]. While it was pos-
sible to detect the cantilever motion with the atoms, the backaction of atoms onto
the cantilever was negligible in this experiment, mainly because the relatively large
meff = 5 ng results in a small coupling constant λN/2π � 10−2 Hz. Much stronger
coupling could be achieved by miniaturizing the cantilever. Since coupling via sur-
face forces does not require functionalization of the cantilever, it could be used to
couple atoms to molecular-scale oscillators such as carbon nanotubes [86]. In this
case, a coupling constant of a few hundred Hz could be achieved [85].
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Fig. 14.3 Coupling of a mechanical cantilever and an atomic BEC via atom-surface forces [82]. a
Atom chip with cantilever oscillator (length 200 µm, ΩM/2π = 10 kHz, meff = 5 ng, Q = 3,200).
The atoms can be trapped and positioned near the cantilever with magnetic fields from wire currents.
b Combined magnetic trapping and surface potential. The surface potential reduces the trap depth to
U0. Cantilever oscillations modulate the potential, thereby coupling to atomic motion. c Cantilever
resonance detected with the atoms, for two different driving strengths of the cantilever

14.3.2 Magnetic Coupling to Atomic Spin

The vibrations of a mechanical oscillator can also be coupled to the spin of the atoms.
This has several advantages compared to coupling to atomic motion. First, the atomic
spin can be manipulated with higher fidelity. For hyperfine spins, coherence times T2
of many seconds have been achieved [57]. Second, it is easier to isolate a two-level
system among the internal states, providing a way to the preparation of non-classical
quantum states of the oscillator. Third, hyperfine spin transition frequencies lie in the
MHz to GHz range, significantly higher than typical trap frequencies. This enables
coupling to high-frequency mechanical oscillators, which are easier to cool to the
ground state.

To couple to the spin of the atoms, the oscillator is functionalized with a small
magnet that generates a field gradient ∇B, see Fig. 14.4a. Mechanical oscillations
x(t) are transduced into an oscillating magnetic field Br(t) = ∇B x(t) that couples to
the spin. If Br(t) is perpendicular to the static field B0 in the trap, the Hamiltonian is

Ĥ = �ωL

2
σ̂z + �ΩMb̂†b̂ + �λmag(b̂ + b̂†)σ̂x (14.14)
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Fig. 14.4 a Schematic setup for coupling the spin of an atomic BEC to a nanoscale cantilever with
a magnetic tip [62]. Cantilever oscillations x(t) are transduced by the magnet into an oscillating field
Br(t), which couples to the spin F of the atoms. b Experimental setup of [81], where a vibrating
cantilever with a magnetic tip induces atomic spin resonance in a room-temperature Rb vapor cell

with a coupling constant λmag = gμBxZPF∇B/2� similar to Eq. (14.4). The prefactor
g (of order unity) accounts for the matrix element of the atomic hyperfine transition
considered. For transitions between Zeeman sublevels, the Larmor frequency is ωL =
gFμBB0/�, with the hyperfine Landé factor gF . It can be widely tuned by adjusting B0
in order to achieve resonance ωL = ΩM. The coupled system realizes a mechanical
analog of the Jaynes-Cummings model in cavity quantum electrodynamics [29],
with the phonons of the mechanical oscillator playing the role of the photons of the
electromagnetic field.

To achieve large λmag a strong gradient ∇B is required. Approximating the magnet
by a dipole of magnetic moment μm, we have ∇B = 3μ0μm/4πd4. It is thus essen-
tial to trap and position the atoms at very small distance d from the oscillator tip. At
the same time, care has to be taken that ∇B does not significantly distort the atomic
trapping potential. With neutral atoms in magnetic microtraps, d can be as small
as a few hundred nanometers [82]. Compared with the solid-state implementations
discussed in Sect. 14.2.3, where d can be in the tens of nanometers range, it is thus
more difficult to achieve large ∇B. On the other hand, the spin decoherence rates
T−1

2 of trapped atoms are exceptionally small. The main challenge is the thermal
decoherence rate Γth = kBT/�Q of the mechanical oscillator. The single-phonon
single-atom strong coupling regime requires λmag > Γth, T−1

2 . As in the previ-
ous section, collective coupling to N  1 atoms is a possible strategy to enhance
the coupling strength. In this case, the collective strong-coupling regime requires
λN = λmag

√
N > Γth, T−1

2 . Several theory papers investigate how to achieve
the strong coupling regime by coupling nanoscale cantilevers to the spin of ultra-
cold neutral atoms [62–66]. The predicted coupling constants lie in the range of
λ/2π ≈ 10−103 Hz, so that very high Q and low T are required for strong coupling.

In [81], a first experiment was reported where a cantilever with a magnetic tip was
coupled to atoms in a room-temperature vapor cell, see Fig. 14.4b. The cantilever was
piezo-driven and induced spin resonance in the atomic vapor, which was recorded
with a laser. Besides demonstrating spin-oscillator coupling, such a setup is of interest
for applications in magnetic field sensing, where the cantilever is essentially used as
a tool for spectroscopy of the atomic transition frequency.
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Fig. 14.5 a Setup: Reflection
of light from a micromechan-
ical membrane results in a
standing wave which provides
an optical lattice potential for
ultracold atoms. This configu-
ration gives rise to a coupling
of the membrane vibrations
and the center of mass motion
of the cloud of atoms. Laser
cooling of atoms will sym-
pathetically cool along the
membrane [68]. b Measured
change in the mechanical
damping rate due to the sym-
pathetic cooling effect in its
dependence on atom number
in the lattice [83]
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14.3.3 Optomechanical Coupling in Free Space

The coupling mechanisms discussed in the preceding sections require to position
atoms close to the mechanical oscillator. Combining trapping and cooling of atoms in
ultra-high vacuum (UHV) with a cryogenic environment as required for minimizing
decoherence of the micromechanical system is a demanding task. In contrast, an
indirect coupling mechanism acting over some distance would allow to keep the
atomic and the micromechanical system in separate environments. Such a scheme
was suggested in [68, 69] and experimentally implemented as described in [83, 84].

Consider the setup shown in Fig. 14.5a. Laser light is retroreflected from a partially
reflective membrane, resulting in a standing wave light field, which in turn provides
an optical lattice potential for a cloud of cold atoms. When the membrane supports a
mechanical degree of freedom its position fluctuations will move the optical lattice,
and thereby shake along the atoms. Conversely, position fluctuations of atoms in the
potential will couple to the membrane’s motion: When an atom is displaced from
its potential minimum it will experience a restoring force which is due to transfer of
photon momentum to the atom. This change in photon momentum is caused by an
unbalancing of power between left and right propagating beams, which ultimately
changes also the radiation pressure force on the membrane. Thus, also the membrane
vibrates along with the atoms.

A more quantitative, semi-classical consideration along these lines reveals that the
(dimensionless) position and momentum fluctuations of the membrane and the atomic
COM motion, q̂ = (b̂ + b̂†)/

√
2, p̂ = i(b̂† − b̂)/

√
2 and q̂at = (âat + â†

at)/
√

2,
p̂at = i(â†

at − âat)/
√

2, respectively, on average obey the equations of motion



14 Hybrid Mechanical Systems 343

〈 ˙̂p〉 = −ΩM〈q̂〉 − 2rλN 〈q̂at〉, 〈 ˙̂q〉 = ΩM〈p̂〉,
〈 ˙̂pat〉 = −Ωat〈q̂at〉 − 2λN 〈q̂〉, 〈 ˙̂qat〉 = Ωat〈p̂at〉. (14.15)

Here Ωat denotes the trap frequency for atoms provided by the optical potential, λN

is the coupling strength between the COM motion of atoms and the membrane, and r
is the power reflectivity of the membrane. The semiclassical calculation yields a cou-
pling strength of λN = (Ωat/2)

√
Nmat/meff as in Eq. (14.13), assuming resonance

between the two systems ΩM = Ωat . For mechanical frequencies on the order of
several 100 kHz this condition is routinely met in state of the art optical lattices. As
expected from the discussion in Sect. 14.3.1 the coupling scales with the mass ratio
between an atom and the membrane mat/meff , but it is also collectively enhanced by
the number of atoms N . Therefore even for a mass ratio mat/meff � 10−14, a large
but feasible atom number N = 108 will still give rise to an appreciable coupling λN

on the order of kHz for a trap frequency around one MHz. Moreover, it was recently
shown that λN can be further increased by placing the membrane inside an optical
cavity [69]. Since the atoms are still trapped in the optical lattice forming outside the
cavity, the long-distance nature of the coupling is maintained.

Curiously, the semiclassical consideration outlined above predicts a coupling
between atoms and membrane that is stronger in one direction than in the other
by a factor given by the power reflectivity r. This scaling is in fact confirmed and
explained by a full quantum treatment of this system. Starting from a complete Hamil-
tonian description including the motional degress of freedom of the membrane and
atoms, as well as the quantized electromagentic field, it is possible to derive a master
equation for the density matrix ρ̂ of the membrane and atomic COM motion [68]. It
has the form ˙̂ρ = −i[Ĥsys − 2λN q̂at q̂, ρ̂] + Cρ̂ + Lmρ̂ + Lat ρ̂. (14.16)

and implies the equations of motion (14.15) for the mean values. The term Cρ̂ =
−i(1 − r)λN

([q̂, q̂at ρ̂] − [ρ̂q̂at, q̂]) is responsible for the asymmetric coupling. Its
form is well known in the theory of cascaded quantum systems [87, 88], and arises
here due to the finite reflectivity of the membrane. The Lindblad terms Lmρ̂ and Lat ρ̂

correspond to momentum diffusion of, respectively, the membrane and the atomic
COM motion. They arise due to vacuum fluctuations of the radiation field giving
rise to fluctuations of the radiation pressure force on the membrane and the dipole
force on atoms. The full quantum treatment of the system correctly reproduces these
well known effects, and shows that the corresponding diffusion rates are well below
the rates of other relevant decoherence processes in this system: For the membrane
mode this is thermal heating at a rate Γth due to clamping losses or absorption of laser
light, which will heat the mechanical mode to thermal occupation n̄th in equilibrium.
Atoms on the other hand can be laser cooled to the motional ground state by well
established techniques such as Raman sideband cooling [83]. The corresponding
cooling rate γat,cool is widely tunable and can in fact be significantly larger than Γth.
Note that in contrast to the normal optomechanical situation the cooling rate of atoms
can be switched off giving rise to a regime of coherent coupling between atoms and
the membrane.
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This opens up the interesting possibility to sympathetically cool the membrane
motion via laser cooling of atoms in the lattice. Adding a corresponding heating term
for the membrane and a cooling term for atoms to the master equation (14.16), and
solving for the steady state it is possible to determine the effect of the atom-membrane
coupling and the associated sympathetic cooling. In [68] it was shown that ground
state cooling might in fact be within reach. In the weak coupling regime λN 

γat,cool we expect in analogy to the treatment of optomechanical sideband cooling
that laser cooling of atoms results in an increased effective mechanical damping
rate Γeff = ΓM + 4rλ2

N/γat,cool, where ΓM = ΩM/Q is the intrinsic damping rate
of the membrane. Such an increase was observed in the experiment reported in
[83]. Figure 14.5b shows the results for the change in mechanical damping Δγ =
Γeff − ΓM for various experiments with different number of atoms N in the lattice.
The linear scaling as expected from the model discussed here is clearly confirmed.
Also the magnitude of Δγ in the experiment agrees well with the prediction by this
model.

Overall this setup provides exciting first results and perspectives for interfac-
ing micromechanical oscillators with ultracold atoms. The interface works at a dis-
tance, easing experimental requirements, and enables sympathetic cooling towards
the ground state, as well as coherent dynamics for quantum state preparation and
measurement of the mechanical mode via coupling to ultracold atoms.

14.3.4 Cavity-Optomechanical Coupling Schemes

The optomechanical coupling discussed in the previous section can be enhanced by
placing the atoms and the oscillator inside a high-finesse optical cavity. In such a
system, the cavity field can mediate an interaction between the internal or motional
degrees of freedom of the atoms and the vibrations of the oscillator. In the following,
we first discuss a scheme where the oscillator interacts with the internal state of an
atomic ensemble. Subsequently, we present a system where the motion of a single
trapped atom is strongly coupled to a membrane oscillator.

14.3.4.1 Coupling of Atomic Internal Levels to Resonator Motion

The presence of an ensemble of N two-level atoms inside a driven optical cavity
modifies the cavity response. For example when the atomic resonance is far from the
cavity mode frequency, i.e. in the dispersive limit, the effect of the atoms onto the
field is a phase shift. Similarly a vibrating cavity end-mirror also leads to a phase shift
of the intracavity field. The field can then be used as a mediator between atoms and
the mechanical resonator to either allow an exchange of quantum states, entangle the
two systems, or lead to enhanced optical cooling of the mirror. The last motive will
be explored in the following and it can be seen as an atom induced effect of spectral
filtering of the mirror scattered optical sidebands. The upshot is that low finesse
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Fig. 14.6 Resolved sideband cooling of an end-mirror a using a sharp resonance optical cavity
and b using a bad-cavity with an ensemble of atoms inside. The dotted black lines show the empty
cavity response while the red and blue curves represent optical sidebands. The green line shows
the modification of the cavity response in the presence of atoms

cavities can provide resolved sideband cooling when supplemented with filtering
ensembles of atoms [76].

The total Hamiltonian of the system can be split as Ĥ = Ĥ0 + ĤI + Ĥdis,
where Ĥ0 and ĤI are the free part and the interaction term, while Ĥdis describes
dissipation. The mirror quadratures are defined as above, q̂ = (b̂ + b̂†)/

√
2 and

p̂ = i(b̂† − b̂)/
√

2, and the atomic ensemble of frequency splitting ωa is described by
creation/annihilation operators [ĉ, ĉ†] = 1. The atom-cavity coupling Ga = ga

√
N

is collectively enhanced by
√

N compared to the single atom-single photon coupling
strength ga. The harmonic oscillator description for the atomic cloud is accurate
when the cavity photons are much less numerous than atoms n̄cav 
 N . The cavity
resonance is ωopt and the laser driving shows up in ĤI as a displacement term of ampli-
tude E = √

2Pinκ/�ωL . One can derive equations of motion from the Hamiltonian
dynamics and then perform a linearization of fluctuations around steady state values
that leads to a set of quantum linearized Langevin equations

˙̂q = ΩMp̂, (14.17)
˙̂p = −ΓMp̂ − ΩMq̂ + g(â + â†) + ξ, (14.18)
˙̂a = −(κ + iΔf )â + igq̂ − iGaĉ + âin, (14.19)
˙̂c = −(γa + iΔa)ĉ − iGaâ + ĉin, (14.20)

where Δf = ωopt −ωL −g2/ΩM is the effective cavity detuning, κ is the cavity decay
rate, γa and Δa = ωa − ωL are the atom decay rate and detuning respectively, and
ξ , âin, ĉin is quantum noise describing the effect of Ĥdis in the Langevin approach.

Setting Ga = 0 we recover the typical resolved sideband regime in optomechanics
where under the conditions κ 
 ΩM and Δf = ΩM, optimal cooling of the mirror
via the field is obtained as illustrated in Fig. 14.6a. The scattered sidebands are
at ωas,s = ωL ± ΩM and the sharp response of the cavity around ωopt leads to
a suppression of the heating sideband. Assuming a bad cavity that cannot resolve
sidebands and Ga > 0, we are instead in the situation depicted in Fig. 14.6b where
the atoms, placed at Δa = −ΩM, induce a dip in the cavity profile at ωs that inhibits
scattering into the Stokes sideband. Defining atomic cooperativity C = G2

a/κγa, the
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dip at ωs scales as (1 + C)−1. The width of the dip is γa(1 + C) representing the
enhanced light-induced atomic linewidth. When the Stokes sideband fits inside the
dip one expects an inhibition by a factor of the order of (1 + C)−1. For a rigorous
analysis one analyzes the spectrum of the Langevin force F̂ = g(âin+â†

in)which gives
the cooling and heating rates (for Δf = 0): Aas � g2/κ and As � g2/[κ(1 + C)].
Subsequently, the effective atom-mediated optical damping is

Γopt = g2

κ

C

1 + C
. (14.21)

The residual occupancy is given by nres = As/(ΓM +Γopt) → C−1 (in the limit of
large C) and can be compared with nres = (κ/2ΩM)2 for the purely optomechanical
system; an immediate advantage of this hybrid system comes from the scaling of nres

with the controllable parameter N .
While in the above the atomic system has been viewed rather as a high-Q system

that acts as a spectral filter for light to relax the resolved sideband limit requirements,
we nevertheless stress that one can as well take a different stand by seeing the cavity
mode rather as a mediator between atoms and mechanical resonator. From here,
following the elimination of the cavity field as a fast variable, one can also derive
the exact form of the implicit atom-mirror interaction and show effects such as a
quantum state swap or entanglement [71].

14.3.4.2 Coupling of Atomic Motion to Resonator Motion

In a situation as that depicted in Fig. 14.7a, where a single atom is trapped inside
a cavity that surrounds a vibrating membrane, the effect of light on atomic motion
can be exploited to generate motion-motion coupling between membrane and atom
[73, 74]. To this purpose we choose two fields of slightly different wavelengths and
opposite detunings ±Δ with respect to two cavity resonances (see Fig. 14.7b) that
provide harmonic trapping of the atom. The two fields have frequencies ω1, ω2
equally far-detuned by δ from two internal transitions of the atom as shown in
Fig. 14.7c. Around the atomic equilibrium position x̄at a Lamb-Dicke expansion
leads to a linear atom-field interaction

Ĥat,f = gat,f [(â1 + â†
1) − (â2 + â†

2)](âat + â†
at), (14.22)

where the atom-field coupling gat,f as well as the atomic trapping frequency Ωat

inside the two-field optical trap are quantities depending on the single-photon Stark
shift, cavity photon number and the geometry of the fields at position x̄at . This
interaction can be interpreted as follows (Fig. 14.7d, e): fluctuations in the amplitudes
of the two cavity fields exert oppositely oriented forces on the atom. Conversely,
fluctuations of the atom around its mean position cause changes of opposite sign
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Fig. 14.7 Linear atom-
membrane coupling mediated
by two driven cavity modes.
a Schematics of the setup with
atom, membrane and two cav-
ity fields shown. b Two cavity
resonances and the frequency
position of the two driving
lasers. c Internal structure
of the atom. d Static illus-
tration of optical potentials.
e Dynamical illustration of
potentials showing the modi-
fication induced by motion of
atom and membrane
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in the amplitudes of the two cavity fields. The membrane-field interaction takes a
similar form

Ĥm,f = gm,f [(â1 + â†
1) − (â2 + â†

2)](b̂ + b̂†), (14.23)

with a similar interpretation. To the reversible Hamiltonian dynamics one has of
course to add the dissipation channels: cavity decay, momentum diffusion owing to
spontaneous scattering of the atom and thermal decoherence of the membrane.

The elimination of the fast varying cavity fields can be done in the limit |Δ| 
gat,f , gm,f , and the reduced atom-membrane dynamics is governed by a linear two-
mode Hamiltonian

Ĥat,m = ΩMb̂†b̂ + Ωat â
†
at âat − λ(âat + â†

at)(b̂ + b̂†), (14.24)

with atom-membrane coupling strength

λ = 2gat,f gm,f (Δ + ΩM)

κ2 + (Δ + ΩM)2 + 2gat,f gm,f (Δ − ΩM)

κ2 + (Δ − ΩM)2 , (14.25)

to which decoherence at rates Γc, Γat and Γth adds irreversible dynamics.
The goal is to obtain a coupling λ much larger than the rates of decoherence. For

a demonstrative example we consider a single Cs atom and a SiN membrane of small
effective mass meff = 0.4 ng inside a cavity of finesse ofF � 2 × 105. A small cavity
waist of w0 = 10 µm results in a cooperativity parameter of 140. With a mechanical



348 P. Treutlein et al.

quality factor Q = 107, resonance frequency ΩM = 2π × 1.3 MHz, circulating
power Pc � 850µW and cavity length L = 50µm we find a cavity mediated
coupling λ � 2π × 45 kHz and decoherence rates Γc, Γth, Γat � 0.1 × λ. It is
thus possible to enter the strong coupling regime with state-of-the-art experimental
parameters, even with just a single atom in the cavity.

14.4 Conclusion and Outlook

We have discussed various hybrid systems in which a mechanical oscillator is coupled
to another (microscopic) quantum system. The approaches that are being pursued are
quite diverse, involving superconducting qubits, single spins in the solid state, quan-
tum dots, ultracold atoms in magnetic and optical traps, as well as trapped ions and
molecules. One motivation for building such hybrid systems is that they enable novel
ways to read out and control mechanical objects. For example, a switchable, linear
coupling of a mechanical oscillator to a two-level system allows for the preparation
of arbitrary quantum states of the oscillator through the Law-Eberly protocol [89].

Experimentally, the coupling of superconducting two-level systems to mechani-
cal oscillators is most advanced. First experiments have already reached the strong-
coupling regime (see [33] and the chapter by O’Connell and Cleland). However, the
coherence time of the involved qubits is very short (nano- to microseconds), and it
is thus highly desirable to develop and implement strategies for strong coupling of
mechanical oscillators to long-lived qubits such as spins in the solid-state or ultra-
cold atoms in a trap. Strong coupling of mechanical oscillators to solid-state spins
can build on the impressive achievements of magnetic resonance force microscopy,
which has reached single-spin detection sensitivity already some time ago [19].
Recently, a novel system was realized in which the spin of a nitrogen vacancy center
in diamond was used to sense mechanical motion [47, 48]. In another recent exper-
iment, an ensemble of ultracold atoms in an optical lattice was optically coupled
to vibrations of a micromechanical membrane [83, 84], enabling sympathetic cool-
ing of the membrane through laser-cooled atoms. By enhancing the coupling with a
high-finesse cavity, strong coupling could be achieved even for a single atom [73].

The fact that very different microscopic quantum systems are investigated as
potential candidates for strong coupling to mechanical oscillators points to one of
the big strengths of mechanical quantum systems: the oscillator can be functional-
ized with electrodes, magnets, or mirrors while maintaining high mechanical quality
factor. Mechanical oscillators are thus particularly well suited to serve as quan-
tum transducers [39] for precision sensing or hybrid quantum information process-
ing [90]. Through the mechanical vibrations, spin dynamics can e.g. be transduced
into electric or optical signals, and one can envision scenarios where atomic quan-
tum memories are interfaced with superconducting quantum processors. Another
important application is the transduction of microwave or radio-frequency signals



14 Hybrid Mechanical Systems 349

into optical signals [91, 92], ultimately at the level of single quanta [93, 94]. The
versatility of mechanical devices makes them a fascinating toy in the playground of
quantum science and technology and we expect many exciting developments in the
future.
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