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Radiative Symmetriebrechung in Links-Rechts-Symmetrischen Mod-
ellen mit einer Shiftsymmetrie an der Planckskala:

Unter der Annahme, dass das Standard Modell bis zur Planckskala ΛPl ∼

1019 GeV gültig ist, zeigt die Higgs Selbstkopplung einen Wert, der nahe ΛPl er-
staunlich klein ist. Es ist verlockend anzunehmen, dass dies von der einbettenden
Theorie der Gravitation erzwungen wird. In einem stringtheoretischen Kontext
wurde diese Beobachtung kürzlich interpretiert als die Invarianz des Skalarpoten-
tials an der Planckskala unter konstanter Verschiebung des Higgsfeldes.
Im Allgemeinen sind solche Randwertbedingungen von besonderem Interesse für
die Untersuchung von radiativer Symmetriebrechung in Modellen mit klassischer
konformer Invarianz, denn die Planckskala ist mit der Brechungsskala über das
Laufen der Skalarkopplungen verbunden.
In dieser Arbeit wird die Coleman-Weinberg Symmetriebrechung im links-rechts-
symmetrischen Modell diskutiert bei Anwesenheit einer solchen Shift-Symmetry,
die für den besonderen Fall der Links-Rechts-Symmetrie verallgemeinert ist. Im
reduzierten Parameterraum gelingt es, eine große Hierarchie zwischen der Planck-
skala und der Links-Rechts-Brechungsskala zu generieren. Um auch die elek-
troschwache Skala zu stabilisieren, wird das Modell um zwei Fermionen erweitert,
die zum Laufen der Skalarkopplungen beitragen.

Radiative Symmetry Breaking of Left-Right Symmetric Models with
a Shift Symmetry at the Planck Scale:

Under the assumption that the Standard Model is valid up to the Planck scale
ΛPl ∼ 1019 GeV, the quartic Higgs coupling exhibits near ΛPl a value remarkably
close to zero. It is tempting to consider this feature as a manifestation of boundary
conditions imposed by the embedding theory of gravity. In a stringy context this
observation has recently been interpreted in terms of the scalar potential being
invariant under a constant shift of the Higgs field at the Planck scale.
In general, such boundary conditions are of special interest in the study of radia-
tively induced symmetry breaking in models with classical conformal invariance,
as the Planck scale is connected to the breaking scale via the running of the scalar
couplings.
In this thesis, the Coleman-Weinberg symmetry breaking of the minimal clas-
sically conformally invariant left-right (LR) symmetric model is reconsidered in
the presence of a shift symmetry which is generalized to the case of the LR sym-
metry. Within the restricted parameter space imposed by the shift symmetry, a
large hierarchy between the LR breaking scale and the Planck scale can be gen-
erated. In order to stabalize the electroweak-scale as well, the model is extended
by two fermionic representations, which contribute to the running of the scalar
couplings.
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Chapter 1

Introduction

For many years the Standard Model (SM) of particle physics has been in per-

fect agreement with experimental observations. With the recent discovery of a

∼ 125 GeV Higgs boson [1, 2], even the last fundamental particle predicted by the

SM seems to be found. At the same time, however, neutrino oscillations1 represent

the most striking hint to new physics beyond the SM. In contradiction to the SM

prediction, neutrinos are massive. Thus, the SM needs to be extended. While there

are many non-minimal proposals to obtain neutrino masses (see e.g. Ref. [4]), the

most famous approach is the introduction of right-handed (sterile) neutrinos to the

SM [5].

Besides experimental requirements, also from a theoretical perspective, an alter-

native to the SM is desirable due to its inherent problems of naturalness. One of

the most severe is the so-called hierarchy problem. It states that, in the process

of renormalization, the quadratically divergent corrections to the Higgs mass term

have to be canceled to unnaturally high precision in order to explain the small-

ness of the Higgs mass. A solution to the hierarchy problem has been proposed

by Bardeen.2 He argued that in the classically conformal limit of the SM,3 these

divergences would turn out to be unphysical. For this argument to be applicable,

no intermediate theory is allowed up to the embedding at the Planck scale,

ΛPl ∼ 1.22 ⋅ 1019 GeV. (1.1)

For the SM, classical conformal invariance has however been excluded, since it pre-

dicts a too low Higgs mass (for a review see [7]). Motivated by the work of Nicolai and

Meissner [8–10], who showed that classical conformal symmetry might be entailed

1See the Particle Data Group review [3].
2See Ref. [6] and references therein.
3This corresponds to scale-invariance, thus to a vanishing Higgs mass term µ2φ2 ⊂ L.
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Chapter 1 Introduction

by the embedding theory including gravity, Holthausen et al. [6] considered classical

conformal invariance in the minimal left-right (LR) symmetric model [11–13].

The LR symmetric model extends the SM gauge group to

SU(3)C × SU(2)L × SU(2)R ×U(1)B−L. (1.2)

The LR symmetric model is attractive from a theoretical point of view as it restores

parity to be a symmetry of nature. Furthermore, by generalization of the Gell-Mann

Nishijima relation, in the LR symmetric model the generator of the U(1) can be

expressed by the difference of baryon and lepton numbers, which within the SM

are conserved quantities at the classical level. With regard to neutrino masses, it

naturally provides the introduction of right-handed neutrinos which in the minimal

model allows for Dirac mass terms via the Higgs mechanism.4

As the gauge sector of the model is enlarged with respect to the SM, spontaneous

symmetry breaking has to be performed minimally in two steps. Using the approx-

imate analytical method by Gildener and Weinberg (GW) [15], which generalizes

the Coleman-Weinberg breaking mechanism [16], Holthausen et al. showed that the

minimal LR symmetry can successfully be broken by radiative corrections. They

found that in a large fraction of parameter space the right-handed scale vR could be

stabilized at vR = against ΛPl.5 The separation of these scales has been called big

hierachy. However, in order to stabilize the electroweak scale against vR, which is

referred to as the little hierarchy, a certain amount of fine-tuning was needed. This

fine-tuning problem is adressed in the present thesis.

In the framework of the GW-method, the radiative symmetry breaking is triggered

by the running of the scalar couplings. Since, in a given model, the running is fixed

by initial conditions, the symmetry breaking scenario is completely determined by

the choice of these conditions. Thus, the fine-tuning problem can be transfered to

the question of conditions imposed on the values of the scalar couplings at ΛPl.

Assuming that the SM is valid up to the Planck scale, the observed Higgs mass

corresponds to a quartic coupling λ which is remarkably close to zero at the Planck

4The minimal model refers to a scalar sector containing one bidoublet, as well as right- and
left-handed doublets. Note, however, that since it has been noticed that the model containing
triplets instead of doublets allows for neutrino Majorana masses, this triplet model is often
referred to as the minimal model (for a review see [14]), although it contains more degrees of
freedom.

5Current limits on the right-handed scale suggest that vR has to be at least in the multi-TeV
regime [17–20]. Throughout this diploma-thesis, it will assumed that vR = 10 TeV. However,
the results will not depend much on this particular choice.
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Figure 1.1: The renormalization group running of the SM Higgs quartic coupling
with mh = 125 GeV at two-loop order [21]. Under the assumption that
the SM is valid up to the Planck scale ΛPl, the observed Higgs mass
predicts a quartic coupling λ which is very close to zero at µ = ΛPl. This
might be considered as a consequence of boundary conditions imposed
by the embedding theory including gravity.

scale (see figure 1.1).6 It is tempting to consider this to be non-accidental, but

instead to be imposed by Planck scale physics. In a string theoretical context, the

observation λ(ΛPl) ≈ 0 has recently been interpreted as the manifestation of a shift

symmetry [24] which, at the Planck scale, leaves the scalar potential invariant under

a constant shift of the Higgs field,

φ→ φ + α. (1.3)

Here, this assumption will be generalized to the context of the LR symmetric model.

As in the minimal LR symmetric model, the role of the SM Higgs is played by a

bidoublet field Φ, the shift symmetry will be defined with respect to Φ, rather than

to the left-handed doublet. This will drastically reduce the allowed parameter space

of possible initial conditions for the scalar couplings at ΛPl to the two dimensional

6The presumable introduction of three heavy right-handed neutrinos might modify the running
of λ and change this picture [22,23].
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Chapter 1 Introduction

subspace of doublet self-couplings. The remaining couplings, namely the bidoublet

self-couplings as well as the intermediate doublet-bidoublet couplings are then purely

generated by quantum corrections being not present at the Planck scale.

The outline of this thesis is as follows. In chapter 2, the GW-method in the

minimal LR symmetric model will be reviewed. Subsequently, in chapter 3 the shift

symmetry is introduced and it is analyzed, if within the reduced parameter space

the desired symmetry breaking pattern, given by the big and little hierachies, can be

obtained. In chapters 4 and 5, the minimal model is extended by additional fermionic

representations. As these couple to the scalar sector by Yukawa type interactions,

the running of the scalar couplings is modified and thus the process of symmetry

breaking affected. In particular, it is studied if the presence of these representations

leads to a stabilization of the little hierarchy. For this purpose, the contributions

to the beta-functions of the model are calculated. All numerical calculations are

performed with the computational software program Mathematica.
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Chapter 2

Radiative Breaking of the Minimal Scale

Invariant LR Symmetric Model

2.1 The Minimal Scale Invariant Left-Right

Symmetric Model

2.1.1 Fermionic Representations

The Left-Right (LR) Symmetric Model [11–13], including parity, is based on the

gauge group

SU(3)C × SU(2)L × SU(2)R ×U(1)B−L × P, (2.1)

which extends the Standard Model of particle physics (SM) by the additional sub-

group SU(2)R. 1 It represents the minimal extension of the SM that allows for parity

being a symmetry of nature. While the SM is a chiral gauge theory, organizing left-

and right-handed fermions as

Qi
L =

⎛
⎝
uiL
dL

⎞
⎠
, LL =

⎛
⎝
νiL
eL,

⎞
⎠
, uR, dR, eiR (2.2)

the LR symmetric model treats left- and right-handed (fermion) representations in a

completely symmetric way. The left-handed fields are associated to the fundamental

representation of the SU(2)L

Qi
L =

⎛
⎝
uiL
diL

⎞
⎠
∶ [(1

2
,0)](3,2,1, 1

3
), LiL

⎛
⎝
νiL
eiL

⎞
⎠
∶ [(1

2
,0)](1,2,1,−1) (2.3)

1The corresponding gauge couplings are as usual denoted by g3, g2 and g1.
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Chapter 2 Radiative Breaking of the Minimal Scale Invariant LR Symmetric Model

while the right-handed fermions are represented by SU(2)R doublets

Qi
R =

⎛
⎝
uiR
diR

⎞
⎠
∶ [(0, 1

2
)](3,1,2, 1

3
), LiR

⎛
⎝
νiR
eiR

⎞
⎠
∶ [(0, 1

2
)](1,1,2,−1) (2.4)

Here, the representations are denoted in the usual way according to the complete

symmetry group, including the Lorentz group,

[Spin(1,3)] × (SU(3)C × SU(2)L × SU(2)R ×U(1)B−L) . (2.5)

This requires the (natural) introduction of right-handed neutrinos to theory, which

are not present in the standard picture of the SM.

In Ref. [6], the isomorphism SU(2) × SU(2) ≃ Spin(4) was used to express the

SU(2)L × SU(2)R representations in a more compact way. For computational sim-

plicity and for consistency, this notation will be adopted here. While the main

features are presented here briefly, for a more detailed treatment the reader is re-

ferred to references [6] and [25]. Noticing that the Spin(4) is the double covering

group of the SO(4) one can use the familiar SO(4) spinor representations in order

to merge the above doublets into four-component multiplets, Q and L, which are

given by

Qi =
⎛
⎝
Qi
L

−iQi
R

⎞
⎠
∶ [(1

2
,0)(2,1) ⊕ (0, 1

2
)(1,2)](3, 1

3
), (2.6)

Li =
⎛
⎝
LiL
−iLiR

⎞
⎠
∶ [(1

2
,0)(2,1) ⊕ (0, 1

2
)(1,2)](1,−1). (2.7)

with the representations denoted by

Spin(1,3) × (SU(2)L × SU(2)R) × (SU(3)C ×U(1)B−L). (2.8)

To gain the transformation properties of these SO(4) representations, one intro-

duces, in complete analogy to the Lorentz group, a set of gamma matrices ΓAab which

satisfy the Clifford algebra

{ΓA,ΓB} = 2δAB. (2.9)
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2.1 The Minimal Scale Invariant Left-Right Symmetric Model

The generators ΣAB of the SO(4) are then given by the commutators

ΣAB = 1

4
[ΓA,ΓB] (2.10)

and one has

Qi → S(A)Qi and Li → S(A)Li (2.11)

with

S(A) ∶= exp(1

2
αABΣAB) , (2.12)

while the transformation properties with respect to the SU(3)C × U(1)B−L remain

as in the standard notation (for a good review see e.g. [14]). Note that, in order to

make the notation clear, the ΓA are indicated by latin capitals and their components

by small letters while the usual γµ are indicated by greek letters. In Ref. [6], for the

gamma matrices ΓA it is used the hermitian representation

ΓA =
⎛
⎝

0 σA

σ̄A 0

⎞
⎠
, (2.13)

where σA = (σ⃗, i1), σ̄A = (σ⃗,−i1) and the σ⃗ = (σ1, σ2, σ3) represent the Pauli matrices.

In this basis the chirality operator is given by

Γ = Γ1Γ2Γ3Γ4 =
⎛
⎝

1 0

0 −1

⎞
⎠

(2.14)

and one defines the projection operators

PL =
1 + Γ

2
=
⎛
⎝

1 0

0 0

⎞
⎠

and PL =
1 − Γ

2
=
⎛
⎝

0 0

0 1

⎞
⎠
, (2.15)

which project the spinors (2.11) to the left- and right-handed doublets, (2.3) and

(2.4), respectively. Furthermore, using the SO(4) notation, the parity transforma-

tion which interchanges right- and left-handed fields,

Qi
L↔ Qi

R, LiL↔ LiR, (2.16)

17



Chapter 2 Radiative Breaking of the Minimal Scale Invariant LR Symmetric Model

is given by

P ∶ Q→ Γ4Q, L→ Γ4L. (2.17)

The section is concluded giving the covariant derivatives for the spinor representa-

tions.

For the quarks one has

D
Q
µ = ∂µ + i

1

2
g1Bµ(B −L) + 1

2

g2√
2
WAB
µ ΣAB + i

g3

2
Gm
µ λ

m, (2.18)

and for the leptons

D
L
µ = ∂µ + i

1

2
g1Bµ(B −L) + 1

2

g2√
2
WAB
µ ΣAB, (2.19)

where in (??) the λm represent the Gell-Mann matrices and the Bµ, WAB
µ and Gm

µ

are the gauge bosons of the left-right symmetric model. The generator of the U(1),

B −L =
⎧⎪⎪⎨⎪⎪⎩

1
3 for quarks

−1 for leptons
, (2.20)

is the difference of baryon and lepton numbers and thus, in contrast to the SM,

given by physical quantities.

2.1.2 Scalar Sector and Potential

The scalar sector of the minimal model contains the right- and left-handed doublets

χL =
⎛
⎝
χ0
L

χ−L

⎞
⎠
∶ [(0,0)](1,2,1,−1), χR =

⎛
⎝
χ0
R

χ−R

⎞
⎠
∶ [(0,0)](1,1,2,−1), (2.21)

as well as a bidoublet representation

Φ = 1√
2

⎛
⎝
φ0

1 φ+1
φ−1 φ0

2

⎞
⎠
∶ [(0,0)](1,2,2,0). (2.22)

With this scalar content, as in the SM, the double purpose of giving masses to both

gauge bosons and fermions by means of spontaneous symmetry breaking is served.
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2.1 The Minimal Scale Invariant Left-Right Symmetric Model

For the latter, the fermions are coupled to the bidoublet via the Yukawa couplings

LYuk = − Y +ij
Q Q̄LiΦQRj − Y −ij

Q Q̄LiΦ̃QRj

− Y +ij
L L̄LiΦLRj − Y −ij

L L̄LiΦ̃LRj +H.c., (2.23)

where Φ̃ = σ2Φ∗σ2. Note that there is no such coupling between scalar doublets

fermions.

As in the preceding section, one can use the SO(4) notation for the scalar rep-

resentations. Just as the fermions, the scalar doublets are then given by spinor

representations, combining the right- and left-handed doublets to

Ψ =
⎛
⎝
χL

χR

⎞
⎠
∶ (0,0)[(2,1) ⊕ (1,2)](1,−1). (2.24)

The bidoublet instead, having four complex degrees of freedom, can be represented

by a complex SO(4) vector φA, which can be contracted with the gamma matrices

to give

Φ =
⎛
⎝

0 Φ

−Φ̃† 0

⎞
⎠
∶ (0,0)(2,2)(1,0). (2.25)

In terms of (2.24) and (2.25) the scalar potential is given by

V =κ1

2
(Ψ̄Ψ)2 + κ2

2
(Ψ̄ΓΨ) + λ1(TrΦ†Φ)2 + λ2(TrΦΦ +TrΦ†Φ†)2 (2.26)

+ λ3(TrΦΦ −TrΦ†Φ†)2 + λ4(TrΦΦ†)(TrΦΦ +TrΦ†Φ†)
+ β1Ψ̄ΨTrΦ†Φ + β2(TrΦΦ +TrΦ†Φ†)Ψ̄Ψ

+ iβ3(TrΦΦ −TrΦ†Φ†)Ψ̄ΓΨ + f1Ψ[Φ†,Φ]Ψ

and the Yukawa couplings (2.23) read

LY uk = iY +
Q Q̄

1 + Γ

2
ΦQ + iY −

Q Q̄
1 − Γ

2
ΦQ +H.c.. (2.27)

In chapters 4 and 5, it will be convenient to decompose the bidoublet further into

its hermitian and anti-hermitian parts

Φ = 1√
2
(Φ1 + iΦ2) =

1√
2

ΓA(φA1 + φA2 ), (2.28)
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Chapter 2 Radiative Breaking of the Minimal Scale Invariant LR Symmetric Model

with Φ1 and Φ2 hermitian2. In order to make the scalar potential (2.26) more

accessible to the analytical minimization method by Gildener and Weinberg, in

Ref. [6] a discrete Z4 symmetry is additionally introduced. Under this symmetry

the field representations transform as

LR → iLR, QR → −iQR, Φ→ iΦ, Ψ→ −iΨ. (2.31)

The potential interactions then reduces to

V =κ1

2
(Ψ̄Ψ)2 + κ2

2
(Ψ̄ΓΨ) + λ1(TrΦ†Φ)2 + λ2(TrΦΦ +TrΦ†Φ†)2 (2.32)

+ λ3(TrΦΦ −TrΦ†Φ†)2 + +β1Ψ̄ΨTrΦ†Φ + +f1Ψ[Φ†,Φ]Ψ

and the Yukawa couplings are exclusively given by

Y +
Q and Y −

L . (2.33)

In order to explain the fermion masses, small Z4-breaking Yukawa terms Y −
Q and Y +

L

have to be reintroduced. The authors of Ref. [6], however argue that these terms are

maximally of the order mb
mt

∼ O (1%) and therefore do not generate large Z4-breaking

scalar couplings.

2For future use, the intermiediate doublet-bidoublet couplings and Yukawa couplings are given
in terms of (2.28):

2β1Ψ†
aΨaΦAi ΦAi − i4f1εij(ΓΣCD)baΨ†

bΨaΦCi ΦDj

+4β2Ψ†
aΨa(Φ

C
1 ΦC1 −ΦC2 ΦC2 ) − 8β3Ψ†

bΓbaΨa(Φ
C
1 ΦC2 +ΦC2 ΦC1 ) ⊂ V (2.29)

and

LYuk = −
1

2
(Ȳ +Q + Ȳ

−
Q) Q̄Φ2Q +

i

2
(Ȳ +Q − Ȳ

−
Q) Q̄ΓΦ1Q, (2.30)

where in the last line it is used the definition Ȳ +Q = 1√
2
(Y +Q + Y

+†
Q ), Ȳ −Q = 1√

2
(Y −Q + Y

−†
Q ).
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2.2 Radiative Symmetry Breaking

2.2 Radiative Symmetry Breaking

2.2.1 The Gildener-Weinberg Method

The additional SU(2)R introduces new weak gauge interactions which are, if parity

is assumed, described by the same coupling constant g2 that already represents

the strength of the SU(2)L gauge interactions. As, however, right-handed vector

currents are not probed by experiment [17–20], the corresponding mediators of the

right-handed weak interaction, denoted byW ±
R and ZR, have to be accordingly heavy.

Just as in the standard model, this is achieved by the Higgs mechanism. For this

purpose, in the minimal model, the gauge group (2.1) is spontaneously broken in

two steps

SU(3)C × SU(2)L × SU(2)R ×U(1)B−L × P

⇓

SU(3)C × SU(2)L ×U(1)Y (2.34)

⇓

SU(3)C ×U(1)Q,

corresponding to two distint breaking scales. In the first step, together with the

gauge subgroup SU(2)R also parity is broken. The corresponding scale should,

however, not be much greater than a few TeV as otherwise, except for providing

a framework for neutrino masses, the model would not have many testable conse-

quences. The second breaking step corresponds to the familiar breaking of the SM

gauge group at the electroweak scale,

In Ref. [6], it was shown that in the classically conformally invariant model this

pattern can be realized by radiatively induced symmetry breaking. For this purpose,

the approximate minimization method by Gildener and Weinberg (GW) [15] was

used.

The GW method generalizes the Coleman-Weinberg mechanism [16] of radiative

symmetry breaking to cases which include potentials of arbitrarily many scalar fields.

Using the renormalization group running of the scalar couplings it reduces the mini-

mization of the effective potential to a one-dimensional problem which can be solved

analytically. In this section, the ideas of GW will be reviewed briefly.

Under the assumption of conformal invariance, a tree-level scalar potential V0 can
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Chapter 2 Radiative Breaking of the Minimal Scale Invariant LR Symmetric Model

generally be written as

V0 = fijklφiφjφkφl, (2.35)

which contains exclusively φ4-terms and the coefficients fijkl represent the scalar

couplings. Let the field space be spanned by

φi = Niφ (2.36)

where the Ni are on a unit sphere, meaning ∑iNi = 1, and φ is the radial field

component. Then (2.35) becomes

V0 = fijklNiNjNkNlφ
4. (2.37)

Gildener and Weinberg stated that using an appropriate renormalization point µGW

one can force the couplings fijkl to satisfy

min (fijkl(µGW )NiNjNkNlφ
4) ∣

Ni=ni
= 0 (2.38)

for φ ≠ 0. Hence, at µGW the minimum of the tree-level potential is degenerate along

the field direction

Φi = niφ with ∑
i

ni = 1, (2.39)

which is called a flat direction. The one-loop radiative corrections to the potential

are then considered exclusively in this direction: As the minimum of the tree-level

potential (2.38) is vanishing, radiative corrections are dominant in this field direc-

tion and are therefore neglected in all other directions. In this approximation, the

minimization problem of the effective potential is thus reduced to the case of a single

degree of freedom, given by the radial field component φ.

For this purpose, however, the tree-level potential (2.37) has to be minimized

under the additional constraint that the minimum is vanishing. This leads to the,

so called, Gildener-Weinberg conditions

∂

∂Ni

V ∣Ni=ni = 0, V ∣Ni=ni = 0 and ∑
i

n2
i = 1 (2.40)

which have to be satisfied at the renormalization point µGW. The solutions to these

conditions are generally expressed by a set of flat directions {n} which individually

22



2.2 Radiative Symmetry Breaking

emerge once a corresponding condition

fn(fijkl(µGW)) = 0 (2.41)

is fulfilled at a scale µGW, with fn a function of the scalar couplings. In practice, one

sets boundary conditions to the scalar couplings at the highest scale for which the

theory is supposed to be valid (here this scale is taken to be Planck scale) and then

one lets these couplings evolve to lower scales. If then for a direction n the condition

(2.41) is fulfilled the direction n becomes flat and symmetry breaking occurs3.

As the tree-level potential is zero along the flat direction φ = nφ, the one-loop

effective potential Veff, in this direction (see Ref. [16]), is given by

Veff(nφ) = δV (nφ) = Aφ4 +Bφ4 ln( φ2

µ2
GW

) (2.42)

where A and B are the constants (see Ref. [15])

A = 1

64π2 ⟨φ⟩4∑
i

fiM
4
i (n ⟨φ⟩) (ln(M

2
i (⟨φ⟩)
⟨φ⟩2 − ci)) (2.43a)

B = 1

64π2 ⟨φ⟩4∑
i

fiM
4
i (n ⟨φ⟩) (2.43b)

with the fi being the (real-valued) degrees of freedom, Mi the particle masses and

the ci = 3
2 for scalars and fermions and ci = 5

6 for gauge bosons respectively. The

vacuum expectation value (V EV ) ⟨φ⟩ of the radial field component is then obtained

by the stationary condition
∂Veff(φ)
∂φ

∣
⟨φ⟩

= 0, (2.44)

which, using the general formula (2.42), leads to

ln
⟨φ⟩2

µ2
GW

= −1

2
− A
B
. (2.45)

Note that the right-hand side of (2.45) is typically of order O (1) such that ⟨φ⟩ and

µGW usually do not differ by more than one order magnitude.

In the phenomenologically interesting minimum, which leaves the U(1)Q unbro-

3In section (2.2.3) it will accounted for the fact, that a given flat direction does not correspond
to a minimum.
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Chapter 2 Radiative Breaking of the Minimal Scale Invariant LR Symmetric Model

ken4, the vacuum expectiation values (V EV ) of the scalar fields in the minimal

left-right symmetric model are given by

⟨Ψ⟩ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

vLeiθ

0

vR

0

⎞
⎟⎟⎟⎟⎟⎟
⎠

= 1√
2

⎛
⎜⎜⎜⎜⎜⎜
⎝

n1eiθ

0

n2

0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⟨φ⟩ (2.47)

and

⟨Φ⟩ = 1√
2

⎛
⎝
n3 0

0 n4eiα

⎞
⎠
= 1

2

⎛
⎝
κ 0

0 κ′eiα

⎞
⎠
⟨φ⟩ , (2.48)

where the remaining phases have been set to zero making use of the gauge freedom

(see e.g. Ref. [14]). In the next section, the solutions to the GW conditions in the

minimal left-right symmetric model [6] are reviewed.

2.2.2 Flat Directions

The flat directions of the minimal conformally invariant left-right symmetric model,

including a Z4 symmetry, have been calculated in Ref. [6] and are reproduced in

table 2.1. The various flat directions have been characterized according to the GW

condition which is obtained by deriving the potential with respect to the bidoublet

phase α (cf. (2.47)):

0 = ∂V

∂α
∣
Ni=ni

= −8n2
3n

2
4 sinα cosα (2.49)

This condition is satisfied if either n3 = 0, n4 = 0 or α = 0, π
2 . The solutions given

by n3 ≠ 0 and n4 ≠ 0 are called solutions of type I. These type I solutions split

further into the two subclasses corresponding to α = 0 (Ia, Ic) and α = π
2 (Ib, Id)

respectively. Note that for the latter solutions κ is imaginary. Hence, the solutions

Ib and Ic are CP-breaking.

The solutions given by either n3 = 0 or n4 = 0 are of types IIa/e ,and IIb/d

respectively, while the case that both n3 and n4 are vanishing is denoted by IIc.

4Using the SO(4) notation, the electric charge Q is related to the generators of the unbroken
theory by the formula [25]

Q = −iΣ12
+

1

2
(B −L) (2.46)
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GW condition
n2
1

n2
2

n2
1 + n2

2
n2
3

n2
4

n2
3 + n2

4 α
n2
3+n

2
4

n2
1+n

2
2

Ia�P κ+
κ1

} = β2
1

2(λ1+4λ2)
− f21

32λ2

0 2(λ1+4λ2)
2λ1+8λ2−β1

4(2β1+f1)λ2+f1λ1
4(2β1−f1)λ2−f1λ1

−β1
2λ1+8λ2−β1

0 −β1
2λ1+8λ2IaP 1

Ib�P κ+
κ1

} = β2
1

2(λ1−4λ3)
+ f21

32λ3

0 2(λ1−4λ3)
2λ1−8λ3−β1

4(2β1+f1)λ3−f1λ1
4(2β1−f1)λ3+f1λ1

−β1
2λ1−8λ3−β1

π
2

−β1
2λ1−8λ3IbP 1

Ic λ1 = −4λ2
0
0 0 1 1 0 ∞

Id λ1 = 4λ3
0
0 0 1 1 π

2 ∞
IIa�P κ+

κ1
} = (2β1−f1)

2

8λ1

0 4λ1
−2β1+f1+4λ1

∞ 2β1−f1
2β1−f1−4λ1

− f1−2β1
4λ1IIaP 1

IIb�P κ+
κ1

} = (2β1+f1)
2

8λ1

0 4λ1
−2β1−f1+4λ1

0 2β1+f1
2β1+f1−4λ1

− −f1−2β1
4λ1IIbP 1

IIc�P κ+
κ1

} = 0
0

1 0
0 0 − 0

IIcP 1
IId λ1 = 0 0

0 0 0 1 − ∞
IIe λ1 = 0 0

0 0 ∞ 1 − ∞

Table 2.1: The flat directions of the minimal left-right symmetric doublet model,
taken from Ref. [6]. The different solutions to the Gildener-Weinberg
conditions are completely classified according to the two conditions (2.49)
and (2.50), the resulting types are indicated in the first column. The
second column gives the condition to the couplings which fixes the GW
scale µGW and was previously written as a function fn = 0 with fn being
a function of the running couplings. The remaining columns give the flat
directions n.

The characterization due to (2.49) thus classifies the different flat directions with

respect to their bidoublet V EV s, κ and κ′. In order to introduce a distinction due

to the doublet V EV s the following equation, which holds for non-vanishing n1 and

n2, is used:

0 = 1

n1

∂V

∂N1

∣
Ni=ni

− 1

n2

∂V

∂N2

∣
Ni=ni

= κ2(n2
1 − n2

2) (2.50)

Assuming κ2 ≠ 0, this equation is satisfied if n1 = n2. Thus, the different flat

directions are either parity conserving for n1 = n2 or maximally parity breaking for

one of the doublet VEVs being zero. The parity conserving solutions are denoted

by the letter p while /p denotes the parity breaking solutions. Those solutions for

which n1 = n2 = 0 are given by types Ic, Id, IId and IIe.

The interesting solutions are of type Ia/p, Ib/p, IIa/p and IIb/p, as phenomenology

requires that on the one hand parity is broken and on the other hand the bidoublet
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Chapter 2 Radiative Breaking of the Minimal Scale Invariant LR Symmetric Model

acquires at least one non-vanishing V EV in order to satisfy the breaking pattern

(2.34). It has, however, been noted in Ref. [6] that the solutions of types a and b

are connected by the transformations (α,λ2, λ3) → (π2 − α,−λ3,−λ2) in the case of

type I and by (n2
3, n

2
4, f1) → (n2

4, n
2
3,−f1) in the case of type II.

2.2.3 Second Derivatives: Scalar Mass Spectra

The Gildener-Weinberg conditions just reflect the fact that in a given flat direc-

tion the potential is stationary. They do not account for the possibility that such

a stationary point may not be a minimum. In order to know if a flat direction

corresponds to a minimum, it is therefore mandatory to check whether the second

derivatives of the potential, evaluated at the stationary point, are greater than zero.

This is equivalent to the mass matrix being positiv-definite, as it is

m2
ij =

∂2V

∂φi∂φj
∣
Ni=ni

, (2.51)

where φi ∈ {
√

2Re(Ψa),
√

2Im(Ψa),ΦA
j }. Especially, if for given boundary condi-

tions, more than one flat direction emerges, examining the mass matrix can provide

a selection rule to decide in which flat direction the symmetry is broken. For this

purpose, as required in the subsequent chapters, here the mass eigenvalues corre-

sponding to the parity breaking flat directions Ib, IIa and IIc are collected. Note

that at tree-level the particle which corresponds to the field exitation along the flat

direction, the so-called scalon s, is massless. It acquires however a mass term at one

loop order. which is given by

m2
s =

d2

dφ2
V (nφ)∣⟨φ⟩ = 8B ⟨φ⟩2

. (2.52)

Scalar Masses for Scenario IIa

In the case of flat direction IIa these have already been calculated by [6]. There is

one state orthogonal to the massless scalon s:

⎛
⎝
s

h

⎞
⎠
=
⎛
⎝
n2 n3

−n3 n2

⎞
⎠
⋅
⎛
⎝
χ0
Rr

φ0
1r

⎞
⎠
=
⎛
⎝

cosϑ sinϑ

− sinϑ cosϑ

⎞
⎠
⋅
⎛
⎝
χ0
Rr

φ0
1r

⎞
⎠
= O(ϑ)

⎛
⎝
χ0
Rr

φ0
1r

⎞
⎠
. (2.53)

This state has been called h. It can be identified with the SM Higgs as it is the

physical component of the field that transforms as the SM Higgs field and provides

26



2.2 Radiative Symmetry Breaking

fermion and left-handed gauge boson masses acquiring a vacuum expectation value.

The mixing angle ϑ is given by

tan2 ϑ = κ
2

v2
R

= f1 − 2β1

4λ1

. (2.54)

Thus, given a little hierarchy that is not too large, the mixing is small and and h

can indeed be identified with the SM Higgs boson. Its mass is given by

m2
h =

1

2
(f1 − 2β1) ⟨φ⟩2

, (2.55)

which, again under the assumption of ϑ being small, can be approximated to

m2
h ≈ 4λ1 v

2
R tan2 ϑ = 4λ1 κ

2. (2.56)

The remaining masses are

m2
σ1 =m2

σ2 =
f1

2
⟨φ⟩2

(2.57a)

m2
χ0
Lr

=m2
χ0
Li

= − 4κ2λ1

f1 − 2β1 + 4λ1

⟨φ⟩2
(2.57b)

m2
χ−Lr

=m2
χ−Li

= −f 2
1 + 2f1β1 + 8κ2λ1

−2f1 + 4β1 − 8λ1

⟨φ⟩2 =m2
χ0
Lr

+ f1κ
2 (2.57c)

m2
φ02r

= 2 (−8β1λ2 + f1 (λ1 + 4λ2))
f1 − 2β1 + 4λ1

⟨φ⟩2
(2.57d)

m2
φ02i

= 2 (f1 (λ1 − 4λ3) + 8β1λ3)
f1 − 2β1 + 4λ1

⟨φ⟩2
(2.57e)

Additionally, there are six massless would-be-Nambu-Goldstone bosons (NGBs) π1,

π2, φ−2r, φ
−
2i, φ

0
1i and χ0

Ri corresponding to the six degrees of gauge freedom. The

particle states π1,2 and σ1,2 are given by the superpositions

⎛
⎝
π1

σ1

⎞
⎠
= O(−ϑ)

⎛
⎝
χ−Ri
φ+1i

⎞
⎠

and
⎛
⎝
π2

σ2

⎞
⎠
= O(ϑ)

⎛
⎝
χ−Rr
φ+1r

⎞
⎠
. (2.58)

Given the scalar masses the one-loop scalon mass then yields

m1-loop
s = (3g4

1 + 6g2
2g

2
2 + 9g4

2 + 64(κ2
2 + β2

1)
64π2

+O(κ
2

v2
R

)) v2
R. (2.59)
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Scalar Masses for Scenario IIb

As was already mentioned above the solution IIb is connected to the solutions of

type IIa by the transformation (f1, n3, n4) → (−f1, n4, n3). Thus, the mass spectrum

for the flat directions of type IIb can easily be obtained from the type IIa masses.

Scalar Masses for Scenario IIc

In the case of type IIc symmetry breaking the flat direction is along the neutral

component of the right-handed doublet. Using the gauge freedom it can be chosen

to be along its real part. Thus, the scalon is given by

s = χ0
Rr. (2.60)

The tree-level mass spectrum reads

m2
{φ01r,φ

0
1i,φ

−
2r,φ

−
2i}

= 2β1 − f1

4
⟨φ⟩2 = 2β1 − f1

2
v2
R (2.61a)

m2
{φ02r,φ

0
2i,φ

+
1r,φ

+
1i}

= 2β1 + f1

4
⟨φ⟩2 = 2β1 + f1

2
v2
R (2.61b)

m2
{χ0
Lr,χ

0
Li,χ

−
Lr,χ

−
Li

}
= −κ2 ⟨φ⟩2 = −2κ2v

2
R (2.61c)

(2.61d)

Given these, the one-loop scalon mass yields

m1-loop
s = (3g4

1 + 6g2
2g

2
2 + 9g4

2 + 48(8κ2
2 + 4β2

1 + f 2
1 )

64π2
+O(κ

2 + κ′2
v2
R

)) v2
R (2.62)

As the Standard Model gauge group is left unbroken in the case IIc, only three

would-be-NGBs χ−Rr, χ
−
Ri and χ0

Ri emerge, which are eaten by the right-handed

gauge bosons.

Scalar Masses for Scenario Ia

As already mentioned type Ia flat directions are connected to type Ib directions by

the transformation (α,λ2, λ3) ↔ (α,−λ2,−λ3). Since in the following chapters only

type IIa and Ib flat directions will occur, here the type Ib mass spectrum will be

given rather than that of type Ia.
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Scalar Masses for Scenario Ib

For flat directions of type Ib the scalon is given by

s = n2χ
0
Rr + n3φ

0
1r + n4φ

0
2i, (2.63)

as both κ and κ′ are non-vanishing and α is given by α = π/2. The masses of its

orthogonal complements, which will be called σ1 and σ2 are given by

m2
σ1 +m2

σ2 =Tr[M2] = −f 2
1λ1 − 16β2

1λ3 + 4f 2
1λ3 + 32β1λ1λ3

32λ3(β1 − 2λ1 + 8λ3)
(2.64)

= f
2
1n

2
2

32λ3

− (β1 − 2λ1)(n2
3 + n2

4) (2.65)

m2
σ1 −m2

σ2 =
2

32λ3(β1 − 2λ1 + 8λ3)
[(f 2

1 (λ1 − 4λ3) + 16β1(β1 − 2λ1)λ3)
2

(2.66)

+128λ3(β1 − 2λ1 + 8λ3) (−f 2
1 (λ1 − 4λ3)2 + 64β2

1λ
2
3)]

1
2 . (2.67)

which may be approximated to

m2
σ1 −m2

σ2 =
n2

2

16

⎛
⎝
( f

2
1

2λ3

)
2

+ 32(−β1 + 2λ1 + 8λ3)
f 2

1

λ3

⎞
⎠

1
2

(1 +O(v
2
L

v2
R

)) (2.68)

As the expressions of the mass eigenstates σ1 and σ2 in terms of superposed fields

χ0
Rr, φ

0
1r and φ0

2i are not easily accessed analytically, only the undiagonalized mass

matrix will be given here:

−L ⊃ 1

2
(χ0

Rr, φ
0
1i, φ

0
2r)M2

⎛
⎜⎜⎜
⎝

χ0
Rr

φ0
1i

φ0
2r

⎞
⎟⎟⎟
⎠

(2.69)

with

M2 =
⎛
⎜⎜⎜
⎝

f21n
2
2

32λ3
− β1(n2

3 + n2
4)

2β1−f1)n2n3

2
(2β1+f1)n2n4

2
(2β1−f1)n2n3

2 2λ1n2
3 2(λ1 − 8λ3)n3n4

2(β1+f1)n2n4

2 2(λ1 − 8λ3)n3n4 2λ1n2
4

⎞
⎟⎟⎟
⎠
⟨φ⟩2

. (2.70)
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The remaining scalar masses are

mh =
8β1(λ2 + λ3)
β1 − 2λ1 + 8λ3

⟨φ⟩2 = 16(λ2 + λ3)(κ2 + κ′2) (2.71a)

m2
σ3 =m2

σ4 =
−f 2

1 (λ1 − 4λ3) + 128β1λ2
3

16λ3(β1 − 2λ1 + 8λ3)
⟨φ⟩2 = f 2

1

16λ3

v2
R + 16λ3(κ2 + κ′2) (2.71b)

m2
χ0
Lr
=m2

χ0
Li
= 2κ2(λ1 − 4λ3)
β1 − 2λ1 + 8λ3

⟨φ⟩2 = −2κ2v
2
R (2.71c)

m2
χ−Lr

=m2
χ−Li

= (λ1 − 4λ3)(−f 2
1 + 32κ2λ3)

16λ3(β1 − 2λ1 + 8λ3)
⟨φ⟩2 = −f 2

1 + 32κ2λ3

16λ3

v2
R (2.71d)

In addition, there are six would-be-NGBs π1, π2, π3, π4, π5 and χ0
Ri. The superposed

fields are given by:

⎛
⎝
π1

h

⎞
⎠
= 1√

n2
3 + n2

4

⎛
⎝
n3 n4

−n4 n3

⎞
⎠
⎛
⎝
φ0

1i

φ0
2r

⎞
⎠
, (2.72a)

⎛
⎜⎜⎜
⎝

π2

π3

σ3

⎞
⎟⎟⎟
⎠
= N

⎛
⎜⎜⎜
⎝

16λ3n4 0 f1n2

−16λ3f1n2n3 (16λ3)2n3n4

−f1n2 16λ3n3 16λ3n4

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

χ−Rr
φ+1r
φ−2i

⎞
⎟⎟⎟
⎠
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and
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⎜⎜⎜
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⎠
= N
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⎜⎜⎜
⎝

−16λ3n4 0 f1n2

−16λ3f1n2n3 f 2
1n

2
2 + (16λ3)2n2

4 −(16λ3)2n3n4

f1n2 16λ3n3 16λ3n4

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

χ−Ri
φ+1i
φ−2r

⎞
⎟⎟⎟
⎠

7nonumber

(2.72c)

with the normalizing matrix N = diag(N1,N2,N3), where

N1 =
1√

256λ2
3n

2
4 + f 2

1n
2
2

(2.72d)

N2
1√

256λ2
3f

2
1n

2
2n

2
3 + (f 2

1n2 + 256λ2
3n

2
4)2 + (16λ3)4n2

3n
2
4

(2.72e)

N3 =
1√

f 2
1n

2
2 + 256λ2

3(n2
3 + n2

4)
. (2.72f)
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2.2 Radiative Symmetry Breaking

Finally, the one-loop scalon mass is given by

m1-loop
s = [3g4

1 + 6g2
2g

2
2 + 9g4

2 + 2f 2
1 (−κ2 + λ1 − 4λ3)

64π2
+O(κ

2 + κ′2
v2
R

)] v2
R− (2.73)

One can see that in the particle spectrum there is one light state h with a mass

proportional to the bidoublet VEV whereas all the other masses are mainly given by

the right-handed VEV. Having the same transformation properties under Standard

Model gauge group, h can be interpreted as the Standard Model Higgs boson. Thus,

just as in the case IIa, a small little hierarchy corresponds to one light Standard

Model-like Higgs boson in the mass spectrum while the remaining physical scalar

particles have masses of order vR.

2.2.4 Little Hierarchy

In Ref. [6] it has been shown that in the classically conformal invariant LR symmetric

model the GW method can be applied and that in a large fraction of parameter space

solutions to parity breaking GW conditions can be found, thereby generating a large

hierarchy between the Planck scale and the parity breaking scale, which is given by

the VEV right-handed doublet, vR. It has remained, however, unsatisfactory that,

in order to generate the hierarchy between the vR scale and the electroweak scale,

which is referred to as the small hierarchy, the parameters apparently have to be

fine-tuned. The little hierarchy is expressed here in terms of the ratio of the squared

bidoublet VEVs, κ and κ′ to vR. For the various flat directions, this ratio is given

in the last column of table 2.1 in terms of the scalar couplings. In Ref. [6], the

discussion was concentrated on type IIa flat directions as type Ia solutions were

considered to be disfavored since consistency requires the scalar couplings to be

fine-tuned to a high degree of precision. From a natural perspective it had been

assumed that all parameters are of the same order of magnitude. An admittedly

mild fine-tuning was however encountered also for flat directions of type IIa. For

this type of directions the little hierarchy is given by the expression5

κ2

v2
R

= f1 − 2β1

4λ1

. (2.74)

5Note that by expressing the little hierarchy in this way, a small value corresponds to a large

little hierarchy. Hence, the ratio of κ2

v2
R

= 0 corresponds to an infinitely large little hierarchy.
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Chapter 2 Radiative Breaking of the Minimal Scale Invariant LR Symmetric Model

As λ1 is fixed by the Higgs mass (e.g. (2.55)), f1 and β1, assumed to be of order

one, have to cancel each other to give a value of order O (10−4) in order to gain

vR = O (10 TeV) for the bidoublet VEV given by κ = O (174 GeV). According to the

classical fine-tuning measure ∆BC due to Giudice and Barbieri [26], which is defined

as

∆BC(O) = max
i

[∂ log(O)
∂ log pi

] , (2.75)

where O is an observable and the pi the model parameters, the fine-tuning of the

little hierarchy is ∆BC = O (104).
Note, however, that in this diploma-thesis the fine-tuning will not be adressed

in terms of such quantifying measures such as the fine-tuning definition of Giudice

and Barbieri. Rather, the reduction of free parameters is already considered as a

reduction in fine-tuning.

32



Chapter 3

A Shift Symmetry at the Planck Scale

3.1 Definition

In this diploma thesis it is assumed that at the Planck scale the scalar potential is

invariant under the transformation

Φ→ Φ + α (3.1)

which shifts the bidoublet field by a constant 2-dimensional square matrix α. In

the following, this symmetry will be referred to just as shift symmetry. Imposing

this symmetry effectively constrains all scalar couplings, except for the doublet self-

couplings κ1 and κ2, to vanish at the Planck scale, such that at that scale the Higgs

potential is given by
κ1

2
Ψ̄Ψ + κ2

2
Ψ̄ΓΨ,

while the remaining scalar interactions being not apparent at tree-level are purely

generated by quantum corrections. This situation, as already mentioned in the

introduction, is similar to a Standard Model which, with respect to LHC data,

exhibits a vanishing quartic coupling near the Planck scale under the assumption

that it is valid up to such high scales with no new physics1 in between.

In this chapter it will be investigated if, within the restricted 2-dimensional pa-

rameter space spanned by κ1 and κ2, parity breaking flat directions emerge and if a

phenomenologically acceptable little hierarchy can be obtained.

1The presumable introduction of three heavy right-handed neutrinos might modify the running
of λ and change this picture [22,23].
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Chapter 3 A Shift Symmetry at the Planck Scale

3.2 Stability of the Higgs Potential

In order to embed the theory successfully at the Planck scale the scalar potential

should be stable over the whole range, from the Planck scale down to the symmetry

breaking scale. Furthermore, the model should be perturbative, i.e. no Landau

poles should show up, as was already emphasized by the authors of [6].

For this purpose, in this section the stability conditions of the model are considered

with regard to the shift symmetry.

3.2.1 Stability Conditions and their Connection to Flat

Directions

The stability conditions, given in [6], read

κ1 > 0, (3.2a)

κ+ = κ1 + κ2 > 0, (3.2b)

λ1 > 0, (3.2c)

λ1 + 4λ2 > 0, (3.2d)

λ1 − 4λ3 > 0, (3.2e)

and

min[κ1, κ1 +
f 2

1

32λ2

, κ1 −
f 2

1

32λ3

] > 0, (3.2f)

min[κ+, κ+ +
f 2

1

32λ2

, κ+ −
f 2

1

32λ3

] > 0, (3.2g)

from which the last two do not entail new constraints, as shift symmetry implies

f1 ≡ 0.

Note that these conditions can be read off from the Gildener-Weinberg condi-

tions. This connection may need further explanation: In (2.41), a general Gildener-

Weinberg condition was expressed as a function fn of the scalar couplings, which

here are given by κ1, κ2, . . ., that equals zero

fn(κ1, κ2, . . .) = 0. (3.3)
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3.2 Stability of the Higgs Potential

This function fn corresponds to a certain direction n in the field space defined by

n = (n1, n2, . . . , nm) (3.4)

which lies on the unit sphere, meaning

n2
1 + n2

2 + . . . n2
m = 1, (3.5)

and m represents the number of real-valued scalar fields.

If for a certain renormalization point µGW the condition (2.41) is fulfilled, the

potential vanishes (and becomes stationary) in this direction n in field space, as

discussed in the preceding chapter. The direction n is then called flat. In general,

the function fn represents the value of the potential along the field direction n. For

the normal case, or rather the desired case, the functions fn will have positive values

at the Planck scale and run according to the renormalization group functions, until

for some energy scale µGW one of them vanishes, thereby satisfying the associated

Gildener-Weinberg condition and a flat direction emerges. Then, if this flat direction

corresponds to a minimum and not just to a stationary point, spontaneous symmetry

breaking takes place. The fact that fn becomes seemingly negative for energies

below µGW then is meaningless since symmetry is already broken. Apart from that,

for energies below the symmetry breaking scale the couplings run according to the

beta-functions of the broken theory.

It has, however, to be ensured, that there is no function fn being negative for

energies above the breaking scale. Otherwise, if e.g. for a direction n0 the function

fn0 is negative for some energy scale µ, the potential is not bounded from below

anymore. In principle the potential then can be lowered to arbitrary small values by

a large radial field component φ and therefore becomes unstable in this direction.

Before now discussing the stability conditions (3.2), it has to be pointed out that

in Ref. [6] only those flat directions have been considered which do not break the

U(1) of electro-magnetism as these are the phenomenologically interesting ones.

Concerning the stability of the potential, however, one also has to account for the

possibility that the potential becomes unstable in those directions in field space that

involve charged field components. For simplicity, in this diploma thesis, this possi-

bility of instabilities originating from flat directions which break electromagnetism

is omitted. Generally, it is a highly non-trivial task to determine all stability con-

ditions given a complicated potential such as (2.26). For a recent attempt see e.g.

35



Chapter 3 A Shift Symmetry at the Planck Scale

Ref. [27] and references therein. In the following, the stability conditions associated

to the bidoublet field direction will be discussed in some detail.

3.2.2 Stability in the Bidoublet Field Direction

Running of the Stability Conditions

The beta-functions of the bidoublet self-couplings λ1, λ2 and λ3 (see appendix A.19),

reveal that their running does not depend on the doublet self-couplings κ1 and κ2 at

one-loop level. Hence, their running is essentially fixed by imposing the shift sym-

metry. Being zero at the Planck scale, as shift symmetry implies, they are essentially

generated by gauge and fermion loops2. Thus, the sign of the gauge contribution and

the sign of the Yukawa contribution in (A.19) dictate if the bidoublet self-couplings

become negative or positive valued at lower energies. Demanding shift symmetry,

at the Planck scale ΛPl the beta-functions of the bidoublet self-couplings are given

by

βλ1(ΛPl) =
1

128π2
[9g4

2(ΛPl) − 4T4(ΛPl)] , (3.6a)

βλ2(ΛPl) =
1

512π2
[3g4

2(ΛPl) + 2T4(ΛPl)] , (3.6b)

βλ3(ΛPl) =
1

256π2
[−3g4

2(ΛPl) − T4(ΛPl)] , (3.6c)

where the Yukawa contribution T4 is defined according to (A.20b).

By this argument, λ2 is expected to develop negative values starting at the Planck

scale while λ1 and λ3 are expected to become positive. In the case of λ1 this is due

to the fact that the top-Yukawa contribution in (3.6a) dominates the positive-sign

gauge contribution. In figure (3.1) the running of the bidoublet self-couplings is

plotted. There, the doublet self-couplings were set to κ1 = −κ2 = 0.2 at the Planck

scale. A survey of different initial conditions for κ1 and κ2 confirmed that, indeed,

these couplings do not affect the running of the bidoublet self-couplings significantly.

Using the same initial values of κ1 and κ2, figure 3.2 shows the running of the

stability conditions (3.2d) and (3.2e). As the plots in figure 3.2 shows, the functions

λ1 + 4λ2 and λ1 − 4λ3 are negative for energies above approximately µ = 1017 GeV

and µ = 1011 GeV respectively. Hence, for high energies the potential seems to be

2Note that the main contribution of the latter clearly comes from the top-quark loops due to the
strong tree-level top-Yukawa coupling to the bidoublets. For this reason, all numerical results
obtained in this diploma thesis are based on the one-flavor limit.
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Figure 3.1: The bidoublet self couplings are plotted. The purple, green and yellow
lines correspond to λ1, λ2 and λ3 respectively. The doublet self-couplings
have been chosen to κ1 = −κ2 = 0.2 at µ = 104 GeV, while all other
couplings are fixed by the shift symmetry to vanish at the Planck scale.
As the beta-functions of λ1, λ2 and λ3 their dependence on the choice of
the initial conditions of κ1 and κ2 is marginal.

unbounded from below. For energies below µ = 1011 GeV, however, the stability is

restored again. The situation found here is similar to the SM with a relatively light

Higgs mass of 125 GeV. There, assuming that the theory is valid up to high scales,

the light Higgs mass results in a potential which is unstable above energy scales

around 1011 GeV. Around that scale, the quartic coupling λ becomes negative as

its running is dominated by top-loop contributions driving it towards small values.

The Standard Model potential does however not fall off completely. It is rescued by

gauge contributions at higher energy scales.

Metastability and the Renormalization Group Improved Potential

The interpretation of such bumps of negative quartic couplings as in figure 3.2 be-

comes clear consulting the renormalization group (RG) improved effective potential.

It is obtained applying the RG equation to the effective potential. A good review

to this topic is found in Ref. [7]. The RG equation states that a physical quantity,

such as the effective potential, cannot depend on the choice of the arbitrary scale

parameter µ which is just introduced to define the parameters of the theory, i.e. its
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Chapter 3 A Shift Symmetry at the Planck Scale

couplings. Here, as a placeholder for the couplings of the theory it will be used λ.

The RG equation for the effective potential is then given by

0 = dVeff

dµ
= [µ ∂

∂µ
+ βλ

∂

∂λ
− γφ ∂

∂φ
]Veff, (3.7)

where βλ = µdλ
dµ is the beta-function with respect to λi and γ ∶= µ

φ
dφ
dµ is called the

anomalous dimension which reflects the scale dependence of the wavefunction nor-

malization Z of the field φ. Under the assumption that the contribution due to the

anomalous dimension is small and therefore negligible, the equation 3.7 is solved by

the ansatz

Veff = λ (log[φ/µ])φ4, (3.8)

where due to dimensional reasons the dimensionless coupling λ can depend only on

the ratio φ/µ. Furthermore, here, λ is given by λ1 + 4λ2 and λ1 − 4λ3 respectively as

the potential V is considered in those field directions in which these combinations

of bidoublet self-couplings represent the terms multiplying the radial field φ. These

field directions correspond to the flat directions of type Ic and Id respectively. For

the two cases one finds the approximate renormalization group improved effective

potentials

V λ1+4λ2
eff ≈ (λ1 [log(φ/µ)] + 4λ2 [log(φ/µ)])φ4 (3.9)

and

V λ1−4λ3
eff ≈ (λ1 [log(φ/µ)] − 4λ3 [log(φ/µ)])φ4 (3.10)

where the functional dependence of these couplings λ1[φ] and (λ1 + λ2)[φ] on the

field φ is just as the dependence of the corresponding couplings on µ. Thus, the

quantum corrections to the tree-level potential are expressed in terms of the running

coupling λ(µ) with a renormalization point chosen at µ = φ. In figure 3.3 the effec-

tive potentials V λ1+4λ2
eff and V λ1−4λ3

eff according to (3.9) are shown. From this, it can

be understood that the violation of the stability conditions (3.2d) and (3.2e) have to

be interpreted as the emergence of additional minima of the potential for field values

far away from the origin, always with regard to the corresponding field directions.

These minima actually have to be considered as the true minima since they clearly

exhibit smaller values of the potential in comparison to the minima near the origin.
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3.2 Stability of the Higgs Potential

This is due to the large field values they correspond to. Hence, the (false) minima

near the origin are just meta-stable. Such metastable vacua may decay to the true

vacuum states by tunneling through the potential barrier which seperates the two

minima from each other. This mechanism, limited to the case of zero temperature, is

described in Ref. [28] using a semi-classical approach. The author of [28], however,

notes that before there was a quantitative description, the qualitative features of

vaccum decay were already understood due to the analogy to nucleation processes

in statistical physics: If in a certain volume V vacuum decay occurs, a localized

bubble of converted vacuum is formed. In this process, energy proportional to V

is set free which leads to further conversion at the surface. The bubble then grows

until the total universe is in the new (true) vacuum state. For this to happen the

bubble has, however, to exceed a critical size in the first place. Otherwise the loss in

surface energy compensates the gain of energy due to the conversion and the bubble

shrinks to nothing.

The possibility of vacuum decay, however, does not represent a problem to the

consistency of the theory as long as the decay time is greater than the age of the

universe. In fact, in the past this argument was used in order to set lower bounds

on the SM Higgs mass [29] as such bounds are less stringent than demanding abso-

lute stability. Besides zero temperature tunneling, which is a pure quantum effect,

barrier penetration can also be thermally induced due to field fluctuations at finite

temperature (see e.g. [30]). Under the assumption that the universe once was in

an extremely hot phase, finite temperature penetration is considered the dominant

process. However, as emphasized by the authors of [29], this assumption has not

been proved to the present day as it is unclear if the universe has ever been hotter

than T ∼ MeV. Although they admit that it is a plausible assumption, they argue

further that such high temperatures in the early universe would not only exclude low

SM Higgs masses but also many other popular models. For this reason, they focus

on the metastability bound given by the assumption that vacuum decay occurs only

due to zero temperature tunneling. This viewpoint will be shared here.

Decay Probability due to Pure Quantum Tunneling

In the analysis of Ref. [29], first the semi-classical approximation of the tunneling rate

based on Ref. [28] is given and then a complete one-loop calculation is performed.

Here, the discussion is restricted to the translation of their appoximate result to the
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Chapter 3 A Shift Symmetry at the Planck Scale

case of the LR symmetric model with shift symmetry.

In the semi-classical discussion the probability p that the vacuum has decayed to

the true vacuum is given by

p ∼ (TU
R

)
4

e−S0 , (3.11)

where TU ∼ 1010 yr is the age of the universe, S0 is the classical so-called bounce

action which describes the penetration process and R is a dimensionful quantity

that is associated to the bounce solutions. According to [29], S0 is given by

S0 =
2π2

3∣λ∣ , (3.12)

where ∣λ∣ is the absolute value of the minimum of λ. Note that here it has already

been accounted for the normalization factors used in [29] which differ from those

used in this work. From this, demanding p < 1, a lower bound for ∣λ∣ is found:

∣λ∣ < 0.016 (3.13)

Recall that λ here represents λ1+4λ2 and λ1−4λ3 respectively. As can be seen from

figure 3.4 these couplings do not fall below the bound expressed by (3.13). It can

therefore be concluded that the electroweak minimum for the LR symmetric model

including shift symmetry indeed can be at most metastable, but as the decay time of

its vacuum exceeds the age of the universe this does not contradict the consistency

of the model.

3.2.3 Stability in the Doublet Field Direction

The stability conditions corresponding to the field directions in the (electrically

neutral) doublet subspace,

κ1 > 0

κ1 + κ2 > 0,

require κ1 and κ+ = κ1 + κ2 to have positve values at the Planck scale.

The beta-functions of κ1 and κ2 (cf. (A.19)),

βκ1 =
1

512π2
[κ1(−96g2

1 − 144g2
2 + 576κ1 + 384κ2) + 192κ2

2 + 256β2
1 + 128f 2

1
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3.2 Stability of the Higgs Potential

+ 24g4
1 + 12g2

1g
2
2 + 9g4

2],

βκ2 =
1

512π2
[κ2(−96g2

1 − 144g2
2 + 512κ1 + 384κ2) + 128f 2

1 + 12g2
1g

2
2 + 9g,

are dominated by positive-sign gauge contributions. Thus, κ1 and κ2 are driven

to smaller values3 such that they eventually become zero. This, however, is no

problem for stability when sufficiently large initial conditions of both κ1 and κ1 +κ2

are chosen. In fact, this ensures that, within the frame of shift symmetry, the

Gildener-Weinberg conditions corresponding to the phenomenologically interesting

parity-breaking flat directions of types Ia, Ib, IIa and IIb can be satisfied. In this

context, observe that within shift symmetry the bidoublet-doublet couplings β1 and

f1 are supposed to be small. In the case of f1, shift symmetry even implies f1 ≡ 0,

which is a direct consequence of βf1 being proportional to f1
4. For this reason, these

Gildener-Weinberg conditions are mainly given by κ+ = κ1 +κ2 = 0. Analogously the

Gildener-Weinberg conditions to the associated parity-conserving flat directions are

mainly given by κ1 = 0. Hence, at the Planck scale κ1 and κ2 have to be chosen

such that, on the one hand, symmetry breaking takes place at a phenomenologically

interesting scale and, on the other hand, the parity-breaking flat directions, i.e.

κ1 +κ2 = 0, emerge in the first place. This implies, κ1 > κ+ at the breaking scale and

thus κ2 being either negative at the Planck scale or evolving to negative values.

The discussion about stability is concluded presenting in Fig 3.5 the renormal-

ization group flow of κ1 and κ+. An almost identical plot was already given in

Ref. [6]. The RG flow shows clearly that for a large fraction of parameter space the

parity-breaking Gildener-Weinberg conditions (green bar) can be reached without

violating κ1 > 0 before, i.e. before the emergence of parity-conserving flat directions

(red bar). Yet it is not clear from the flow diagram alone, how fast the couplings

run into the solutions. Thus, it is not clear, how large the initial values have to be

chosen. In the next section, however, this will find further attention. It will turn out

that κ1+κ2 = 0 at the Gildener-Weinberg scale, which is approximately the breaking

scale does not imply too large values of κ1 and κ2 at the Planck scale.

3There are no compensatory contributions from Yukawa couplings as the scalar doublets do not
couple to fermions in the minimal model.

4The remaining scalar couplings exhibit the enhanced symmetry of separate SU(2)L × SU(2)R
transformations of Φ and Ψ. For this reason, f1 is not generated by quantum corrections at
one loop level. Yet the situation should change at the two-loop level, as this symmetry is also
explicitly broken by gauge interactions.
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Chapter 3 A Shift Symmetry at the Planck Scale

3.3 Symmetry Breaking

3.3.1 Adjusting the Big Hierarchy

Precedingly it was shown that in a large fraction of parameter space the potential is

sufficiently (meta-)stable. In order to break the symmetry at a scale vR, many orders

of magnitude below the Planck scale ΛPl, one has to choose appropriate values for

the doublet self-couplings at ΛPl. The running of the couplings then generates the

big hierarchy. In practice however, κ1 and κ2 are not chosen at the Planck scale, but

rather at the Gildener-Weinberg scale µGW to satisfy the GW condition κ1 + κ2 = 0

that, as argued before, applies approximately for all maximally parity-breaking flat

directions5. Then, one lets κ1 and κ2 evolve to obtain their values at the Planck

scale. Finally, one is left with one free parameter. Here, this free parameter is chosen

to be κ1. In order to decide then in which flat direction the symmetry is actually

broken, in the usual case of multiple simultaneously emerging flat directions, one

has to consult the corresponding second derivatives of the potential, i.e. the scalar

mass spectra. This was already mentioned in section 2.2.3 where the scalar masses

to the various flat directions were given. One finds that, in the case of the shift

symmetry imposed on the bidoublet, only flat direction of type Ib corresponds to

a minimum. To be more precise, in the case of flat direction Ia (2.2.3) one has for

instance

m2
h = −16(λ2 + λ3)(κ2 + κ′2) < 0,

as λ2 + λ3 < 0 (see figure 3.1). Similarly, for flat direction type IIa (2.2.3) one finds

m2
φ02r

= f1v
2
R + 8λ2κ

2 < 0 and m2
φ02i

= f1v
2
R − 8λ3κ

2 < 0, (3.14)

as shift symmetry implies f1 ≡ 0 and λ2 < 0 and λ3 > 0 respectively. Since flat

directions of types IIa and IIb are essentially connected via (f1 → −f1), the flat

direction of type IIb does not represent a minimum neither.

Finally, for flat direction IIc (2.2.3) it is

m2
{φ01,φ

−
2}
= 2β1 − f1

2
v2
R < 0 and m2

{φ02,φ
+
1}
= 2β1 + f1

2
v2
R < 0. (3.15)

Here, one additionally has to use that β1 is negative. This can be seen from its

5These include the phenomenologically interesting directions Ia, Ib, IIa and IIb plus the direction
IIc which only breaks the SU(2)R-subgroup while leaving the SM gauge group unbroken.
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beta-function (A.19), which, at the Planck scale ΛPl, is generated by the positive

gauge contribution

ββ1(ΛPl) =
9g4

2(ΛPl)
256π2

, (3.16)

which remains the dominant contribution for its running. Thus, it is driven to

negative values.

In contrast, for solution Ib it turns out that all scalar masses (2.2.3) are posi-

tive.Hence the symmetry is broken in this direction. Note that these considerations

concerning the scalar masses did not require assumptions about the values of the

doublet self couplings. This means that, in the minimal model, shift symmetry

implies that symmetry breaking is exclusively possible along flat direction Ib. In

Ref. [6] it has been stated that the flat directions of type I are disfavored with

respect to directions IIa and IIb as they require additional means of fine-tuning, as-

suming that all scalar couplings be of the same order. This is however not the case

when shift symmetry is imposed. Thus, a priori there is no problem of naturalness

concerning flat direction Ib.

3.3.2 Little Hierarchy

Within shift symmetry, a big hierarchy can be generated by appropriate choice of

the free parameters κ1 and κ2 following the procedure explained above. The only

flat direction that corresponds to a minimum is then given by direction Ib. Even

though one parameter, let it be κ1, remains free it can however not be expected that

adjusting this parameter affects the little hierarchy significantly. The little hierarchy

in direction Ib, represented by the ratio

κ2 + κ′2
v2
R

= −β1

2λ1 − 8λ3

(3.17)

is given by the doublet-bidoublet coupling β1 and the bidoublet self-couplings λ1 and

λ3, whose running is essentially fixed by the shift symmetry: While the combination

λ1−4λ3 does not depend on the κ1 and κ2 at one loop, the doublet-bidoublet coupling

has only little dependence on them, which can be seen from their beta-functions (see

(A.19)). Hence, shift symmetry cannot be expected to provide freedom in the choice

of parameters in order to adjust the little hierarchy to any desired value. Before

presenting the results based on the numerical solution of the full system of the beta-

functions, the little hierarchy (3.17) is roughly estimated. For this purpose, it is
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used a linear approximation of β1 and λ1 − 4λ3 from the Planck scale ΛPl down to

the Gildener-Weinberg scale at µGW = 10 TeV:

β1(µGW) − β1(ΛPl)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

=0

≈ ββ1(1011.5 GeV) log(µGW

ΛPl

), (3.18)

where the the beta-function ββ1 is taken at the center between ΛPl and µGW on the

logarithmic scale. Analogously, the combination λ1 − 4λ3 of doublet self-couplings

which are generated not only by gauge loops, but dominantly by top-loops, is linearly

approximated to

(λ1 − 4λ3)(µGW) − (λ1 − 4λ3)(ΛPl)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

≈ βλ1−4λ3(λ1 − 4λ3) log(µGW

ΛPl

) (3.19)

As the gauge- and top-loops give the main contribution to both beta-functions in

(3.18) and (3.19), all the other contributions will be neglected for this estimate.

While the expression for ββ1(1011.5 GeV) is obtained from (3.16) by simply exchang-

ing ΛPl by µ = 1011.5 GeV, the beta-function of λ1 − 4λ3 at that scale is given by

βλ1−4λ3(1011.5 GeV) ≈ 1

128π2
(15g4

2(1011.5 GeV)) − 2T4(1011.5 GeV)) . (3.20)

Thus, the little hierarchy can be estimated to

κ2 + κ′2
v2
R

≈ −9g4
2(ΛPl)

4(15g4
2(µGW) − 2T4(µGW)) ≈ 0.35. (3.21)

This value is of the same order of magnitude as those values obtained by solving the

full differential equation system given by the beta-functions of the model. In figure

3.7 these results are shown, including the dependence on κ1 which is chosen to be the

only free parameter of the model. Note that doublet-self couplings above κ1(ΛPl) ≈
2.5 lead to the emergence of Landau poles and thus have not been considered any

further.

The little hierarchy (3.17) obtained is not sufficiently large in order to fit present

bounds on the right-handed scale [17–20]. With the (left-handed) electroweak scale

fixed at

κ2 + κ′2 = (174 GeV)2. (3.22)
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a value of 0.15 (cf. figure 3.7) fore instance corresponds to a right-handed scale at

vR =
√

κ2 + κ′2
0.15

= 450 GeV, (3.23)

which is already excluded. It can be concluded that with shift symmetry alone,

the electroweak scale cannot be stabilized against the breaking scale of left-right

symmetry. Instead of setting other boundary conditions at the Planck scale to

generate this hierarchy the problem is approached by introducing additional particle

representations to the model and thereby modifiing the RG running of the scalar

couplings. In particular, the most simple extension, a complete singlet under the

gauge group, is introduced.
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Figure 3.2: The running of the stability conditions λ1+4λ2 and λ1−4λ3 is plotted. At
energy scales around µ = 1017 GeV and µ = 1011 GeV the scalar potential
is destabilized in the field directions corresponding to the flat directions
Ic and Id respectively, as in these directions the potential is given by the
expressions V = (λ1 + 4λ2)φ and V = (λ1 − 4λ3)φ respectively.
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Figure 3.3: The RG improved potentials in the field directions corresponding to the
flat directions Ic (fig. 3.3(a)) and Id (fig. 3.3(b)) are plotted. Besides
the minima that are supposed to emerge near the origin in field space
due to quantum corrections which are treated by the Gildener-Weinberg
method, the violation of the stability conditions (3.2d) and (3.2e) lead to
additional minima at high field values. These minima have to be viewed
as the absolute (true) minima of the theory.
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Figure 3.4: The running of the quantities λ1 + 4λ2 (purple line) and λ1 − 4λ3 (green
line), which give the potential in field directions Ic and Id respectively,
is replotted in presence of the metastability bound at λ = −0.015, where
λ represents λ1 + 4λ2 and λ1 − 4λ2 respectively.Being above this bound,
the low-energy vacuum is metastable in the sense that its decay time
exceeds the age of the universe.
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Figure 3.5: The RG group flow, toward lower energies, is shown in the (κ1, κ+)-
plane (cf. Fig. 1 in Ref. [6]). It is assumed that the doublet-bidoublet
couplings do not contribute, which is a good approximation as they
are small due to shift symmetry. Additionally, the gauge couplings are
fixed to their values at MZ for simplicity. The flow reveals that the
potential is (meta-)stable for a large parameter space region in field
directions of the doublet subspace. Furthermore there is a large fraction
that corresponds to maximally parity-breaking solutions which require
(approximately) κ1 + κ2 (green bar). Even for small positive starting
values of κ2 the couplings run into these solutions as gauge contributions
let the combination κ1 + κ2 run down faster than κ1.
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Figure 3.6: The running of the GW conditions is depicted. Every line corresponds to
a maximally parity-breaking GW condition: Ia (purple line), Ib (dashed
purple line), IIa and IIb (degenerate green line) and IIc (orange line).
Once a line hits the zero line the associated GW condition is fulfilled.
Symmetry breaking, however, occurs only when the flat direction cor-
responds to a minimum of the potential, i.e. if all second derivatives
are greater than zero. The plot is obtained by setting κ1 = −κ2 = 0.1 at
µGW = 104 GeV.
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Figure 3.7: Within shift symmetry radiative symmetry breaking occurs exclusively
in flat directions of type Ib. Here, the little hierarchy between the break-
ing scale of the left-right symmetry and the electroweak scale is plotted
in dependence of the doublet self coupling κ1 at the Planck scale (blue
curve) and at the GW scale µGW = 104 GeV (red curve). The value
of the little hierarchy is essentially fixed by the gauge- and top-loops
generating the intermiediate doublet-bidoublet couplings and bidoublet
self-couplings.
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Chapter 4

Extension I: Fermionic Singlet

4.1 Introduction

4.1.1 Definition

A Majorana-type fermionic singlet, called f in the following, is added to the minimal

LR symmetric model. It is a singlet under the whole gauge group. It transforms

trivially under parity and the Z4-symmetry. In the notation introduced in 2.5 the

quantum numbers of f are given by

f ∼ [(1
2
,0) ⊕ (0, 1

2
)](1,1,1,0) (4.1)

Furthermore, being a Majorana representation it is constrained by the condition

f c ≡ f. (4.2)

Though an explicit mass term mf̄f does not violate any of these symmetries it is

forbidden by scale invariance. In addition to the kinetic term, introducing f leads

to a Yukawa interaction to leptons and scalar doublets

LYuk, f = −gif L̄iΨf + h.c. (4.3a)

In terms of the right- and left-handed fields this becomes:

LYuk, f = −gif L̄iχLf − gif R̄iχRf +H.c.. (4.3b)

Here, the index i denotes the flavor of the lepton. Thus, f is coupled to each flavor

by an individual coupling gif . It is easy to convince oneself that this term respects
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Chapter 4 Extension I: Fermionic Singlet

the symmetries of the theory1. Note that there does not emerge an interaction that

couples the quarks to the scalar doublets since such would not be invariant under

SO(3)-color and U(1)B−L. Beside the Yukawa interaction (4.3) no further terms

with dimension smaller or equal than four emerge. Thus, the original Lagrangian is

modified by

Lf = f̄ i /∂f − gif L̄iΨf + h.c.. (4.4)

Clearly, a fermionic singlet represents the most simple extension to the model in

terms of additional particle representations. Coupling to doublets and leptons, f

contributes via fermion loops to the scalar doublet self-couplings κ1 and κ2 and

to the intermediate couplings β1 and f1. In the following, these contributions to

the renormalization group running of the scalar (and lepton Yukawa) couplings will

be calculated and its effect on the symmetry breaking mechanism discussed. In

particular, it will be analysed if the desired little hierarchy can be obtained by

appropriate adjustment of gif .

4.1.2 Phenomenological Implications

Before turning to the renormalization group analysis it will be discussed briefly

which phenomenological implications arise by introduction of a fermionic singlet.

As it is not observed it must be ensured that it is hidden. The interaction term

(??) technically represents a mass term, as χ0
R is supposed to acquire a vacuum

expectation value, and thus leads to a mixing between standard neutrinos νi and

the singlet fermion f . For the uncharged fermions one then finds the general mass

matrix

L ⊂ (ν̄iL, ν̄iR, f̄) ⋅
⎛
⎜⎜⎜⎜
⎝

0
κY +ij
L +κ′Y −ij

L
√

2
gifvL

κY +ij
L +κ′Y −ij

L
√

2
0 gifvR

gjfvL gjfvR m

⎞
⎟⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜
⎝

νjL
νjR
f

⎞
⎟⎟⎟
⎠
. (4.5)

For a vanishing vacuum expectation value of the left scalar doublet which corre-

sponds to the parity breaking flat directions, and without explicit mass term m as

1In this chapter the Z4-transformation property of the scalar doublet is redefined to be: χR → iχR.
This, however, does not affect any other doublet interaction term.
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4.2 Contributions to Renormalization Group Functions

required by scale invariance this becomes

L ⊂ (ν̄iL, ν̄iR, f̄) ⋅
⎛
⎜⎜⎜⎜
⎝

0
κY +ij
L +κ′Y −ij

L
√

2
0

κY +ij
L +κ′Y −ij

L
√

2
0 gifvR

0 gjfvR 0

⎞
⎟⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜
⎝

νjL
νjR
f

⎞
⎟⎟⎟
⎠
. (4.6)

In the limit of a single generation and for vR ≫ κ,κ′ one finds one massless eigenstate

ν with

mν = 0 (4.7)

and two degenerate heavy states N1 and N2 with

mN1,2 = ±gfvR
⎛
⎝

1 +
(κY +

L + κ′Y −
L )2

4(gfvR)2

⎞
⎠
. (4.8)

Under the assumption of gf and the lepton Yukawa couplings being of comparable

magnitude the mixing matrix is approximated by

⎛
⎜⎜⎜
⎝

ν

N1

N2

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

1 +O (κ+κ′
vR

) 0 O (κ+κ′
vR

)
O (κ+κ′

vR
) −1√

2
+O (κ2+κ′2

v2R
) 1√

2

O (κ+κ′
vR

) 1√
2
+O (κ2+κ′2

v2R
) 1√

2

⎞
⎟⎟⎟
⎠
⋅
⎛
⎜⎜⎜
⎝

νL

νR

f

⎞
⎟⎟⎟
⎠
. (4.9)

One finds that for a sufficiently large little hierarchy the massless state is mainly

given by the left-handed active neutrino νL while the heavy states are given by the

right-handed active neutrino νR and f . Thus, though there was no explicit massterm

introduced for the fermionic singlet it is hidden as it acquires a mass proportional

to the right handed VEV via the Yukawa interaction (4.3). Simultaneously it lowers

the mass of the left-handed neutrinos via a seesaw-type mechanism (see Ref. [4] and

references therein).

4.2 Contributions to Renormalization Group

Functions

The introduction of the fermionic singlet f leads to contributions to the doublet

self-couplings, κ1 and κ2, and doublet-bidoublet couplings, β1 and f1, via one-loop
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box diagrams of the following kinds:

• doublet self-coupling:

f

f

χ†
L/R

χ
L/R

χ†
L/R

χ
L/R

and

L/R

L/R

χ†
L/R

χ
L/R

χ†
L/R

χ
L/R

. (4.10)

and

• doublet-bidoublet coupling:

f

L

L

L

Ψ Φ

Ψ Φ

and f L

Ψ Φ

Ψ Φ

(4.11)

In the following section 4.2.1, the resulting corrections to the beta-functions of κ1

and κ2 will be calculated. For this purpose, the counterterms to these diagrams

have to be calculated. Likewise, in section 4.2.2 the contributions to ββ1 and βf1 are

determined. In fact, the latter contributions are the more interesting ones, as they,

together with the bidoublet self-couplings, determine the little hierarchy.

4.2.1 Doublet Self-Couplings

Vertex Corrections

In order to calculate the contributions to κ1 and κ2 the standard notation of left- and

right-handed fields is used. Furthermore, it is convenient to rearrange the doublet

self-couplings: In terms of κ1 and κ2 the doublet self-couplings are given by

V ⊂ κ1(χ†
LχL + χ

†
RχR)2 + κ2(χ†

LχL − χ
†
RχR)2. (4.12)

Thus, the κ1- and κ2-terms represent the symmetric and the antisymmetric parts

of the doublet self-coupling respectively. These will be combined to a chirality
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conserving coupling, which will be called κ̄1 and one that mixes the left- and right-

handed fields, called κ̄2:

κ1

2
(χ†

LχL + χ
†
RχR)2 + κ2

2
(χ†

LχL − χ
†
RχR)2 (4.13)

=κ1

2
[(χ†

LχL)2 + 2χ†
LχLχ

†
RχR + (χ†

RχR)2] + κ2

2
[(χ†

LχL)2 − 2χ†
LχLχ

†
RχR + (χ†

RχR)2]

= (κ1 + κ2

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡κ̄1

[(χ†
LχL)2 + (χ†

RχR)2] + (κ1 − κ2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡κ̄2

[χ†
LχLχ

†
RχR]

Thus, κ1 and κ2 in terms of κ̄1 and κ̄2 are given by

κ1 = κ̄1 +
κ̄2

2
and κ2 = κ̄1 −

κ̄2

2
. (4.14)

Using this basis, the diagrams contributing to κ̄1 then are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩χ† χ

χ† χ

,

χ†
L χL

χ†
L χL

,

χ†
L χL

χ†
L χL

,

χ†
L χL

χ†
L χL ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

∪ {L↔ R}.

(4.15)

And there is one diagram contributing to βκ̄2 . It is given by

χ†
L χL

χ†
R χR

. (4.16)
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In order to extract the divergent parts of these diagrams the following momentum

assignments will be used:

p2 → ← p4

p1 → ← p3

k′′

k →

↖ k′′′k′ ↙

χ†
L/R

χ
L/R

χ†
L/R

χ
L/R

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k′ = k + p3

k′′ = k + p2 + p3

k′′′ = k + p2 + p3 + p4

0 = p1 + p2 + p3 + p4

(4.17)

The external momenta are denoted by p1, p2, p3 and p4 while k denotes the loop-

momentum which it is integrated over.

The first diagram in (4.15) then gives:2

χ† χ

χ† χ

= (−1)
±

fermion loop

(−i)4∑
i,j

(gifgjf)2µ2ε∫
ddk

(2π)dTr [ i/k
k2 + iε ⋅

i/k′

k′2 + iε ⋅
i/k′′

k′′2 + iε ⋅
i/k′′′

k′′′2 + iε]

= −∑
i,j

(gifgjf)2µ2ε∫
ddk

(2π)dTr [
(/k)(/k + /p3

)(/k + /p2
+ /p3

)(/k − /p1
)

k2(k + p3)2(k + p2 + p3)2(k − p1)2
]

= −∑
i,j

(gifgjf)2µ2εTr [γµγνγργσ]∫
ddk

(2π)d
(kµ)(kν + pν3)(kρ + p

ρ
2 + p

ρ
3)(kσ − pσ1)

k2(k + p3)2(k + p2 + p3)2(k − p1)2

Here only the term proportional to k4 gives a divergent contribution. Thus, one

obtains:

χ† χ

χ† χ

2The feynman rules of the minimal model are take from Ref. [25] and the loop integrals occuring
here, which are the well known Passarino-Veltman functions [31] (for a review see Ref. [32]).
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= UV finite −∑
i,j

(gifgjf)2µ2ε Tr [γµγνγργσ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=4(ηµνηρσ−ηµρηνσ+ηµσηνρ)

⋅ ∫
ddk

(2π)d
kµkνkρkσ

k2(k + p3)2(k + p2 + p3)2(k − p1)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=UV finite+ iπ2

(2π)dµε
1

12ε
(ηµνηρσ+ηµρηνσ+ηµσηνρ)

= UV finite −∑
i,j

(gifgjf)2µε
iπ2

(2π)d
4(d2 + 2d)

12ε

= UV finite − iµε
8g⃗4

f

16π2ε
(4.18)

where in the last step d has been set to 4 since the expression multiplying 1/ε is

analytical at 4 − d = ε = 0. Note that in the following this will be done without

mentioning explicitly. Furthermore in the last line the notation g⃗Tf = (g1
f , g

2
f , g

3
f) has

been introduced.

As the divergent part of the just calculated diagram does not depend on the exter-

nal momenta, the divergent parts of the remaining diagrams must be the identical

to (4.18). Adding up the diagrams then results in:

S1

χ† χ

χ† χ

+ S2

χ†
L χL

χ†
L χL

+ S3

χ†
L χL

χ†
L χL

+ S4

χ†
L χL

χ†
L χL

+ (L↔ R)

= UV finite − (S1 + S2 + S3 + S4)(g⃗4
fµ

ε iπ2

(2π)4

8

ε
) (4.19)

and

S5

χ†
L χL

χ†
R χR

= UV finite − S6 (g⃗4
fµ

ε iπ2

(2π)4

8

ε
) (4.20)

To obtain the correct symmetry factors Si, recall that these diagrams are of order

O (g4
f) in the perturbation series. Hence, naturally there emerges a factor of 1/4!

coming from the expansion of the exponential function. In addition, there is a

59



Chapter 4 Extension I: Fermionic Singlet

factor of 4 due to Pascal’s law and a factor of 2 coming from choosing the vertex for

one of the daggered fields. Thus, one finds Si = (1/4!) ⋅ 4 ⋅ 2 = 1/3. In the following,

upcoming symmetry factors are obtained by analogous considerations and will not be

discussed in detail. In order to calculate the contribution to the β-functions βκ̄1 and

βκ̄2 the counterterms corresponding to the above diagrams are needed. As already

mentioned, in the MS-scheme the counterterms exactly subtract the divergent parts.

This is equivalent to requesting:

UV finite = S1 + S2 + S3 S4 +

and

UV finite = S5 + ,

where the diagrams represent the counterterms of κ̄1 and κ̄2 respectively.

Finally one finds, the contribution due to f to the counterterms corresponding to

κ̄1 and κ̄2 is

∆fδκ̄1 = −
16

3
g⃗4
f

1

16π2

1

ε
and ∆fδκ̄2 = −

4

3
g⃗4
f

1

16π2

1

ε
. (4.21)

In terms of κ1 and κ2 this becomes using equation (4.14)

∆fδκ1 = −
18

3
g⃗4
f

1

16π2

1

ε
and ∆fδκ2 = −

14

3
g⃗4
f

1

16π2

1

ε
. (4.22)

One further ingredient for the corrections to the beta-functions of κ1 and κ2 is

needed, namely the contribution to the doublet wavefunction renormalization.
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Scalar Doublet Wavefunction Correction

The contribution to the wavefunction renormalization of Ψ due to f is given by a

loop diagram which contains virtual leptons and f . Its divergent part is calculated

to be

S6 ⋅

L

f

Ψ Ψ = S6 (−1)
±

fermion loop

(−i)2∑
i

gifg
i
fµ

ε∫
ddk

(2π)dTr [ i/k
k2 + iε ⋅

i(/p − /k)
(p − k)2 + iε]

= −S6g⃗
2
fµ

εTr [γµγν]∫
ddk

(2π)d
kµ(pν − kν)
k2(p − k)2

= UV finite − S6g⃗
2
fµ

ε Tr [γµγν]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=4ηµν

iπ2

(2π)dµε [−
1

ε
pµpν + 1

6ε
p2ηµν − 2

3ε
pµpν]

= UV finite − S6g⃗
2
f

i4π2

(2π)d
1

ε
[−p2 + d

6
p2 − 2

3
p2]

= UV finite + S6g⃗
2
f

i4π2

(2π)4

1

ε
p2. (4.23)

Here, the symmetry factor is given by S6 = 1/2! ⋅ 2 = 1. From this the contribution

to the wavefunction renormalization of Ψ can be obtained

ip2∆fδZΨ = −ip2g⃗2
f

4

16π2ε
. (4.24)

Contribution to beta-functions

Using now the defining expression for one-loop β-functions in the MS-scheme (A.18),

one finally obtains for κ1 and κ2

∆fβκ1 = Dg

=̄1/2

∂∆fδκ
(1)
1

∂gif
gif − 2κ1 Dg

=̄1/2

∂Z
(1)
Ψ

∂gif
gif −Dg∆fδκ1

= 3

2
∆fδκ1 − 2κ1∆fδZΨ

= 1

16π2
[−9g⃗4

f + 8κ1g⃗
2
f ] (4.25)
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and

∆fβκ2 = Dg

=̄1/2

∂∆fδκ
(1)
2

∂gif
gif − 2κ2 Dg

=̄1/2

∂Z
(1)
Ψ

∂gif
gif −Dg∆fδκ2

= 3

2
∆fδκ2 − 2κ2∆fδZΨ

= 1

16π2
[−7g⃗4

f + 8κ2g⃗
2
f ]. (4.26)

4.2.2 Doublet-Bidoublet Couplings

Vertex Corrections

The diagrams in (4.11) contribute to the doublet-bidoublet couplings β1 and f1.

Note that their contribution to f1 is due to the fact that the Yukawa coupling (4.3)

explicitly violates the symmetry of separate SU(2)L ×SU(2)R transformations of Φ

and Ψ as it couples leptons to scalar doublets. In order to extract the divergent part

of the first diagram in (4.11) the following momentum assignments will be used:

p1 → ← p3

p2 → ← p4

← k′

↑ k k′′ ↓

k′′′ →

ΨA ΦC
i

ΨB
ΦD
j

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k′ = k + p2 + p3 + p4

k′′ = k + p2 + p4

k′′′ = k + p2

0 = p1 + p2 + p3 + p4

(4.27)

The diagram then gives3

Ψ Φ

Ψ Φ

(4.28)

3Here, for the moment the Z4 symmetry is omitted to obtain also the contributions to the Z4

breaking couplings β2, β3.
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= (−1)
±

fermion loop

(−iµ ε
2 )2(−1

2
µ
ε
2 )2 [gf g (δj,1(Ȳ +gh

L − Ȳ −gh
L )(ΓΓD)BE + iδj,2(Ȳ +gh

L + Ȳ −gh
L )ΓDBE) ⋅

⋅ (δi,1(Ȳ +hf
L − Ȳ −hf

L )(ΓΓC)EA + iδi,2(Ȳ +hf
L + Ȳ −hf

L )ΓCEA) gf f]∫
ddk

(2π)d
Tr [k′′′k′′k′k]
k′′′2k′′2k′2k2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=UV finite+ iπ2

(2π)4µε
8
ε

= iµε

16π2ε
4 [gf g (δj,1(Ȳ +gh

L − Ȳ −gh
L )(ΓΓD)BE + iδj,2(Ȳ +gh

L + Ȳ −gh
L )ΓDBE) ⋅

⋅ (δi,1(Ȳ +hf
L − Ȳ −hf

L )(ΓΓC)EA + iδi,2(Ȳ +hf
L + Ȳ −hf

L )ΓCEA) gf f] (4.29)

(4.30)

The value of the second diagram can be obtained from the first one by the transfor-

mation (p3,C, i) ↔ (p4,D, j). One then gets for the second diagram

Ψ Φ

Ψ Φ

(4.31)

= iµε

16π2ε
4 [gf g (δi,1(Ȳ +gh

Q − Ȳ −gh
Q )(ΓΓC)BE + iδi,2(Ȳ +gh

Q + Ȳ −gh
Q )ΓCBE) ⋅

⋅ (δj,1(Ȳ +hf
Q − Ȳ −hf

Q )(ΓΓD)EA + iδj,2(Ȳ +hf
Q + Ȳ −hf

Q )ΓDEA) gf f] (4.32)

Adding up the two diagrams yields

S7®
=1 Ψ Φ

Ψ Φ

+ S8®
=1 Ψ Φ

Ψ Φ

= iµε

16π2ε
4g⃗f

T [−δi,1δj,1(Ȳ +
L − Ȳ −

L )2{ΓC ,ΓD} − δi,2δj,2(Ȳ +
L + Ȳ −

L )2{ΓC ,ΓD}

− iδi,2δj,1(Ȳ +
L + Ȳ −

L )(Ȳ +
L − Ȳ −

L )ΓΓCΓD + iδi,2δj,1(Ȳ +
L − Ȳ −

L )(Ȳ +
L + Ȳ −

L )ΓΓDΓC

−iδi,1δj,2(Ȳ +
L + Ȳ −

L )(Ȳ +
L − Ȳ −

L )ΓΓDΓC + iδi,1δj,2(Ȳ +
L − Ȳ −

L )(Ȳ +
L + Ȳ −

L )ΓΓCΓD]
BA

g⃗f

= iµε

16π2ε
4 ⋅ g⃗f T [−2(Ȳ +2

L + Ȳ −2
L )δijδCDδBA + 2{Ȳ +

L , Ȳ
−
L }(δi,1δj,1 − δi,2δj,2)δCDδBA

+4i(Ȳ +2
L − Ȳ −2

L )εij(ΓΣCD)BA + i2[Ȳ +
L , Ȳ

−
L ](1 − δij)ΓBAδCD] g⃗f
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= iµε

16π2ε
4 [−2T +

f δijδCDδBA + 2T
{}

f (δi,1δj,1 − δi,2δj,2)δCDδBA

+i4T −
f εij(ΓΣCD)BA − 2T

[]

f (1 − δij)ΓBAδCD] g⃗f (4.33)

where it has been used that the symmetry factors are given by S12 = S13 = 1. In the

last line it has been defined

g⃗f
T (Ȳ +2

L + Ȳ −2
L )g⃗f ≡ T +

f , (4.34a)

g⃗f
T (Ȳ +2

L − Ȳ −2
L )g⃗f ≡ T −

f , (4.34b)

g⃗f
T{Ȳ +

L , Ȳ
−
L }g⃗f ≡ T {}

f (4.34c)

g⃗f
T [Ȳ +2

L , Ȳ −2
L ]g⃗f ≡ iT []

f . (4.34d)

Note that the commutator [Ȳ +2
L , Ȳ +2

L ] is anti-hermitian. Thus, the expression (4.34d)

is imaginary with gf being real. Given the feynman rule (??), the doublet-bidoublet

interaction counterterms read according to (4.33):

∆fδβ1 =
−4T +

f

16π2ε
(4.35a)

∆fδf1 =
−4T −

f

16π2ε
(4.35b)

∆fδβ2 =
2T

{}

f

16π2ε
(4.35c)

∆fδβ3 =
T

[]

f

16π2ε
(4.35d)

Beta-Functions

Together with the contribution to the doublet wavefunction renormalization (4.24),

the vertex correction (4.35a) can be inserted into (A.18) to obtain f ’s contribution

to the β-function of β1:

∆fββ1 =Dgf

∂∆fδβ
(1)
1

∂gf i
gf
i +DY

∂∆fδβ
(1)
1

∂Y ±kl
L

Y ±kl
L −Dβ1∆fδβ

(1)
1 − β1Dgf

∂∆fδZ
(1)
Ψ

∂gf i
gf
i

= ∆fδβ
(1)
1 − 2β1∆fδZ

(1)
Ψ

= 1

16π2
(−4T +

f + 4β1g⃗
2
f) (4.36)
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In the same way inserting (4.35b) into (4.24) one finds:

∆fβf1 =Dgf

∂∆fδf
(1)
1

∂gf i
gf
i +DY

∂∆fδf
(1)
1

∂Y ±kl
L

Y ±kl
L −Df1∆fδf

(1)
1 − f1Dgf

∂∆fδZ
(1)
Ψ

∂gf i
gf
i

= ∆fδf
(1)
1 − 2f1∆fδZ

(1)
Ψ

= 1

16π2
(−4T −

f + 4f1g⃗
2
f) (4.37)

And for the Z4-breaking terms one finds, using (4.35c) and (4.35d)

∆fββ2 = ∆fδβ
(1)
2 − 2β2∆fδZ

(1)
Ψ

= 1

16π2
(2T

{}

f + 4β2g⃗
2
f) (4.38)

and

∆fββ3 = ∆fδβ
(1)
3 − 2β3∆fδZ

(1)
Ψ

= 1

16π2
(T []

f + 4β3g⃗
2
f) . (4.39)

4.2.3 Standard Lepton Yukawa Couplings

Beside the contributions to the β-functions discussed so far, it is clear that there are

further contributions of order O (gf 2) to couplings involving leptons due to its contri-

bution to their wavefunction renormalization. Thus, in addition, gf will contribute

to the lepton Yukawa couplings.

The contribution to the wavefunction counterterm of the leptons is given by

f

Ψ

Liαa Ljβb = (−i)2(µ ε
2 )2δbagf

jgf
i∫

ddk

(2π)d
i/kβα
k2 + iε

i

(k − p)2 + iε

= µεδbaγµβαgf jgf i∫
ddk

(2π)d
kµ

k2(k − p)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=UV finite− iπ2

(2π)4µε
1
ε
pµ

= UV finite − iδbaγµβαgf jgf ipµ
1

16π2ε
(4.40)
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Thus, gf contributes to the lepton wavefunction renormalization by

i/p∆fδZ
ji
L = i/p

gf jgf i

16π2ε
. (4.41)

Inserting this into the defining expression of the Yukawa coupling β-function one

obtains the contribution

∆fβY ±
L
ij = −1

2
(Y ±

L ∆fδZ
(1)
Q )ij = −1

16π2

1

2
Y ±
L
ikgf

kgf
j. (4.42)

4.3 Renormalization

4.3.1 Counterterm Lagrangian

In the previous sections various contributions to β-functons of both scalar and lepton

Yukawa couplings at one-loop order have been calculated. They arose introducing

a fermionic singlet to the model. In a next step, gf itself and the wavefunction of f

will be renormalized. The wavefunction renormalization Zf is defined according to

fB = Z
1
2

f f, (4.43)

where fB and f are the bare and renormalized fields. The renormalized coupling gf

is then given by

gifB = Z− 1
2

Lij
[gjf + δg

j
f]µ

ε
2Z

− 1
2

Ψ Z
− 1

2

f , (4.44)

where gifB and δgif denote the bare coupling and the counterterm respectively. The

counterterm lagrangian corresponding to f then is

δLf = f̄ i /D(δZf)f + µ
ε
2 L̄iδg

i
fΨf + h.c.. (4.45)

In the following, first the vertex counterterm δgf will be determined. In a second

step the wavefunction counterterm δZf will be calculated and finally the β-function

corresponding to gf will be derived.

4.3.2 Vertex Renormalization

There are two diagrams contributing to the gf renormalization. They are given by

the exchange of U(1)- and SU(2)-gauge bosons between the lepton and doublet
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scalar. The coupling gf is then renormalized by demanding

UV finite = + S9 + S10 + , (4.46)

where the symmetry factors are given by S9 = S10 = 1/3! ⋅ 6 = 1. In order to

calculate the diagrams external and internal momenta are assigned to the graphs in

the following way, where the wiggly line represents U(1)- and SU(2)-propagators

respectively:

← p3

↗ p1

↘ k′

↙ k′′

k ↑

p2 ↘

ΨA

fa

LBib

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k′ = k + p2

k′′ = k + p2 + p3

0 = p1 + p2 + p3

(4.47)

Given these momentum assignments, the diagrams in (4.47) give:

(4.48a)

= µ 3ε
2 (g1

2
)

2

gif (γνγρ)ba ⋅ δBA∫
ddk

(2π)d

⎡⎢⎢⎢⎢⎢⎣

k′′ρ(pµ1 − k′µ) (ηµν − (1 − ξ1)kµkνk2 )
(k′′2 + iε)(k′2 + iε)(k2 + iε)

⎤⎥⎥⎥⎥⎥⎦

= µ 3ε
2 (g1

2
)

2

gif (γνγρ)ba ⋅ δBA∫
ddk

(2π)d

⎡⎢⎢⎢⎢⎢⎣

(kρ + pρ3)(2p
µ
2 − kµ) (ηµν − (1 − ξ1)kµkνk2 )

(k + p3)2(k − p2)2k2

⎤⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=UV finite+ iπ2

(2π)4µε
1
2ε

(−ξ1)η
ρ
ν

= UV finite + µ ε
2 (g1

2
)

2

gif(γνγν±
4⋅1

)baδBA
iπ2

(2π)4

1

2ε
(−ξ1)
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= UV finite + iµ ε
2
g2

1

4
gifδbaδBA

1

16π2

4

2ε
(−ξ1)

and

(4.48b)

= −µ 3ε
2 ( g2√

8
)

2

gif (γνγρ)ba (ΣEFΣGH)
BA

(δEGδFH − δEHδFG)⋅

⋅ ∫
ddk

(2π)d

⎡⎢⎢⎢⎢⎢⎣

k′′ρ(pµ2 − k′µ) (ηµν − (1 − ξ2)kµkνk2 )
(k′′2 + iε)(k′2 + iε)(k2 + iε)

⎤⎥⎥⎥⎥⎥⎦

= −µ 3ε
2 ( g2√

8
)

2

gif (γνγρ)ba (ΣEFΣGH)
BA

(δEGδFH − δEHδFG
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=−3⋅1BA

)⋅

⋅ ∫
ddk

(2π)d

⎡⎢⎢⎢⎢⎢⎣

(kρ + pρ3)(2p
µ
2 − kµ) (ηµν − (1 − ξ2)kµkνk2 )

(k + p3)2(k − p2)2k2

⎤⎥⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=UV finite+ iπ2

(2π)4µε
1
2ε

(−ξ2)η
ρ
ν

= UV finite + iµ ε
2

3g2
2

8
gifδbaδBA

1

16π2

4

2ε
(−ξ2)

Note that the gauge parameters ξ1 and ξ2 are not physical and therefore do not

contribute to any observable. In particular, they do not enter the β-function of

gif . However, they have been kept here as they provide a consistency check for the

calculation. Summing up all the terms contributing to the β-function they must

cancel out.

According to (4.45), the vertex counterterm δgif is defined as

= −iµ ε
2 δBAδbaδg

i
f . (4.49)
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Using (4.48) one then obtains

δgif = −
1

16π2ε
gif [

1

2
g2

1ξ1 +
3

4
g2

2ξ2] . (4.50)

4.3.3 Wavefunction Renormalization

The wavefunction renormalization of f is given by

UV finite = + S11 + , (4.51)

where the symmetry factor is given by S11 = 1/2! ⋅ 2 = 1. The diagram S11 yields

= (−i)2(µ ε
2 )2δBAδAB∑

i

(gif)2∫
ddk

(2π)d
i/kba
k2 + iε

i

(k − p)2 + iε

= µε4γµba∑
i

(gif)2∫
ddk

(2π)d
kµ

k2(k − p)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=UV finite− iπ2

(2π)4µε
1
ε
pµ

= UV finite + ig⃗2γµbapµ
4

16π2ε
. (4.52)

Thus, the wavefunction counterterm δZf , which according to the counterterm La-

grangian (4.45) is defined as

= i/pµ
ε
2 δZf (4.53)

69



Chapter 4 Extension I: Fermionic Singlet

is given by

δZf =∶
δZ

(1)
f

ε
= −4g⃗2

16π2ε
. (4.54)

4.3.4 Beta-Function

Derivation

In the preceding subsections the wavefunction renormalization of f and the vertex

renormalization have been performed. Thereby, having found the counterterms, all

the ingredients needed to derive the β-function of gf have been collected. According

to the defining expression (A.18), one finds for βgf
4

βgi
f
= 1

2

⎛
⎜
⎝
∑
VA

⎡⎢⎢⎢⎢⎣

∂δgi
(1)
f

∂VA
− 1

2

∂δZ
(1)
f

∂VA
− 1

2
gjf
∂(δZ(1)

L )ji
∂VA

− 1

2
gif
∂δZ

(1)
Ψ

∂VA

⎤⎥⎥⎥⎥⎦
VA − δgi

(1)
f

⎞
⎟
⎠

= 1

2
[δgi(1)f + 2δgi

(1)
f − δgi(1)f ] − 1

4
gif [2δZ

(1)
f + 2δZ

(1)
Ψ ] − 1

4
[2(δZ(1)

L )ij] gjf

= 1

16π2
(−7

2
g⃗2
fg

i
f −

3

4
g2

1g
i
f −

9

8
g2

2g
i
f) + ((Y +2

L + Y −2
L )g⃗f)

i
. (4.55)

As required by gauge invariance the parameters ξ1 and ξ2 cancel out in (4.55). This

provides a non-trivial consistency check for the calculation.

Running

As βgf is proportional gf (cf. (4.55)), the coupling exhibits a rather mild running.

Under the assumption that f couples exclusively to the third lepton generation, i.e.

gef = g
µ
f = 0, this is illustrated in figure 4.1, where the running of gτf is plotted for

various initial conditions at the Planck scale.

4.4 Symmetry Breaking in the Extended Model I

4.4.1 Effect on Doublet Self-Coupling

In the preceding sections the contributions to the beta-functions of the scalar cou-

plings due to the coupling gf have been calculated. Note that all results found there

are collected in the appendix A.2.2. The coupling gf was introduced for the main

4For the counterterms of L and Ψ see Ref. [25].
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Figure 4.1: The Running of gf is plotted for the initial conditions gf(ΛPl) = 0.1
(thick line), gf(ΛPl) = 0.2 (thin line) and gf(ΛPl) = 0.4 (dashed line). As
βgf ∼ gf the coupling remains small for small initial values over many

scales.

purpose to modify the running of the doublet-bidoublet couplings β1 and f1 as these

determine the little hierarchy.. As shown in section 4.2.1, gf also contributes to the

doublet self-couplings κ1 and κ2 by

∆fβκ1 =
1

16π2
[−9g⃗4

f + 8κ1g⃗
2
f ]

and

∆fβκ2 =
1

16π2
[−7g⃗4

f + 8κ2g⃗
2
f ].

Here, the order O (g4
f)-terms have a negative sign. Thus, for gf being large these

contributions become comparable to the (positive-sign) gauge contributions in βκ1

and βκ2 and may eventually dominate them such that βκ1(ΛPl) < 0 and βκ2(ΛPl) < 0.

As argued in section 3.3.1 it was the fact that these beta-functions were positive

at the Planck scale, that allowed for fulfilling the parity-breaking GW conditions.

Hence, the requirement of generating the big hierarchy sets an upper bound on the

possible values gf that are allowed in order to adjust the little hierarchy. In figure

4.2, the RG flow in the (κ+, κ1)-plain is presented with gf switched on. It reveals that
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increasing the value of gf leads firstly to deflecting the stream lines away from the

parity breaking solutions into the parity conserving solutions for small initial values

of κ1. For higher values, when gf becomes comparable to the gauge contributions,

the parameter space allowed by parity-breaking shrinks drastically and the doublet

self-couplings run into a fixpoint, which depends on the value of gf . Note that the

position of such a fixpoint can be accessed anlytically by demanding

βκ1 = 0, βκ2 = 0. (4.56)

Under the assumption that the beta-functions are approximated by neglecting the

contributions due to the intermediate doublet-bidoublet couplings and by fixing the

gauge couplings at MZ (as these become relevant at lower energies) and gf at the

Planck scale (recall its mild running), the exemplary fixpoint for gf(ΛPl) = 0.5 is

calculated to be at

κ1 ≈ 0.10, κ2 ≈ 0.09. (4.57)

It is concluded that, in order to allow for the emergence of parity breaking flat

directions and to make the procedure explained in section 3.3.1 be still applicable

to the model extended by f , gf must not be comparable to the strength of gauge

interactions. In the following analysis, it is set the upper bound gf(ΛPl) < 0.4. This

upper bound is found by demanding βκ1 = βκ2 = 0.

4.4.2 Effect on Doublet-Bidoublet Couplings: Little Hierarchy

In the previous section it was shown that, under the assumption gf(ΛPl) < 0.4, a big

hierarchy between the Planck scale and the left-right breaking scale can be obtained,

just as in the minimal model. Here, it is questioned if within the allowed parameter

space given by

0 < gf < 0.4

a little hierarchy, larger than in the case of shift symmetry alone, can be obtained

using the effect of gf on the doublet-bidoublet couplings. In section 3.3.2 it had

been that these couplings are responsable for the little hierarchy5.

In the minimal model, including shift symmetry, parity breaking was exclusively

possible in flat direction Ib as considering the scalar masses revealed that only

5The running of the bidoublet self- couplings is not significantly altered in this modified model,
as f does not couple to the bidoublet at tree-level.

72



4.4 Symmetry Breaking in the Extended Model I

this flat direction corresponded to a minimum of the potential. This was mainly

provoked by f1 ≡ 0. Here, the situation might change as f1 is generated by loop

corrections involving f and leptons. The correction generating f1 at the Planck

scale was calculated to be

∆fβf1(ΛPl) =
−4T −

f

16π2
(4.58)

with T −
f = −g⃗f T Ȳ −2

L g⃗f (cf. (4.37)). Thus, f1 is supposed to develop (negative) non-

zero values. This potentially allows for the possibility of symmetry breaking in

direction IIb (cf. section 3.3.1). For this purpose, f1 must satisfy the inequality (cf.

(3.14))

∣f1∣ > 8 max [∣λ2∣, ∣λ3∣] ⋅
κ2

v2
R

. (4.59)

Note that the right-hand side of (4.59) is effectively fixed by imposing the shift sym-

metry. It is of order O (10−5), it seems hardly possible to satisfy this inequality. Since

∆fβf1(ΛPl), given in (4.58), is highly suppressed by the smallness of the (τ−)lepton

Yukawa coupling, being of order O (10−2), f1 is expected to be very small. Making

the same linear approximation as in section 3.3.1, one finds

f1(µGW = 104 GeV) ≈βf1(ΛPl) log (µGW

ΛPl

) (4.60)

≈g2
f ⋅O (10−5) .

Thus, it seems unlikely for flat directions of type IIb to emerge. In fact, by using the

running couplings, based on the full numerical solutions of the RG group equations,

it is verified that in this modified model parity breaking occurs solely in directions

of type Ib as it was the case in the minimal model. The little hierarchy in direction

Ib given by
κ2 + κ′2
v2
R

= −β1

2λ1 − 8λ3

(4.61)

is, as in section 3.3.1, fixed due to shift symmetry except for the value of β1.

Again a linear approximation is used to estimate the value of β1 at the GW scale.

For this purpose, at the Planck scale ββ1 is given by

ββ1(ΛPl) =
−4T +

f + 9g4
2

16π2
(4.62)
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with T +
f = g⃗f T Ȳ −2

L g⃗f (cf. (4.36)). One then finds that the correction due to gf to the

value of β1 at the GW scale should be of order

β1(µGW)∣gf≠0 − β(µGW)∣gf=0

β(µGW)∣gf=0

= O(
−4T +

f (ΛPl)
9g4

2(ΛPl)
) . (4.63)

The negative sign in front of T +
f already indicates that the correction lowers the

value of (4.61), thereby enlarging the little hierarchy. Using g2(ΛPl) ≈ 0.52 and for

Y −
L (ΛPl) ≈ 0.01, this yields

β1(µGW)∣gf≠0 − β(µGW)∣gf=0

β(µGW)∣gf=0

≈ g2
f ⋅O (10−2) . (4.64)

Thus, it is expected to lower (4.61) by less than one per mill for gf ≈ 0.1. In figure

4.3 the results using the full running of the couplings are presented, where gf is

varied at the Planck scale in the allowed region of parameters and the doublet self-

couplings are fixed to κ1(µGW) = −κ2(µGW) = 0.2 with the usual µGW = 104 GW. It

reveals that the ratio (4.61) is lowered more than was naively expected. However,

the obtained little hierarchy is still not sufficiently large. The obtained value for

the right-handed scale is enlarged by about 10% compared to the value found in

the minimal model. Thus, this modified model fails to stabalize the electroweak

scale. Note however that, in principal, the contributions to the beta-functions of

the bidoublet self-couplings, β1 and f1, have the correct signs to enlarge the little

hierarchy.
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Figure 4.2: The renormalization group flow in the (κ+, κ1)-plain is plotted for various
values of gf at the Planck scale. At a value of gf(ΛPl) = 0.3 (figure 4.2(a))
the gauge couplings remain the dominant contributions and the picture
is similar to that given by vanishing gf . For increasing gf the group flow
is more and more deflected into the regime of parity conserving solutions
(cf. gf(ΛPl) = 0.4 in figure 4.2(b)). For high initial values of κ1 parity
breaking can however still be obtained. At gf comparable to the gauge
couplings (cf. gf(ΛPl) = 0.5 in figure 4.2(c)), κ1 and κ2 run into fixpoints
depending on the value of gf .
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Ib
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Figure 4.3: The little hierarchy, expressed by the ratio of the squared bidoublet
VEVs to the squared right-handed VEV, is plotted as function of gf . As
in the minimal model, type Ib flat directions remain the only solutions
to the GW conditions. The value of the Yukawa coupling gf , which
couples f to doublets to leptons, is varied in the allowed region 0 <
gf < 0.4. In this allowed parameter space it is not possible to obtain
a sufficiently large little hierarchy. The highest value of gf corresponds
to vR = 410 GeV which is by about 10% higher than the value of vR
obtained in the minimal model for the same κ1. Here, it was chosen
κ1(µGW) = −κ2(µGW) = 0.2 with µGW = 104 GW.
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Chapter 5

Extension II: Fermionic Isosinglet Color

Triplet

5.1 Introduction

In the preceding chapter a fermionic singlet was added to the model and its effect

on the renormalization group functions of the scalar couplings was studied. It was

shown that it had just little impact on the running of the doublet-bidoublet cou-

plings such that a desirable little hierarchy could not be obtained. This was due

to the fact that the contribution to the doublet-bidoublet couplings (4.35) was su-

pressed by the small lepton Yukawa couplings. This motivates, in place of a full

singlet, the introduction of a fermionic isosinglet color triplet to the model. Such

a particle representation, associating the correct B − L charge to it, would allow

for an interaction similar to (4.3), replacing leptons by quarks. As the top-quark

Yukawa coupling is much stronger than the lepton Yukawa couplings, it is expected

that introducing such a colored represention has a significantly larger effect on the

doublet-bidoublet couplings than it was the case for the singlet f . Thus, in this

chapter it will be investigated if a phenomenologically acceptable a little hierarchy

can be generated introducing a fermionic isosinglet color triplet. Note that, in the

literature, adding such colored isosinglet representations to the standard left-right

symmetric model is already discussed. By such extensions some of its naturalness

problems concerning fermion masses are addressed [33–35].

5.1.1 Definition

Given the preceding motivation a vector-like fermionic isosinglet color triplet, called

P = (PL, PR), is introduced to the minimal model. Note that this is done alterna-

tively to the singlet which was introduced in chapter 4, shift symmetry will however
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Chapter 5 Extension II: Fermionic Isosinglet Color Triplet

still be assumed. It is colored under the SU(3) and carries U(1)B−L-charge, while it

is a singlet under the SU(2)L×SU(2)R gauge subgroup. Under parity it transforms

as

PL↔ PR. (5.1)

Furthermore, it transforms trivially under the discrete Z4-symmetry. In the notation

introduced in (2.5) its quantum numbers are given by

P = (PL, PR) ∼ [(1
2
,0) + (0, 1

2
)](3,1,1, 4

3
), (5.2)

where the B − L charge is chosen such that P couples to the quarks and scalar

doublets via the following Yukawa interaction

LY uk,P = −gP iQ̄i
LχLPR − gP iQ̄i

RχRPL +H.c., (5.3)

which is in complete analogy to (4.3). The original lagrangian is then modified by

Lf = P̄ i /DP +LY uk,P , (5.4)

where the covariant derivative Dµ, according to the charge assignments (5.2), is

given by

Dµ =DP
µ ≡ ∂µ + i

2

3
g1Bµ + i

1

2
g3Gµλ

m. (5.5)

Having introduced P , in the following it will be studied how it effects the RG running

of the scalar and Yukawa couplings of the model just as it was done for the fermionic

singlet in chapter 4. Before doing so, its phenomenological requirements are briefly

discussed.

5.1.2 Phenomenological Implications

The introduction of P , which represents a charged particle, is not as straightforward

as it was the case for the the singlet representation f . Clearly, the isosinglet P has

to be hidden. For this purpose, however, P has to be sufficiently heavy. Hence, a

mass term is required. As P is an isosinglet, an explicit mass term

−P̄LMP̄R − P̄RM †P̄L (5.6)
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is clearly allowed by gauge symmetry. It does however break classical conformal

symmetry, as it introduces a scale to the model. In order to circumvent loosing scale-

invariance, alternatively to an explicit mass term one could introduce an additional

scalar singlet ϕ, which acquires a VEV above the right-handed scale. Obviously,

such VEV would not lead to symmetry breaking of the LR symmetry. However, the

introduction of such scalar singlet ϕ would lead to an enlarged potential. Besides a

∣ϕ∣4 self-coupling, any (gauge and Lorentz) invariant bilinear would form a dimension

four operator together with ∣ϕ∣2. Furthermore, also trilinear operators such as Ψ̄ΦΨ,

which did not enter the potential before due to conformal invariance, would lead to

conformal singlets together with ϕ,

ϕΨ̄ΦΨ + h.c.. (5.7)

It is clear that such a extension of the scalar sector would complicate the minimiza-

tion of the model. As introducing ϕ would require to recalculate the flat directions

of the model, this possibility is not further considered here. A third ansatz would

be to introduce the effective higher-dimensional operator,

1

Λ
(χ†

LχLP̄LPR + χ
†
RχRP̄RPL) etc., (5.8)

which would represent a mass term for χL acquiring a VEV. This possibility is

somewhat unsatisfactory as it leaves its origin completely unknown.

Thus, it is assumed here that P acquires mass via the explicit mass term (5.6.

Note that the mass term M does not contribute to the beta-functions of the scalar

couplings and thus is for the rest of the chapter not considered. It does, however,

contribute to the mass renormalization of the quarks and doublet fields. These

contributions will not be considered here.

The discussion is concluded by estimating the value of M in order to hide it from

observation. As the Yukawa coupling (5.3) mixes the isosinglet P with the up-type

quarks, assuming that χR acquires a non-vanishing VEV, one has to consider the

mass matrix in the basis of these fields,

−L ⊃ (ūiL, P̄L) ⋅
⎛
⎜
⎝

κY +ij
Q +κ′Y −ij

Q
√

2
0

vRg
j
P M

⎞
⎟
⎠
⋅
⎛
⎝
ujR
PR

⎞
⎠
+ h.c.. (5.9)
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Assuming that P couples exclusively to top quarks this becomes

(t̄L, P̄L) ⋅
⎛
⎝

mt 0

vRgtP M

⎞
⎠
⋅
⎛
⎝
tR

PR

⎞
⎠
+ h.c., (5.10)

which can be diagonalized to give the eigenstates P with corresponding mass M and

the eigenstate

M −mt√
v2
R + (M −m)2

t + vRgtP√
v2
Rg

t2
P + (M −m)2

P (5.11)

(5.12)

which corresponds to the top mass. Thus, if one demands for instance to limit the

contribution of P to the top quark (the state with mass mt) to 1% it has to be

vRgtP√
v2
Rg

t2
P + (M −m)2

≲ 1%. (5.13)

This is satisfied for M ≳ 100 ⋅ vRgtP .

5.2 Contributions to Renormalization Group

Functions

The diagrams emerging due to the introduction of the isosinglet representation

P are completely analogous to those which have been ecountered in chapter 4.

Most of them are obtained by simple substitution of lepton-propagators by quark-

propagators, lepton Yukawa couplings by quark Yukawa couplings etc.. There are,

however, some subtleties which will be mentioned here briefly. First of all, note that

fermion loops will come here with an extra color factor of 3. Secondly, there will be

no contribution to κ̄2 due to the vector-nature of P. Furthermore, the wavefunction

renormalization of P and the vertex renormalization of gP will involve additional

corrections due to gauge interactions as P is charged. For this reason, P will also

contribute to the running of g3 and g1.

80



5.2 Contributions to Renormalization Group Functions

5.2.1 Doublet Self-Couplings

Vertex Corrections

In close analogy to section 4.2.1, the isosinglet P contributes to the doublet self-

coupling κ̄1, which was defined in (4.14), by diagrams of the types

PR/L

PR/L

χ†
L/R

χ
L/R

χ†
L/R

χ
L/R

and

QL/R

QL/R

χ†
L/R

χ
L/R

χ†
L/R

χ
L/R

, (5.14)

where the crossing fermion lines correspond to QL/R and PR/L in the first and second

diagram respectively. As its right- and left-handed field components represent distint

degrees of freedom, in contrast to the fermionic singlet which satisfied the Majorana

condition (4.2), P does however not contribute to the coupling κ̄2. Accounting for

the color factor, from (4.21) one can read off

∆P δκ̄1 =
−16g⃗4

P

16π2

1

ε
and ∆P δκ̄2 = 0. (5.15)

This, using equation (4.14), in terms of κ1 and κ2 becomes

∆P δκ1 =
−16g⃗4

P

16π2

1

ε
and ∆P δκ2 =

−16g⃗4
P

16π2

1

ε
. (5.16)

Scalar Doublet Wavefunction Correction

In the same way, including the color factor, with regard to section 4.2.1 one finds

the scalar doublet wavefunction correction

Q

P

Ψ Ψ =
color factor©

3 (−1)
±

fermion loop

(−i)2∑
i

giPg
i
Pµ

ε∫
ddk

(2π)dTr [ i/k
k2 + iε ⋅

i(/p − /k)
(p − k)2 + iε]

= UV finite + g⃗2
P

i12π2

(2π)4

1

ε
p2. (5.17)
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And thus the contribution to the wavefunction counterterm δZΨ is

−ip2∆P δZΨ = −ip2g⃗2
P

12

16π2ε
. (5.18)

Contribution to Beta-functions

Given the results (5.15) and (5.18) the contribution to the beta-function of the

doublet self-couplings yields

∆Pβκ1 = DgP±
=1/2

∂∆P δκ
(1)
1

∂giP
giP − 2κ1 DgP±

=1/2

∂Z
(1)
Ψ

∂giP
giP − DgP±

=1/2

∆P δκ
(1)
1

= 3

2
∆P δκ

(1)
1 − 2κ1∆P δZΨ

= 1

16π2
[−24g⃗4

P + 24κ1g⃗
2
P ] (5.19)

∆Pβκ2 = DgP±
=1/2

∂∆P δκ
(1)
2

∂giP
giP − 2κ2 DgP±

=1/2

∂Z
(1)
Ψ

∂giP
giP − DgP±

=1/2

∆P δκ
(1)
2

= 3

2
∆P δκ

(1)
2 − 2κ2∆P δZ

(1)
Ψ

= 1

16π2
[−24g⃗4

P + 24κ2g⃗
2
P ]. (5.20)

5.2.2 Doublet-Bidoublet Couplings

Also here, the contributions to the doublet-bidoublet couplings are obtained in com-

plete analogy to section 4.2.2. The contributing diagrams are

Q

P Q

Q

Ψ Φ

Ψ Φ

and P Q

Ψ Φ

Ψ Φ

, (5.21)
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where in the second diagram the crossing lines are given by quarks. Again account-

ing for the color factor, from (4.35), one obtains for the counterterms1

∆P δβ1 =
−12T +

P

16π2ε
(5.22a)

∆P δf1 =
−12T −

P

16π2ε
(5.22b)

∆P δβ2 =
6T

{}

P

16π2ε
(5.22c)

∆P δβ3 =
3T

[]

P

16π2ε
(5.22d)

(5.22e)

with

T +
P ≡ g⃗TP (Ȳ +2

Q + Ȳ −2
Q )g⃗P (5.23a)

T −
P ≡ g⃗TP (Ȳ +2

Q − Ȳ −2
Q )g⃗P , (5.23b)

T
{}

P ≡ g⃗TP{Ȳ +
Q , Ȳ

−
Q}g⃗P , (5.23c)

T
[]

P ≡ g⃗TP [Ȳ +2
Q , Ȳ −2

Q ]g⃗P . (5.23d)

Together with the contribution to the doublet wavefunction renormalization (5.18)

one obtains P ’s contribution to the beta-function of β1

∆Pββ1 =
1

16π2
(−12T +

P + 12β1g⃗
2
P ) (5.24)

In the same way one finds for f1:

∆Pβf1 =
1

16π2
(−12T −

P + 12f1g⃗
2
P ) (5.25)

And for the Z4-breaking terms one finds

∆Pββ2 =
1

16π2
(6T

{}

P + 12β2g⃗
2
P) (5.26)

1For completeness, also the Z4 breaking terms are given.
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and

∆Pββ3 =
1

16π2
(3T

[]

P + 12β3g⃗
2
P) . (5.27)

5.2.3 Standard Quark Yukawa Couplings

The contribution to the wavefunction counterterm of the quarks is given by

p
k →

← k − p
Qi
aA Qj

bB = UV finite − iδBAγµbag
j
Pg

i
Ppµ

1

16π2ε
(5.28)

Thus, gP contributes to the quark wavefunction renormalization by

i/p∆P δZ
ji
Q = i/p

gjPg
i
P

16π2ε
. (5.29)

Inserting this into the defining expression of the Yukawa coupling β-function (??)

one obtains the contribution

∆PβY ±
Q
ij = −1

2
(Y ±

Q∆P δZ
(1)
Q )ij = −1

16π2

1

2
Y ±
Q
ikgkPg

j
P . (5.30)

5.2.4 Gauge Couplings

In contrast to the fermionic singlet discussed in chapter 4, the isosinglet P is charged

under the SU(3)-color and the U(1)B−L. Hence, it affects the running of the gauge

couplings g3 and g1. At one-loop order the gauge coupling β-functions are given by

βg = −
g3

(4π)2

⎡⎢⎢⎢⎣
11

3
Cadj −

2

3
∑
f

Cf −
1

6
∑
h

Ch
⎤⎥⎥⎥⎦
, (5.31)

where Cadj, Cf and Ch denote the Dynkin indices of the adjoint representation,

the representation of the left-handed Weyl fermions and the representation of the

(real) Higgs field respectively (see e.g. [36]). Since P is just like the quarks in the
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Figure 5.1: The running of the gauge couplings at one-loop is shown. The green,
yellow and purple lines correspond to the SU(3), SU(2) and U(1) gauge
couplings respectively. While the continous lines represent the running
in the minimal model, the dashed lines give the couplings which are
modified by the introduction of the isosinglet color triplet representation
P . As P is a singlet under the SU(2), the running of g2 is not altered.

fundamental representation regarding the SU(3)-color it contributes

∆Pβg3 = −
g3

3

(4π)2
[−2

3
2CP ] =

2

3

g3
3

(4π)2
(5.32)

to the β-function of g3.

With regard to the U(1) it carries a charge of B − L = 4
3 and therefore modifies

the β-function of g1 by

∆Pβg1 = −
g3

1

(4π)2
[−2

3
2CP ] =

16

9

g3
1

(4π)2
. (5.33)

Note the factor of 3 stemming from the color degrees of freedom. In figure 5.1, the

running of the gauge couplings in the minimal and extended model, respectively, is

shown.
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5.3 Renormalization

5.3.1 Counterterm Lagrangian

Finally, the coupling gP will be renormalized. The wavefunction renormalization ZP

is given by

PB = Z
1
2

PP. (5.34)

The renormalized coupling gP is then given by

gipB = (Z− 1
2

Q )ij [gjP + δg
j
P ]µ

ε
2Z

− 1
2

Ψ Z
− 1

2

P , (5.35)

where gPBi and δgiP denote the bare coupling and the counterterm respectively. The

counterterm lagrangian corresponding to P then is

δLP = P̄ i /D(δZP )P − µ ε
2 Q̄i

Lδg
i
PχLPR − µ

ε
2 Q̄i

Rδg
i
PχRPL + h.c.. (5.36)

In the following, first the vertex counterterm δgP will be determined. In a second

step the wavefunction counterterm δZP will be calculated and finally the β-function

corresponding to gP will be derived.

5.3.2 Vertex Renormalization

There are five diagrams contributing to the gP renormalization:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

, , , ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(5.37)

Thus, the vertex renormalization is given by

UV finite = + S12 + S13 + S14

+ S15 + S16 + , (5.38)
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where the symmetry factors are given by Si = 1/3! ⋅ 6 = 1.

The divergent parts of the diagrams S12, S13 and S15 can be obtained from the

analogous diagrams (4.48) in the case of the fermionic singlet accounting for the

correct U(1)B−L charge of the quarks and P repectively. They yield

+ + = UV finite+iµ ε
2 giP δbaδBA

1

16π2ε
(−g

2
1

2
ξ1 −

3g2
2

4
ξ2) .

(5.39)

To calculate the diagrams S14 and S15 the same momentum assignments as in (4.47)

will be used. For the diagram S14 is then given by

(5.40)

= − µ 3ε
2
g2

1

9
giP δBA∫

ddk

(2π)d
(γµ/k′′/k′γσ)ba (ηµν − (1 − ξ)kµkνk2 )

(k′′2 + iε)(k′2 + iε)(k2 + iε)

= − µ 3ε
2
g2

1

9
giP δBA(γµγνγργσ)ba∫

ddk

(2π)d
k′′ν k

′
ρ (ηµσ − (1 − ξ1)kµkσk2 )

(k′′2 + iε)(k′2 + iε)(k2 + iε)

= − µ 3ε
2
g2

1

9
giP δBA(γµγνγργσ)ba∫

ddk

(2π)d
(kν + p2ν + p3ν)(kρ + p2ρ) (ηµσ − (1 − ξ1)kµkσk2 )

(k + p2 + p3)2(k + p2)2k2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=UV finite+ iπ2

(2π)4µε (
1
2ε
ηνρηµσ−(1−ξ1)

1
12ε

(ηµνηρσ+ηµρηνσ+ηµσηνρ)

= UV finite − iµ ε
2
g2

1

9
giP δBAδba

1

16π2ε
(6 + 2ξ1) (5.41)

And for the diagram S16 one finds

(5.42)
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= − µ 3ε
2 g2

3g
i
P δBA

1

4
(λcλc)lk(γµγνγργσ)ba∫

ddk

(2π)d
k′′ν k

′
ρ (ηµσ − (1 − ξ1)kµkσk2 )

(k′′2 + iε)(k′2 + iε)(k2 + iε)

= − iµ ε
2 g2

3g
i
P δBAδba

1

4
(λcλc±

= 16
3

)lk
1

16π2ε
(6 + 2ξ3)

= − iµ ε
2 g2

3g
i
P δBAδbaδlk

1

16π2ε
(8 + 8

3
ξ3) (5.43)

As it was already noted in chapter 4, the gauge parameters ξ1, ξ2 and ξ3 are not

physical, but are kept here as a consistency check.

According to (5.36), the vertex counterterm δgiP is defined as

= −iµ ε
2 δBAδbaδlkδg

i
P (5.44)

and therefore yields

δgiP = − 1

16π2ε
giP [(−2

3
− 13

18
ξ1)g2

1 −
3

4
ξ2g

2
2 + (−8 − 8

3
ξ3)g2

3] . (5.45)

5.3.3 Wavefunction Renormalization

The wavefunction renormalization of P is given by

UV finite = +S17 +S18 +S19 + ,

(5.46)
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where the symmetry factors are given by Si = 1/2! ⋅ 2 = 1. The U(1) contribution

yields

p − k →

k →
= (−iµ ε

2 )2(γµγνγρ)ba (
2g1

3
)

2

∫
ddk

(2π)d
(pν − kν) (ηµρ − (1 − ξ1)kµkρk2 )

(p − k)2k2

(5.47)

= UV finite + (−iµ ε
2 )2 (2g1

3
)

2 iπ2

(2π)4µε
1

ε
(−2/pbaξ1) (5.48)

= UV finite + iµ ε
2 /p

1

16π2ε

8g2
1

9
ξ1 (5.49)

And, analogously, the gluon contribution gives

p − k →

k →
= (−iµ ε

2 )2(γµγνγρ)ba (
λc

2

λc

2
)
lk

g2
3 ∫

ddk

(2π)d
i(pν − kν)

(p − k)2 + iε
−i

k2 + iε (ηµρ − (1 − ξ3)
kµkρ
k2

)

= UV finite + iµ ε
2 /pba

1

16π2ε

8g2
3

3
ξ3 (5.50)

And, finally, the Yukawa coupling gP contributes

k →

p − k →
= (−i)2(µ ε

2 )2δBAδAB∑
i

(giP )2∫
ddk

(2π)d
i/kba
k2 + iε

i

(k − p)2 + iε

= µε4γµba∑
i

(giP )2∫
ddk

(2π)d
kµ

k2(p − k)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=UV finite+ iπ2

(2π)4µε
1
ε
pµ

= UV finite + iµ ε
2 g⃗P

2γµbapµ
4

16π2ε
(5.51)
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Thus, the wavefunction counterterm that is defined as

= i/pµ
ε
2 δZP (5.52)

is given by

δZP =∶ δZ
(1)
P

ε
= 1

16π2ε
(−8g2

1

9
ξ1 −

8

3
g2

3ξ3 − 4g⃗P
2) . (5.53)

5.3.4 Beta-Function

In the preceding subsections the wavefunction renormalization of P and the vertex

renormalization have been performed. Thereby, having found the counterterms, all

the ingredients needed to derive the β-function of gP have been collected. The

β-function is given by:

βgiP = 1

2

⎛
⎜
⎝
∑
VA

⎡⎢⎢⎢⎢⎢⎣

∂δgP i
(1)

∂VA
− 1

2

∂δZ
(1)
f

∂VA
− 1

2
gP

j
∂(δZ(1)

Q )ji
∂VA

− 1

2
gP

i
∂δZ

(1)
Ψ

∂VA

⎤⎥⎥⎥⎥⎥⎦
VA − δgP i

(1)⎞⎟
⎠

(5.54)

where VA runs over all couplings including giP and the upper index (1) represents

the coefficient multiplying 1/ε in the Laurent expansion. Inserting the counterterms

then gives:

βgiP = δgP i
(1) − 1

2
gP

i(δZ(1)
P + δZ(1)

Ψ ) − 1

2
δZ

(1)ij
Q gP

j

= 1

16π2
[gP i(8g⃗P 2 − 17

12
g2

1 −
9

8
g2

2 − 8g2
3) + ((Ȳ +2

Q + Ȳ −2
Q )g⃗P)

i
− 1

2
g⃗P

2gP
i] (5.55)

This result concludes the renormalization due to gP . As for the last chapter, all

results obtained here are collected in the appendix A.2.3.
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Figure 5.2: The running of the gP is plotted for the initial values gP (ΛPl) = 0.07
(thick line) , gP (ΛPl) = 0.3 (thin line) and gP (ΛPl) = 0.7(dashedline).
Just as the coupling gf in the case of the fermionic singlet, gP exhibits
a mild running, as its beta-function is proportional to gP .

5.4 Symmetry Breaking in the Extended Model II

5.4.1 Metastability Revisited

As the introduction of the isosinglet representation affects the running of the gauge

couplings g3 and g1 (see section 5.2.4), the discussion of metastability (see section

3.2) has to be revisited. Qualitatively the effect is not easily seen since the beta-

functions of the bidoublet self-couplings λ1, λ2 and λ3 do not depend directly on

g3 and g1 at one-loop2. It is a two-loop effect. The discussion, here, is thus based

on the numerical solution of the beta-functions. In figure 5.3 the modified running

of the bidoublet self-couplings is shown and in figure 5.4 the stability conditions

in question are depicted in presence of the lower bound given by the requirement

of metastability. It reveals that the situation worsened but not drastically. The

potential still resides in the metastable regime.

2The bidoublet is not colored and does not carry U(1) charge.
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Figure 5.3: The running of the bidoublet self-couplings, λ1 (purple line), λ2 (green
line) and λ3 (yellow line). The continous lines correspond to the minimal
model while the dashed lines represent the running in presence of the
isosinglet P . These corrections are two-loop effects as the bidoublet is
solely charged under the SU(2)L × SU(2)R, under which P is a singlet.

5.4.2 Effect on Doublet Self-Coupling

The effect on the doublet self-couplings κ1 and κ2 is discussed in complete analogy

to the case of the fermionic singlet (see section 4.4.1). The contribution of gP to the

doublet self-couplings is essentially the same as in the case of the singlet f ,

∆Pβκ1 =
1

16π2
[−24g⃗4

P + 24κ1g⃗
2
P ] (5.56)

∆Pβκ2 =
1

16π2
[−24g⃗4

P + 24κ2g⃗
2
P ]. (5.57)

It differs slightly due to color factors and the vector-nature of P . The signs and

orders of magnitude are however identical. Thus, as in section 4.4.1, there is an

upper bound for gP which, if crossed, leads to κ1 and κ2 run into parity conserving

solutions first and finally leads to the emergence of fixpoints that correspond to

vanishing doublet VEVs. Above this upper bound the gP -contributions in (5.56)

dominate the gauge contributions, it can roughly be estimated by demanding

βκ1(max[gP ])∣κ1=κ2=0 = 0, βκ2(max[gP ])∣κ1=κ2=0 = 0. (5.58)
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UNSTABLE
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Figure 5.4: The quantities λ1+4λ2 (purple line) and λ1−4λ3 (green line) are plotted
in the model including the isosinglet P . Being above the lower bound
given by λ1 ± 4λ2,3 = −0.015 it is ensured that the low-energy vacuum of
the model is metastable in the sense that its decay time is greater than
the age of the universe (cf. figure 3.4).

This leads to max[gP ] ≈ 0.25. Below this upper bound, however, a big hierarchy can

be generated. This is illustrated in figure 5.5. As the O (g4
P ) contributions enter the

beta-functions with coefficients greater than in the case f , the allowed parameter

region for gP is smaller. Therefore, gP is constraint to be within the region

0 < gP < 0.25, (5.59)

which, as will turn out subsequently, is sufficiently large to generate the little hier-

archy.

5.4.3 Effect on Doublet-Bidoublet Couplings: Little Hierarchy

As in section 4.4.2, here it is studied which flat directions emerge under variation

of gP (ΛPl) within the allowed region 0 < gP < 0.25. This region has been obtained

previously by the requirement that only parity-breaking solutions are accepted. Fur-
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thermore, it is studied which little hierarchies they correspond to.

The coupling gP has a much greater impact on the doublet-bidoublet couplings

β1 and f1 than gf had in the previous chapter. This is due to the corresponding

loop diagrams involving quarks instead of leptons, which was the motivation for

introducing this represention. For convenience the contributions to ββ1 and βf1 are

reproduced here,

∆Pββ1 =
1

16π2
(−12T +

P + 12β1g⃗
2
P )

∆Pβf1 =
1

16π2
(−12T −

P + 12f1g⃗
2
P )

with

T +
P = g⃗TP (Ȳ +2

Q + Ȳ −2
Q )g⃗P and T −

P = g⃗TP (Ȳ +2
Q − Ȳ −2

Q )g⃗P .

In contrast to the case of the singlet f , it is expected that for sufficiently large

gP (ΛPl) a flat direction of type IIa emerges3, while in the preceding chapter the

only flat direction was of type Ib. In section 4.4.2 it has been argued that, for this

to happen, f1 has to satisfy the inequality,

∣f1∣ > 8 max [∣λ2∣, ∣λ3∣] ⋅
κ2

v2
R

. (5.60)

Note that, although this inequality has been considered with regard to type IIb

flat directions, it is applicable here as types IIa and IIb are essentially connected

by f1 ↔ −f1, which does not alter this condition. It can be shown, using a linear

approximation as in (4.4.2), that (5.60) is indeed satisfied within the allowed values

for gP . Note that once the flat direction of type IIa emerges, the type Ib flat direction

does not correspond to a minimum anymore. Hence, the situation is as follows. For

small values of gP (ΛPl) symmetry breaking takes place in flat directions of type Ib

until gP crosses a threshold after which the breaking is along type IIa flat direction.

The little hierarchies for these directions are expressed by

κ2 + κ′2
v2
R

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−β1
2λ1−8λ3

for flat direction Ib

f1−2β1
4λ1

for flat direction IIa

.

3As in the case of quarks Ȳ +2Q ≠ 0 and Ȳ −2Q = 0, one has βf1(ΛPl) < 0, which leads to f1 > 0. Thus,

here the emergence of flat directions of type IIa are discussed, rather than type IIb directions.
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As in the case of the singlet f , for direction Ib the little hierarchy is expected to

increase, which corresponds to a decreasing expression above, when gP becomes

larger. Since the contribution ∆Pββ1(ΛPl) compensates the positive gauge contri-

butions in ββ1 , the generation of β1, which is not present at ΛPl, is retarded. In

contrast, for type IIa flat directions the little hierarchy is essentially given by the

difference f1 − 2β1. One can use the linear approximation approach to estimate at

which value of gP this difference becomes small. As this difference is zero at the

Planck scale, it remains small if its beta-function vanishes at ΛPl, too. It is made

the ansatz

(βf1 − 2ββ1) ∣µ=ΛPl
= 0. (5.61)

This leads to

(−12T −
P − 2(−12T +

P +
9g4

2

16
))∣

µ=ΛPl

= 0, (5.62)

which is satisfied for

g2
P (ΛPl) =

3

128

g4
2(ΛPl)

Y +2
Q (ΛPl)

(5.63)

and one finds

gP (ΛPl) ≈ 0.077. (5.64)

This value clearly is in the allowed region of gP . Thus, it can be expected that

by adjusting gP one can generate a little hierarchy as large as desired. The results

obtained by solving the full system of beta-functions, are depicted in figure 5.6. It

reveals that the estimated value of gP leading to large little hierarchies is in good

agreement with the result taking into account the full running of the couplings. Note

that f1 − 2β1 < 0 corresponds to the symmetry being broken in direction IIc. In this

direction the only right-handed doublet acquires a VEV such that only the SU(2)R
is broken, while the SM gauge group remains unbroken.
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Figure 5.5: In analogy to fig. 4.2, the renormalization group flow of the doublet self-
couplings κ1 and κ+ = κ1+κ2 is shown in presence of the Yukawa coupling
gP , which couples P to quarks and leptons. For values of gP below
gP (ΛPl) = 0.25 (cf. fig. 5.5(a)) the running of κ1 and κ2 is dominated
by gauge contributions, allowing for the emergence of parity breaking
GW-solutions in a large fraction of parameter space. For gP ≳ 0.25,
contributions due to quark-P loops dominate, driving the couplings into
fixpoint away from the emergence of neither parity breaking nor parity
conserving flat directions.
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Figure 5.6: The little hierarchy is plotted as a function of the Yukawa coupling gP
at ΛPl. The plot is split into 3 regions corresponding to flat directions
of types Ib, IIa and IIc. For 0 < gP ≲ 0.044, symmetry breaking occurs
exclusively in type Ib flat directions. The decreasing ratio (κ2 + κ′2)/vR
corresponds to an increasing little hierarchy, i.e. an increasing vR when
the bidoublet VEVs are fixed. For 0.044 ≲ gP ≲ 0.073 the symmetry is
broken along flat directions of type IIa. In this region the little hierarchy
can be adjusted to arbitrarily high values by appropriate choice of gP .
For 0.073 ≲ gP ≲ 0.10 the bidoublet VEVs vanish, the LR symmetry is
broken to the SM which remains unbroken.
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Chapter 6

Conclusions and Outlook

In this diploma-thesis, the radiative symmetry breaking of the LR symmetric model

with a minimal Higgs sector has been considered in the presence of a shift symmetry

at the Planck scale ΛPl. It has been shown that in the reduced parameter space,

given by the doublet self-couplings κ1 and κ2, a large hierarchy between the breaking

scale of LR symmetry, given by vR, and ΛPl can be obtained, as the breaking of the

LR symmetry is triggered by the running of these couplings.

At the same time, however, the running of the bidoublet self-couplings as well

as the running of the doublet-bidoublet couplings, is essentially fixed by imposing

the shift symmetry in the minimal model. This is due to the fact that κ1 and

κ2 do not contribute to their beta-functions at the one-loop level. As the little

hierarchy between the electroweak scale and vR is set by the relative strength of

these couplings, it is nearly fixed by the shift symmetry. With the electroweak

scale being given, one obtains a right-handed scale of order vR = 500 GeV, which

is clearly excluded by experiment. Furthermore, similar to the SM, the vanishing

bidoublet self-couplings at ΛPl leads to the potential minimum being metastable.

Under consideration of the tunneling decay probability of the vacuum, it could be

shown, however, that the model is still consistent as the decay time exceeds the age

of the universe.

In order to find a way to extend the little hierarchy to phenomenologically ac-

ceptable values, two extensions of the minimal model have been considered.

In chapter 4, a fermionic singlet, called f , has been added to the model. Via its

Yukawa coupling to scalar doublets and leptons, such a representation contributes,

on the one hand, to the running of the doublet self-couplings and, on the other hand,

to the running of the intermediate doublet-bidoublet couplings. As the contributions

to κ1 and κ2 have the effect of deflecting these couplings away from parity breaking

solutions, an upper bound for suitable couplings of this additional representation is

found. Although its contribtions to the doublet-bidoublet couplings have the correct
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signs to lower the little hierarchy, the obtained effect is marginal, as the contributing

loop-diagrams are suppressed by the smallness of the lepton Yukawa couplings.

This motivates the introduction of a colored isosinglet P in section 5. It con-

tributes essentially by the same diagrams under the replacement of leptons by

quarks. It can be shown that by an appropriate choice of its Yukawa coupling,

a arbitrarily large little hierarchy can be generated.

To introdruce this representation consistently an explicit massterm is added to

the lagrangian. Thus, conformal symmetry is explicitly broken at the classical level.

It remains however a symmetry of the scalar potential. To circumvent this unsat-

isfactory aspect, one could alternatively introduce a scalar singlet to the model,

which acquires a non-vanishing expectation value. As this would lead to an en-

larged scalar potential, this possibility is not appreciated. An interesting task for

future work could, however, be to consider the radiative symmetry breaking in the

minimal classically conformally invariant model with triplet Higgs fields instead of

doublets. Here, it has been the fact that the additional fermionic representations

coupled standard fermions to doublets, which led to the possibility of affecting the

doublet-bidoublet couplings. In the triplet model, where the role of the doublets

χL/R is taken by the triplets ∆L/R, these couplings are naturally present. They are

given by the Majorana couplings

L ⊃ i (LiTCτ2∆LL
j +RiTCτ2∆RR

j) + h.c.. (6.1)

The beta-functions of the minimal model with triplets are known [37], thus the

only part missing for the analysis of radiative symmetry breaking in this model are

the Gildener-Weinberg conditions. As the potential of the triplet model includes

more couplings than the doublet model, it is not clear if the GW conditions can be

obtained analytically, even under consideration of a simplifying Z4 symmetry.
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Appendix A

Renormalization Group Functions

A.1 Derivation of General Formula

Here, a derivation of the β-function for a coupling Q in the MS-Scheme is given. The

treatment, which is presented here, is found in [38]. For simplicity, however, here it

is assumed that the couplings of the model including Q be scalar quantities. For the

complete treatment, involving couplings of general tensorial structure, consult [38].

Let Q be a quantity that represents the strength of the coupling between the fields

φi with i ∈ {1, . . . ,N}:

L ⊃ Q∏
i

φnii (A.1)

Then, the bare coupling QB and the renormalized coupling Q are related by

QB = (Q + δQ)µDQε∏
i

Z
ni
2

φi
(A.2)

where the Zφi represent the wavefunction renormalization of the φi according to the

usual definition

φiB = Z− 1
2

φi
φi (A.3)

and µDQε occurs due to dimensional regularization with DQ related to the dimension

of the operator in (A.1) such that QB is a dimensionless quantity.

The β-function of a coupling Q is defined as its logarithmic derivative with respect

to µ,

βQ = µdQ

dµ
. (A.4)

As the bare coupling QB is energy independent and the counterterm δQ and the

wavefunction renormalization terms do only depend on µ implicitly via the depen-

dence on Q and, in general, on the other couplings of the model, denoted by {VA},
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the logarithmic derivative with respect to µ acting on equation (A.2) yields

0 = (βQ +
∂δQ

∂VA
βVA)∏

i

Z
ni
2

φi
+ (Q + δQ)(DQε∏

i

Z
ni
2

φi
+∏

i

ni
2
Z

ni
2
−1

φi

∂Zφi
∂VA

βVA) (A.5)

where the sum over the couplings VA includes Q. In order to obtain an expression

for βQ which only depends on the counterterms δQ and δVA, recall that in the MS-

scheme the counterterms subtract pure poles in ε, using dimensional regularization.

This means that the counterterms can be expanded as

δQ = δQ
(1)

ε
+O (ε−2) (A.6)

δVA = δV
(1)
A

ε
+O (ε−2) . (A.7)

The same holds for the field renormalization δZφi :

Zφi = 1 + δZφi = 1 +
δZ

(1)
φi

ε
+O (ε−2) (A.8)

The β-function, however, must be finite for ε→ 0. Thus, one can make the ansatz

βQ = β(0)
Q + β(1)

Q ε + . . . + β(n)
Q εn (A.9)

βVA = β(0)
VA

+ β(1)
VA
ε + . . . + β(n)

VA
εn. (A.10)

Inserting these expansions into equation (A.5) one can determine the β-function by

equating the coefficients for every order in ε. For this purpose, note that from (A.8)

it follows
∂Zφi
∂VA

=
∂δZ

(1)
φi

∂VA
ε−1 +O (ε−2) . (A.11)

Beginning with εn, one therefore finds that the only term of order εn on the right-

hand side of (A.5) is β
(n)
Q . Thus, it is

β
(n)
Q = 0. (A.12)

As for every coupling VA there is an equation similar to (A.5), it holds generally

β
(n)
VA

= 0. (A.13)
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Using this argument successively leads to

β
(k)
Q = β(k)

VA
= 0 for k ⪖ 2. (A.14)

As there is an extra factor of ε multiplying DQ on the right-hand side of (A.5) for

k = 1 one finds instead

β
(1)
Q = −DQQ (A.15)

and, again, by analogy

β
(1)
VA

= −DVAVA (A.16)

Using these results one obtains for zeroth order in ε

0 = β(0)
Q +β(1)

Q ∑
i

ni
2
δZ

(1)
φi
+∂δQ

(1)

∂VA
β

(1)
VA
+QDQ∑

i

ni
2
δZ

(1)
φi
+Q∑

i

ni
2

∂δZ
(1)
φi

∂VA
β

(1)
VA
+δQ(1)DQ

(A.17)

By inserting the previous results one finally arrives at

β
(0)
Q =DV

∂δQ(1)

∂VA
VA −DQδQ

(1) −DQ∑
i

ni
2
QδZ

(1)
φi

−Q∑
i

ni
2

∂δZ
(1)
φi

∂VA
VA (A.18)

As βQ
ε→0ÐÐ→ β

(0)
Q , equation (A.18) represents the beta-function of Q in d = 4 dimen-

sions. It should be emphasized that in (A.18) the summation over the couplings VA

includes Q.

A.2 Collection of β-Functions

Here, the beta-functions of the model are listed. Furthermore, their modifications

due to the introduction of a fermionic singlet and a fermionic isosinglet color triplet

are collected.
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A.2.1 Minimal LR-symmetric Model

The one-loop beta-functions of the minimal model have been calculated by [6]. The

scalar and Yukawa coupling beta-functions are

ββ1 =
1

256π2
[−4β1 (−8β1 + 6g2

1 + 27g2
2 − 2(20κ1 + 4κ2 + 40λ1 + 32λ2 − 32λ3 + T2))

+ 24f 2
1 + 9g4

2] (A.19a)

βf1 =
f1

64π2
[16β1 − 6g2

1 − 27g2
2 + 8κ1 + 8κ2 + 16(λ1 − 4λ2) + 64λ3 + 2T2] (A.19b)

βκ1 =
1

512π2
[κ1(−96g2

1 − 144g2
2 + 576κ1 + 384κ2) + 192κ2

2 + 256β2
1 + 128f 2

1

+ 24g4
1 + 12g2

1g
2
2 + 9g4

2] (A.19c)

βκ2 =
1

512π2
[κ2(−96g2

1 − 144g2
2 + 512κ1 + 384κ2) + 128f 2

1 + 12g2
1g

2
2 + 9g4

2] (A.19d)

βλ1 =
1

128π2
[λ1(−72g2

2 + 256(λ1 + λ2 − λ3) + 8T2) + 1024(λ2
2 + λ2

3) + 32β2
1+

+ 8f 2
1 + 9g4

2 − 2T4] (A.19e)

βλ2 =
1

512π2
[λ2(−288g2

2 + 768λ1 + 3072λ2 + 1024λ3 + 32T2) − 8f 2
1 + 3g4

2 + 2T4]

(A.19f)

βλ3 =
1

256π2
[λ3(−144g2

2 + 384λ1 − 512λ2 − 1536λ3 + 16T2) + 4f 2
1 − 3g4

2 − T4] (A.19g)

βY −
L
= 1

64π2
[(−6g2

1 − 9g2
2)Y −

L + Y −
L T2 + Y −

L T2 + 4Y +
L

3 (A.19h)

βY +
Q
= 1

64π2
[(−2

9
g2

1 − 9g2
2 − 32g2

3)Y +
Q + Y +

Q T2 + 4Y +
Q

3], (A.19i)

where it is used

T2 = Tr[Y −
L

2 + 3Y +
Q

2] (A.20a)

T4 = Tr[Y −
L

4 + 3Y +
Q

4] (A.20b)

And the beta-functions of the gauge couplings are

βg1 = 3
g3

1

16π2
(A.21a)

βg2 =
17

6

g3
1

16π2
(A.21b)

βg3 = −7
g3

1

16π2
(A.21c)
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A.2.2 Fermionic Singlet

By introduction of the fermionic singlet, discussed in chapter 4, the beta-functions

of the model are modified by

∆fββ1 =
1

16π2
(−4T +

f + 4β1g⃗
2
f) (A.22a)

∆fβf1 =
1

16π2
(−4T −

f + 4f1g⃗
2
f) (A.22b)

∆fβκ1 =
1

16π2
[−9g⃗2

f ] + 8κ1g⃗
2
f (A.22c)

∆fβκ2 =
1

16π2
[−7g⃗2

f ] + 8κ1g⃗
2
f (A.22d)

with T +
f = g⃗f T (Ȳ +2

L + Ȳ −2
L )g⃗f and T −

f = g⃗f T (Ȳ +2
L − Ȳ −2

L )g⃗f . And the beta-function

corresponding to the Yukawa coupling gf is

βgf =
1

16π2
(−7

2
g⃗2
fg

i
f −

3

4
g2

1g
i
f −

9

8
g2

2g
i
f) + ((Y +2

L + Y −2
L )g⃗f)

i
(A.23)

Note that in the case of a full singlet the running of the gauge couplings is not

altered.

A.2.3 Fermionic Isosinglet Color Triplet

The introduction of the isosinglet representation, discussed in chapter 5, leads to

the modifications

∆Pββ1 =
1

16π2
(−12T +

P + 12β1g⃗
2
P ) (A.24a)

∆Pβf1 =
1

16π2
(−12T +

P + 12β1g⃗
2
P ) (A.24b)

∆Pβκ1 =
1

16π2
[−24g⃗2

P ] + 24κ1g⃗
2
P (A.24c)

∆Pβκ2 =
1

16π2
[−24g⃗2

P ] + 24κ1g⃗
2
P (A.24d)

with T +
P = g⃗TP (Ȳ +2

Q + Ȳ −2
Q )g⃗P and T −

P = g⃗TP (Ȳ +2
Q − Ȳ −2

Q )g⃗P , and since the isosinglet is

colored and carries U(1)-charge,

∆Pβg1 =
16

9

g2
3

16π2
(A.24e)
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∆Pβg3 =
2

3

g2
3

16π2
(A.24f)

And the beta-function for gP is

gP = 1

16π2
[gP i(8g⃗P 2 − 17

12
g2

1 −
9

8
g2

2 − 8g2
3) + ((Ȳ +2

Q + Ȳ −2
Q )g⃗P)

i
− 1

2
g⃗P

2gP
i] (A.25)
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