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Abstract

The coinciding form and meaning similarity of cognates, e.g. ‘flamme’ (French), ‘Flamme’ (German), ‘vlam’ (Dutch), meaning
‘flame’ in English, facilitates learning of additional languages. The cross-language frequency and similarity distributions of
cognates vary according to evolutionary change and language contact. We compare frequency and orthographic (O),
phonetic (P), and semantic similarity of cognates, automatically identified in semi-complete lexicons of six widely spoken
languages. Comparisons of P and O similarity reveal inconsistent mappings in language pairs with deep orthographies. The
frequency distributions show that cognate frequency is reduced in less closely related language pairs as compared to more
closely related languages (e.g., French-English vs. German-English). These frequency and similarity patterns may support a
better understanding of cognate processing in natural and experimental settings. The automatically identified cognates are
available in the supplementary materials, including the frequency and similarity measurements.
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Introduction

In contrast to what the story on the Tower of Babel suggests, it

is sometimes the case that speakers of different languages can

understand each other. For example, speakers of Dutch and

German or Spanish and Italian, are able to understand quite a lot

of each other’s speech. It is clear that mutual intelligibility depends

on the degree of cross-language similarity. Translation equivalents

that overlap in form and meaning may provide help in getting a

message across the language barrier [1]. In the present paper, we

computationally determined the form and meaning overlap and

the frequency characteristics of translation equivalents across six

languages to compare lexical similarity distributions. Before

zooming in on our simulations of cross-language similarity

distributions, we will first discuss dimensions of word overlap as

well as lexicostatistic and phylogenetic methods currently in use for

estimating cross-language lexical similarity.

Dimensions of Cross-Language Similarity
The cross-language similarity of word pairs from different

languages can concern both form and meaning overlap. With

respect to word form similarity, one can distinguish orthographic

similarity and phonetic similarity. Orthographically (O) similar

words are called (near-) homographs, and phonetically (P) similar

words are called (near-) homophones. With respect to meaning

overlap, semantically (S) similar words are called synonyms within

languages and translation equivalents between two languages. In

this study, we were particularly interested in words with a

relatively high form and meaning overlap. Translation equivalents

with large spelling and/or sound similarities across languages are

referred to as cognates. For example, the English-Dutch translation

equivalents wheel – wiel have a high spelling and sound overlap.

Although cognates are often historically related, we do not use this

etymological criterion to identify them in the present study.

In contrast to cognates, other word pairs with a similar spelling

and sound refer to different rather than similar concepts. Such

word pairs can be referred to as false friends. False friends

complicate the understanding of a foreign language. For example,

the English-Dutch form-similar words magazine (English: warehouse,

periodical) and magazijn (Dutch: warehouse) also have different

meaning aspects while their form overlap is high.

As Table 1 shows, S, O, or P similarity can be defined and

compared not only within-languages, but also between-languages.

Research indicates that the word recognition performance by

multilinguals depends on both within- and between-language S,

O, and P similarity [2,3].

Translation equivalents can not only be compared with respect

to their linguistic dimensions (O, P, and S), but also with respect to

how often the words are encountered or used in everyday

language. For example, the Dutch translation equivalent of hair,

which is written as haar, is used much more often than hair because

haar also translates to her. Word frequency can be assessed by

measuring how often a particular word occurs per million words

(occurrence per million or opm) in collected corpora (e.g., [4,5]). A

high word frequency has been found to facilitate within- and

between-language word recognition in terms of response times and

accuracy (e.g., [6]). Frequency of word usage can be used to

distinguish common and uncommon S, O, or P similarities and

may serve as a ‘weighting factor’ when assessing their effects. In

our study, we will use word frequency statistics to quantify the
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occurrence of similarities on these S, O, and P dimensions across

six European languages, three Germanic languages (English,

German, and Dutch), and three Romance languages (French,

Italian, and Spanish).

Existing Quantitative Approaches for Measuring Cross-
Language Similarity

To measure cross-language similarity, quantitative approaches

are available in various branches of cognitive science and biology

[7]. Lexicostatistical comparison typically estimates the percentage of

shared cognates in language pairs to give an account of the

historical relatedness between languages. For example, Germanic

languages are more closely related to each other than to Romance

languages, and vice versa. In the lexicostatical approach, the

percentage of cognates shared by two languages is estimated on

the basis of cognacy judgments by experts. The vocabulary used

for such cognacy judgments often consists of translation pairs from

Swadesh lists [8]. Swadesh lists are small sets of universal culture-

free meanings that are robust to changes in meaning and

appearance over time. Examples of robust concepts in the

Swadesh list are water, arm, and ear. Meaning of items in Swadesh

lists is considered to be resistant to borrowings or chance

resemblances between languages. Quantifications of the percent-

age of shared cognates in Swadesh lists can accurately predict

language relatedness [9,10] and can shed new light on traditional

accounts of historical relatedness.

In the phylogenetic approach, the likelihood of cognate sets in

language trees is maximized to find the language tree that best

reflects cognacy between languages. This approach is based on

techniques from evolutionary biology and is also applied in studies

of language evolution. Divergence in evolutionary relationships

can be simulated with phylogenetic techniques using expert

cognacy judgements in 200-item Swadesh lists of 87 Indo-

European languages [11], also see [12]. Language trees can be

used to predict language divergence times and provide more

general insights into the evolutionary process. The branch lengths

of these phylogenetic language trees are proportional to maximum

likelihood estimates of evolutionary change. Cognate classifications

in Swadesh lists are made by experts using the comparative

method. Pagel [13] found that high frequency words evolve

relatively slowly; high frequency words in Swadesh lists are

therefore useful for estimations of evolutionary relatedness

between languages.

In the phylogenetic studies on language relatedness mentioned

above, cognacy judgments are still made by experts using the

comparative method. However, recent attempts show that

interchanging expert cognacy judgments for an automatic cognacy

measure can result in accurate predictions of language relatedness as

well [14–16]. As a consequence, computational methods are

becoming more and more popular to estimate the numbers of

shared cognates across languages [15,17–20].

An example of an automatic measure that is able to simulate

lexical matching criteria is the Levenshtein matching algorithm. This

algorithm is a standard string matching metric from information

theory that calculates the minimum number of insertions,

deletions, and substitutions that are needed to edit one string into

another. For example, the Levenshtein distance of the cognate pair

guitar – gitaar results in a distance of two (one deletion of u and one

insertion of a). When applied to words, this number represents

form distance based on the overlap of the letters in the two words.

Recent studies have made successful use of Levenshtein distance to

simulate orthographic similarity [16,21,22].

Yarkoni et al. [22] showed that the Levenshtein distance is able

to outperform Coltheart’s orthographic neighbourhood size metric

[23] in terms of word recognition and word production measures

(a neighbour is a word that differs in just one letter position from a

target word, e.g., cork – work). The authors computed the so-called

orthographic Levenshtein distance 20 (OLD20) for all words in a

monolingual lexicon (including words of different lengths). This

OLD20 measures the average distance over the 20 closest

neighbours according to the Levenshtein distance metric.

OLD20 turned out to be a significantly better predictor of both

lexical decision and pronunciation performance in three large data

sets than standard orthographic neighbourhood density. There

was a stronger interaction of the new measure with word

frequency and stronger effects of neighbourhood frequency as

well. However, due to its dependency on a fixed set of 20 words,

OLD20 may conflate neighbourhood density with word frequen-

cy.

A New Computational Approach for Measuring Cross-
Language Similarity

In a previous study [24], Schepens et al. constructed a language

similarity ordering by automatically comparing the semi-complete

lexicons of six European languages. The method used was similar

to those used in lexicostatistical studies, but expert cognacy

judgments were replaced with automatic judgement for semantic

and orthographic similarity. To determine semantic similarity across

languages, translation equivalents from six European languages

were collected using a professional translation system. The word

pairs that were identified using automatic translation overlapped

substantially (81.5%) with subjective translation judgments [25].

Orthographic similarity was determined by applying a formal cognacy

measure assuming semantic similarity of translation pairs. It was

found that normalized scores of a Levenshtein distance based

measure resembled form similarity judgments to a large extent

(91%). This implies that researchers selecting cognates (e.g., as

stimulus materials in experiments) can be confident in using

computational tools for determining similarity automatically.

Table 1. Intralingual and interlingual language similarities in terms of semantics (S), orthography (O), and phonology (P).

Intralingual English-English word pair Overlap English-Dutch word pair Interlingual

Synonym bad – evil S bad – slecht Translation

Homograph bow – bow O type – type Homograph

Homophone naught – nought P wheel – wiel Homophone

Similar synonym eatable – edible (O and/or P) and S tomato – tomaat Cognate

Homonym night – knight O and/or P, no S bloom – bloem False friend

doi:10.1371/journal.pone.0063006.t001

Cross-Language Cognate Distributions
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The numbers of automatically identified cognates correlated

significantly (r = 0.72, p,.001) with branch lengths extracted from

a study by Gray and Atkinson [11]. Although both accounts were

largely consistent, some differences were observed, which

appeared to be due to the similarity of English to Romance

languages. The most prominent differences between the two

studies were found in their accounts of English-French, English-

Spanish, and English-Italian relatedness. A possible explanation is

that the total English lexicon contains about 50% borrowings from

Romance languages [26]. Differences between the results from

expert and computational approaches may be explained by

differences in word frequency of cognates, phonetic similarity

and the mapping of phonetic to orthographic similarity. The

present study considers these theoretically important but unre-

solved issues.

First, Schepens et al. [24] demonstrated that the degree of

lexical orthographic similarity between language pairs could be

quantified in terms of cognate distributions within and between

languages from the same or different families. However, the

present study also takes into account that cognates and translation

equivalents have varying frequencies of usage in the languages

concerned.

Second, the present study considers language pairs in terms of

the phonetic similarity of translation equivalents in these languages. It

will be investigated how a measure of phoneme similarity can

contribute to the Levenshtein distance. Assessing cross-language

phonetic similarity requires a phonetic representation of words in

the different languages with a cross-linguistically valid measure-

ment system. Therefore, an adapted International Phonetic

Alphabet (IPA) will be used for the cross-language comparisons.

The use of this categorization system allows the assessment of

phonetic differences that do not directly depend on phonological

combinations present in the languages considered. Phonetic

representations of words are available in lexical databases [4,27–

29]. Vitevich [30] proposed that the Levenshtein distance metric

applied to phonetic representations of translation equivalents

could be used for estimations of phonological overlap between

languages.

Third, the relationship between orthographic and phonetic

similarity of translation equivalents in various language pairs will

be considered in the present study. It is likely that the derived

orthographic and phonetic similarity measures will be correlated;

their relationship must be complex, because it depends on the

orthographic depth or shallowness of the two spelling systems that the

compared languages employ. Orthographic depth is a key term

with respect to the orthographic make-up of languages. In the case

of father, the English form has one letter more (the h) than the

Dutch and German forms. This is an example of a word for which

the English orthographic depth is deeper than the orthographic

depth in Dutch and German. In this case, the orthographic depth

of Dutch and German is shallower. In English, the two-letter

combination th stands for the single phoneme indicated by h. The

number of phonemes in the word father is therefore the same across

Dutch, German, and English. Also, English has a deeper

orthography in which it can pronounce the 4-letter combination

-ough in at least six different ways depending on the preceding

letter: bough, cough, dough, rough, tough, though. This single 4-letter

combination maps out many different sounds. In a perfectly

shallow orthography, n-letter combinations always map to one

sound.

The degree to which languages have a shallow or deep

orthographic depth can be quantified using computational tools

[31–34]. According to [34], orthographic depth may be related to

differences between O and P similarity measures. Only shallow

orthographies (e.g. German and Spanish) showed high overlap of

computationally derived similarity measures and deep orthogra-

phies showed low overlap (e.g. French). We hypothesize that the

variation between shallow and deep spelling systems has conse-

quences for the orthographic and phonological dimensions of

cross-language similarity distributions. Two more specific hypoth-

eses are concerned with orthographic depth and cognate

frequency.

Orthographic depth. Quantifying the mapping between

phonological and orthographic dimensions allows us to measure

the orthographic depth of the spelling systems. We assume that

differences in orthographic depth directly affect the similarity

between spelling systems, because spelling systems tend to be

parasitic on speech systems [35]. Our expectation is that

distributions of phonetically similar cognates are associated with

different patterns in their orthographic similarity distributions,

depending on the mapping processes that determine orthographic

depth. Because of their large degree of form similarity, differences

in highly similar cognates across language combinations might

reflect changes in mapping processes in a more sensitive way than

differences in translation equivalents in general. The resulting

quantifications of orthographic depth in terms of cognate

frequency distributions are compared to commonly used catego-

rizations of orthographic depth (in terms of regularities in spelling

to sound mapping).

Cognate frequency. In addition, we will investigate how

differences in word frequency interact with differences in

orthographic depth. O and P similarity distributions as well as

word frequency distributions vary within the same linguistic

system. The differences between how often we write and

pronounce words may have consequences for the shapes of the

orthographic as well as the phonetic similarity distribution. We

assume that frequency of use and stability go hand in hand: Words

with a more frequent use are generally more stable, while less

frequent words are more susceptible to lexical replacement [36].

More and less closely related languages will therefore show

different shapes in their word frequency distributions. We expect

that words shared between more closely related languages are used

more often than words shared between less closely related

languages. Thus, differences in cognate frequency distributions

should be directly related to the degree of relatedness between

languages. It is predicted that cognates of higher frequency occur

more in combinations of more closely related languages.

Method

An automatic cognate identification procedure was used that

involved an application of the Levenshtein distance (discussed in

the Introduction) to lexical databases of six languages (Dutch,

English, German, French, Spanish, Italian), linking each word

semantically by means of a translation database. The lexical and

translation data used and the new automatic cognate identification

procedures for orthographic and phonetic similarity are described

below.

Integrated Database
First, we incorporated lexical databases for each of the six

languages in our computational tools in order to compare

language similarity across languages. We used the standard

input-output functionality of Euroglot Professional [37] as a

translation database, and restricted ourselves to the first translation

provided for each input word. Word matching between the

lexicons and the dictionary resulted in an average of 3449.8

different highly frequent words per language with frequency,

Cross-Language Cognate Distributions
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semantic (S), orthographic (O), and phonetic (P) information

available (SD = 1076.3), see second column of Table 2. The

availability of word frequency estimations enabled us to apply a

threshold on the frequency of translation equivalents to be

selected. We adopted a minimum frequency threshold of 10

occurrences per million words. This is a relatively conservative

boundary that maintains the selection of a substantial part of items

used in daily conversation. The relatively large English lexicon is

known to contain both Germanic and Romance words, which is

reflected in the numbers of translation equivalents in Table 2. All

languages have most translation equivalents with English,

presumably because English often has both a translation of

Romance origin and a translation of Germanic origin. For

example, the nouns assassin and murderer can both translate to

French as assassin and to Dutch as moordenaar.

In order to assess whether translation equivalents from

automatic translation are similar to translation equivalents from

subjective similarity judgments, automatically identified translation

pairs for Dutch-English were compared with semantic similarity

ratings for 1004 semantic relations [25]. The results showed that

691 out of 701 (99%) automatically identified translation pairs had

high (rated 5/7 or higher) semantic similarity ratings, 6 (0%) had

lower semantic similarity ratings. Furthermore, 776 out of 951

(81.5%) high rated word pairs were found in the translation

database used. The differences in database retrieval and ratings

appear to originate from the specific conceptual structure

implemented in the database, which was constructed by experts,

see [24]. For instance, a translation pair like gemeen – cruel is absent

in the database, because, according to experts, it does not share

the exact same relation(s) to the shared concept. Other word pairs

in the database, like gemeen – mean and wreed – cruel, are, in fact,

better translation pairs than those obtained by the semantic

similarity ratings. Overall, we conclude that automatic translation

can be used successfully to classify translation pairs as potential

cognates.

Orthographic Similarity
We examined word pairs across language combinations in terms

of their frequency and O and P similarity. The O- and P-similarity

measures were validated using subjective similarity norms.

Orthographic similarity is known to influence performance in

tasks that require word naming, picture naming, lexical decision,

and multilingual tasks like translation naming (as an example,

consider [2]). Because of a limited availability of orthographic

similarity measures, researchers need to collect orthographic

similarity ratings to select their stimuli or use form-identical items

only. Orthographic similarity norms are available [25] for items

with various degrees of orthographic similarity. Such norms are

based on experimentally acquired ratings for a variety of lexical

items in order to capture the continuous nature of orthographic

similarity. Schepens et al. [24] demonstrated that computational

orthographic similarity measures can successfully simulate ortho-

graphic similarity norms based on experimentally acquired ratings.

Recently, a number of computational dialectometry, quantitative

historical linguistic, and psycholinguistic studies have been using

the Levenshtein distance metric [38] (see definition in the

Introduction), to calculate similarity between words

[16,18,22,24,39].

Various adjustments to the standard Levenshtein distance have

been proposed to improve the measure. Yarkoni et al. [22] tested

transposition of letters (e.g., ‘trial’ into ‘trail’), but this resulted in

virtually identical similarity scores. Also, varying substitution costs

(systematic 20% reductions or increases in relative cost of

insertion, deletion, or substitution) did produce similarly unaffect-

ed results. However, this aspect needs to be evaluated using a

reasonable substitution cost distribution.

Because the Levenshtein distance metric depends strongly on

word length, it needs to be normalized in order to compare

orthographic similarity scores between long and short words.

Normalization can be performed as in Equation 1 below. This

Table 2. Calculations of relative cognate frequency distinguish closely related language pair from less closely related language
pairs.

Language Pair Translation Equivalents (F) Cognates (F, O) Cognates (F, P) Relative Cognate Frequency (F, O, P)

Spanish-Italian 2946 (2) 1438 996 (1) 1.04

Dutch-English 4192 1104 (2) 1223 (2).94

Dutch-German 2802 (1) 1474 (1) 1640 (3).89

Italian-French 2846 1128 713 .89

Spanish-French 2761 1166 849 .82

German-English 4625 778 953 .76

Dutch-Italian 2893 491 525 .69

Dutch-Spanish 2527 481 509 .65

Spanish-German 2632 418 461 .61

French-English (2) 5206 (3) 1272 (3) 1058 .57

Spanish-English (3) 5057 1057 869 .57

Dutch-French 2599 559 639 .56

Italian-English (1) 5281 962 572 .47

Italian-German 2835 405 437 .44

French-German 2545 452 448 .40

Besides relative cognate frequency, also number of translation equivalents and number of identified cognates are given. The abbreviations in each of the column
headers show the thresholds applied, namely: frequency (F) of at least 10 occurrences per million, orthographic (O) similarity of at least.5 (0 = no overlap, 1 = identical),
phonetic (P) similarity of at least.75 (0 = no overlap, 1 = identical). The table is sorted by cognate frequency relative to translation equivalent frequency (.5 = cognates
have half the frequency of translation equivalents, 1 = equal frequency, 2 = double frequency).
doi:10.1371/journal.pone.0063006.t002

Cross-Language Cognate Distributions
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normalized Levenshtein Distance (NLD) makes sure that identical

form-overlap between translation equivalents results in similarity

scores of one, and no overlap results in a score of zero. Various

slightly different ways to normalize the Levenshtein distance have

been utilized, see Pompei et al. [40] for a comparison. Mackay

and Kondrak [17] have argued that the Levenshtein distance

needs to be normalized in an exponential instead of in a linear

way. Vanilla Levenshtein distance introduces a bias to distances

between classes of words that adopt regular n-gram patterns. For

example, the infinitive of Dutch verbs usually ends with the suffix -

en. Normalizing the Levenshtein distance by the maximum word

length of the two compared words can account for such issues.

score~1{
distance

length

Equation 1. Levenshtein distance normalized for word length.

Length is the maximum of the source expression and the destination

expression. Distance is the minimum number of insertions,

deletions, and substitutions.

Phonetic Similarity
Phonetic similarity can also be measured with the Levenshtein

distance. For this measure, we varied substitution costs according

to similarities between the phonemes in the two phonetic

representations of words.

In addition to orthographic similarity, phonetic similarity is one

of the keys for identifying cognates [17]. Phonetic similarity is

concerned with articulatory, acoustic, and perceptual similarities

between vowels and consonants. Kondrak [41,42] developed the

ALINE software for gradual phonetic similarity measurement, in

which phonemes are represented as vectors with phonetic features.

Differences between 10 binary features and 2 multi-valued features

of two phonemes were multiplied with each feature’s salience

weight. Subsequently, they were summed up, normalized by

dividing by maximum word length, and subtracted from a

maximum score to finally result in a phoneme similarity score

between 0 and 1. The two multi-valued features were manner and

place. Manner could take 7 values: stop = 1.0, affricate = 0.9,

fricative = 0.8, approximant = 0.6, high vowel = 0.4, mid vow-

el = 0.2, and low vowel = 0.0 (as based on Ladefoged [43]).

Kondrak [41] was able to demonstrate that his gradual measure of

segment distance outperforms binary measures. McMahon and

McMahon [10] developed a similar method in which segment

distance measurements are based simply on the number of

overlapping phonetic features. The measure was considered

successful and further research into gradual segment distance

measurement was encouraged. At the same time, Heeringa [16]

developed a similar measure but this did not lead to better

performance. Heeringa et al. [44] concluded that simple phonetic

transcriptions (as yet still) perform better than phonetic feature

representations.

To determine a degree of phonetic similarity, a computer

algorithm needs phonetic representations. Lexical databases can

provide researchers with phonetic transcriptions of word pronun-

ciation, all in varying phonetic alphabets, which are suitable for

cross-language comparison between translation equivalents. By re-

coding each transcription, using symbols from a universally

applicable phonetic alphabet, such as the International Phonetic

Alphabet (IPA) [45], it is possible to compare pronunciation

irrespective of a particular phonetic system. Although the IPA is

being improved continuously, the alphabet in its current form is a

useful symbolic representation of speech. For computer applica-

tions, the IPA is often simplified into a single coded set of

phonemes, varying in components and complexity.

For the phonetic comparison across six languages in the present

study, the IPA symbols were re-coded into an ASCI-coded

phonetic alphabet. For Dutch, German, and English, we used

DISC phonetic transcriptions from Celex [4]. DISC is an IPA-

based coding scheme that represents the IPA symbols as single

ASCII symbols. For Spanish, we used the phonetic transcriptions

that are included in the lexical database B-PAL [27,46], because

these are also based on the DISC standard. For French, we used

the phonetic transcriptions that are included in Lexique [28],

which are based on X-Sampa. In contrast to DISC, X-Sampa is

not single-coded, i.e. not every ASCII character represents an IPA

symbol. The recoding of X-Sampa involved a number of

substitutions of characters combinations into DISC characters.

For Italian, no phonetic transcriptions were available in the lexical

database used (CoLFIS [29]). In order to be able to apply a

phonetic similarity measure to compatible phonetic transcriptions

across all six languages, we applied a text-to-speech algorithm to

CoLFIS’ Italian orthographic forms using a pronunciation guide

[47]. This is possible because Italian has a shallow orthography. In

the case of both Lexique and CoLFIS, new phonemes were

identified that had to be added to the set of phonemes included in

DISC. This resulted in a new coding scheme that we refer to as

DISC++. Table S1 presents all the phonetic alphabets that were

discussed above aligned with DISC++. Textfile S1 contains the

abbreviations used in Table S1.

For our computation of phonetic similarity, we varied the

Levenshtein substitution cost according to the similarity between

phonemes. Phoneme similarities are assumed to play a decisive

role in the match between the NLD and similarity ratings. We

computed a substitution cost distribution according to the

distinctive phonetic feature space as given by the IPA. The

phoneme space that is represented in the IPA enabled a distance

computation between phonemes. Substitution cost was calculated

by measuring the Euclidean distance in the respective IPA vowel

or consonant space and by adding a penalty in case at least one of

the phonemes was non-pulmonic, an affricate, a diphthong, a

borrowed vowel, or a long vowel. Penalties were not applied when

both phonemes were long vowels or both were long affricates.

Substitutions between vowels and consonants received the

maximal substitution cost of 2. Our computation of phonetic

similarity used phonetic transcriptions available in lexical data-

bases. The availability of phonetic transcriptions enabled us to

look at phonetic similarity without considering irregularities in

grapheme to phoneme mapping. The similarity between two

phonetic transcriptions was calculated by applying the NLD, as

discussed in the previous section, onto phonetic transcriptions.

Similar to the other measures of similarity the phonetic similarity

values were validated using similarity ratings from human subjects,

see the end of the results section.

Results

The application of the orthographic and phonetic similarity

measures to translation equivalents allowed the estimation of cross-

language distributions of high frequency and phonetically similar

cognates. The results are presented in three steps: first cross-

language similarity distributions, then cognate frequency compar-

isons, followed by external validation of the similarity measures

and the numbers of cognates automatically identified.

Various similarity patterns were observed in the cross-language

cognate distributions. These patterns resulted from comparisons of

cross-language orthographic similarity distributions with cross-

Cross-Language Cognate Distributions
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language phonetic similarity distributions. The comparisons show

how much orthographic and phonetic similarity differ according to

the orthographic depth of the languages. Furthermore, the cross-

language cognate distributions allowed comparisons of cognate

frequency across all 15 language pairs. The comparisons show

how patterns in cognate frequency relate to differences in

evolutionary relatedness across languages. Finally, it is demon-

strated that subjective similarity ratings and measures of evolu-

tionary change validate the automatic measures of orthographic

and phonetic similarity and the automatically identified numbers

of cognates. The automatically identified cognates are available in

Dataset S1. These cognates correspond to the third column of

Table 2. Textfile S1 contains the abbreviations used in Dataset S1.

Orthographic and Phonetic Similarity Patterns Across
Languages

Distributions of similarity measures for 15 different language

pairs revealed how translation equivalents are distributed over the

range of the orthographic or phonetic similarity function. These

distributions visualize how closely related and less closely related

language pairs differ in specific parts of orthographic and phonetic

similarity continua.

Figures 1 and 2 exemplify orthographic and phonetic similarity

distributions for four pivotal language pairs. For these distribu-

tions, we chose a minimum word frequency of 10. There were 23

possible orthographic similarity measures given the discreteness of

the Levenshtein distance codes [24]. These measures were divided

in 18 equal bins in order to distribute the orthographic similarity

measures equally in the range from 0 to 1. The phonetic similarity

measures were divided in 36 bins. Phonetic data were divided in

twice as many bins, because substitution cost in phonetic similarity

measurement could range between 0 and 2 instead of using a fixed

cost of 1 as for orthographic similarity measurement. As a

consequence, plots of phonetic similarity distributions start at.5

instead of 0, thus ensuring that the number of bins in the graphs

stayed equal. The resulting scatter plots were smoothed using

locally weighted scatter plot smoothing (LOWESS) [48]. A

smoothing factor of.25 was used. This value determines the

proportion of the bins that is used to smooth the curve through all

of the values in the bins, using low degree polynomials. The

resulting similarity degrees (represented by small crosses in Figure 1

and 2) were plotted on logarithmic y-axes. We restored numbers of

form-identical cognates to their original values in order to

compare identical numbers of cognates across language pairs.

Therefore, a fast bump or drop in the number of form-identical

cognates can be observed in each of the plotted similarity

distributions. We applied spline interpolation to get polynomial-

like shapes.

Except for Dutch-Spanish, high numbers of orthographically

identical cognates are present in the four language pairs displayed.

The numbers of orthographically identical cognates are similar

across the first three examples, but differ between Dutch and

Spanish. Orthographic similarity values are distributed evenly over

the orthographic similarity continuum for the first two examples,

i.e. Dutch-German and Italian-Spanish. However, this is not the

case for the second two examples, i.e. French-English and Dutch-

Spanish. Furthermore, the distribution of English-French lies

higher in the graph than other distributions, indicating that more

high frequency translation equivalents were found between these

two languages. Note that the drops in almost-identical cognates

reflect that only a few possible combinations of word length can

result in almost-identical similarity scores. For example, a score

of.75 can result from eight combinations of word length, and a

score of.8 can only result from three combinations of word length.

Phonetic similarity measures were distributed in a more contin-

uous way.

Distributions of phonetic similarity reveal that similarity

measures are more concentrated near the centred values, rather

than being distributed equally over the phonetic similarity

continuum. This is a result of the higher substitution cost that is

allowed in phonetic similarity measurement. Because phonetic

similarity substitution costs can be twice as much as in

orthographic similarity measures, the phonetic similarity measures

are distributed differently in the first halves of the examples

displayed. However, the second halves, starting from a phonetic

similarity of.5, distributions become comparable again.

In terms of phonetically identical translation equivalents, the

distributions only show fast drops, except for Dutch-German.

More orthographically than phonetically identical cognates appear

to exist across language pairs. Also, the distribution of Dutch-

German and Italian-Spanish seem to have a more horizontal

spreading than French-English, which may indicate the related-

ness between these two languages.

By zooming in on the highly similar orthographic and phonetic

cognates, the differences between the orthographic and phonetic

similarity distributions become more evident. Figure 3 shows

distributions of orthographic and phonetic similarity for closely

related languages. Figure 4 shows remaining distributions for

languages of different (sub)families. Distributions of related

languages showed more differences between O and P similarity

than the distributions of unrelated languages. According to

Figure 3, O similarity is sometimes higher than P similarity, as

in Italian-Spanish (marked by the dashed green line), and

sometimes O similarity is lower than P similarity, as is the case

for Dutch-German (marked by the dashed purple line). According

to the right panels of both Figure 3 and Figure 4, Dutch-German is

the only language pair with a high number of phonetically

identical cognates. Although the differences in unrelated language

pairs are smaller, some language pairs show distinctive numbers of

cognates in the highest similarity ranges. Especially English-

French (marked by the line with triangles) shares a large number of

highly orthographically similar cognates. On the other hand, it

seems that Dutch-French (marked by the line with circles) shares a

large number of highly phonetically similar cognates.

In general, orthographic and phonetic similarity distributions

appear to lie higher for related languages than for unrelated

languages. However, especially in the higher similarity ranges (on

the right hand side of the graphs), some language pairs have a

higher orthographic than phonetic overlap or vice versa.

In order to determine if the orthographic and phonetic

similarity measures reflect different cognate characteristics, we

analyzed the overlap between both similarity measures by

correlating orthographic and phonetic similarity measures. The

correlations showed a clear distinction between two groups of

language pairs (see Table 3). The correlations in the shallow

languages were always equal or higher (r ranging from.32 to.55)

than the correlations in the language pairs in which at least one

language has a deep orthography (r ranging from.05 to.32), except

English-Spanish (r = .34). Dutch-German and Italian-Spanish had

the highest O-P similarity correlations, while Dutch-French and

English-French had the lowest correlations.

The orthographic and phonetic similarity measures seem useful

to quantify differences in speech and writing systems between

languages. Low correlations between similarity measures indicate

that both measures evaluate different characteristics of cognates.

In turn, high correlations indicate similarity between writing and

speech systems. High correlations of language pairs involving two

shallow orthographies, demonstrate how close the mapping

Cross-Language Cognate Distributions
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between speech and writing systems can be. Correlations of

language pairs that involve at least one language with a deep

orthography demonstrate the complex mapping between speech

and writing systems across language pairs.

Frequency Patterns of Cognates Across Languages
This section describes how we compared cognate frequency

between more and less closely related languages pairs. To compute

a measure of cognate frequency in a language pair, we estimated

the frequency of the cognate’s reading as the mean of the

frequencies of the L1 and L2 orthographic forms. However,

because word frequency distributions differ across languages, we

computed cognate frequency by the mean frequency of all L1 and

L2 orthographic forms respectively (in the set of cognates that we

identified by applying a phonetic similarity threshold, see Table 2).

We applied the same procedure to the obtained sets of translation

equivalents. This resulted in a more noisy hierarchy than we

obtained for the cognate frequencies. We then investigated

whether this noisy signal could be filtered out from our initial

hierarchy by dividing the frequency means of cognates by the

frequency means of translation equivalents. Figure 5 shows that

the best distinction between more and less closely related

languages depends on both average cognate frequency and

average translation equivalent frequency. With a simple linear

discriminant analysis, already a classification accuracy of 86.67%

can be achieved, separating the class of closely related languages

(within the Germanic or within the Romance subfamilies), from

less closely related languages (between Germanic and Romance

subfamilies). With this measure of cognate frequency, normalized

by general characteristics of the obtained set of translation

equivalents (see Equation 2), we obtained a hierarchy that was

able to separate languages pairs with a high surface similarity (e.g.

English-French) from languages pairs that are genetically closely

related (e.g. English-German). The hierarchy this way is displayed

in the last column of Table 2.

1

2

1
n

P
cognatefrequencyL1

1
m

P
translationfrequencyL1

z
1
k

P
cognatefrequencyL2

1
l

P
cognatefrequencyL2

 !

Equation 2. Relative cognate frequency can be computed by

dividing the average cognate frequency in each language by the

average frequency of translation equivalents.

As cognates are likely to be shorter words than translation

equivalents, one might argue that we are essentially obtaining a

measure of the difference in word length across more and less

closely related languages. However, it is the case that more

frequently used words tend to lose more characters than less

frequently used words (cf. Zipf’s law [49]). For example, the

common ancestor in Danish and Dutch for car (automobiel), lost -biel

in the Dutch word, which is auto, and lost automo-, in the Danish

word, which is bil [50]. We only included translation pairs and

cognates with a word length between 3 and 8 letters, which might

actually have resulted in the exclusion of more translation pairs

Figure 1. Orthographic similarity distributions across translation equivalents. The data points represent the normalized Levensthein
distances binned into 18 equal parts on the obtained similarity scale. The solid line uses locally weighted scatter plot smoothing and spline
interpolation over the bins. Notice the logarithmic scale on the y axis.
doi:10.1371/journal.pone.0063006.g001

Figure 2. Phonetic similarity distributions across translation equivalents. See the legend of Figure 1 for a description.
doi:10.1371/journal.pone.0063006.g002

Cross-Language Cognate Distributions

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e63006



than of cognates. So, to characterize the frequency of identified

cognates, we computed the mean cognate frequencies of

automatically identified cognates for each language pair and

divided this by its mean translation frequency. In this way, we

obtained a relative cognate frequency measure per language pair.

The hierarchy in relative cognate frequencies shows how

cognate frequency is able to distinguish languages pairs from the

same subfamily from language pairs from different subfamilies. In

contrast, hierarchies based on numbers of cognates only were not

able to distinguish English-French from language pairs from the

same subfamily, which is likely to be due to borrowing as a result

from language contact. For example, our estimated measure of

form overlap between English and French looks relatively high

given their historical relatedness. The relative frequency of these

overlapping forms reveals that many cognates do not follow the

same pattern of high frequency as cognates in more closely related

languages do.

The underlying cognate frequency distributions are plotted in

Figure 6 and 7. The figures show how the frequency distributions

of cognates differ slightly between the languages in each pair. The

frequency distributions of translation equivalents provide a

reference point for the cognate frequency distributions. As the

relatedness between the language pairs decreases, also the distance

to the frequency distributions of translation equivalents decreases.

Generally, most cognates are found in the lower frequency bands.

The cognate frequency distributions of the languages in each pair

differ more in the higher frequency bands than in the lower

frequency bands.

In sum, relative cognate frequency correlates highly with

language relatedness, and it is possible to distinguish closely

related languages from languages that are similar because of heavy

borrowing.

Validation of O and P Cognate Similarity Norms
In order to evaluate whether the list of automatically detected

cognates with highly similar O and P values correspond to

cognates identified by humans a validation of the computerised

similarity norms was needed. This validation was conducted by

applying thresholds to the scores resulting from O similarity based

on the normalized Levenshtein Distance (O NLD) and P similarity

Figure 3. Similarity distributions of cognates for closely related language pairs. German – Dutch and Italian – Spanish are coded with
dashed lines. The solid lines use locally weighted scatter plot smoothing and spline interpolation over 18 bins.
doi:10.1371/journal.pone.0063006.g003

Figure 4. Similarity distributions of cognates for less closely related language pairs. French – English and Fench – Dutch are coded with
dashed lines. See the legend of Figure 6 for a description.
doi:10.1371/journal.pone.0063006.g004
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based on NLD (P NLD) and then comparing both O and P NLD

scores to the 1003 similarity ratings from Tokowicz et al. [25] and

the 318 ratings from Dijkstra et al. [3]. Ratings from Tokowicz

et al. [25] were based on both form and sound similarity

judgement, whereas ratings from Dijkstra et al. [3] were available

for form and sound similarity judgments separately. In both

studies, rating scales ranging from 1 to 7 were used. For a number

of threshold configurations, we measured correct cognate classi-

fication (percentage correct of word pairs rated higher than 5/7),

and correct non-cognate classification (percentage correct of word

pairs rated lower than 5/7). On the basis of this study, we used an

inclusive O threshold of.5 and an inclusive P threshold of.75 for

the computed similarity measures for automatic cognate identifi-

cation. The results are presented in Table 4 and the similarity

measures are presented in Tables S2 and S3.

As Table 4 shows, the automatic cognate identification

procedure worked very well: On average, over 90% of cognates

were correctly classified. The first three translation pairs with low

orthographic and phonetic ratings that were qualified as dissimilar

by human subjects, but not by either automatic orthographic

similarity or automatic phonetic similarity (based on ratings from

Dijkstra et al. [3]) are the following: schroef – screw (O rating 1.88, P

rating 2.25, O NLD.571, P NLD.82); gids – guide (O rating 3.5, P

rating 2.25, O NLD.33, P NLD.77); and koning – king (O rating

3.88, P rating 3, O NLD.67, P NLD.80). With respect to the first

word pair, participants might have misjudged the similarity due to

the difference in word length. Actually, 3 of the 4 letters in the

English word are present in the Dutch word. Moreover, 3 of the 4

English phonemes are also present in the Dutch phonetic

transcription (sxruf – skru).

To evaluate the semi-continuous norms of O and P NLD, we

correlated resulting scores with the rated word pairs from

Tokowicz et al. [25] and from Dijkstra et al. [3]. The ratings

correlated, respectively,.88 (p,.001) and.96 (p,.001) with O

NLD, and.82 (p,.001) and.85 (p,.001) with P NLD. The P NLD

and Raw P NLD (no substitution cost distribution applied)

correlated equally with the same orthographic and phonetic

similarity ratings. The P NLD norms were more continuous than

the norms of the O NLD; the O NLD scores for any language pair

were distributed over only 23 different values, the P NLD scores in

Dutch-English were distributed over 652 different scores.

To summarize, we obtained orthographic similarity norms

using a normalized Levenshtein distance measure and phonetic

similarity norms with a normalized Levenshtein distance measure

that made use of an IPA-based substitution cost distribution. Both

measures can be applied successfully to obtain reliable measures of

orthographic and phonetic similarity for given word pairs and

their phonetic transcriptions. Using these measures, it is possible to

automatically detect orthographically and phonetically similar

translation pairs in large cross-language lexical databases or

corpora. This procedure is much faster than traditional methods

that require human similarity judgements.

Validation of Automatically Identified Cognates
We hypothesized that numbers of automatically identified

cognates in language pairs can predict language similarity as

observed in studies that incorporate expert knowledge (e.g., [11]).

More specifically, phonetic similarity and word frequency could

provide a better account of language similarity than the language

ordering based on orthographic distance between translation pairs

alone [24]. To assess surface variation in word forms across

languages, we compared automatic cognate identification with

varying parameters and thresholds to the language similarity tree

provided by Gray and Atkinson [11], see Introduction.

With respect to O similarity, the identified cognates from the

present study correlated r = .60, p,.05) with the expert account of

language relatedness [11] (r = .62, p,.05 based on an inclusive O

threshold). The language pair with the highest number of shared

cognates was Dutch-German. With respect to a minimum word

frequency of the O representations, the exclusion of low frequency

cognates resulted in the identification of almost half of the

numbers of cognates. For a minimum word frequency of 0 opm,

on average 3600 cognates were identified with a standard

deviation of 1200. For a minimum word frequency of 2 opm, on

average 1880 cognates were identified with a standard deviation of

854. For a minimum word frequency of 10 opm, on average 820

cognates were identified with a standard deviation of 420.

With respect to P similarity, numbers of phonetically similar

cognates correlated with Gray and Atkinson [11] about as strong

as correlations based on numbers of orthographically similar

cognates (r = .59, p,.05 vs. r = .61, p,.05 for frequencies $2 opm,

and r = .64, p,.05 vs. r = .64, p,.05 for frequencies $10 opm).

The numbers of English-French, English-Italian, and English-

Spanish cognates based on P similarity were always slightly lower

than the numbers of cognates based on O similarity, see Table 2.

This suggests that P similarity is able to distinguish cognates in

these less closely related languages from those in more closely

related languages. Furthermore, the P similarity ordering revealed

a larger phonetic than orthographic overlap between Dutch and

French. Cognate identification using phonetic similarity as a

criteria revealed remarkable differences between less and more

closely related languages. The language pairs that were too similar

based on orthographic similarity (French-English, Spanish-En-

glish, and Italian-English) were still too similar based on phonetic

similarity. However, these language pairs shared fewer phoneti-

cally similar cognates than orthographically similar cognates.

The relative cognate frequencies identified by applying a

phonetic similarity threshold to automatically identified translation

equivalents correlated higher with branch lengths from Gray and

Atkinson [11] than numbers of phonetically similar cognates

(r = .87, p,.0001 vs. r = .64, p,.05 for frequencies $10 opm).

Relative cognate frequencies are able to distinguish between more

and less closely related languages better than numbers of

phonetically or orthographically similar cognates can.

General Discussion

The present study investigated cross-language similarity in

terms of phonetic and frequency characteristics between transla-

tion equivalents across six related European languages. Ortho-

Table 3. Correlations between orthographic and phonetic
similarity measures of cognates.

L1–L2 Dutch English German French Spanish Italian

Dutch (S) .30 .42 .05 .43 .35

English (D) .23 .19 .35 .29

German (S) .14 .32 .47

French (D) .32 .31

Spanish (S) .55

Italian (S)

S = shallow orthography, D = deep orthography. Underlined correlations involve
two shallow orthographies. All correlations p,.0001, except French-German,
p,.05.
doi:10.1371/journal.pone.0063006.t003
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graphic and phonetic transcriptions in combination with frequen-

cy measures of words were used to compare O, P, and frequency

distributions of cognates. Spelling, pronunciation, and frequency

data were collected by linking different lexical databases. The

computation of orthographic and phonetic similarity based on the

normalized Levenshtein distance (NLD) make it possible to

investigate the distributions of cognates characterized by frequency

and S, O, and P similarity.

The phonetic similarity of translation pairs was determined

using NLD while varying substitution costs according to the

distinctive phonetic feature space from the International Phonetic

Alphabet. Phonetic similarity norms were more continuous than

orthographic similarity norms (over 600 different phonetic

similarity degrees vs. 23 orthographic similarity degrees) because

we incorporated an adapted IPA coding of phonemes. The

validation study that compared subjective similarity ratings with

the automatically derived objective similarity measures revealed

that automatically obtained similarity measures are usable as

reliable replacements for subjective similarity ratings. Consequent-

ly, these automatically derived similarity measures are useful in

Figure 5. Relative cognate frequency predicts degree of genetic relatedness between languages. Average frequencies are shown for
both languages in each language pair. The straight line represents the result of a linear discriminant analysis between the classes more and less
closely related language pairs.
doi:10.1371/journal.pone.0063006.g005
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computational models and applications in which orthographic or

phonetic similarity in large sets of translation equivalents needs to

be computed.

Orthographic and phonetic similarity measures reflect the

orthographic depth of spelling as depending on sound systems.

Orthographic and phonetic similarity distributions showed how

these dependencies differ across languages. Frequency measures

revealed more about the genetic relatedness of languages.

Cognates had higher frequencies when they occurred between

two closely related languages than when they occurred between

two less closely related languages. The results can therefore be

related to principles in language change across languages.

In the following two sections, we evaluate the usefulness of the

observed frequency and O and P similarity characteristics of

automatically identified cognates in terms of the dependency

between sound and spelling systems of languages, and language

change.

Orthographic Depth in terms of Phonetic to
Orthographic Mappings

Automatic phonetic similarity measures were able to detect

different degrees of phonetically similar cognates. As was the case

for orthographic similarity, the shape of the distributions revealed

fewer translation equivalents (or more cognates) as phonetic

overlap increased.

A comparison of both dimensions indicated the consistency

between spelling and pronunciation of a word pair. A correlation

measure across a large number of word pairs (see fourth column of

Table 2) provided an overall consistency measure of spelling and

pronunciation similarity. When orthographic and phonetic simi-

larity are highly consistent (e.g., Italian-Spanish), spelling is a

direct reflection of pronunciation of words for both languages.

When both characteristics are different (e.g. Dutch-French), one or

both languages have inconsistent grapheme-to-phoneme map-

pings. In our study, correlations between O and P similarity

measures were able to demonstrate these distinctions. Conse-

quently, these measures may be used to quantify compatibility

between sound and spelling systems of languages.

Pronunciation of words may change over time according to

communication needs. Ultimately, geographical spreading and

localization of communication needs may result in the formation

of different pronunciation systems. Distance between speakers may

then result in proportional distances between pronunciations of

words. The observed phonetic similarity distributions suggest that

some pronunciation systems are indeed more compatible than

others.

These patterns are similar to orthographic similarity distribu-

tions. In contrast to orthographically identical cognates [24], low

numbers of phonetically identical cognates were automatically

identified in the present study (see right panel of Figure 3). Dutch-

Figure 6. Comparisons of cognate to translation frequency distributions for six closely related language pairs. The x axes show
cognate frequencies per million words. The y axes show the numbers of cognates observed. The frequency distributions of translation equivalents are
plotted with dotted lines. The blue colored lines code for the L1, the red colored lines code for the L2. The order of languages in the subtitles indicate
which language is the L1 and which language is the L2. The cognate frequencies are binned into 14 equal parts on the word frequency scale. The
lines use locally weighted scatter plot smoothing over the bins. Notice the logartithmic scales.
doi:10.1371/journal.pone.0063006.g006
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German contained relatively high numbers of phonetically

identical cognates whereas Italian-Spanish contained relatively

high numbers of phonetically similar cognates. Italian-Spanish and

Dutch-German orthographic similarity distributions were relative-

ly similar to each other. Because the orthographic similarity

distribution does not show this pattern, we conclude that the sound

systems of Dutch and German produce more often cognates with

higher similarity than the sound systems of Italian and Spanish.

This finding is in line with the finding that the consistency of O

and P similarity measures between German and Dutch is lower

than the consistency of O and P similarity measures between

Italian and Spanish (see Table 3). The proportion of phonetically

similar to phonetically identical cognates can change across

language pairs under the influence of divergence time, divergence

speed, borrowing, and chance resemblance.

Cognate Frequency and Language Change
Computationally determined orthographic and phonetic over-

lap in translation equivalents demonstrated how cognate distribu-

tions correspond to expert accounts of historical relatedness. The

numbers of automatically identified cognates correlated strongly to

branch lengths from a consensus tree of language relatedness

reported by Gray and Atkinson [11]. However, the present study

revealed to what extent shared language relations are visible on the

surface of daily language use. In the language pairs we tested, we

observed an average cognate percentage of 25% in high frequency

translation equivalents (highest for Dutch-German, 60%). Thus,

computational orthographic and phonetic similarity measures

quantify and reveal previously invisible characteristics relevant for

language relatedness estimations.

Using cognate frequency measures, we were able to separate

closely related cognates from more distantly related cognates. In

our study, minimum frequency thresholds enabled a closer

comparison of high frequency ($10 opm) cognates. We found

that numbers of automatically identified cognates better resembled

accounts of language relatedness when using minimum frequency

thresholds than using no minimum frequency thresholds. Further-

more, we found that relative cognate frequency was always higher

in related language pairs than in less closely related language pairs.

It seems that related languages can be characterized by

automatically measuring orthographic and phonetic overlap and

then establishing frequency measures in automatically identified

cognate sets. Here, frequency and O, and P similarity of

translation equivalents were used to determine relatedness

Figure 7. Comparisons of cognate and translation frequency distributions for six less closely related language pairs. See the legend
of Figure 6 for a description.
doi:10.1371/journal.pone.0063006.g007

Table 4. Classification rates as based on subjective measurements.

Data Similarity Threshold Similar translations
Correctly
classified

Dissimilar
translations

Correctly
classified

Tokowicz et al. [25] O .5 173 91% 714 97%

Tokowicz et al. [25] P .75 168 87% 676 92%

Dijkstra et al. [3] O .5 78 100% 184 90%

Dijkstra et al. [3] P .75 74 95% 174 85%

doi:10.1371/journal.pone.0063006.t004
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between languages through automatic identification of cognates.

Such analyses showed that frequency measures of cognates

indicate whether orthographically and/or phonetically similar

translation equivalents belong to more or less closely related

languages. The low frequency cognates in less closely related

languages may indicate that these cognates have changed more

and over a longer period of over time.

The relative cognate frequency in each more closely related

language pair was higher than that in each less closely related

language pair. The relative frequency of cognates strongly

correlated with expert accounts of language relatedness (r = .87,

p,.0001). It is plausible that the relative mean cognate frequency

measures the recentness of shared origin. Theoretically, cognates

that branch off earlier have longer time to diverge as a result of

unspecified processes in language change. A longer divergence

time between two words sharing a common origin may be

reflected in lower average word frequencies, because many words

change in their use and meaning, facilitating replacement [36].

Further circumstances may alter rates of replacement over time.

Reasoning from this perspective, we conclude that change in

cognate frequency is a core process in language change.

We now compare the striking patterns in relative cognate

frequency (i.e., if cognates are used relatively more often than

other translation pairs) across more and less related language pairs

to more general correlation measures (i.e., if it is more likely that a

cognate is used equally often than other translation pairs). On

average, automatically identified cognates were highly similar in

terms of frequency of usage in the two languages involved (average

r = .53). Translation equivalents were also similar in terms of

frequency, but less similar than cognates (average r = .29). An

almost identical distribution of cognate frequency measures was

found for Dutch-German (r = .97, p,.001). In contrast, Italian –

German cognate frequencies were weakly related (r = .09, p,.001),

indicating that the frequency of usage of a cognate item shared

between Italian and German was practically unrelated; The Latin

origin of many of the German-Italian cognates could be a reason

for the observed differences in frequency of German-Italian

cognates. However, less closely related languages also had high

correlations, e.g., Italian-English (r = .92, p,.001). Observed

differences in frequency similarity measures of cognate and

translation equivalents might relate to the following problems in

L1–L2 frequency alignment in translation equivalents.

Meaning overlap in translation equivalents is often multilateral,

allowing overlap in a number of different ways. Frequency

measures are mostly unilateral, measuring word counts as an

orthographic statistic rather than taking into account its different

meaning functions. For example, the translation pair bank – bank

shares more than one meaning between English and Dutch. In

addition, idiosyncratic meanings of bank exist in both English (e.g.,

capsize) and Dutch (e.g., sofa), mixing up the semantic alignment of

L1–L2 frequency measures. On the one hand, these alignment

differences relate to differences in numbers of translations of L1

words in L2. Such cross-linguistic differences in polysemy may be

asymmetrical between language pairs [25]. However, asymmetric

differences were not included in the semantic structure of the

translation database used here. On the other hand, equivalent

meanings in L2 might not always exist (for example English-

Chinese), resulting in more ambiguous semantic mappings

between translation equivalents. Semantic matching of L1–L2

frequency similarity measures might expose more cross-linguistic

differences than frequency similarity only.

Conclusion
To our knowledge, this is the first study in which dependencies

between sound and spelling systems and principles in language

change are discussed in terms of distributions of automatically

identified cognates. In addition to Marian et al. [34], which is a

useful resource for neighbourhood densities, our study now

provides a resource for cognate distributions. The added semantic

component makes it possible to compare languages in pairs instead

of in isolation. The cognates that are automatically identified this

way are crucial for an understanding of cross-language processing.

The newly estimated cognate distributions by frequency and

phonological overlap confirm the importance of these two

dimensions for understanding cross-language similarity. Automat-

ically identified distributions of cognates appear to differ in the

same way as commonly used categorizations in terms of

orthographic depth and language change.

The observed patterns in O and P similarity have consequences

for our understanding of orthographic depth. Our observations

show that the regularity between O and P is indeed associated with

typical patterns in cognate distributions. Underlying may be the

dependence of writing system properties on spoken language

characteristics. Also, cognates are more useful for quantifying

orthographic depth than translation equivalents, because the O-P

regularity pattern is more faithfully represented in cognates.

Furthermore, the observed patterns in frequency distributions

have consequences for our hypotheses concerning language

change. The degree of relatedness between languages seems to

be strongly associated with the frequency of cognates, even more

strongly than with O and P overlap. This illustrating the central

role that word frequency must take in cross-linguistic study. This

finding provides empirical support using semi-complete lexicons

for the explanation given by Pagel et al. [36] that more frequent

words are more resistant against lexical replacement. The

frequency of cognates appears to be proportional to the divergence

time between two languages. For example, Dutch and German

have more recently branched off from each other than Dutch and

Spanish, and as a consequence the relative frequency of Dutch-

German cognates is higher than of Dutch-Spanish cognates.

In all, the present study has successfully applied automatic

identification algorithms to characterize distributions of cognates in

terms of frequency and phonetic similarity. Automatic cognate

identification is useful for psycholinguists and linguists to quantify

cross-linguistic differences in word processing, and spelling and

sound systems in general. The newly developed similarity measures

can be applied in computational models and tools to quickly provide

reliable orthographic or phonetic similarity measures. We have

identified large lists of cognates across six languages that are in

demand for experimental studies on bilingual word recognition and

word production. In sum, linguistic data from lexical and

translational databases can be used in innovative computational

ways to quantify similarities and differences across languages.

Supporting Information

Table S1 Keys to the phonetic transcriptions used in
Dataset S1. Codes from several phonetic alphabets (i.e. IPA,

DISC, SAMPA, CELEX, CPA, X-SAMPA, Lexique, and

CoLFIS) are aligned with that of DISC++. Textfile S1 contains

the abbreviations used in Table S1.

(DOCX)

Table S2 Subjective form and meaning similarity
ratings for 1004 cognates and non-cognates. Automatic

form and meaning similarity measures are added for comparison.

(DOCX)
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Table S3 Subjective form similarity ratings (both
orthographic and phonetic similarity ratings) for 319
cognates and non-cognates. Automatic form and meaning

similarity measures are added for comparison.

(DOCX)

Dataset S1 A collection of 15 separate plain text files
that contain the automatically identified cognates cor-
responding to the third column of Table 2. Measures of

orthographic and phonetic similarity as well as frequency

information are included. Textfile S1 contains the abbreviations

used in the headers of the text files.

(ZIP)

Textfile S1 Meanings of the abbreviations used in
Dataset S1 and Table S1.
(TXT)
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informatizado del español. Barcelona: Edicions Universitat de Barcelona.

47. Oxford Dictionaries (2010) Oxford-Paravia Italian Dictionary. 3rd ed. Oxford

University Press, USA. 2800 p.

48. Burkey J (2012) LOWESS, Locally Weighted Scatterplot Smoothing. King

County Department of Natural Resources and Parks. Available: http://www.

mathworks.com/matlabcentral/fileexchange/22470-lowess-locally-weighted-

scatterplot-smoothing-for-linear-and-non-linear-data-enhanced.

49. Zipf GK (1949) Human behavior and the principle of least effort. Oxford,

England: Addison-Wesley Press. 573 p.

50. bil (2012) Wiktionary. Available: http://en.wiktionary.org/wiki/

bil#Etymology. Accessed 8 October 2012.

Cross-Language Cognate Distributions

PLOS ONE | www.plosone.org 15 May 2013 | Volume 8 | Issue 5 | e63006


