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A formalism is provided to calculate tree amplitudes in open superstring theory for any multiplicity at any
order in the inverse string tension. We point out that the underlying world-sheet disk integrals share sub-
stantial properties with color-ordered tree amplitudes in Yang-Mills field theories. In particular, we closely
relate world-sheet integrands of open-string tree amplitudes to the Kawai-Lewellen-Tye representation of
supergravity amplitudes. This correspondence helps to reduce the singular parts of world-sheet disk integrals
– including their string corrections – to lower-point results. The remaining regular parts are systematically
addressed by polylogarithm manipulations.
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1 Introduction

Perturbative string theory has undergone important conceptual and technical advances, such as the analysis
of world-sheet and target-space descriptions, the use of modular properties and more importantly of the
pure-spinor formalism. The application of those methods has considerably simplified the computation of
both tree-level and multi-loop superstring scattering amplitudes.

The structure of superstring scattering amplitudes remarkably resembles the form and organization of
field-theory amplitudes. Moreover, some features of the latter are encoded in and derived from the proper-
ties of the string world-sheet. Striking field-theory relations such as Kleiss-Kuijf (KK) [1], Bern-Carrasco-
Johansson (BCJ) [2] or Kawai-Lewellen-Tye (KLT) [3] relations can be easily derived from and understood
in string theory by tracing these identities back to the monodromy properties of the string world-sheet [4,5].
Furthermore, recent mathematical concepts such as the appearance of twistor space, motivic aspects, sym-
bols and the coproduct structure for Feynman integrals have radically changed our viewpoint and strategy
of how to quickly obtain, reorganize and express results for amplitudes in field-theory. It appears fruitful
to further investigate and understand the natural appearance of those concepts in string theory. One partic-
ular feature of quantum field theories – the appearance of transcendental functions at loop-level – already
occurs at tree-level scattering in string theory as a consequence of the underlying string world-sheet. Since
generically the complete perturbative tree-level contributions to string amplitudes are easier to access than
fully-fledged loop corrections, they provide a convenient testing ground for transcendental structures.

This article is devoted to tree-level open superstring amplitudes (or disk amplitudes). Tree-level interac-
tions of open strings are described by integrals over the boundary of world-sheets with disk topology. The
entire polarization dependence of open superstring tree amplitudes was shown in [6,7] to reside in tree am-
plitudes of the underlying Yang-Mills (YM) field theory, which emerges in the point-particle limit α′ → 0.
String corrections to the YM amplitude resemble formfactors promoting the kinematic factors of field the-
ory into those of string theory. They enter through generalized Euler or Selberg integrals which involve
multiple zeta values (MZVs) in their power-series expansion w.r.t. α′ as was discussed in e.g. [8–11].
We shall show that generalized Selberg integrals involving different cyclic combinations of world-sheet
Green’s functions share essential symmetry properties of color-stripped YM amplitudes. In addition to
cyclic symmetry in the arguments of the Green’s functions, the KK and BCJ relations between field theory
amplitudes literally carry over to disk integrals. This paves our way towards casting the world-sheet inte-
grand of disk amplitudes into a form resembling the KLT representation of supergravity tree amplitudes.
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One copy of YM subamplitudes therein is replaced by its world-sheet correspondent – a Selberg integral
involving an appropriate cyclic product of Green’s functions. This provides a field theoretic intuition for
the structure of the disk integrand explicitly computed in [6, 7].

The systematics of the appearance of MZVs in disk amplitudes has been analyzed in [12]. In this work,
the α′-expansion was shown to take a compact and elegant form once the contributions from different
classes of MZVs are disentangled. The idea is to lift MZVs to their motivic versions endowed with a
Hopf algebra structure. The latter induces an isomorphism which allows to cast the amplitudes into a very
symmetric form. In analogy with the symbol of a transcendental function, this isomorphism automatically
builds in all relations between MZVs. However, its invertibility overcomes the loss of information inherent
to the symbol approach. In spite of this beautiful organization of disk amplitudes, the explicit calculation of
the α′-dependent “seeds” accompanying the single zeta values has not yet been addressed systematically.
Their exact momentum dependence is hidden within world-sheet integrals whose complexity increases
drastically with multiplicity N and the order in α′. While the world-sheet integrals at five points can still
be reduced to a set of single (variable) Gaussian hypergeometric functions 3F2, which has been thoroughly
exploited in [12] to probe weights w ≤ 16, their six- and higher-point versions comprise multiple Gaussian
hypergeometric functions [10], whose expansions in α′ are much more involved. Though computing some
of these expansions has been accomplished at the six- [10,13–15] and seven-point level [7,16] a systematic
approach is still lacking.

In this article, we will provide a method to completely evaluate the world-sheet integrals, which is –
in principle – applicable at any multiplicity and to any order in α′. Once a suitable set of basis integrals
is identified, their singular parts can be rewritten in a form recycling regular parts from lower-point su-
perstring amplitudes. That is, the complete N -point superstring amplitude including poles can be written
in terms of regular parts of the world-sheet integrals at multiplicities smaller or equal to N . The only re-
maining task is the calculation of the regular parts. Employing the language of multiple polylogarithms,
we provide a method to iteratively solve all integrals occurring.

The α′–expansion of the integral bases for the multiplicity N = 5 has been computed up to the weight
w = 16 in [12]. The complete set up to the order w = 22 is now public at [17]. Nevertheless, these matrices
have also recently been determined up to w = 21 in [18]. For the multiplicities N = 6 and N = 7 the
α′–expansions of the integral bases have been determined up to weights w = 9 and w = 7, respectively
and are explicitly given at [17]. An alternative expansion method for the four-point and five-point integrals
has been recently developed in [18].

The article is organized as follows: after reviewing the structure of the α′-expansion in open-string
tree-level amplitudes in Sect. 2, we will point out a close relation between world-sheet integrals and color-
ordered subamplitudes in YM theories in Sect. 3. This correspondence inspires the calculation of world-
sheet integrals: Sect. 4 is devoted to exploring the pole structure of the integrals as well as the recursive
nature of the residues, while the integration of the regular parts is taken care of in Sect. 5 using polyloga-
rithm manipulations. In Sect. 6, the symmetry of disk amplitudes under cyclic shifts and world-sheet parity
is exploited in order to increase the efficiency of the setup.

Several appendices contain more detailed information on various aspects of this work: In appendix A we
recapitulate the Hopf algebra structure of motivic MZVs. In order to support and extend the discussion in
Sect. 3 on field-theory structures in world-sheet integrals, we supply derivations for some of the identities
in appendix B. Examples at multiplicities 4 ≤ N ≤ 7 on how the massless poles of disk integrals can be
quickly read off from their integrand are gathered in appendix C. In addition, we provide further examples
for six-point residues and their recursively organized α′-expansion in appendix D. The general discussion
of polylogarithm identities in Sect. 5 is supplemented by the examples in appendix E. Finally, some of the
intermediate steps for seven-point α′-expansions are outsourced to appendix F.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org
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2 String tree-level amplitudes and their α′-expansion

The N -point tree-level open superstring amplitude was computed in references [6,7] based on pure-spinor
cohomology methods [19]. Remarkably, the entire polarization dependence of the amplitude is carried by
color-ordered tree amplitudes AYM of the underlying YM field theory. In terms of the (N − 3)!-element
basis1 AYM(1, σ(2, . . . , N − 2), N − 1, N) with σ ∈ SN−3 [2], the N -point superstring amplitude reads

Aopen(Π, α′) =
∑

σ∈SN−3

FΠ
σ(α′)AYM(1, σ(2, . . . , N − 2), N − 1, N) . (2.1)

In the above equation, Aopen(Π) with Π ∈ SN denotes the string amplitude associated with an ordering of
vertex operator positions zi on the disk boundary according to zΠ(i) < zΠ(i+1). This amounts to calculating
the partial string amplitude for the particular color-ordering Π. The objects FΠ

σ(α′) originate in the string
world-sheet integrals and encode the string-theory modifications to the field theory amplitude2.

In analogy to the YM situation, not all color-orderings Π of the string amplitude Aopen(Π) are indepen-
dent [4,5]. Choosing a basis amounts to singling out three legs: we will choose to fix legs 1, N − 1 and N
leading to the basis Aopen(1, Π(2, . . . , N − 2), N − 1, N) of string amplitudes, with Π ∈ SN−3. The com-
mon (N − 3)!-structure of the basis for open-string amplitudes Aopen and YM amplitudes AYM suggests
to rewrite Eq. (2.1) in matrix notation, which relates the two vectors comprising the basis amplitudes to a
(N − 3)! × (N − 3)!-matrix F [7]:

Aopen = F AYM . (2.2)

Explicitly, one finds

⎛
⎜⎝ Aopen(1, Π1, N − 1, N)

...

Aopen(1, Π(N−3)!, N − 1, N)

⎞
⎟⎠ =

⎛
⎜⎜⎝

FΠ1
σ1 · · · FΠ1

σ(N−3)!

...
. . .

...

FΠ(N−3)!
σ1 · · · FΠ(N−3)!

σ(N−3)!

⎞
⎟⎟⎠

⎛
⎜⎝ AYM(1, σ1, N − 1, N)

...

AYM(1, σ(N−3)!, N − 1, N)

⎞
⎟⎠ ,

(2.3)

where σi and Πi with i ∈ {1, . . . , (N − 3)!} denote the permutations of (2, 3, . . . , N − 2), respectively3.
The matrix F , however, contains redundant information: Knowing the functions FΠ1

σ1 , . . . , FΠ1
σ(N−3)! in

the first line of F allows to obtain all other entries by a suitable relabeling.
After having organized the open-string amplitude in the form of Eq. (2.2), let us now turn to the entries

in the first line of the matrix F . The dependence of the disk amplitude on the inverse string tension α′

is incorporated in the set of (N − 3)! functions {FΠ1
σ(α′), σ ∈ SN−3}. The latter represent multiple

Gaussian hypergeometric functions originating from generalized Euler or Selberg integrals [10, 14]. The
origin of their (N−3)-fold integrations stems from vertex operator positions along the boundary of the disk
world-sheet. Taylor expanding the string amplitudes (2.1) w.r.t. to small α′ reproduces their low-energy
behavior. Each order in α′ appears with a rational function in the dimensionless Mandelstam variables

si1i2...ip = α′ (ki1 + ki2 + . . . + kip)2 (2.4)

1 Throughout this work, expressions of the form σ(2, 3, . . . , N − 2) with permutation σ have to be understood as
σ(2), σ(3), . . . , σ(N − 2).

2 As a consequence of the manifestly supersymmetric derivation in [6] the labels 1, 2, . . . , N in the subamplitude Eq. (2.1) may
denote any state from the N = 1 super YM multiplet in D = 10 space–time dimensions without any particular reference
to its polarization. Moreover, pure gluon tree-level amplitudes are not affected by dimensional reduction and supersymmetry
breaking. Thus, Eq. (2.1) remains valid for external gluons in any D < 10 superstring compactification which allows for a
CFT description with the field theory subamplitudes AYM adapted to the appropriate spacetime dimension.

3 We enumerate SN−3 permutations in canonical order.
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supplemented by some MZVs

ζn1,...,nr := ζ(n1, . . . , nr) =
∑

0<k1<...<kr

k−n1
1 . . . k−nr

r , nl ∈ N+ , nr ≥ 2 , (2.5)

or products thereof. In (2.5) the number r of the arguments4 and their sum w =
∑r

i=1 ni are called depth
and weight of the MZV, respectively. The overall weight of MZV products matches the corresponding
power in si1i2...ip . The α′-expansion of these iterated integrals in terms of MZVs has been discussed in
both mathematics [8, 9, 20] and physics literature [7, 11, 12] extensively.

There are numerous relations over rational numbers Q between different MZVs, all of which preserve
the weight w. A convenient way to automatically take all these relations into account in the α′-expansion
of F , is to endow the MZVs (2.5) with a Hopf algebra structure and map F to a non-commutative algebra
comodule5 with a more transparent basis [12, 21]. The result is a sum over all non-commutative words6 in
cogenerators f3, f5, . . ., supplemented by a commutative element f2 [12],

φ(Am
open) =

( ∞∑
k=0

fk
2 P2k

)⎧⎪⎪⎨
⎪⎪⎩

∞∑
p=0

∑
i1,...,ip

∈2N++1

fi1fi2 . . . fip Mip . . . Mi2Mi1

⎫⎪⎪⎬
⎪⎪⎭AYM . (2.7)

The (N−3)!×(N−3)!-matrices P2k and M2k+1 are defined to be the coefficients of Riemann zeta values,

M2k+1 := F
∣∣∣
ζ2k+1

, P2k := F
∣∣∣
(ζ2)k

, (2.8)

with respect to a particular Q basis of MZVs, see e.g. table 1 in appendix A.1. The non-commutative
monomial fk

2 fi1fi2 . . . fip is accompanied by a matrix product P2kMip . . . Mi2Mi1 . Appendix A gives a
more detailed account on the aforementioned Hopf algebra structure, the isomorphism φ and the motivic
version ζm of MZVs (2.5) to which the superscript in (2.7) alludes.

Thus, for our choice of basis expansion (2.8), the whole information about the open superstring ampli-
tude, which is not fixed by the structure in Eq. (2.7), is contained in the matrices Pw and Mw associated
with the single zeta values ζw in (2.8). For the multiplicities N = 5, 6 and N = 7 these matrices are
available up to weights w = 21, 9 and w = 7, respectively at [17]. In the following we shall be concerned
with the computation of these matrices, composed from the set of the (N − 3)! functions F σ := FΠ1

σ and
relabelings thereof. Prior to this, let us consider some of their properties yielding a simplification of their
world-sheet integrals.

3 Field-theory patterns in world-sheet integrals

In this section, we establish a connection between color-ordered subamplitudes AYM in YM theories and
world-sheet disk integrals. In particular, we show that in the open-string amplitude (2.1) the role of the YM
subamplitudes and world-sheet integrals can be swapped. This feature is reminiscent of the observation

4 If there is only one argument n1, the above definition reduces to the usual definition of the single Riemann zeta function
ζ(n1).

5 A discussion of the mathematical concepts is provided in appendix A.
6 As pointed out by Don Zagier, one can rewrite (2.7) as a geometric series

φ(Am
open) =

⎛
⎝ ∞∑

k=0

fk
2 P2k

⎞
⎠

⎧⎪⎨
⎪⎩

⎛
⎝1 −

∞∑
k=1

f2k+1M2k+1

⎞
⎠−1

⎫⎪⎬
⎪⎭

t

AYM (2.6)

where {. . .}t reverses the order of the fik
’s enclosed.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org
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of Bern et al. [2, 22–24] (and references therein) that color and kinematic contributions to gauge-theory
amplitudes share their algebraic properties and are freely interchangeable. We refer to the string-theory
property as a correspondence between disk integrals and YM subamplitudes AYM.

This correspondence is manifested by employing the KLT relations [3] and supplemented by a world-
sheet analogues of KK [1, 25] and BCJ relations [2]. Furthermore, different ways of writing the KLT
relations [26] translate into integration-by-part identities between world-sheet integrals. The properties
and relations derived in this section will set the stage to get a convenient handle on the (N − 3)! basis of
disk integrals7 and to correctly identify their singular behavior in Sect. 4.

3.1 Basic definitions

According to the calculation in [6, 7], the set of functions FΠ
σ(α′) introduced in Eq. (2.1) reads

FΠ
σ =(−1)N−3

N−2∏
i=2

∫
D(Π)

dzi

N−1∏
i<j

|zij |sij (3.1)

× σ

{
s12

z12

(
s13

z13
+

s23

z23

)
. . .

(
s1,N−2

z1,N−2
+ . . . +

sN−3,N−2

zN−3,N−2

)}

=(−1)N−3
N−2∏
i=2

∫
D(Π)

dzi

N−1∏
i<j

|zij |sij σ

⎧⎨
⎩

N−2∏
k=2

k−1∑
m=1

smk

zmk

⎫⎬
⎭ . (3.2)

We are always working in coordinates z mapping the boundary of the disk world-sheet to the real axis such
that z ∈ R. The integration domain D(Π) in (3.2) is then defined by zΠ(i) < zΠ(i+1) corresponding to a
cyclic ordering of vertex operators along the world-sheet boundary. Conformal invariance guarantees that
world-sheet positions only enter through the differences zij := zi,j := zi − zj , and three of them are fixed
as8

z1 = 0 , zN−1 = 1 , zN → ∞ (3.3)

in order to mod out the redundancy of the conformal Killing group (CKG) SL(2, R) of the disk topology.
The momentum dependence of the functions FΠ

σ is carried by the dimensionless Mandelstam variables
(2.4).

The functions (3.2) can be expressed as linear combinations of certain disk integrals

ZΠ(1, 2, 3, . . . , N − 1, N) :=
1

VCKG

N∏
i=1

∫
D(Π)

dzi

∏N
i<j |zij |sij

z12z23 . . . zN−1,NzN,1
, (3.4)

whose integrand is characterized by a cycle of N world-sheet propagators (zi − zj)−1 := z−1
ij , which

result from the superstring CFT computation9 on the disk. In order to keep manifest the cyclic symmetry
ZΠ(1, 2, 3, . . . , N − 1, N) = ZΠ(2, 3, . . . , N − 1, N, 1), we do not fix the insertion points of vertex
operators as in Eq. (3.3). At any rate, the inverse volume VCKG of SL(2, R) can be respected anytime by

7 The structure of the (N − 3)! dimensional basis of N -point disk integrals and the formal similarity between the underlying
partial-fraction and integration-by-parts identities and the KK and BCJ relations, respectively has already been investigated to
some extent in [7].

8 Note that once we set zN = ∞, the |ziN |siN contributions to the Koba-Nielsen factor will converge to 1 by virtue of
momentum conservation.

9 In contrast to bosonic string theory, there are no closed subcycles of z−1
ij in the world-sheet integrand of the superstring which

reflects the absence of tachyonic propagators [7, 27].
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fixing three positions zi, zj , zk and inserting the Jacobian |zijzikzjk|. In Eq. (3.4) the cyclic products of
world-sheet Green’s functions z−1

ij on the disk share several properties with the corresponding field-theory
subamplitudes AYM. This fact, which will become clear below, explains the reason for their appearance in
the FΠ

σ .

3.2 Gravity tree amplitudes versus superstring disk amplitudes

In Eq. (3.2) the integrand of the function FΠ
σ , in particular the expression in parenthesis, looks pretty

complicated and requires a more intuitive understanding. For this purpose, one notes the resemblance to the
structure of the KLT relations [3], which allow to write the N -graviton tree amplitudes M in perturbative
gravity in terms of bilinears in gauge theory subamplitudes AYM, ÃYM:

M(1, 2, . . . , N) = (−1)N−3
∑

σ∈SN−3

AYM(1, σ(2, 3, . . . , N − 2), N − 1, N) (3.5)

×
∑

ρ∈SN−3

S[ ρ(2, . . . , N − 2) |σ(2, . . . , N − 2) ]1 ÃYM(1, ρ(2, 3, . . . , N − 2), N, N − 1) .

In the above equation, S[ρ|σ]1 is the field-theory limit of the momentum kernel10 [26], a (N−3)!×(N−3)!-
matrix11 homogeneous of degree (N − 3) in the Mandelstam variables sij . The subscript 1 refers to the
reference momentum k1 which shows up in the entries

S[ 2ρ, . . . , (N − 2)ρ | 2σ, . . . , (N − 2)σ ]1 :=
N−3∏
j=2

(
s1,jρ +

j−1∑
k=2

θ(jρ, kρ) sjρ,kρ

)
. (3.6)

with shorthand iρ := ρ(i). The object θ(jρ, kρ) equals 1 if the ordering of the legs jρ, kρ is the same in the
ordered sets ρ(2, . . . , N − 2) and σ(2, . . . , N − 2), and zero if the ordering is opposite. In other words, it
keeps track of labels which swap their relative positions in the two permutations ρ and σ.

After substituting Eq. (3.6) into Eq. (3.5) and applying partial-fraction identities in the integrand of ZΠ

such as
1

zijzik
+

1
zjizjk

+
1

zkizkj
= 0 , (3.7)

one finds the second line of Eq. (3.5) to match the formula (3.2) for the functions12 FΠ
σ ,

FΠ
σ = (−1)N−3

∑
ρ∈SN−3

S[ ρ(2, . . . , N−2) |σ(2, . . . , N−2) ]1 ZΠ(1, ρ(2, 3, . . . , N−2), N, N−1) ,

(3.8)

once we perform the SL(2, R) fixing (3.4)

ZΠ(1, ρ(2, 3, . . . , N − 2), N, N − 1) =
N−2∏
i=2

∫
D(Π)

dzi

N−1∏
i<j

|zij |sij

z1ρ(2)zρ(2),ρ(3) . . . zρ(N−3),ρ(N−2)
(3.9)

10 For convenience we reversed the first permutation in comparison to the original reference [26], which turns S[ρ|σ]1 into a
symmetric matrix.

11 In a string theory context, the momentum kernel gathers monodromy phases due to complex contour deformations on a genus-
zero world-sheet which are used to derive closed string tree amplitudes [3, 26] and open-string subamplitudes relations [4, 5].
The α′ → 0 limit relevant to our discussion amounts to replacing factors sin(πsij) by the arguments of the sin functions.

12 Note that the extended set of (N − 2)! functions FΠ
σ(23...N−1) considered in Subsect. 2.5 of [7] accordingly follows by the

action of σ ∈ SN−2 on
∑

ρ∈SN−3
S[2, . . . , N − 2|ρ]1ZΠ(1, ρ(2, 3, . . . , N − 2), N, N − 1) or any integration-by-parts

equivalent representation thereof.
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and identify the functions ZΠ with ÃYM.
Note, that the computation of the D = 4 maximally helicity-violating (MHV) superstring disk ampli-

tude quite naturally arrives at the basis (3.9) after choosing appropriate reference spinors and performing
partial-fraction decompositions [27]. According to this reference, a tree-graph can be associated to the
rational-function part of the integrand (3.4) and partial fractions (3.7) can be graphically described yield-
ing the functions (3.9) as a basis. In the language of graphs the set of (N − 3)! integrals (3.9) represent the
same Hamilton basis as introduced in [28].

In the KLT formula (3.5), the transposition of legs N −1 and N between AYM and ÃYM makes sure that
these bilinears exhaust all pole channels present in the corresponding field theory amplitude. At the level of
the functions ZΠ(1, . . . , N, N − 1), the order of legs N, N − 1, 1, . . . (with N − 1 and 1 adjacent) implies
that the Green’s function z−1

N−1,1 in the cyclic denominator cancels the factor z1,N−1 from the SL(2, R)
Jacobian due to Eq. (3.3). The remaining rational function is then more suitable to the methods of Sect. 5.

The representation (3.8) of the functions FΠ
σ in terms of ZΠ casts the open-string amplitude (2.1) into

the same form as (3.5)

Aopen(1, Π(2, . . . , N − 2), N − 1, N) = (−1)N−3
∑

σ∈SN−3

AYM(1, σ(2, . . . , N − 2), N − 1, N)

×
∑

ρ∈SN−3

S[ ρ(2, . . . , N − 2) |σ(2, . . . , N − 2) ]1 ZΠ(1, ρ(2, 3, . . . , N − 2), N, N − 1) ,

(3.10)

where the replacement ÃYM(ρ) → ZΠ(ρ) builds up the functions (3.8) in the second line. The result
(3.10) does not depend on which YM sector ÃYM or AYM in (3.5) is replaced by the integral ZΠ. As a
consequence, the open-string amplitude (3.10) is symmetric under the exchange of the YM subamplitude
AYM and the world-sheet integral ZΠ. Note also that color ordering Π of the string amplitude is a spectator
in the SN−3 summation over σ and ρ. That is, the open superstring amplitude Aopen is totally symmetric in
all indices as long as the color ordering Π remains unspecified. The formal equivalence between (3.5) and
(3.10)

ÃYM(ρ) � ZΠ(ρ) (3.11)

makes the exchange symmetry between YM subamplitudes and disk integrals manifest. We shall point out
further faces of this correspondence in Subsect. 3.4.

Let us remark, that in the four-dimensional spinor helicity formalism, MHV disk amplitudes [27] allow
to establish the correspondence (3.11) even at the level of individual Green’s functions z−1

ij [28].

3.3 Examples

Let us illustrate the statements above by some examples at multiplicities N = 4, 5 and N = 6.

3.3.1 Four points

The four-point amplitude

Aopen(Π(1, 2, 3, 4)) = −AYM(1, 2, 3, 4) s12 ZΠ(1, 2, 4, 3) (3.12)

is governed by the integral

ZΠ(1, 2, 4, 3) =
1

VCKG

4∏
i=1

∫
D(Π)

dzi

∏4
i<j |zij |sij

z12z24z43z31
=

∫
D(Π)

dz2
|z12|s12 |z23|s23

z12
. (3.13)
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In the limit z4 → ∞, the factors of z24z43z31 are cancelled by the Jacobian z13z14z34. Given the 1 × 1
momentum kernel S[2|2]1 = s12, we can rewrite the function FΠ

(2) as

FΠ
(2) = −S[ 2 | 2 ]1 ZΠ(1, 2, 4, 3) = −

∫
D(Π)

dz2 |z12|s12 |z23|s23
s12

z12
, (3.14)

which is in agreement with (3.2).

3.3.2 Five points

The five-point integrand involves two permutations 2ρ = ρ(2), 3ρ = ρ(3) of the labels 2, 3,

ZΠ(1, 2ρ, 3ρ, 5, 4) =
1

VCKG

5∏
i=1

∫
D(Π)

dzi

∏5
i<j |zij |sij

z12ρz2ρ3ρz3ρ5z54z41
=

∫
D(Π)

dz2 dz3

∏4
i<j |zij |sij

z12ρz2ρ3ρ

(3.15)

which are tied together by the 2 × 2 momentum kernel

S[ ρ(2, 3) |σ(2, 3) ]1 =

(
S[ 23 | 23 ]1 S[ 32 | 23 ]1
S[ 23 | 32 ]1 S[ 32 | 32 ]1

)
=

(
s12(s13 + s23) s12s13

s12s13 s13(s12 + s23)

)

(3.16)

Inserting these expressions into (3.8) reproduces the form (3.2) of the FΠ
σ after using partial-fraction

identities:

FΠ
(23) =

∑
ρ∈S2

S[ ρ(2, 3) | 2, 3 ]1 ZΠ(1, 2ρ, 3ρ, 5, 4)

=
∫

D(Π)

dz2 dz3

4∏
i<j

|zij |sij
s12

z12

(
s13

z13
+

s23

z23

)
(3.17)

FΠ
(32) =

∑
ρ∈S2

S[ ρ(2, 3) | 3, 2 ]1 ZΠ(1, 2ρ, 3ρ, 5, 4)

=
∫

D(Π)

dz2 dz3

4∏
i<j

|zij |sij
s13

z13

(
s12

z12
+

s32

z32

)

3.3.3 Six points

The six-point string corrections are governed by the ρ ∈ S3 basis of (6 − 3)! = 6 functions

ZΠ(1, 2ρ, 3ρ, 4ρ, 6, 5) =
∫

D(Π)

dz2 dz3 dz4

∏5
i<j |zij |sij

z12ρz2ρ3ρz3ρ4ρ

(3.18)

and the (6 × 6)-momentum kernel with the following entries in its first row:

S[ 234 | 234 ]1 = s12(s13 + s23)(s14 + s24 + s34) , S[ 342 | 234 ]1 = s12s13(s14 + s34)
S[ 243 | 234 ]1 = s12(s13 + s23)(s14 + s24) , S[ 423 | 234 ]1 = s12(s13 + s23)s14

S[ 324 | 234 ]1 = s12s13(s14 + s24 + s34) , S[ 432 | 234 ]1 = s12s13s14

.
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(3.19)

Repeated use of partial-fraction identities casts the result of (3.8) into the form (3.2)

FΠ
σ = −

∑
ρ∈S3

S[ ρ(2, 3, 4) |σ(2, 3, 4) ]1 ZΠ(1, 2ρ, 3ρ, 4ρ, 6, 5) (3.20)

=
∫

D(Π)

dz2 dz3 dz4

5∏
i<j

|zij |sij
s12σ

z2σ1

(
s13σ

z13σ

+
s2σ3σ

z2σ3σ

) (
s14σ

z14σ

+
s2σ4σ

z2σ4σ

+
s3σ4σ

z3σ4σ

)
.

Higher–point analogues of the functions consist of more and more factors
∑k−1

m=1
smk

zmk
with an increasing

number of terms each.

3.4 World-Sheet analogues of KK and BCJ relations

The gravity amplitude (3.5) does not have any notion of color ordering, it is a totally symmetric function
w.r.t. its labels 1, 2, . . . , N . Although this symmetry is obscured on the right hand side of the KLT formula,
it can be verified to hold through the KK relations (discovered in [1] and proven in [25]) and BCJ relations
[2] obeyed by the amplitudes AYM(σ) and ÃYM(ρ). The connection between gravity amplitudes (3.5) and
open-string subamplitudes (3.10) motivates to investigate whether the underlying disk integrals ZΠ(ρ)
(3.9) taking the role of ÃYM(ρ) satisfy the same KK and BCJ relations.

As demonstrated in appendix B, the ZΠ(ρ) at fixed color ordering Π share all the algebraic properties
of AYM(ρ) when the permutation ρ determining the integrand is varied. Firstly, they satisfy a world-sheet
analogue of KK relations

ZΠ(1, α, N − 1, β) = (−1)|β|
∑

σ∈α��βt

ZΠ(1, σ, N − 1) (3.21)

where α and β denote disjoint ordered subsets of {2, . . . , N−2, N} such that α ∪ β = {2, . . . , N−2, N},
the t operation reverses the order of the elements in β, and |β| is given by the number of elements in β.
The summation range α		βt includes those permutations of α ∪ β which preserve the order of elements
in α and βt. Secondly, the BCJ relations among AYM [2] literally translate into

s1,N−2 ZΠ(1, N − 2, 2, 3, . . . , N, N − 1)

+
N−3∑
j=2

j∑
k=1

sk,N−2 ZΠ(1, 2, . . . , j, N − 2, j + 1, . . . , N, N − 1)

− sN−2,N−1 ZΠ(1, 2, . . . , N − 3, N, N − 2, N − 1) = 0 . (3.22)

A detailed discussion and derivation of (3.21) and (3.22) based on world-sheet manipulations can be found
in appendix B.

These analogues of KK and BCJ relations fulfilled by the integrals ZΠ(ρ) (regardless of Π) imply that
the open-string CFT correlator enjoys the same total exchange symmetry in 1, 2, . . . , N as the gravity am-
plitude. Individual disk subamplitudes Aopen(Π) then stem from integrating a totally symmetric correlator
over a domain specified by zΠ(i) < zΠ(i+1), that is, the ordering of the vertex operators along the disk
boundary. The integration region determined by Π breaks the complete permutation symmetry SN of the
integrand down to a cyclic subgroup ZN . Hence, establishing an analogue of KK and BCJ relations among
the ZΠ(ρ) ultimately guarantees cyclic symmetry of Aopen(Π) given by (3.10).
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3.5 Different KLT representations and integration by parts

An important feature to conveniently determine the α′-expansion of the functions FΠ
σ in the string ampli-

tude (2.1) is the choice of a convenient basis of integrals ZΠ’s. In this subsection, we will show that there
are N − 2 different SN−3-families of such ZΠ(. . .). One is free to focus on the SN−3 slice of ZΠ(. . .)
whose low-energy behavior is easiest to access (the criterion will follow in the later Sect. 4). The freedom
in constructing the FΠ

σ can be explained both by world-sheet integration by parts and by the analogy of
the disk amplitude (3.10) with the KLT formula (3.5) for gravity tree amplitudes.

Contour deformation and the underlying monodromy relations [4,5] allow to rewrite the KLT formula in
a variety of ways such that the number of terms in (3.5) or (3.10) can be reduced from (N −3)!× (N −3)!
down to (N − 3)!× (ν − 1)!× (N − 2 − ν)! for some ν = 1, 2, . . . , N − 2 [3,29]. In the language of the
momentum kernel [26], this gives rise to equivalent representations13

M(1, 2, . . . , N) = (−1)N−3
∑

σ∈SN−3

AYM(1, σ(2, 3, . . . , N − 2), N − 1, N)

×
∑

ρ∈Sν−1

∑
τ∈SN−2−ν

S[ ρ(2σ, . . . , νσ) | 2σ, . . . , νσ ]1

× S[ τ((N − 2)σ, . . . , (ν + 1)σ) | (N − 2)σ, . . . , (ν + 1)σ ]N−1

× ÃYM(1, ρ(2σ, . . . , νσ), N, τ t((N − 2)σ, . . . , (ν + 1)σ), N − 1) , (3.23)

for all values ν = 1, . . . , N−2. Eq. (3.5) corresponds to taking ν = N−2 in (3.23). At odd multiplicity N ,
the most economic choice ν = 1

2 (N − 1) w.r.t. the number of terms makes reflection symmetry manifest:
At five points, ν = 2 yields a two-term representation

M(1, 2, . . . , 5) =
∑

σ∈S2

AYM(1, σ(2, 3), 4, 5)S[ 2σ | 2σ ]1 S[ 3σ | 3σ ]4 ÃYM(1, 2σ, 5, 3σ, 4) , (3.24)

with S[2σ|2σ]1 = s12σ and S[3σ|3σ]4 = s3σ4, and the seven-point amplitude at ν = 3 takes the form

M(1, 2, . . . , 7) =
∑
σ∈S4

AYM(1, σ(2, 3, 4, 5), 6, 7)
∑
ρ∈S2

S[ ρ(2σ, 3σ) | 2σ, 3σ ]1

×
∑
τ∈S2

S[ τ(5σ, 4σ) | 5σ, 4σ ]6 ÃYM(1, ρ(2σ, 3σ), 7, τ t(5σ, 4σ), 6) , (3.25)

with 24 × 4 terms rather than 24 × 24. Even multiplicities, on the other hand, leave two values ν =
1
2 N − 1, 1

2 N for the minimal number of terms in (3.23).
The dictionary (3.11) between the supergravity amplitude M and the open superstring amplitude

Aopen(Π) maps the freedom in the choice of the parameter ν in (3.23) to world-sheet integrations by parts.
By discarding a total zN−2 derivative, we can reduce the number of terms in the representation (3.2) of
FΠ

σ by N − 3

∫
D(Π)

dzN−2

N−1∏
i<j

|zij |sij

(
s1,N−2

z1,N−2
+ . . . +

sN−3,N−2

zN−3,N−2

)
=

∫
D(Π)

dzN−2

N−1∏
i<j

|zij |sij
sN−2,N−1

zN−2,N−1
.

(3.26)

This results in moving from case ν = N − 2 to case ν = N − 3. Generically, for any ν = 1, . . . , N − 2
we have:

13 Similar to (3.21), the permutation τ t is related to τ by reversal of its elements.
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Aopen(1, Π(2, . . . , N − 2), N − 1, N) = (−1)N−3
∑

σ∈SN−3

AYM(1, σ(2, 3, . . . , N − 2), N − 1, N)

×
∑

ρ∈Sν−1

∑
τ∈SN−2−ν

S[ ρ(2σ, . . . , νσ) | 2σ, . . . , νσ ]1

× S[ τ((N − 2)σ, . . . , (ν + 1)σ) | (N − 2)σ, . . . , (ν + 1)σ ]N−1

× ZΠ(1, ρ(2σ, . . . , νσ), N, τ t((N − 2)σ, . . . , (ν + 1)σ), N − 1) . (3.27)

Note, that the Green’s functions in ZΠ(1, ρ(2σ, . . . , νσ), N, τ t((N − 2)σ, . . . , (ν + 1)σ), N − 1) factorize
into ρ(z12σ . . . z(ν−1)σ,νσ

)−1 and τ(z(ν+1)σ ,(ν+2)σ
. . . z(N−2)σ,N−1)−1 after SL(2, R) fixing. Carrying

out the ρ-sum in (3.27) yields

∑
ρ∈Sν−1

S[ ρ(2σ, . . . , νσ) | 2σ, . . . , νσ ]1
ρ(z12σ . . . z(ν−1)σ,νσ

)
= σ

⎛
⎝ ν∏

k=2

k−1∑
m=1

smk

zmk

⎞
⎠ . (3.28)

Eventually, after repeating the manipulation (3.26) for derivatives in zN−3, zN−4, . . . , z�N/2�+1 casts the
function FΠ

σ into a form with a minimal number of terms at ν = 
N/2�:

FΠ
σ =(−1)N−3

∑
ρ∈S�N/2�−1

S[ρ(2σ, . . . , 
N/2�σ)|2σ, . . . , 
N/2�σ]1

×
∑

τ∈S�N/2�−2

S[τ((N − 2)σ, . . . , (
N/2� + 1)σ)|(N − 2)σ, . . . , (
N/2�+ 1)σ]N−1

× ZΠ(1, ρ(2σ, . . . , 
N/2�σ), N, τ t((N − 2)σ, . . . , (
N/2�+ 1)σ), N − 1) (3.29)

=(−1)N−3
N−2∏
i=2

∫
D(Π)

dzi

N−1∏
i<j

|zij |sij σ

⎧⎨
⎩
⎛
⎝�N/2�∏

k=2

k−1∑
m=1

smk

zmk

⎞
⎠

⎛
⎝ N−2∏

k=�N/2�+1

N−1∑
n=k+1

skn

zkn

⎞
⎠
⎫⎬
⎭ .

At five points, e.g. the representation for ν = 2

FΠ
σ =

∫
D(Π)

dz2 dz3

4∏
i<j

|zij |sij
s12σ

z12σ

s3σ4

z3σ4
: ν = 2 (3.30)

involves fewer terms than the representations of the basis functions for ν = 1, 3:

FΠ
σ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
D(Π)

dz2 dz3

4∏
i<j

|zij |sij
s12σ

z12σ

(
s13σ

z13σ

+
s2σ3σ

z2σ3σ

)
: ν = 3 ,

∫
D(Π)

dz2 dz3

4∏
i<j

|zij |sij

(
s2σ3σ

z2σ3σ

+
s2σ4

z2σ4

)
s3σ4

z3σ4
: ν = 1 .

(3.31)

As we can see in (3.29), the freedom in rewriting the KLT-like formula for Aopen enables to reconstruct
the FΠ

σ from any set of (N − 3)! functions ZΠ(1, 2σ, . . . , νσ, N, (ν + 1)σ, . . . , (N − 2)σ, N − 1) with
ν = 1, 2, . . . , N − 2. The situation is summarized in Fig. 1.

3.6 Basis expansion of individual integrals

Even though the general aim of this article is the construction of basis functions FΠ
σ from disk integrals

ZΠ(1, . . . , N − 1) as shown in Eq. (3.29), we shall now invert these relations to facilitate the translation
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ZΠ(1, ρN−3, N, N − 1)

ZΠ(1, ρN−4, N, τ1, N − 1)

ZΠ(1, ρν−1, N, τN−2−ν , N − 1)

ZΠ(1, ρ1, N, τN−4, N − 1)

ZΠ(1, N, τN−3, N − 1)

FΠ
σint. by parts int. by parts

S[ρN−3] S[ρN−4] S[τ1] S[ρν−1] S[τN−2−ν ] S[ρ1] S[τN−4] S[τN−3]

. . . . . .

. . . . . .

Fig. 1 Each of the N − 2 integration-by-parts equivalent representations of the basis functions FΠ
σ can

be mapped to another (N − 3)! basis of KK integrals ZΠ(1, . . . , N − 1). Depending on the position ν + 1

of leg N in the ZΠ, the transformation matrix is given by a product of (ν − 1)- and (N − 2 − ν)-particle
momentum kernels.

between the two types of objects. The expansion of KK basis integrals in terms of FΠ
σ introduces the

inverse of the momentum kernel whose entries involve N−3 simultaneous poles in Mandelstam invariants.
The four-point case S−1[2|2]1 = s−1

12 extends as follows to five and six points:(
S−1[ 23 | 23 ]1 S−1[ 32 | 23 ]1
S−1[ 23 | 32 ]1 S−1[ 32 | 32 ]1

)
=

1
s123

(
1

s12
+ 1

s23
− 1

s23

− 1
s23

1
s13

+ 1
s23

)
(3.32)

S−1[ 234 | 234 ]1 =
1

s1234

( 1
s234

( 1
s23

+
1

s34

)
+

1
s12s34

+
1

s123

( 1
s12

+
1

s23

))
S−1[ 243 | 234 ]1 = − 1

s1234s34

( 1
s12

+
1

s234

)
, S−1[ 342 | 234 ]1 = − 1

s1234s34s234

S−1[ 324 | 234 ]1 = − 1
s1234s23

( 1
s123

+
1

s234

)
, S−1[ 423 | 234 ]1 = − 1

s1234s23s234

S−1[ 432 | 234 ]1 =
1

s1234s234

( 1
s23

+
1

s34

)
. (3.33)

These combinations of (N − 3)-fold poles govern the inverse of (3.29),

ZΠ(1, 2σ, . . . , νσ, N, (ν + 1)σ, . . . , (N − 2)σ, N − 1) = (−1)N−3
∑

ρ∈SN−3

FΠ
ρ(2σ ,3σ,...,(N−2)σ)

× S−1[ 2σ, . . . , νσ | ρ(2σ, . . . , νσ) ]1 S−1[ (N−2)σ, . . . , (ν+1)σ | ρ((N−2)σ, . . . , (ν+1)σ) ]N−1 ,
(3.34)

where S−1[α|β]j = 0 unless α is a permutation of β, that is, the inverse momentum kernel can only take
nonzero values if the same set of labels appears in its two slots.

Let us illustrate (3.34) by two examples:

• At N = 5 and ν = 2, we have

ZΠ(1, 2σ, 5, 3σ, 4) =
∑
ρ∈S2

FΠ
ρ(2σ ,3σ) S−1[ 2σ | ρ(2σ) ]1 S−1[ 3σ | ρ(3σ) ]4 =

FΠ
σ(23)

s12σs3σ4
(3.35)

since the second term with ρ(2σ, 3σ) = (3σ, 2σ) yields S−1[ 2σ | 3σ ]1 = S−1[ 3σ | 2σ ]4 = 0.
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• At N = 6 and ν = 1, on the other hand,

ZΠ(1, 6, 2σ, 3σ, 4σ, 5) = −
∑
ρ∈S3

FΠ
ρ(2σ ,3σ,4σ) S−1[ 4σ3σ2σ | ρ(4σ, 3σ, 2σ) ]5

= −FΠ
σ(234)

s2345

( 1
s3σ4σs3σ4σ5

+
1

s4σ5s3σ4σ5
+

1
s2σ3σs4σ5

+
1

s3σ4σs234
+

1
s2σ3σs234

)

+
FΠ

σ(243)

s2345s3σ4σ

( 1
s234

+
1

s3σ4σ5

)
+

FΠ
σ(324)

s2345s2σ3σ

( 1
s234

+
1

s4σ5

)
+

FΠ
σ(342)

s2345s234s3σ4σ

+
FΠ

σ(423)

s2345s234s2σ3σ

− FΠ
σ(432)

s2345s234

( 1
s2σ3σ

+
1

s3σ4σ

)
. (3.36)

We will make use of the relation (3.34) in assembling the final results in Sect. 6 below.

4 Kinematic poles

In the previous section we have seen how the string corrections FΠ
σ(α′) to disk amplitudes are built from

generalized Euler integrals ZΠ(ρ) with ρ ∈ SN . Their integrands are characterized by the totally symmetric
Koba-Nielsen factor

∏N
i<j |zij |sij decorated by a cyclic product ρ(z12z23 . . . zN−1,NzN,1)−1 of Green’s

functions (on the sphere). The latter endows the functions ZΠ(ρ) with the same algebraic properties as
the YM amplitudes AYM(ρ). In particular, the freedom due to world-sheet integration by parts allows to
assemble the complete basis of FΠ

σ(α′) from each of the N − 2 different sectors of ZΠ(ρ), classified by
ν = 1, 2, . . . , N − 2:{

ZΠ(1, 2ρ, . . . , νρ, N, (ν+1)ρ, . . . , (N−2)ρ, N−1) , ρ ∈ SN−3

}
, ν = 1, 2, . . . , N−2 . (4.1)

The multiple resonance exchange in an N -point scattering process is reflected in up to N − 3 simul-
taneous poles in the Mandelstam variables. They are the source of field theory propagators within disk
amplitudes (or, equivalently, non-vanishing field theory limits for some of the FΠ

σ) and pose a major
complication in performing an α′-expansion of the ZΠ. The identification and classification of pole chan-
nels has been thoroughly explained in [7]. In the following, we will review selected aspects thereof and
formulate the resulting prescriptions to directly read off the pole structure from the permutations Π, ρ char-
acterizing ZΠ(ρ). Moreover, we will investigate the α′-expansion of pole residues and reveal their recursive
structure. Massless poles occur in integration regions where several neighboring vertex operators collide.
So far, we have left the disk ordering Π unspecified since it has no impact on the structure and possible
manipulations of the integrand. Kinematic poles of the integrated amplitude, however, are sensitive to the
color ordering. Hence, we choose the canonical disk ordering Π = (1, 2, . . . , N) in the following (keeping
the usual SL(2, R) fixing z1 = 0, zN−1 = 1, zN → ∞) and omit the Π subscripts of ZΠ(ρ) and FΠ

σ . The
integration domain 0 = z1 ≤ z2 ≤ z3 ≤ . . . ≤ zN−2 ≤ zN−1 = 1 allows for singularities in the multipar-
ticle Mandelstam variables si,i+1...,j−1,j defined by (2.4) from the regime zi+1, zi+2, . . . , zj−1, zj → zi

for 1 ≤ i < j ≤ N − 1. Momentum conservation sj+1,...,N,1,...,i−1 = si,i+1...,j−1,j guarantees that we
can avoid explicit reference to the momentum kN from the vertex operator at zN → ∞ without omitting
any pole channel.

The first Subsect. 4.1 provides a criterion to find the complete set of pole channels present in the in-
dividual Z(ρ) of the form (4.1). Subsect. 4.2 then explains how to reduce such Z(ρ) to integrals whose
low-energy limit reproduces the propagators of a single diagram from the underlying YM field theory
comprising cubic vertices only (we shall refer to such diagrams as ‘cubic’ below). Factorization properties
imply that the residues of N -point amplitudes on a k-fold massless pole are given by (off-shell) (N − k)-
point amplitudes (or products of p lower-point amplitudes with overall multiplicity N − k + 3(p − 1)).
The manifestation of factorization at the level of integrals and the systematics of the residues’ recursive
structure is presented in Subsect. 4.3.
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4.1 Identifying pole channels

The kinematic poles present in a given Z(ρ) are not immediately obvious from the integrand. Thus we
will give a criterion (4.6) below which relates the pole structure of an integral Z(ρ) with the ρ-dependent
integrand, see (3.9). We address this problem for the complete KK basis14, firstly for the sake of generality,
and secondly to gather evidence in favor of the ν = 
N/2� slice of (4.1) which leads to a complete F σ

basis in the most economic way. Once we have stripped off the Koba-Nielsen factor, one can refer to the
Green’s functions in the integrand by a polynomial Rν,ρ(zij) of degree (N − 3):

Z(1, 2ρ, . . . , νρ, N, (ν + 1)ρ, . . . , (N − 2)ρ, N − 1) =
N−2∏
i=2

∫ zi+1

0

dzi

N−1∏
i<j

|zij |sij
1

Rν,ρ(zij)

Rν,ρ(zij) := (z12ρz2ρ3ρ . . . z(ν−1)ρ,νρ
) × (z(ν+1)ρ,(ν+2)ρ

. . . z(N−2)ρ,N−1) . (4.2)

Note that the world-sheet parity transformation (zi, ki �→ zN−i, kN−i) for i = 1, 2, . . . , N − 1 preserves
the form of (4.2) including the SL(2, R) fixing and exchanges SN−3 sectors of the KK basis associated
with ν and N − 1 − ν.

The following change of integration variables allows to conveniently probe several pole channels which
will turn out to be sufficient for finding the general criterion (4.6):

z2 = x1 x2 . . . xN−3 , z3 = x2 x3 . . . xN−3 , . . . , zN−2 = xN−3 . (4.3)

This transformation maps the integration region from a simplex 0 ≤ z2 ≤ z3 ≤ . . . ≤ zN−2 ≤ 1 to the
unit cube 0 ≤ xi ≤ 1, and the integration measure becomes

N−2∏
i=2

∫ zi+1

0

dzi

N−1∏
i<j

|zij |sij

=
N−3∏
i=1

∫ 1

0

dxi

N−3∏
j=1

x
j−1+s12...j+1
j (1 − xj)sj+1,j+2

N−3∏
l=j+1

⎛
⎝ 1 −

l∏
k=j

xk

⎞
⎠sj+1,l+2

(4.4)

with
∏N−3

j=1 xj−1
j emerging from the Jacobian

∣∣ ∂zi

∂xj

∣∣. Including the polynomials Rν,ρ(zij) of (4.2) into

(4.4) effectively shifts sij �→ sij − 1 for each zij-factor present in Rν,ρ, see e.g. [7]. This is crucial for
identifying kinematic poles: For functions f, g which are regular at x = 0 and x = 1, respectively, we find
the following behavior15

∫ a

0

dx xs−1 f(x) =
f(0)

s
+ O(s0) ,

∫ 1

1−b

dx (1 − x)s−1 g(x) =
g(1)
s

+ O(s0) (4.5)

due to the limits of the integration range. Hence, the exponents j − 1 + s12...j+1 and sj+1,j+2 of the xj

and (1 − xj) factors in the integrand (4.4) trigger propagators s−1
12...j+1 and s−1

j+1,j+2, whenever presence

of Rν,ρ shifts them to x
s12...j+1−1
j and (1 − xj)sj+1,j+2−1, respectively:

• (j + 1)-particle pole channels s−1
12...j+1 encompassing legs 1, 2, . . . , j + 1 ≤ N − 2 emerge from the

xj → 0 regime of the integral (4.4) whenever Rν,ρ covers j factors of zpq with 1 ≤ p < q ≤ j + 1

• two-particle channels s−1
j+1,j+2 emerge as xj → 1 whenever Rν,ρ ∼ zj+1,j+2

14 We want to emphasize that any other integral beyond the KK basis {Z(1, ρ(2, 3, . . . , N − 2, N), N), ρ ∈ SN−2} can
be brought into the form Eq. (4.2) by means of KK relations Eq. (3.21). So there is no loss of generality in restricting the
discussion to integrals of the form (4.2) with a degree N − 3 polynomial Rν,ρ in zij .

15 This is a consequence of the δ-function representation δ(x) = lims→0 sxs−1.
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The factors of (1−xjxj+1 . . . xl)sj+1,l+2 in (4.4) with l > j or potential z−1
j+1,l+2 admixtures from Rν,ρ do

not affect these poles. They take the role of the functions f, g in (4.5) with regular behavior in the critical
range of integration.

This criterion to find the pole channels can neither depend on the particular j + 1-particle channel
s12...j+1, s23...j+2, . . . , sN−j−1...N−1 in question nor on the parametrization of the disk boundary. Hence,
we can lift the above correlation between s12...j+1 poles and Rν,ρ to cyclic images sk,k+1,...j+k with
k ≤ N − 1 and formulate the following general criterion16 for massless poles:

Integrals Z of type (4.2) contribute to the (j − i + 1)-particle pole channel si,i+1...j−1,j

with 1 ≤ i < j ≤ N − 1 if Rν,ρ contains (j − i) factors of zpq in the range i ≤ p < q ≤ j.
(4.6)

The pole channels accessible in Eq. (4.4) additionally point out incompatible (or dual) channels17 [7,30]:
The two pole channels s12...j+1 and sj+1,j+2 are caused by complementary integration regions xj → 0
and xj → 1, respectively, this is why a simultaneous pole in s12...j+1 and sj+1,j+2 cannot appear. Again,
this statement must be independent on the label 1 bounding the multi-particle channel, so we conclude
that the pairs (si,i+1, si+1,i+2...j−1,j) and (si,i+1...j−1,j , sj,j+1) are incompatible pole channel for any
1 ≤ i < j ≤ N − 1 and always appear in separate denominators (see Eq. (C.5) below for an example).

Examples for the pole criterion (4.6) are given in appendix C.

4.1.1 Momentum kernel representation of field theory limits

We can cast the results of the pole analysis (4.6) into a closed form by demanding a consistent field theory
limit for the disk amplitude (2.1): The pole structure of the functions (4.2) must be compatible with

FΠ
σ
∣∣∣
α′→0

= δσ
Π . (4.7)

The representation (3.34) for FΠ
σ in terms of inverse momentum kernels yields

ZΠ(1, 2σ, . . . , νσ, N, (ν + 1)σ, . . . , (N − 2)σ, N − 1)
∣∣∣
α′→0

= (−1)N−3 (4.8)

×S−1[ 2σ, . . . , νσ |Π(2, . . . , ν) ]1 S−1[ (N−2)σ, . . . , (ν+1)σ |Π(N−2, . . . , ν+1) ]N−1 .

Like in Subsect. 3.6, the entry S−1[α|β] is bound to vanish unless α is a permutation of β.

4.2 From a KK basis to a pole channel basis

We would like to take advantage of the rule (4.6) identifying pole channels to efficiently construct the
α′-expansion of an integral basis. The examples of appendix C show that generic KK integrals contribute
to several cubic diagrams of YM field theory. In the later Subsect. 4.3, we aim to identify the residues for
less singular string corrections to YM diagrams where only a subset of the N − 3 poles remain (the others
are said to be collapsed in the following). Since there is a total of 2N−3 such subsets per cubic diagram,
it is preferable to rearrange the integrals such that they generate only one cubic diagram each, even on the
expense of leaving the KK basis (4.2). So we will start with the KK basis and rewrite its elements by means
of partial-fraction relations in order to obtain a pole channel basis – another (N −2)! set of integrals which

16 Although the rule (4.6) is formulated for a particular SL(2, R) fixed version of the integrals it does not depend on this choice:
in the picture 1

VCKG

∏N
i=1

∫
dzi . . . with unspecified SL(2, R) fixing, the SN−3 basis of Z(1, . . . , N, N −1) at ν = N −2

exhibits a pole in sN−1,N from the (zN−1,N )sN−1,N−1 part of the integrand. Fixing zN−1 = 1 and zN → ∞ appears to
prevent these two positions from colliding, but the rule (4.6) reveals sN−1,N = s12...N−2 as an (N − 2)-particle channel
caused by the N − 3 factors of zpq with 1 ≤ p < q ≤ N − 2 in the associated polynomial Rν=N−2,ρ . A similar argument
applies to the sN,1 = s23...N−1 pole present in any Z(1, N, . . . , N − 1).

17 Compatibility conditions for two channels involving ≥ 3 particles are not directly obvious from Eq. (4.4). One can however
show by other means that they are compatible if they can appear as simultaneous propagators in a cubic diagram.
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by construction involve at most one field theory diagram. Subsectors of different ν = 1, 2, . . . , N − 2 do
not mix under these partial-fraction manipulations.

In order to determine the function associated with a particular field theory diagram which is closest to
the KK basis (4.2), one is faced with the inverse problem to the pole detection rule (4.6): For the given
cubic diagram characterized by N −3 compatible pole channels sai,ai+1,...,bi−1,bi at 1 ≤ ai < bi ≤ N −1
for i = 1, 2, . . . , N − 3, we want to construct a polynomial18 R[ai, bi] ∼ (zpq)N−3 such that the integral

Z[sai,ai+1,...,bi−1,bi ] :=
N−2∏
i=2

∫ zi+1

0

dzi

N−1∏
i<j

|zij |sij
1

R[ai, bi]
(4.9)

contributes to those N − 3 channels exclusively. Indeed, we can verify using (4.6) that the desired polyno-
mial is given by

R[ai, bi] =
N−3∏
i=1

zbi,ai , (4.10)

where each multiparticle Mandelstam variable is associated with a factor zpq according to its bound-
ing momenta kai and kbi , for example sai,ai+1,...,bi �→ zbi,ai . In other words, the diagram with poles∏N−3

i=1 sai,ai+1,...,bi can be generated by the function

Z[sai,ai+1,...,bi−1,bi ] =
N−2∏
i=2

∫ zi+1

0

dzi

N−1∏
i<j

|zij |sij

N−3∏
i=1

1
zbi,ai

∼
N−3∏
i=1

1
sai,ai+1,...,bi−1,bi

. (4.11)

In our setup, an integral Z(. . .) involved in the construction of the F σ-basis must be written as a linear
combinations of functions (4.11). We shall see in the following examples that this can always be achieved
through repeated use of partial-fraction identities.

As mentioned in appendix C.3, the KK basis of Z(1, . . . , N − 1) also incorporates functions with
k ≤ N − 5 simultaneous poles whose α′-expansion starts at transcendentality ζN−3−k. In this case, the
mapping sai,ai+1,...,bi �→ zbi,ai for k ≤ N −5 pole channels leaves N−3−k factors of zpq undetermined.
It is desirable to complete the pole basis in a way such that the minimal number of poles need to be
considered in performing the α′-expansion. On the other hand, this guideline can conflict with the form of
the integrand Eq. (5.1) required by the integration methods of Sect. 5, we will come back to this point later
on.

We should point out that higher α′-corrections of the functions constructed from (4.11) do not transform
into each other under a shift i �→ i + 1 subject to cyclic identifications i := i + 1. This is a consequence of
the fact that neither the set of R[ai, bi] nor the KK basis (4.2) is preserved under cyclic shifts.

4.2.1 Five-point examples

The four-point KK basis functions Eqs. (C.1) and (C.2) each generate no more than one cubic diagram,
Z[s12] = −Z(1, 2, 4, 3) and Z[s23] = −Z(1, 4, 2, 3), so there is no need to modify the basis. Starting
from five points, the map (4.11) from cubic diagrams to disk integrals leads to functions beyond the KK
basis elements. According to (C.3) and (C.5), we find

Z[s23s123] =
∫ 1

0

dz3

∫ z3

0

dz2

∏4
i<j |zij |sij

z31z32
= −Z(1, 3, 2, 5, 4)

18 We have to demand polynomial form ∼ (zpq)N−3 for the R[ai, bi] because rational functions ∼ (zpq)N−2/zrs of the
same degree are not accessible to the integration methods of Sect. 5.
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Z[s23s234] =
∫ 1

0

dz3

∫ z3

0

dz2

∏4
i<j |zij |sij

z32z42
= −Z(1, 5, 3, 2, 4) (4.12)

whereas the diagrams with poles in s12s123 and s23s234 require a linear combination of KK functions,

Z[s12s123] =
∫ 1

0

dz3

∫ z3

0

dz2

∏4
i<j |zij |sij

z21z31
= Z(1, 3, 2, 5, 4) + Z(1, 2, 3, 5, 4)

Z[s34s234] =
∫ 1

0

dz3

∫ z3

0

dz2

∏4
i<j |zij |sij

z42z43
= Z(1, 5, 3, 2, 4) + Z(1, 5, 2, 3, 4) . (4.13)

Partial fraction manipulations mediate between the KK basis and the pole basis containing all the functions
generated by (4.11). This change of basis acts block-diagonally on the S2 sectors labeled by ν = 1, 2, 3
(with self-inverse 2 × 2 blocks):⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z(1, 2, 3, 5, 4)
Z(1, 3, 2, 5, 4)
Z(1, 2, 5, 3, 4)
Z(1, 3, 5, 2, 4)
Z(1, 5, 2, 3, 4)
Z(1, 5, 3, 2, 4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
0 −1

1 0
0 1

1 1
0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z[s12s123]
Z[s23s123]
Z[s12s34]

Z[ζ2]
Z[s34s234]
Z[s23s234]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.14)

The ν = 2 elements of the KK basis are suitable to enter the pole basis,

Z[s12s34] =
∫ 1

0

dz3

∫ z3

0

dz2

∏4
i<j |zij |sij

z21z43
= Z(1, 2, 5, 3, 4)

Z[ζ2] =
∫ 1

0

dz3

∫ z3

0

dz2

∏4
i<j |zij |sij

z31z42
= Z(1, 3, 5, 2, 4) . (4.15)

Here we introduced the notation Z[ζ2] for the only regular function Z(1, 3, 5, 2, 4) in the KK basis. Given
the absence of poles in Z[ζ2], it is most economic to construct the basis functions F (23) and F (32) from
the ν = 2 sector formed by Z[s12s34] and Z[ζ2].

4.2.2 Six-point examples

Let us discuss the ν = 4, 3 sectors of the six-point KK separately because the partial-fraction transforma-
tion towards a pole channel basis acts block diagonally. As already mentioned in Subsect. 4.1, the ν = 1, 2
sectors follow from world-sheet parity i �→ 6 − i and are thus not addressed explicitly. The functions
therein complete the set of fourteen field-theory pole-channels (and six subleading pole channels ζ2/si,i+1

in integrals with a vanishing field theory limit).

• At ν = 4, a series of partial-fraction operations leads to the transformation matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z(1, 2, 3, 4, 6, 5)
Z(1, 2, 4, 3, 6, 5)
Z(1, 3, 2, 4, 6, 5)
Z(1, 3, 4, 2, 6, 5)
Z(1, 4, 2, 3, 6, 5)
Z(1, 4, 3, 2, 6, 5)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 0 −1 −1
0 0 1 0 1 0
0 1 0 −1 0 1
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z[s12s123s1234]
Z[s23s123s1234]
Z[s12s34s1234]

Z[ζ2s1234]
Z[s34s234s1234]
Z[s23s234s1234]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.16)

www.fp-journal.org © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



830 J. Broedel et al.: Polylogarithms, multiple zeta values and superstring amplitudes

which is in agreement with equations (C.6), (C.7) and (C.8). In addition to the triple-pole functions
defined by (4.11), we have introduced a function

Z[ζ2s1234] =
∫ 1

0

dz4

∫ z4

0

dz3

∫ z3

0

dz2

5∏
i<j

|zij |sij
1

z31z41z42
=

ζ2

s1234
+ O(s0) (4.17)

which generalizes the five-point integral Z(1, 3, 5, 2, 4) = Z[ζ2] to a six-point setting with a single
pole in s1234.

• In the ν = 3 sector of the six-point KK basis, the factorization (3.28) of the F σ integrands’ rational
part leads to a 2 × 2 block-diagonal transformation to the desired pole channel basis:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z(1, 2, 3, 6, 4, 5)
Z(1, 3, 2, 6, 4, 5)
Z(1, 2, 4, 6, 3, 5)
Z(1, 4, 2, 6, 3, 5)
Z(1, 3, 4, 6, 2, 5)
Z(1, 4, 3, 6, 2, 5)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1
0 1

−1 −1
0 1

−1 −1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z[s12s123s45]
Z[s23s123s45]

Z[ζ2s12]
Z̃[ζ3]
Z[ζ3]

Z[ζ2s34]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.18)

The α′-expansion for the following pole basis elements starts at subleading order:

Z[ζ2s12] =
4∏

i=2

∫ zi+1

0

dzi

∏5
i<j |zij |sij

z21z41z53
, Z̃[ζ3] =

4∏
i=2

∫ zi+1

0

dzi

∏5
i<j |zij |sij

z41z42z53
(4.19)

Z[ζ2s34] =
4∏

i=2

∫ zi+1

0

dzi

∏5
i<j |zij |sij

z41z43z52
, Z[ζ3] =

4∏
i=2

∫ zi+1

0

dzi

∏5
i<j |zij |sij

z31z41z52
. (4.20)

The functions (4.19) and (4.20) are not the unique choice of completing the pole basis. For the sake of
computing the F σ economically, it is preferable to include as many functions as possible with leading
low-energy behavior ζ3 rather than ζ2/si,i+1. It has been already noticed in [14] that a six-point basis
requires four linearly independent functions whose α′-expansion starts with ζ3. Those functions can
for instance be taken as Z[ζ3], Z̃[ζ3] and parity or cyclicity images thereof.

Comparing (4.16) with (4.18), one can identify the ν = 3 sector to be the most suitable starting point
towards an α′-expansion of the F σ(234): apart from the block-diagonal partial-fraction transformations, it
contains only two instead of five functions with triple poles.

4.2.3 Seven-point examples

In view of the six-point example above, both the pole channel analysis and the number of terms in (3.27)
suggests to compute the low-energy expansion of the F σ from the ν = 
N/2� sector of the KK basis (4.1).
At seven points, this amounts to considering the ν = 3 sector {Z(1, 2ρ, 3ρ, 7, 4ρ, 5ρ, 6), ρ ∈ S4} associ-
ated with polynomials Rν=3,ρ = (z12ρz2ρ3ρ) × (z4ρ5ρz5ρ6). A suitable pole channel basis can be picked
separately in the six subsectors of Z(1, 2ρ, 3ρ, 7, 4ρ, 5ρ, 6) according to {2ρ, 3ρ} = {2, 3}, {2, 4}, {2, 5},
{3, 4}, {3, 5}, {4, 5}, with four elements each. This generalizes the block diagonal form of (4.18) for the
six-point ν = 3 functions due to the factorization (3.28) of the rational functions in the F σ integrand.

In Subsect. 6.3 we will construct the seven-point α′-expansion in blocks of four functions each, the
{2ρ, 3ρ} block encompassing F ρ(2345), F ρ(2354), F ρ(3245) and F ρ(3254).
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4.3 Identifying pole residues

This subsection is devoted to determining the full α′-expansion of kinematic pole residues. The factor-
ization of N -point amplitudes into (products of) lower-point amplitudes on kinematic poles extends to
all orders in α′. That is why residues on N − 3 − p simultaneous poles carry the fingerprints of the full
(p + 3)-point amplitudes including string corrections. In order to make these statements precise, we shall
focus on integrals of type (4.11) generating one cubic field-theory diagram and recall the association of
each propagator s−1

ai,ai+1...bi
with the rational factor of z−1

bi,ai
in the integrand. At the residue of the pole,

the integration over the associated zbi,ai variable collapses to the singular region due to (4.5). The same
correspondence sai,ai+1...bi ↔ zbi,ai holds for functions with less than N − 3 simultaneous poles, so their
residues can be determined by the same methods.

Singularities in Mandelstam variables pose the obstruction to perform a Taylor expansion of the Koba-
Nielsen factor

N−1∏
i<j

|zij |sij =
N−1∏
i<j

∞∑
nij=0

(sij ln|zij |)nij

nij !
(4.21)

before carrying out the world-sheet integrals. Putting it differently, integrating the product of the Taylor
series (4.21) with the rational function

∏N−3
l=1 z−1

ulvl
yields a regular object without any poles in sui,ui+1...vi ,

I reg
u1v1,u2v2,...,uN−3vN−3

:=
N−1∏
i<j

∞∑
nij=0

(sij)nij

nij !

N−3∏
l=1

∫ zl+2

0

dzl+1

zulvl

(ln|zij |)nij . (4.22)

These regularized world-sheet integrals are the natural objects in order to describe the residues on kine-
matic poles. The polylogarithmic integrals therein will be evaluated in Sect. 5. Of course, there are many
alternative ways to obtain pole residues of the Z(ρ), examples for five and six points can be found in [14].
In this section we want to cast both the residues and the regular parts of relevant world-sheet integrals into
the form (4.22). The integration techniques of Sect. 5 then render the α′-expansion suitable for computer
automatization.

In what follows, we promote the regular part I reg
u1v1,u2v2,...,uN−3vN−3 of N -point integrals to functions

I
reg
u1v1,u2v2,...,uN−3vN−3(k1, k2, . . . , kN−1) of N − 1 on-shell momenta. (By convention, k1, . . . , kN−1 are

understood to be the arguments for any I reg
... unless we specify them differently.) This allows for a diagram-

matic and intuitive method to determine the behavior of the Koba-Nielsen factor at pole residues. The fol-
lowing procedure systematically resolves the singularity structure of an integral with poles in sai,ai+1...bi

due to zbi,ai and leaves residues and regular parts of the form (4.22) which can be treated with the methods
of Sect. 5:

• Sum over all ways to collapse a subset of the (s−1
ai,ai+1...bi

)-propagators in the cubic YM diagram
associated with the integral in question. It is convenient to start with the maximally singular term
(leaving the cubic YM diagram untouched) and to gradually increase the number of relaxed poles.
Draw a diagram for each set of collapsed propagators s−1

ai,ai+1...bi
and replace them by a contact

vertex (drawn as a bubble) associated with the rational factor z−1
bi,ai

in the integrand, see the five-point
example in Fig. 2.
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Fig. 2 Propagator collapses contributing to the Z[s12s123] integral.
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Ireg
N−4,1

k1k2kN−7
kN−6

kN−5

. . .

kN−4 kN−2

kN−3

kN−1

kN

kA1 = k12...N−5

kA2 = kN−4

kA3 = kN−3 + kN−2

Ireg
N−4,i

i=1,...,p

k1

kp

kN−4kN−5

. . .

kp+3

kp+1

kp+2 kN−3

kN−2

kN

kN−1

kAi
= ki, i = 1, . . . , p

kAp+1 = kp+1...N−4

kAp+2 = kN−3 + kN−2

Fig. 3 Examples of a four-point and a (p + 3)-point contact vertex together with their region momenta kAi .

• Each connected set of p contact vertices represents a p-fold world-sheet integral as it appears in
a (p + 3)-point amplitude. The propagator structure determines the p + 3 inflowing composite (or
region-) momenta kA of type

k12...p := k1 + k2 + . . . + kp (4.23)

with A = {1, 2, . . . , p} in (4.23) which are generically off-shell with k2
A �= 0. The SL(2, R) fixing

zN → ∞ decouples the composite momentum encompassing kN at infinity, i.e. we don’t list it as a
separate argument. The p+2 region momenta kA1 , kA2 , . . . , kAp+2 remain as independent arguments
of the (p + 3)-point integral, examples are shown in Fig. 3.

• Relabel the zbi,ai from the collapsed propagators according to the composite momenta kA of the
associated contact vertices where legs bi and ai are attached:

ai ∈ Avi , bi ∈ Aui ⇒ zbi,ai �→ zui,vi (4.24)

Fig. 3 gives two examples with a four-point and a (p + 3)-point contact vertex.

• The momentum expansion of a (p+3)-point contact vertex at momenta kA1 , kA2 , . . . , kAp+2 is given
by the regular part (4.22) of a (p + 3)-point integral

I reg
u1v1,u2v2,...,upwp

(kA1 , kA2 , . . . ,kAp+2) =
p+2∏
i<j

∞∑
nij=0

(2α′kAi · kAj )nij

nij !

×
p∏

l=1

∫ zl+2

0

dzl+1

zul,vl

(ln|zij |)nij

∣∣∣zp+2=1

z1=0
+ O(k2

Ai
) (4.25)

• In contrast to the regular N -point integral (4.22), generic contact diagrams (4.25) in presence of
propagators s−1

ai,ai+1...bi
∼ 1/k2

Ai
depend on off-shell momenta k2

Ai
�= 0. The dependence of on-shell

integrals (4.22) on the vanishing k2
i is invisible, so for each pair 1 ≤ i < j ≤ p + 2, it is not a priori

clear whether their off-shell generalizations (4.25) depend on 2α′kAi · kAj , on α′(kAi + kAj )
2 or on

one of 2α′kAi ·kAj +α′k2
Ai,j

. Each of the 1
2 p(p+3) Mandelstam invariants governing a (p+3)-point

contact vertex admits shifts by one of 0, α′k2
Ai

, α′k2
Aj

or α′k2
Ai

+α′k2
Aj

, and our present method does
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not single out a preferred choice. This is a minor drawback of the otherwise constructive method. As
we shall see in Sect. 6, there are plenty of consistency conditions on the amplitude (such as cyclicity)
which fix the missing p(p + 3) “bit” of information, and it will turn out that the majority of the
potential k2

Ai
-dependencies is absent19. Moreover, the k2

Ai
-dependence is a global property of contact

vertices (4.25), so the information on (2α′kAi · kAj )-shifts only needs to be determined once for each
set of labels ui, vi in I reg

u1v1,u2v2,...,upwp . Any dependence of the (partially off-shell) integral (4.25) on
the masses k2

Ai
�= 0 vanishes at the residue of the multiple pole in question but contributes to less

singular parts and interferes with the associated I
reg
b1a1,b2a2,...,bN−3aN−3

.

• The same reasoning applies to integrals with low-energy behavior ζN−3−k

∏k
i=1 s−1

ai,ai+1...bi
.

In many cases, the validity of these diagrammatic rules can be verified through the cube parametrization
(4.3) and (4.4) introduced in Subsect. 4.1: Sending individual cube variables to xi → 0, 1 leads to poles
in s12...i+1, si+1,i+2 and fixes the associated zbi,ai in the simplex parametrization. The behavior of the
Koba-Nielsen factor at the cube boundaries then determines the momentum configuration describing the
residue.

A word of caution is appropriate here: The symmetries in the graphical arrangement of contact ver-
tices in general do not apply to the dependence on the external momenta. Firstly, the omnipresent choice
to send zN → ∞ treats the cubic subdiagram containing kN on special footing. Secondly the integral
representations (4.25) are coherently modded out by the conformal Killing group such that also kA1 and
kAp+2 associated with z1 = 0 and zp+2 = 1 play a distinguished role. The diagrams serve as a mnemonic
to determine the labels ui, vi and momenta kAi in (4.25) and not to reflect any exchange symmetries in
kAi ↔ kAj .

4.3.1 Four-point examples

Four-point integrals involve a kinematic pole whose residue is determined by the cubic YM vertex without
any α′-correction. Hence, the s-channel integral Z[s12] = Z(1, 2, 4, 3) is related to its regularized part as
follows:

Z[s12] =
1

s12
+ Ireg

21 =

1

2

k12

4

3

+

1

2

Ireg
21

4

3

Fig. 4 Pole structure of the function Z[s12].

The general expression (4.22) for regular parts simplifies to

I reg
21 := I reg

21 (k1, k2, k3) =
∞∑

n12=0

∞∑
n23=0

sn12
12 sn23

23

n12! n23!

∫ 1

0

dz2

z2
(ln|z2|)n12 (ln|1 − z2|)n23 (4.26)

which can be resummed in closed form: the basis function is given by the Veneziano amplitude

F (2) = s12 Z[s12] = 1 + s12I
reg
21 = exp

( ∞∑
k=2

ζk

k
(−1)k (sk

12 + sk
23 − (s12 + s23)k) ,

)
(4.27)

19 In fact, the unique five-point example for a nontrivial “mass” dependence occurs at the s23 single pole residue of Z[s23s123],
see (4.38) and (4.39): In this example, the associated I

reg
21 function depends on the two combinations of Mandelstam variables

given by 2α′k1 · k23 + α′k2
23 and 2α′k23 · k4.
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which translates into the following α′-expansion for I reg
21 :

I reg
21 (k1, k2, k3) =

1
s12

exp

( ∞∑
k=2

ζk

k
(−1)k (sk

12 + sk
23 − (s12 + s23)k)

)
− 1

s12

= − ζ2s23 + ζ3s23(s12 + s23) − ζ4s23(s2
12 + 1

4 s12s23 + s2
23)

+ ζ5s23(s3
12 + 2s2

12s23 + 2s12s
2
23 + s3

23) − ζ2ζ3s12s
2
23(s12 + s23) + . . . .

(4.28)

It will prove convenient to also introduce the regular part I reg
32 of the u-channel function

Z[s23] =
1

s23
+ I reg

32 (4.29)

which is related to its parity image via

I reg
32 (kA, kB, kC) = I reg

21 (kC , kB, kA) = −ζ2s12 + ζ3s12(s12 + s23) − ζ4s12(s2
12 + 1

4 s12s23 + s2
23)

+ ζ5s12(s3
12 + 2s2

12s23 + 2s12s
2
23 + s3

23) − ζ2ζ3s
2
12s23(s12 + s23) + . . . . (4.30)

In the following subsections, we will not spell out the expansion of the I reg
... explicitly. A systematic way to

obtain their expansion is explained in Sect. 5.

4.3.2 Five-point examples

At five points, the two basis functions F σ are proportional to the integrals Z[s12s34] = Z(1, 2, 5, 3, 4) and
Z[ζ2] = Z(1, 3, 5, 2, 4). The former requires a pole treatment following the procedure of Subsect. 4.3, this
time with an infinite tower of α′-corrections at the single pole residues.

The two propagators s−1
12 and s−1

34 in the cubic field-theory diagram of Z[s12s34] can collapse separately.
This leads to quartic contact vertices whose contributing momenta (in addition to k5 from z5 → ∞) can
be read off to be (k1, k2, k34) and (k12, k3, k4) from the second and third diagram in Fig. 5. The zuivi

correspondent of the collapsed propagator determines those vertices to be of I reg
21 and I reg

32 -type, respectively:
the s−1

12 residue leaves the rational function z43 ↔ s34 referring to the second and third region momentum
(k12, k3, k4) := (kA1 , kA2 , kA3). Applying the relabeling prescription (4.24) to z43 with ai = 3 ∈ A2 and
bi = 4 ∈ A3 identifies the s−1

12 residue to be of I reg
32 -type. At the s−1

34 residue, on the other hand, the rational
function z21 ↔ s12 stays invariant under the relabeling prescription (4.24) leading to a contact vertex of
I reg
21 -type. Hence, the pole structure of Z[s12s34] is determined by:

Z[s12s34] =
1

s12s34
+

1
s34

I reg
21 (k1, k2, k34) +

1
s12

I reg
32 (k12, k3, k4) + I reg

21,43 (4.31)

If we view I reg
21 and I reg

32 as a function of the four-point Mandelstam invariants s12 and s23,

I reg
uv (k1, k2, k3) = I reg

uv [s12, s23] , (4.32)

then the composite momenta in I reg
21 (k1, k2, k34) and I reg

32 (k12, k3, k4) replace the Mandelstam variables
[s12, s23] as follows:

I
reg
21 (k1, k2, k34) = I

reg
21 [s12, s23 + s24] , I

reg
32 (k12, k3, k4) = I

reg
32 [s13 + s23, s34] . (4.33)

The regular part I
reg
21,43, on the other hand, constitutes an intrinsic five-point vertex whose low-energy

behavior is computed in the later Sect. 5.
The second integral basis element Z[ζ2] is regular by itself,

Z[ζ2] = I reg
31,42 . (4.34)
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Fig. 5 Pole structure of the function Z[s12s34].

This introduces another five-point contact vertex I reg
31,42 to be expanded in Sect. 5. Together with (4.31),

this completes the F σ basis, and any other five-point integral follows from linear combinations (3.34) of
F (23) and F (32), e.g.

Z[s12s123] =
F (23)

s12s123
+

F (32)

s13s123
(4.35)

Z[s23s123] =
F (23)

s23s123
−

( 1
s13

+
1

s23

) F (32)

s123
. (4.36)

Nevertheless, we carry out the pole analysis for the remaining parity independent20 field-theory channels
to illustrate our method. Repeating the diagrammatic method applied to Z[s12s34] leads to

Z[s12s123] =
1

s12s123
+

I reg
21 (k1, k2, k3)

s123
+

I reg
21 (k12, k3, k4)

s12
+ I reg

21,31 (4.37)

Z[s23s123] =
1

s23s123
+

I reg
32 (k1, k2, k3)

s123
+

I reg
21 (k1, k23, k4)

s23
+ I reg

32,31 , (4.38)

see Fig. 6 for the former.
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k12 k123
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+

+ +
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Ireg
21
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4

Ireg
21

1

2
3

5

4

Ireg
21,31

Fig. 6 Pole structure of the function Z[s12s123].

20 The functions Z[s34s234] and Z[s23s234] associated with the remaining channels follow from parity (1, 2, 3, 4, 5) �→
(4, 3, 2, 1, 5).
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The I reg
21,31 and I reg

31,32 vertices enter various six- and seven-point residues. Combining (4.35) and (4.36)

with (4.37) and (4.38) allows to infer their α′-expansion from F (23) and F (32), bypassing the need to
compute them from the scratch.

The residues at the pole in s123 involve three on-shell momenta because the composite momentum
k123 = k45 associated with z5 → ∞ is suppressed, see Fig. 6. More importantly, the s−1

23 residue in (4.38)
is the first examples where the norm of an off-shell momentum k23 enters:

I reg
21 (k12, k3, k4) = I reg

21 [s13 + s23, s34] , I reg
21 (k1, k23, k4) = I reg

21 [s123, s24 + s34] . (4.39)

The first Mandelstam argument of the latter is composed of s123 = 2α′k1 · k23 + α′k2
23. Together with

(4.33), this identifies the off-shell completion of the I reg
21 and I reg

32 vertices:

I reg
21 (kA, kB, kC) =I reg

21 [2α′kA · kB + α′k2
B, 2α′kB · kC ]

I
reg
32 (kA, kB, kC) =I

reg
32 [2α′kA · kB , 2α′kB · kC + α′k2

B] . (4.40)

The k2
23 dependence is invisible at the s23 residue since I reg

21 [s123, s24 + s34]− I reg
21 [s12 + s13, s24 + s34] =

O(s23). However, it can be detected by comparing the regular part I reg
32,31 computed in Sect. 5 with the

basis decomposition (4.36) of Z[s23s123].

4.3.3 Six-point examples

According to Subsect. 4.2.2, the six-point basis F σ of integrals can be most efficiently built from the six
elementary integrals in (4.18) corresponding to the ν = 3 sector of the KK basis (4.2). Two of them
introduce a field-theory channel with three simultaneous poles s12s123s45 and s23s123s45, respectively.
The diagrammatic method identifies the following residues for the subleading poles:

Z[s12s123s45] =
1

s12s123s45
+

I reg
21 (k1, k2, k3)

s123s45
+

I reg
21 (k12, k3, k45)

s12s45
+

I reg
32 (k123, k4, k5)

s123s12

+
I reg
21,31(k1, k2, k3, k45)

s45
+

I reg
21 (k1, k2, k3)I

reg
32 (k123, k4, k5)

s123

+
I reg
21,43(k12, k3, k4, k5)

s12
+ I reg

21,31,54 , (4.41)

Z[s23s123s45] =
1

s23s123s45
+

I reg
32 (k1, k2, k3)

s123s45
+

I reg
21 (k1, k23, k45)

s23s45
+

I reg
32 (k123, k4, k5)

s23s123

+
I reg
31,32(k1, k2, k3, k45)

s45
+

I reg
32 (k1, k2, k3)I

reg
32 (k123, k4, k5)

s123

+
I

reg
21,43(k1, k23, k4, k5)

s23
+ I reg

31,32,54 . (4.42)

The diagrams contributing to the first case are shown in Fig. 7.
Two simultaneous poles remain whenever one collapsed propagator is bypassed by a quartic vertex

I reg
21 or I reg

32 , possibly at composite momenta such as k123, k12 and k45. The nature of the three single-
pole diagrams depends on the relative positions of the collapsed propagators: If they are connected, the
resulting contact vertex is quintic and depends on momenta through I reg

21,31 and I reg
21,43, see (4.31) and (4.37).

In the disconnected situation, two independent quartic vertices remain, and the residue factorizes into
I reg
21 (k1, k2, k3)I

reg
32 (k123, k4, k5) and I reg

32 (k1, k2, k3)I
reg
32 (k123, k4, k5), respectively.

Some of the residues in (4.42) depend on the norm of their off-shell momenta, first of all I reg
21 (k1, k23, k45)

= I reg
21 [s123, s24+s25+s34+s35] in agreement with the general off-shell completion (4.40) of the four-point
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Fig. 7 Pole structure of the function Z[s12s123s45].

contact vertices. In addition, we have the following mass-dependent five-point vertex

I reg
21,43(k1, k23, k4, k5) = I reg

21,43[s123, s14, s24 + s34, s25 + s35, s45] , (4.43)

see the explanations below (4.25). We observe that the norm k2
A1

and k2
Ap+2

of the first and last momentum
drops out from any contact vertex I reg

... investigated up to seven points.
According to Eq. (4.18) the remaining four integrals (4.19) and (4.20) contributing to F σ have at most

single poles. The residues within Z[ζ2s12] and Z[ζ2s34] are

Z[ζ2s12] =
I reg
31,42(k12, k3, k4, k5)

s12
+ I reg

21,41,53 (4.44)

Z[ζ2s34] =
I reg
31,42(k1, k2, k34, k5)

s34
+ I reg

41,43,52 , (4.45)

see Fig. 4. We can identify another explicit dependence on a momentum norm k2
34,

I reg
31,42(k1, k2, k34, k5) = I reg

31,42[s12, s134, s23 + s24, s25, s35 + s45] . (4.46)
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Ireg
21,41,53

Fig. 8 Pole structure of the function Z[ζ2s12].

Finally, the integrals Z̃[ζ3] and Z[ζ3] are regular by themselves,

Z̃[ζ3] = I
reg
41,42,53 , Z[ζ3] = I

reg
41,43,52 . (4.47)

Once we have expanded the regular parts in (4.41) to (4.47) using the methods of Sect. 5, the information on
the six-point basis is complete. In appendix D, we discuss the treatment of the remaining field-theory pole
channels and thereby introduce further six-point vertices I reg

ij,kl,mn relevant for residues in (N ≥ 7)-point
integrals.
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4.3.4 Seven-point examples

At seven points, integrals which generate one cubic YM diagram in their field theory limit leave fourteen
residues associated with subleading poles. This cornucopia of diagrams motivates to introduce an economic
setup in Sect. 6 to construct the F σ basis from integrals with a minimal number of poles. As it will turn
out, it is sufficient to address one field-theory diagram, e.g.

Z[s12s123s1234s56] =
1

s12s123s1234s56
+

I reg
21 (k1, k2, k3)
s123s1234s56

+
I reg
21 (k12, k3, k4)
s12s1234s56

+
I reg
21 (k123, k4, k56)

s12s123s56
+

I reg
32 (k1234, k5, k6)
s12s123s1234

+
I reg
21,31(k1, k2, k3, k4)

s56s1234
+

I reg
21 (k1, k2, k3)I

reg
21 (k123, k4, k56)

s123s56
(4.48)

+
I reg
21 (k1, k2, k3)I

reg
32 (k1234, k5, k6)

s123s1234
+

I reg
21,31(k12, k3, k4, k56)

s12s56
+

I reg
21,43(k123, k4, k5, k6)

s12s123

+
I reg
21 (k12, k3, k4)I

reg
32 (k1234, k5, k6)

s12s1234
+

I reg
21,31,41(k1, k2, k3, k4, k56)

s56

+
I reg
21,31,54(k12, k3, k4, k5, k6)

s12
+

I reg
21 (k1, k2, k3)I

reg
21,43(k123, k4, k5, k6)
s123

+
I reg
21,31(k1, k2, k3, k4)I

reg
32 (k1234, k5, k6)

s1234
+ I reg

21,31,41,65

None of the I reg
... shown depends on k2

Ai
.

According to the discussion in Subsect. 4.2.3, we construct the F σ from the ν = 3 sector of the KK basis
and think of its integrals Z(1, 2ρ, 3ρ, 7, 4ρ, 5ρ, 6) as forming six blocks labeled by {2ρ, 3ρ}. The {3, 5}
functions are characterized by polynomials ∈ {z31z51, z51z53} × {z42z64, z62z64} and do not exhibit any
poles. Let us display the residues necessary to construct the α′-expansion of the {2, 5} block (covering the
{3, 4} block by parity):

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z21z51z34z46
=

I
reg
31,42(k12, k34, k5, k6)

s12s34
+

I
reg
41,32,53(k12, k3, k4, k5, k6)

s12

+
I reg
21,41,53(k1, k2, k34, k5, k6)

s34
+ I reg

21,51,43,64 (4.49)

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z25z51z34z46
= − I reg

41,42,53(k1, k2, k34, k5, k6)
s34

− I reg
51,52,43,64 (4.50)

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z21z51z36z46
=

I reg
41,52,53(k12, k3, k4, k5, k6)

s12
+ I reg

21,51,63,64 (4.51)

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z25z51z36z46
= − I reg

51,52,63,64 (4.52)

with mass dependence

I reg
31,42(k12, k34, k5, k6) = I reg

31,42[s1234 − s12, s15 + s25, s35 + s45, s36 + s46, s56] (4.53)
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I reg
21,41,53(k1, k2, k34, k5, k6) = I reg

21,41,53[s12, s134, s15, s23 + s24, s25, s35 + s45, s26, s36 + s46, s56]

I reg
41,42,53(k1, k2, k34, k5, k6) = I reg

41,42,53[s12, s134, s15, s23 + s24, s25, s35 + s45, s26, s36 + s46, s56] .

The Mandelstam arguments of six-point contact vertices are displayed in the order

I reg
ij,kl,mn(k1, k2, k3, k4, k5) = I reg

ij,kl,mn[s12, s13, s14, s23, s24, s34, s25, s35, s45] (4.54)

which is reversed by i �→ 6− i world-sheet parity. The {2, 4} and {4, 5} blocks are analogously addressed
in appendix F.1. Let us now turn to the remaining task of expanding the regular parts I reg

... in α′.

5 Polylogarithms – Calculation of the regulated integrals

This section is devoted to the evaluation of the regular part of N -point disk integrals. As explained in the
previous section, their singular parts are recursively determined by lower-point disk amplitudes. Thus, we
will assume that the pole residues have already been accounted for by the methods of Subsect. 4.3. In
the following, we set the stage for extracting the intrinsic N -point information required for the (N − 3)!
basis functions F σ from a convenient set of regulated parts I reg defined in (4.22). More precisely, we will
provide methods to expand integrals

I reg =
N−2∏
k=2

∫ zk+1

0

dzk

zk − ak

N−1∏
i<j

|zij |sij , ak ∈ { 0, zk+1, zk+2, . . . , zN−2, 1 }

=
N−2∏
k=2

∫ zk+1

0

dzk

zk − ak

N−1∏
i<j

∞∑
nij=0

(sij)nij
(ln|zij |)nij

nij !
(5.1)

where the constraint on the coefficients ak guarantees that one can successively integrate over z2, z3, . . . ,
zN−2 with only one differential form dzk

zk−ak
depending on the integration variable zk in each step21. This

leaves us with (N − 2)! functions22 in (5.1) accessible to the techniques described below, and one can
always apply partial fraction to express a generic integrand in this form.

In the following, expressions of the form (5.1) shall be thought of as disk integrals (4.22) whose poles
have already been subtracted. That is why the Koba-Nielsen factor is expanded via (4.21). The various
Mandelstam variables sij which have been pulled out from the integral will contribute to the α′-expansion
of the matrix F in Eq. (2.2), while the multiple integration yields the MZVs defined in Sect. 2. While
for lower transcendentalities those types of integrals can be solved by standard methods, we will here
formalize the way to obtain a solution for any multiplicity and weight. Multiple polylogarithms serve as
a suitable language to achieve this formalization and to convert the integrals within (4.22) or (5.1) into
MZVs. So before explicitly solving the integral, let us collect a couple of facts about and relations among
polylogarithms in the next subsection.

21 There are numerous situations in which techniques for solving iterated integrals have been applied and explored, for example
[31, 32]. In particular, handling the criterion in Eq. (5.1) was discussed in [33] and – in a physics context – in [34].

22 On the one hand, the ability to expand the regular part of the (N − 2)! functions in (5.1) appears to be fully sufficient for the
construction of an (N − 3)! basis of F σ . On the other hand, several of these (N − 2)! functions exhibit incompatible pole
channels such that we cannot properly assemble the regular and singular parts with the methods from the previous section.
Hence, the applicability of the present techniques to (N − 2)! regular parts is crucial for gathering the complete information
on the N -point integral basis.
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5.1 Multiple polylogarithms

Multiple polylogarithms – sometimes referred to as Goncharov polylogarithms – are defined as23

G(a1, a2, . . . , an; z) :=
∫ z

0

dt

t − a1
G(a2, . . . , an; t) (5.2)

where G(z) = G(; z) = 1 except for G(
a; 0) = G(; 0) = 0. In order to keep the terminology clear, we will
refer to 
a = (a1, . . . , an) as the label and to z as argument of a polylogarithm G. Multiple polylogarithms
constitute a graded Lie algebra with the shuffle product (cf. Subsect. 3.4)

G(a1, . . . , ar; z)G(ar+1, . . . , ar+s; z) =
∑

σ∈Σ(r,s)

G(aσ(1), . . . , aσ(r+s); z) (5.3)

where Σ(r, s) is the subset of the permutation group Sr+s acting on {a1, . . . , ar+s} which leaves the order
of the elements of the individual sets {a1, . . . , ar} and {ar+1, . . . , ar+s} unchanged. The unit element for
shuffling is G(; z)=1.

Multiple polylogarithms of uniform labels are related to powers of ordinary logarithms via

G(0, 0, . . . , 0︸ ︷︷ ︸
w

; z) =
1
w!

(ln z)w and G(1, 1 . . . , 1︸ ︷︷ ︸
w

; z) =
1
w!

lnw(1 − z)

G(a, a, . . . , a︸ ︷︷ ︸
w

; z) =
1
w!

ln
(
1 − z

a

)w

(5.4)

and satisfy the scaling property

G(k
a; kz) = G(
a; z) , k �= 0 . (5.5)

The scaling relation does not apply to labels 
a with ai = 0 ∀ i.
MZVs as defined in Eq. (2.5) are special cases of multiple polylogarithms with ai ∈ {0, 1} evaluated at

argument z = 1 (where the numbers below the underbraces denote the number of entries.24):

ζn1,...,nr = (−1)rG(0, 0, . . . , 0, 1︸ ︷︷ ︸
nr

, . . . , 0, 0, . . . , 0, 1︸ ︷︷ ︸
n1

; 1), (5.6)

As an immediate benefit of the scaling property Eq. (5.5), multiple polylogarithms G(
a, z) with ai ∈ {0, z}
can be rescaled to yield

G({0, z}w; z) = G({0, 1}w; 1) (5.7)

which in turn can be translated into MZVs via Eq. (5.6). In the above equation {a, b, . . .}w refers to a word
of length w built from the letters a, b, . . . .

Multiple polylogarithms are divergent integrals in general. As can be seen from the definition Eq. (5.2),
the divergences occur, when either a1 = z or an = 0. Regularization of those integrals is discussed in
detail in references [35,40]. The general idea is to slightly move the endpoints of the integration by a small
parameter ε and to expand in this parameter afterwards. The regularized value is defined to be the piece

23 Our definitions for polylogarithms agree with Goncharovs paper [35] and references [12] and [36]. Other aspects of mutiple
polylogarithms are discussed for example in references [37, 38].

24 Note, that the order of the n1 . . . nr on the right hand side of the equation is reversed with respect to the left hand side. Our
convention for the MZVs agrees with references [12, 35] and [39].
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in the expansion, which does not depend on the parameter ε. Extracting the ε-independent piece by using
shuffle relations, one can show that for the case where a1 = z the regularized value can be obtained via

G(z, a2, . . . , an; z) = G(z; z)G(a2, . . . , an; z)− G(a2, z, a3, . . . , an; z)

−G(a2, a3, z, a4, . . . , an; z) − . . . − G(a2, . . . , an, z; z) (5.8)

where one defines

G(z, . . . , z; z) = 0 . (5.9)

The other case, where an = 0 can be dealt with in the same way

G(a1, a2, . . . ,an−1, 0; z) = G(a1, a2, . . . , an−1; z)G(0; z) − G(a1, a2, . . . , 0, an−1; z)

− G(a1, a2, . . . , 0, an−2, an−1; z) − . . . − G(0, a2, . . . , an−1; z) . (5.10)

Here, however, G(0; z) = ln(z) �= 0. The above rewriting in order to keep the pure logarithms explicit will
nevertheless prove convenient below in order to rewrite the polylogarithms in a form where the identity
Eq. (5.21) can be readily used.

In the same way as multiple polylogarithms have to be regulated, this is true for the MZVs. In particular,
one defines all MZVs with nr = 1 by their shuffled version using Eq. (5.8). From Eq. (5.9) one immediately
finds G(1, . . . , 1; 1) = 0 using Eq. (5.5).

Before continuing with the evaluation of the integral in Eq. (5.1), a couple of remarks are appropriate
concerning the multiple zeta data mine [41]. This collection of identities between different MZVs for
weights up to w = 22 allows expressing any MZV in the basis spelled out in table 1 for weights w ≤ 12.
The accompanying articles and the formulae presented in [41, 42] make use of harmonic polylogarithms,
which are – up to a sign – multiple polylogarithms with entries ai ∈ {−1, 0, 1}:

H(
a; z) = (−1)kG(
a; z) ai ∈ {−1, 0, 1} (5.11)

where k is the number of elements equal to (+1) in 
a 25.

5.2 Performing the integration using polylogarithm identities

In order to employ the rules from Eq. (5.4), one has to slightly rewrite the terms in the integrand of Eq. (5.1).
For example, at N = 5 one finds the term

I
reg
Ex1

:=
1
2
s2
23

∫ 1

0

dz3

z3 − 1

∫ z3

0

dz2

z2
(ln(z3 − z2))2 (5.12)

=
1
2
s2
23

∫ 1

0

dz3

z3 − 1

∫ z3

0

dz2

z2

[
(ln(z3))2 + 2 lnz3 ln

(
1 − z2

z3

)
+

(
ln

(
1 − z2

z3

))2
]

as part of the integral I reg
21,34, where the absolute value is automatically taken care of by our parametrization

zi < zi+1 ∈ R of the disk boundary. After having written all terms in the expansion of the integrand in
Eq. (5.1) in the above form, one can express them in terms of multiple polylogarithms G using Eq. (5.4),
which will remove the combinatorical factors from expanding powers of logarithms.

By rewriting logarithms and employing the rules in Eq. (5.4), one can express the complete Koba-
Nielsen factor in terms of multiple polylogarithms26:

25 This definition agrees with Remiddi and Vermaseren [42] and Maitre [43].
26 The k = N − 1 term in the double product of (5.13) covers the factors of

∏N−2
i=2

∑∞
mi=0 smi

i,N−1G(�1mi ; zi).
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N−1∏
i<j

|zij |sij =

⎧⎨
⎩

N−2∏
i=2

∞∑
ni=0

(
i−1∑
l=1

sil

)ni

G(
0ni ; zi)

⎫⎬
⎭

×
⎧⎨
⎩ ∏

2≤j<k≤N−1

∞∑
njk=0

s
njk

jk G((
zk)njk
; zj)

⎫⎬
⎭ , (5.13)

where 
0ni and (
zk)njk
denotes label vectors with ni entries 0 and njk entries zk, respectively. For the

particular example in Eq. (5.12) one will obtain

I
reg
Ex1

= s2
23

∫ 1

0

dz3

z3 − 1

∫ z3

0

dz2

z2

(
G(0, 0; z3) + G(0; z3)G(z3; z2) + G(z3, z3; z2)

)
. (5.14)

After the integrand has been cast into polylogarithms, one can start with the formal integration. As long
as the label 
a does not contain the argument z one can readily apply Eq. (5.2). If, however, the integrand
should not contain the integration variable at all, it has to be replaced by G(; z) = 1, which is the case for
the first term in Eq. (5.14). Performing the integral over z2 promotes Eq. (5.14) to

I reg
Ex1

= s2
23

∫ 1

0

dz3

z3 − 1
(
G(0, 0; z3)G(0; z3) + G(0; z3)G(0, z3; z3) + G(0, z3, z3; z3)

)
. (5.15)

In the above equation, one can recognize several MZVs in the integrand after rescaling with k = 1/z3

(cf. Eq. (5.7)). However, as already mentioned above, scaling is not allowed for labels consisting of zeros
exclusively.

After rewriting G(0, z3; z3) = −ζ2 and G(0, z3, z3; z3) = ζ3, only the first term contains the prod-
uct of two multiple polylogarithms with argument z3. Using the shuffle relation Eq. (5.3), one finds
G(0, 0; z3)G(0; z3) = 3 G(0, 0, 0; z3), which allows integration by means of Eq. (5.2) and leads to

I reg
Ex1

= s2
23

∫ 1

0

dz3

z3 − 1
(
3 G(0, 0, 0; z3) + G(0; z3)G(0, 1; 1) + G(0, 1, 1; 1)

)
= s2

23

(
3 G(1, 0, 0, 0; 1) + G(1, 0; 1)G(0, 1; 1) + G(1; 1)G(0, 1, 1; 1)

)
= s2

23

(− 3 (G(0, 1, 0, 0; 1) + G(0, 0, 1, 0; 1) + G(0, 0, 0, 1; 1)) − G(0, 1; 1)G(0, 1; 1)
)

= s2
23

(
3 ζ4 − ζ2

2

)
=

s2
23

5
ζ2
2 , (5.16)

where we performed the shuffle regulation Eq. (5.8) for G(1, 0; 1) and G(1, 0, 0, 0; 1) in the third line as
well as recognized G(1; 1) = 0.

Unfortunately not all integrals can be solved with the same ease as Eq. (5.12). Consider for example

I
reg
Ex2

:=
∫ 1

0

dz3

z3 − 1

∫ z3

0

dz2

z2
G(z3; z2)G(1; z2) (5.17)

which is part of the calculation for the coefficient of s23s24 in I
reg
21,43. After shuffling the product of poly-

logarithms and performing the integration over z2 one is faced with the following integral:

I reg
Ex2

=
∫ 1

0

dz3

z3 − 1
(
G(0, z3, 1; z3) + G(0, 1, z3; z3)

)
. (5.18)
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Obviously, the definition Eq. (5.2) can not be applied here, because the vector of labels, 
a, still contains
the argument z3 in both polylogarithms. Furthermore, the disturbing z3 in 
a can not be removed by means
of Eq. (5.7). The general problem is the following: how can a multiple polylogarithm of the form

G({0, a1, a2, . . . , z, . . . , an}w; z) (5.19)

be rewritten as a linear combination of objects which do not contain the argument z in their labels any more
and can thus be integrated using Eq. (5.2)? Naturally, the desired objects have to be of the same weight as
the original polylogarithms Eq. (5.19). A canonical ansatz is of the form

G({0,a1, a2, . . . , z, . . . , an}w; z) =
∑

ci G({0, a1, a2, . . . , an}w; z)i

+ ζ2

∑
cj G({0, a1, a2, . . . , an}w−2; z)j + ζ3

∑
ck G({0, a1, a2, . . . , an}w−3; z)k +

...

+ ζ5

∑
cl G({0, a1, a2, . . . , an}w−5; z)l + ζ2ζ3

∑
cm G({0, a1, a2, . . . , an}w−5; z)m +

...

+ cmaxζw (5.20)

with rational coefficients c. While the first line consists of the obvious sum, the other lines contain terms in
which the weight is partially carried by MZVs. For weights w ≥ 5 one has to consider all basis elements
at weight w spelled out in table 1, and the last term cmaxζw is a shorthand for having one coefficient cmax

for each Q independent MZV product at weight w, see appendix A.1. The remaining sums run over a basis
in the space of polylogarithms of the form G({0, a1, a2, . . . , an}w−k; z) with 0 ≤ k ≤ w.

The canonical way to derive those relations, that is, to find all coefficients c in Eq. (5.20), is thoroughly
described in [44]: one uses the fact that the multiple polylogarithms constitute a Hopf algebra endowed
with a coproduct, which iteratively provides – colloquially spoken – the opposite operation of the shuffle
product Eq. (5.3). Demanding agreement of the coproduct at every iteration of its calculation on both sides
of Eq. (5.20) allows to fix all coefficients but the one(s) in the last line. Considering the ansatz numerically
at a special value determines those coefficients as well. The so-called symbol [45, 46], which has been
proven a valuable tool to derive identities between (poly)logarithms is equivalent to the maximally iterated
coproduct and thus a special case of the method used here.

While we initially used the method described in [44], it turned out that the identities produced in this
way can be cast into a closed formula. For simplicity we will write the equality for the case of only one
occurrence of the argument z in the label 
a:

G(a1, . . . , ai−1, z, ai+1, . . . , an; z) = G(ai−1, a1, . . . , ai−1, ẑ, ai+1, . . . , an; z) (5.21a)

− G(ai+1, a1, . . . , ai−1, ẑ, ai+1, . . . , an; z) (5.21b)

−
∫ z

0

dt

t − ai−1
G(a1, . . . , âi−1, t, ai+1, . . . , an; t) (5.21c)

+
∫ z

0

dt

t − ai+1
G(a1, . . . , ai−1, t, âi+1, . . . , an; t) (5.21d)

+
∫ z

0

dt

t − a1
G(a2, . . . , ai−1, t, ai+1, . . . , an; t) . (5.21e)
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In the above equation a hat denotes omission of the corresponding element27. Thus, one can rewrite the
G(a1, . . . , ai−1, z, ai+1, . . . , an; z) in terms of a sum of polylogarithms which are simpler in the following
sense:

• terms (5.21a) and (5.21b) do not contain the argument in their labels any more

• terms (5.21c), (5.21d) and (5.21e) still contain the argument z in their labels, but their weight is
reduced by one compared to the initial polylogarithm.

Applying Eq. (5.21) recursively allows to completely remove the argument z in the labels of the multiple
polylogarithms on the right hand side. A couple of remarks are in order here:

• As mentioned above, Eq. (5.21) deals with the situation, where z appears only once in the label of
the polylogarithm. If there are several z’s in 
a, one has to write down the first four terms on the right
hand side for each of the occurrences of z. The cancellations between neighboring terms ensure that
the reduction still leads to an expression where the labels of the polylogarithms on the right hand side
are independent of z or shorter.

• If the argument z occurs at the last position in the label, that is an = z, the term (5.21d) in Eq. (5.21)
has to be dropped. In addition, the term (5.21b) has to be modified to read

−G(0, a1, . . . , ai−1, ẑ; z) . (5.22)

• The opposite situation, where the argument z resides at first position in the label of the polylogarithm
would require special attention as well. For simplicity we will assume here, that those polylogarithms
will be dealt with applying the shuffle regulation rule Eq. (5.8).

• While an = 0 does not require special attention in Eq. (5.21), it is nevertheless convenient to apply
Eq. (5.10) first in order to keep the number of different identities small. Especially for higher weights
this shortens the calculation significantly.

Another property of the above identity is that it preserves the shuffle regulation: If the initial polylogarithm
to be expanded is shuffle-regulated, so will be all expressions on the right hand side.

The comments above will become clear in proving the identity: let us write formula (5.21) as an integral
of its derivative:

G(a1, . . . , ai−1, z, ai+1, . . . , an; z) =
∫ z

0

dt
d
dt

G(a1, . . . , ai−1, t, ai+1, . . . , an; t) . (5.23)

The total t derivative in (5.23) splits into partial derivatives acting on the t among the labels

∂

∂ai
G(
a; z) =

1
ai−1 − ai

G(. . . , âi−1, . . . ; z) +
1

ai − ai+1
G(. . . , âi+1, . . . ; z)

− ai−1 − ai+1

(ai−1 − ai)(ai − ai+1)
G(. . . , âi, . . . ; z) (5.24)

and the argument

∂

∂z
G(
a; z) =

1
z − a1

G(a2, . . . , an; z). (5.25)

27 For illustration, here is an example employing the above formula:

G(0, z, 1; z) = G(0, 0, 1; z) − G(1, 0, 1; z) −
∫ z

0

dt

t − 0
G(t, 1; t) +

∫ z

0

dt

t − 1
G(0, t; t)︸ ︷︷ ︸

−ζ2

+

∫ z

0

dt

t − 0
G(t, 1; t)

= G(0, 0, 1; z) − G(1, 0, 1; z) − ζ2G(1; z)
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Applying partial-fraction identities leads straightforwardly to Eq. (5.21).
If there are several occurrences of z in the label of the polylogarithm, several partial derivatives (5.24)

contribute to (5.23) which explains the first point in the remarks above. If the argument appears in the last
position, the modified derivative rule reads

∂

∂an
G(
a; z) =

1
an−1 − an

G(. . . , ân−1, an; z) − an−1

(an−1 − an)an
G(. . . , an−1; z) (5.26)

which explains the necessity to drop the term (5.21d) in Eq. (5.21). Finally, comparing the last term in
Eq. (5.26) with the last term in Eq. (5.25) shows that the term (5.21b) in Eq. (5.21) should be modified as
mentioned in the remarks above. �

Applying Eq. (5.21) recursively one finds identities like

G(a1, 0, z; z) = G(0, 0, a1; z) − G(0, a1, a1; z) − G(a1; z)ζ2

G(a1, z, a2; z) = G(a1, a1, a2; z) − G(a2, 0, a1; z) + G(a2, a1, a1; z) − G(a2, a1, a2; z)
(5.27)

where in the above formulæ a1, a2 �= 0. In addition, a collection of identities for weights two and three
can be found in appendix E. With the methods described above one can now solve all regular integrals I reg.
Let us now combine all previous information and finally obtain the results for the functions F σ in the next
section.

6 Assembling the basis

The techniques of Sects. 4 and 5 provide access to the α′-expansion of any integral whose rational function
takes the form (5.1) provided that its field-theory limit does not involve dual pole channels, that is, more
than one cubic YM diagram. In some cases, these two constraints are incompatible. For instance the seven-
point world-sheet integrals from the {2, 3}-block – see Sect. 4.2.3 – cannot be brought into a basis of
functions of the form (5.1) with one field-theory diagram each28. We will now introduce methods to bypass
this subtlety.

In bypassing this subtlety, we pay particular attention to increase the computational efficiency. As we
will see, the number of disk integrals whose α′-expansions need to be performed independently can be
pushed well below the number (N−3)! of basis functions F σ , more precisely to 1, 3 and 11 at multiplicities
N = 5, 6 and N = 7, respectively. We will present the basis construction for these multiplicities and
investigate possible shortcuts from exploiting world-sheet parity and cyclic transformations along the lines
of [14].

The action of world-sheet parity is implemented by zi,j �→ zN−i,N−j, ki �→ kN−i on the integrand,
accompanied by reflection of the integration domain. Let σt denote the image of the permutation σ under
reversal of its elements, then one finds

F i1i2...iN−3

∣∣∣
i�→N−i

= FN−iN−3,N−iN−4,...,N−i1 . (6.1)

Cyclic shifts have a more subtle action on the F σ. As in Sect. 2, AYM denotes the vector of BCJ-
independent subamplitudes, and F is the corresponding (N − 3)! component vector of functions F σ enter-
ing the canonically ordered disk amplitude (that is, the first row of the matrix F defined in Eq. (2.2)). Then,

28 A factor of (z45z46)−1 in the integrand violates the criterion (5.1) imposed by our polylogarithm integration techniques
whereas (z45z56)−1 introduces incompatible poles in s−1

45 and s−1
56 .

To give a related example for the limitation of our method: It is not possible to directly construct the six-point basis from the
ν = 4 sector (4.16) of the pole channel basis: On the one hand, the integrand ∼ (z23z24z14)−1 of the Z[s23s234s1234]
function violates the criterion (5.1). On the other hand, partial-fraction elimination of the obstruction (z23z24)−1 introduces
a rational factor (z23z34)−1 which triggers singularities in incompatible pole channels s23 and s34.
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the shift i �→ i±1 (subject to cyclic identifications i := i+N ) can be implemented by (N −3)!×(N −3)!
matrices

AYM

∣∣∣
i�→i±1

= U±AYM (6.2)

Their entries are quotients of Mandelstam invariants determined by the BCJ relations29 [2]. Since the
composition of opposite shifts (i �→ i ± 1)(i �→ i ∓ 1) leaves AYM invariant, the matrices U± satisfy

U−1
± = U∓

∣∣∣
i�→i±1

. (6.3)

Cyclic invariance of the open-string subamplitude Aopen(1, 2, . . . , N) follows from total symmetry of the
CFT correlator30 together with cyclic invariance of the integration domain defined by zi < zi+1. Hence,
the cyclic i �→ i ± 1 action on the functions F σ must be linear

F
∣∣∣
i�→i±1

= V± F (6.4)

with (N − 3)! × (N − 3)! matrices V± determined by

At
YM F = At

YM U t
± V± F . (6.5)

Together with (6.3), we obtain:

V± = U t
∓
∣∣∣
i�→i±1

. (6.6)

At five points, for instance, the 2 × 2 matrices U+,V+ implementing a cyclic i �→ i + 1 shift on AYM(1, σ
(2, 3), 4, 5) and F σ(23) are given by

U+ =

(
1 0

−1 − s34/s35 s13/s35

)
, V+ =

(
1 −1 − s23/s13

0 s35/s13

)
. (6.7)

They can be checked to obey U+Vt
+ = 1 using momentum conservation.

In order to finally assemble the functions F σ , one has to perform the following steps

• express the functions F σ in terms of Z(1, 2σ, . . . , νσ, N, (ν + 1)σ, . . . , (N − 2)σ, N − 1) choosing
the most convenient representation ν = 
N/2� as in Eq. (3.29).

• convert the functions Z(. . .) into the pole basis Z[. . .] using the partial-fraction manipulations de-
scribed in Subsect. 4.2

• decompose the elements of the pole basis Z[. . .] into their residues as in Sect. 4.3 and rewrite the
residues in terms of lower-point regular integrals as in Eq. (4.25).

• evaluate all regular integrals using the techniques from Sect. 5.

In order to keep the dependence of the regular integrals on squares k2
Ai

of off-shell momenta explicit, the
arguments are given in terms of Mandelstam invariants (see (4.54) for our conventions for regular six-point
integrals). In addition to the direct construction of F σ following the enumeration above, we demonstrate
how parity and cyclic invariance of the open-string amplitude allows to bypass the expansion of some basis
functions.

29 The exact form of the matrices U± follows by expanding the images AYM(1, 2, σ(3, . . . , N−1), N) and AYM(σ(1, . . . , N−
3), N−2, N−1, N) under i �→ i+1 and i �→ i−1, respectively, in the original basis of AYM(1, σ(2, . . . , N−2), N−1,N)
used in (2.1).

30 We emphasize again that before specifying the integration domain D(Π) the open-string amplitude (3.10) is totally symmetric
in its labels for the same reasons as the gravity amplitude (3.5), see Subsect. 3.4.
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6.1 Five-point

Given the closed form expression (4.27) for the four-point basis function F (2), we shall start our series of
examples by assembling the five-point basis integrals F σ(23). The α′-expansion of their ν = 2 representa-
tion (3.30) follows from the pole structures of the underlying disk integrals Z(1, σ(2), 5, σ(3), 4) given in
(4.31) and (4.34),

F (23) =s12s34 Z[s12s34]

=1 + s12 I reg
21 [s12, s23 + s24] + s34 I reg

21 [s34, s13 + s23] + s12s34 I reg
21,43

F (32) =s13s24 Z[ζ2] = s13s24 I reg
31,42 . (6.8)

It is instructive to compare with the equivalent ν = 3 representation (3.31)

F (23) =1 + s34 I
reg
21 [s34, s13 + s23] + s12

(
I

reg
21 [s123, s24 + s34] + I

reg
21 [s12, s23]

)
+ s12

(
(s13 + s23) I reg

21,31 + s23 I reg
31,32

)
(6.9)

F (32) =s13

(
I reg
21 [s13 + s23, s34] − I reg

21 [s123, s24 + s34] + s12 I reg
21,31 − s23 I reg

31,32

)
following from (4.37) and (4.38) with s12I

reg
21 [s12, s23] = s23I

reg
21 [s23, s12]. Due to the larger number of

four-point contact vertices, Eq. (6.9) is less appealing for practical purposes. The two representations (6.8)
and (6.9) are equal if the I reg

... satisfy

I
reg
21 [s12, s23 + s24] + s34 I

reg
21,43 =I

reg
21 [s123, s24 + s34] + I

reg
21 [s12, s23]

+ (s13 + s23) I reg
21,31 + s23 I reg

31,32 (6.10)

as well as

s24 I reg
31,42 = s12 I reg

21,31 − s23 I reg
31,32 + I reg

21 [s13 + s23, s34] − I reg
21 [s123, s24 + s34] . (6.11)

Relations among the I reg
... which follow from comparing different F σ-representations (3.27) mix regular

parts at different multiplicity. In other words, integration by parts identities (B.4) and (B.6) only apply to
the full integrals including all their singular terms. The naive attempt to lift the vanishing of integrals over
∂2

∏4
i<j |zij |sij /z31 to regular parts s12I

reg
21,31−s23I

reg
31,32−s24I

reg
31,42 fails because of the admixture of I reg

21

in (6.11).

6.1.1 The cyclicity shortcut

Cyclic properties of the functions F (23) and F (32) allow to bypass the evaluation of I
reg
31,42 in Eq. (6.8).

Using the matrix V+ given in (6.7) and encoding the cyclic action on F σ(23), one can infer the second
basis function from

F (32) =
s13

s13 + s23

(
F (23) − F (23)

∣∣∣
i�→i+1

)
. (6.12)

Since I reg
21 and I reg

32 are available in closed form (4.28) and (4.30), only I reg
21,43 is left to expand through the

methods of Sect. 5, i.e. half of the effort at five points is saved by virtue of (6.12).

6.2 Six-point

The six-point basis integrals F σ can be obtained from the ν = 3 sector of the pole basis. The singularity
structure (4.41) and (4.42) of Z[s12s123s45] and Z[s23s123s45] yields the following expressions:

F (234) =s12(s13 + s23)s45 Z[s12s123s45] + s12s23s45 Z[s23s123s45]
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=(1 + s12 I reg
21 [s12, s23]) (1 + s45 I reg

21 [s45, s14 + s24 + s34])

+ (s13 + s23) I reg
21 [s13 + s23, s34 + s35] + s12 I reg

21 [s123, s24 + s25 + s34 + s35]

+ s12(s13 + s23) I reg
21,31[s12, s13, s23, s24 + s25, s34 + s35]

+ s45(s13 + s23) I
reg
21,43[s13 + s23, s14 + s24, s34, s35, s45]

+ s12s23 I reg
31,32[s12, s13, s23, s24 + s25, s34 + s35]

+ s12s45 I reg
21,43[s123, s14, s24 + s34, s25 + s35, s45]

+ s12(s13 + s23)s45 I reg
21,31,54 + s12s23s45 I reg

31,32,54 (6.13)

F (324) =s12s13s45 Z[s12s123s45] − s13s23s45 Z[s23s123s45]

=s13

(
I

reg
21 [s13 + s23, s34 + s35] − I

reg
21 [s123, s24 + s25 + s34 + s35]

+ s12 I reg
21,31[s12, s13, s23, s24 + s25, s34 + s35]

+ s45 I reg
21,43[s13 + s23, s14 + s24, s34, s35, s45]

− s23 I reg
31,32[s12, s13, s23, s24 + s25, s34 + s35]

− s45 I
reg
21,43[s123, s14, s24 + s34, s25 + s35, s45]

+ s12s45 I reg
21,31,54 − s23s45 I reg

31,32,54

)
. (6.14)

We have used s12I
reg
21 [s12, s23] = s23I

reg
21 [s23, s12] in order to cast these two basis functions into a mani-

festly local form. The remaining four functions are built from significantly less I reg
... since the underlying

Z[. . .] have at most single poles as spelled out in Eqs. (4.44) and (4.45):

F (243) =s12(s14 + s24)s35 Z[ζ2s12] + s12s24s35 Z̃[ζ3]

=s12(s14 + s24)s35 I reg
21,41,53 + s12s24s35 I reg

41,42,53

+ (s14 + s24)s35 I
reg
31,42[s13 + s23, s14 + s24, s34, s35, s45] (6.15)

F (423) =s12s14s35 Z[ζ2s12] − s14s24s35 Z̃[ζ3]

=s12s14s35 I reg
21,41,53 − s14s24s35 I reg

41,42,53

+ s14s35 I reg
31,42[s13 + s23, s14 + s24, s34, s35, s45] (6.16)

F (342) =s13(s14 + s34)s25 Z[ζ3] + s13s34s25 Z[ζ2s34]

=s13(s14 + s34)s25 I reg
31,41,52 + s13s34s25 I reg

41,43,52

+ s13s25 I reg
31,42[s12, s134, s23 + s24, s25, s35 + s45] (6.17)

F (432) =s13s14s25 Z[ζ3] − s14s34s25 Z[ζ2s34]

=s13s14s25 I
reg
31,41,52 − s14s34s25 I

reg
41,43,52

− s14s25 I reg
31,42[s12, s134, s23 + s24, s25, s35 + s45] (6.18)

This pedestrian approach to the six-point F σ basis requires the expansion of six integrals. Let us now
demonstrate how parity and cyclicity reduce this number.
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6.2.1 The parity shortcut

As a first method to improve the efficiency of the basis construction, we employ the parity transformation
of the functions F σ in Eq. (6.1). Under parity, one finds two singlets F (234) and F (432) and two doublets

F (243) = F (324)
∣∣∣
i�→6−i

, F (423) = F (342)
∣∣∣
i�→6−i

. (6.19)

This allows to bypass the evaluation of I
reg
21,41,53 = Z[s12ζ2] and I

reg
41,42,53 = Z̃[ζ3]. Parity has reduced

the required number of I reg
ij,kl,mn-expansions by one third, and we will next show that cyclicity leads to a

further reduction.

6.2.2 The cyclic shortcut

Each of the pole basis integrals Z[. . .] contains partial information on the F σ basis such as

Z[s12s123s45] =
1

s123s45

( F (234)

s12
+

F (324)

s13

)
(6.20)

Z[ζ2s12] =
1

s124s35

( F (243)

s12
+

F (423)

s14

)
(6.21)

Z[ζ3] =
1

s134s25

( F (342)

s13
+

F (432)

s14

)
, (6.22)

see (3.34). In order to obtain the missing information on the F σ beyond (6.20) to (6.22), we apply cyclic
transformations to their right hand sides. At six-point level, the shifts i �→ i ± 1 act on the AYM and F
through 6 × 6 matrices U± and V±. The entries of U± are again straightforwardly determined by BCJ
relations, and the V± then follow from (6.6). Instead of displaying V+ in matrix form, let us list the cyclic
images of the basis functions relevant for the i �→ i + 1 shift of (6.22):

F (342)
∣∣∣
i�→i+1

= − F (342) (s134 + s24) s36

s13s134
− F (432)s24s36

s14s134
+

F (324)s36

s13
(6.23)

F (432)
∣∣∣
i�→i+1

= − F (342)s36 (s13 − s46)
s13s134

− F (432) (s24 + s45) s36

s14s134
. (6.24)

We can then obtain the decomposition of Z[ζ3]
∣∣
i�→i+1

, Z[ζ3]
∣∣
i�→i−1

and Z[ζ3]
∣∣
i�→i−2

into a basis of F σ

from (6.22) together with F σ(234) transformations such as (6.23) and (6.24). The 6×6 matrix of expansion
coefficients for Z[s12s123s45], Z[ζ2s12], Z[ζ3] and cyclic images thereof has an inverse with local entries:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F (234)

F (243)

F (324)

F (342)

F (423)

F (432)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s12s123s45 −s2
12 (s24+s25) −s12 (s25s134+s24(s245+s134)) −s12s24s245 . . .

0 s12 (s14+s24) s35 0 0 . . .

0 s12s13 (s24+s25) s13 (s25s134+s24(s245+s134)) s13s24s245 . . .

0 s12s13s25 s13s25s134 0 . . .

0 s12s14s35 0 0 . . .

0 −s12s14s25 0 0 . . .
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. . . s12 (s24+s25) (s23+s24+s25+s35) s12s24 (s24+s25)

. . . s12s24s35 s12s24s35

. . . −s13 (s24+s25) (s23+s24+s25+s35) −s13s24 (s24+s25)

. . . −s13s25 (s23+s24+s25+s35) −s13s24s25

. . . −s14s24s35 −s14s24s35

. . . s14s25 (s23+s24+s25+s35) s14s24s25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z[s12s123s45]
Z[ζ2s12]
Z[ζ3]

Z[ζ3]
∣∣
i�→i+1

Z[ζ3]
∣∣
i�→i−1

Z[ζ3]
∣∣
i�→i−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.25)

In this setting, the α′-expansions of Z[s12s123s45], Z[ζ2s12] and Z[ζ3] obtained on the basis of (4.41),
(4.44) and (4.47), respectively, encode the low-energy behavior of the complete six-point amplitude.

6.3 Seven-point

The pole expansions given in Subsect. 4.3.4 are already adapted to a parity- and cyclicity-inspired construc-
tion of the seven-point basis for F σ . We start by computing the basis functions from the parity independent
{3, 5}, {2, 4}, {2, 5} and {4, 5} blocks. The {3, 5} block does not involve any poles and directly translates
into I reg

ij,kl,mn,pq⎛
⎜⎜⎜⎜⎝

F (3524)

s13s46
F (3542)

s13s26
F (5324)

s15s46
F (5342)

s15s26

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(s15 + s35)s24 s35s24 (s15 + s35)s26 s35s26

−(s15 + s35)s24 −s35s24 (s15 + s35)(s24 + s46) s35(s24 + s46)
s13s24 −s35s24 s13s26 −s35s26

−s13s24 s35s24 s13(s24 + s46) −s35(s24 + s46)

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

I reg
31,51,42,64

I reg
51,53,42,64

I reg
31,51,62,64

I reg
51,53,62,64

⎞
⎟⎟⎟⎟⎠ (6.26)

As explained in [7], the α′-expansions of F (3524), F (3542), F (5324) and F (5342) start at order α′4ζ4 thanks
to the absence of poles and the properties of the I reg

31,51,62,64.
All other blocks incorporate functions with two simultaneous poles. For the {2, 4} block of the F σ-

basis, ⎛
⎜⎜⎜⎝

(s12s56)−1 F (2435)

(s12s36)−1 F (2453)

(s14s56)−1 F (4235)

(s14s36)−1 F (4253)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

(s14 + s24)s35 −s24s35 (s14 + s24)s36 −s24s36

−(s14 + s24)s35 s24s35 (s14 + s24)(s35 + s56) −s24(s35 + s56)
s12s35 s24s35 s12s36 s24s36

−s12s35 −s24s35 s12(s35 + s56) s24(s35 + s56)

⎞
⎟⎟⎟⎠

×
5∏

i=2

∫ zi+1

0

dzi

6∏
i<j

|zij |sij

⎛
⎜⎜⎜⎝

(z21z35z41z56)−1

(z24z35z41z56)−1

(z21z36z41z56)−1

(z24z36z41z56)−1

⎞
⎟⎟⎟⎠ (6.27)
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the singularities for the integrals on the right hand side are given in (F.1) to (F.4). The Mandelstam variables
in the 4 × 4 matrix then render the resulting expressions for the F σ manifestly local. Similarly, locality of
the following functions from the {2, 5} and {4, 5} block can be seen from interplay of the 4 × 4 matrix
entries with the poles in (4.49) to (4.52) and (F.5) to (F.8):

⎛
⎜⎜⎜⎝

(s12s46)−1 F (2534)

(s12s36)−1 F (2543)

(s15s46)−1 F (5234)

(s15s36)−1 F (5243)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(s15 + s25)s34 −s25s34 (s15 + s25)s36 −s25s36

−(s15 + s25)s34 s25s34 (s15 + s25)(s34 + s46) −s25(s34 + s46)
s12s34 s25s34 s12s36 s25s36

−s12s34 −s25s34 s12(s34 + s46) s25(s34 + s46)

⎞
⎟⎟⎟⎠

×
5∏

i=2

∫ zi+1

0

dzi

6∏
i<j

|zij |sij

⎛
⎜⎜⎜⎝

(z21z51z34z46)−1

(z25z51z34z46)−1

(z21z51z36z46)−1

(z25z51z36z46)−1

⎞
⎟⎟⎟⎠ (6.28)

⎛
⎜⎜⎜⎝

(s14s36)−1 F (4523)

(s14s26)−1 F (4532)

(s15s36)−1 F (5423)

(s15s26)−1 F (5432)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(s15 + s45)s23 s45s23 (s15 + s45)s26 s45s26

−(s15 + s45)s23 −s45s23 (s15 + s45)(s23 + s36) s45(s23 + s36)
s14s23 −s45s23 s14s26 −s45s26

−s14s23 s45s23 s14(s23 + s36) −s45(s23 + s36)

⎞
⎟⎟⎟⎠

×
5∏

i=2

∫ zi+1

0

dzi

6∏
i<j

|zij |sij

⎛
⎜⎜⎜⎝

(z32z63z41z51)−1

(z32z63z51z54)−1

(z62z63z41z51)−1

(z62z63z51z54)−1

⎞
⎟⎟⎟⎠ (6.29)

6.3.1 The parity shortcut

Four out of six seven-point blocks of basis functions contain a doublet and two fixed points under world-
sheet parity. On the contrary, the functions from the {3, 4} block transform into those of the {2, 5} block;
one can therefore infer

F (3425) = F (2534)
∣∣∣
i�→7−i

, F (3452) = F (5234)
∣∣∣
i�→7−i

(6.30)

F (4325) = F (2543)
∣∣∣
i�→7−i

, F (4352) = F (5243)
∣∣∣
i�→7−i

. (6.31)

Within the {2, 4}, {3, 5} and {4, 5} blocks, on the other hand, one can take advantage of parity to bypass
one out of the four integral expansions each, e.g.

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z35z51z26z46
=

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z31z51z26z46

−
(

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z31z51z24z46

) ∣∣∣
i�→7−i

. (6.32)

The analogous relations for the {2, 4} and {4, 5} blocks follow by relabelling (3, 5) ↔ (2, 4) and 3 ↔
4, respectively. Note that the form (5.1) of the integrand required for applicability of the polylogarithm
techniques of Sect. 5 is not invariant under parity, this explains the asymmetry in equation (6.32).
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6.3.2 The cyclicity shortcut

So far we have addressed the α′-expansion of 20 basis functions, the results are given in (6.26) to (6.29)
together with their parity images (6.30) and (6.31). As explained in the previous subsection, parity can
be used to obtain the {2, 4}, {3, 5} and {4, 5} blocks from three independent integrals each. In addition,
the cyclic transformation Z(1, 5, 3, 7, 2, 4, 6) = −Z(1, 4, 2, 7, 5, 3, 6)

∣∣
i�→i+4

allows to infer another {3, 5}
integral from the {2, 4} block:

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z51z53z42z64
=

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z41z42z53z63

∣∣∣
i�→i+4

. (6.33)

Similarly, the i �→ i + 1 shift of the disk integrals Z(1, 2, 5, 7, 3, 4, 6) and Z(1, 2, 5, 7, 4, 3, 6) from the
{2, 5} block yields two elements in the {4, 5} block:

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z54z41z63z32
=

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z52z21z64z43

∣∣∣
i�→i+1

(6.34)

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z54z51z63z32
=

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z52z21z63z43

∣∣∣
i�→i+1

. (6.35)

In summary, parity relations such as (6.32) as well as cyclicity relations (6.33) to (6.35) reduce 20 basis
functions outside the {2, 3} block to ten cyclicity- and parity-independent computations. Now, the {2, 3}
block with basis functions F (2345), F (2354), F (3245) and F (3254) is left to determine, and we shall again
make use of cyclicity methods.

The cyclic transformation of the seven-point F σ can be understood along the lines of the six-point
integrals, see the discussion around (6.23) and (6.24). We can infer F (3245) and F (3254) by solving the
cyclic transformation of two known functions F (3425) and F (4235) shown in (F.10) and (F.11). These
identities relate the unknowns F (3245) and F (3254) to the 20 basis functions from above. Knowledge of
F (3245) by virtue of (F.10) allows to determine F (2354) via parity,

F (2354) = F (3245)
∣∣∣
i�→7−i

. (6.36)

The final basis function F (2345) with non-vanishing field-theory limit cannot be obtained from parity and
cyclicity (relations of that type would lead to contradictions in the α′ → 0 limit). Hence, we make use of
the basis expansion (3.34) and the pole decomposition (4.48) for the integral

Z[s12s123s1234s56] =
1

s1234s56

∑
σ∈S3

F (σ(234)5)

s1σ(2)s1σ(23)
(6.37)

and obtain the last basis function by solving (6.37) for F (2345).

7 Conclusions

This paper aims to deepen the conceptual and computational understanding of superstring disk ampli-
tudes and their α′-corrections. On the conceptual side, the world-sheet integrand for the open-string tree
amplitude has been presented in close analogy to field-theory trees in supergravity in Subsect. 3.2. The
underlying dictionary between YM subamplitudes and disk integrals at various permutations is supported
by world-sheet analogues of KK and BCJ relations in Subsect. 3.4.
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On the computational side, we provide the tools to calculate the α′-expansion for any multiplicity and to
any order in α′ in principle. The poles of world-sheet disk integrals are classified by the pole criterion (4.6)
and the recursive structure of their residues is accounted for by the diagrammatic methods of Subsect. 4.3.
The regular part carrying the intrinsic N -point information on contact terms can be analytically evaluated
by the polylogarithm method introduced in Sect. 5. The polylogarithm identity (5.20) renders any world-
sheet integration elementary. The limitation is set by calculational power as the number of terms to consider
and the number of steps necessary to solve the world-sheet integrals iteratively grows immensely at higher
multiplicities and orders in α′. Nevertheless, the methods have allowed us to determine the α′-corrections
to the open-string tree-level N -point amplitude up to the order α′22 (weight w = 22) for N = 5, up to
α′9 (weight w = 9) for N = 6 and α′7 (weight w = 7) for N = 7. For these cases we could prove the
explicit form (2.7) of the image of the motivic superstring amplitude. We refer the reader to [47] and the
data at [17] for more details.

These results provide further testing grounds for the algebraic structure of the open-string amplitude
explored in [12]. Further mathematical investigation towards expressing all tree-level amplitudes in open
superstring theory using the Drinfeld associator as started for N = 4 in [48] will be left for another
publication [49].
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Appendix

A Introduction to (motivic) multiple zeta values

This appendix gathers some background information on MZVs, their motivic versions, their isomorphic
images fk

2 fi1 . . . fip in (2.7) and the underlying Hopf algebra structure [12, 21]. The choice of material is
adapted to the needs of the present article.

A.1 Multiple zeta values

MZVs have been a very active field of research during the last years. While there is a vast amount of articles
available on the subject, we will here briefly collect the necessary information. MZVs ζn1,...,nr of depth r
and weight w =

∑r
i=1 ni are defined in (2.5). There are numerous relations between different MZVs such

as for example the quasi-shuffle (or stuffle) relation

ζm ζn = ζm,n + ζn,m + ζm+n. (A.1)

The collection of all relations allows to define the commutative graded algebra Z as the span of all MZVs
over the rational numbers Q, where the algebra is conjectured to be graded by the weights of the MZVs

Z =
⊕

Zw . (A.2)

The dimension dw of Zw has been conjectured to be dw = dw−2 + dw−3 where d0 = 1, d1 = 0 and
d2 = 1 [50]. A possible choice of basis elements at each weight w is given in Table 1, cf. also [41].
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Table 1 A possible choice for the basis elements of Zw for 2 ≤ w ≤ 12.

w 2 3 4 5 6 7 8 9 10 11 12
Zw ζ2 ζ3 ζ2

2 ζ5 ζ2
3 ζ7 ζ3,5 ζ9 ζ3,7 ζ3,3,5 ζ2 ζ3

3 ζ1,1,4,6 ζ2 ζ3,7

ζ2 ζ3 ζ3
2 ζ2 ζ5 ζ3 ζ5 ζ3

3 ζ3 ζ7 ζ3,5 ζ3 ζ2 ζ9 ζ3,9 ζ2
2 ζ3,5

ζ2
2 ζ3 ζ2 ζ2

3 ζ2 ζ7 ζ2
5 ζ11 ζ2

2 ζ7 ζ3 ζ9 ζ2 ζ2
5

ζ4
2 ζ2

2 ζ5 ζ2 ζ3,5 ζ2
3 ζ5 ζ3

2 ζ5 ζ5 ζ7 ζ2 ζ3 ζ7

ζ3
2 ζ3 ζ2 ζ3 ζ5 ζ4

2 ζ3 ζ4
3 ζ2

2 ζ3 ζ5

ζ2
2 ζ2

3 ζ3
2 ζ2

3

ζ5
2 ζ6

2

dw 1 1 1 2 2 3 4 5 7 9 12

There is a profound difference between single ζ-functions of even and odd weight. All single zeta values
of even weight can be expressed as rational multiples of even powers of π and are thus expressable as
powers of ζ2, e.g. ζ2

2 = 5
2 ζ4. This immediately renders them transcendental numbers. There is no analogue

of this property for the remaining single zeta values: there are no known relations of this type relating two
single zeta values of different odd weight. Another difficulty arising for ζ-values of odd weight is their
conjectured transcendentality: the only fact which have been proven are the irrationality of ζ3 and that
there is an infinite number of odd irrational ζ’s [51, 52].

Once the entries FΠ
σ are expanded in terms of basis MZVs shown in table 1, the α′-expansion of the

matrix F in Eq. (2.1) takes the following form

F = 1(N−3)!×(N−3)! + ζ2P2 + ζ3M3 + ζ2
2P4 + ζ2ζ3P2M3 + ζ5M5

+ ζ3
2P6 +

1
2
ζ2
3M3M3 + ζ7M7 + ζ2ζ5P2M5 + ζ2

2 ζ3P4M3

+ ζ4
2P8 + ζ3ζ5M5M3 +

1
2

ζ2ζ
2
3P2M3M3 +

1
5

ζ3,5[M5, M3]

+ . . . +
(

9ζ2ζ9 +
6
25

ζ2
2 ζ7 − 4

35
ζ3
2 ζ5 +

1
5
ζ3,3,5

)
[M3, [M5, M3]]

+ . . . + ζ3,5ζ3,7
208926
894845

[M3[M3[M7, M5]]] + . . . , (A.3)

see [12] for the explicit results up to weight w = 16. In (A.3), Pw and Mw denote (N − 3)! × (N − 3)!-
matrices of homogeneity degree w in Mandelstam variables (2.4) and are defined in Eq. (2.8). The form
of the expansion in Eq. (A.3) is far from obvious. In particular the fact that any product of single ζ’s
comes with the appropriate product of matrices and in addition the appearance of MZVs as prefactors of
commutators containing the corresponding matrices has not been expected at all.

In spite of its beautiful structure, the expansion Eq. (A.3) has three drawbacks: the coefficients in front
of higher order terms related to commutators of matrices turn into unwieldy rational numbers soon, as can
be seen by the examples at weight 11 and 18 noted in the last two lines of Eq. (A.3). Furthermore, the form
of Eq. (A.3) depends on the particular choice of a basis for Zw. Moreover, the graded algebra spanned
by the matrices Mw with the Lie bracket [. . . , . . .] depends on N . E.g. for N = 5 at weight w = 18 the
commutator structure becomes ambiguous [47]. So it would be preferable to find a language, in which the
rational coefficients disappear, which simultaneously does not depend on a particular choice of basis and
is not sensitive to the dependence of the underlying algebra on N .
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A.2 Hopf algebra structure of MZVs

The language providing the desired simplification is the graded noncommutative Hopf algebra comodule
U composed from words

f2i1+1 . . . f2ir+1 fk
2 , r, k ≥ 0, i1, . . . , ir ≥ 1 (A.4)

of weight w = 2(i1 + . . . + ir) + r + 2k. The objects f2i+1 alone constitute a noncommutative Hopf
algebra. Upon adding powers of f2, which commute with all f2i+1, the resulting object is a Hopf algebra
comodule [39]. It is not difficult to convince oneself that the bases of the gradings Uw do indeed have the
same dimension as Zw: writing down all noncommutative words of the form in Eq. (A.4) yields the correct
number dw.

The missing piece is the link between the Q-algebra Z of MZVs Eq. (A.2) and U . Before constructing
a map, one first needs to promote the algebra Z to a Hopf algebra. A Hopf algebra is an algebra which
is its own coalgebra and encompasses – besides the usual product of the algebra – a coproduct in a way
that product and coproduct are compatible [44]. While there is an obvious candidate for the coproduct of
MZVs [39], it is however not easy to promote Z to a Hopf algebra: a consistent coproduct needs to be Q-
linear. This would not pose a problem at all if one could prove, that all MZVs are transcendental. However,
as the transcendental nature of many MZVs is undetermined, one needs to a employ a mathematical tool,
which ensures correct treatment of this uncertainty: motives. An introduction to the theory of motivic zeta
values in the context of string theory amplitudes can be found in [12]; the original papers are [21, 39].

Lifting the regular ζ’s to their motivic versions ζm allows to promote the commutative graded Q-algebra
Z to the commutative graded Hopf algebra of motivic ζ-values H, which is defined over a finite extension
of Q. What remains is the construction of an isomorphism φ from the commutative, but non-cocommutative
Hopf algebra H to the noncommutative, but co-commutative algebra comodule U :

φ : H → U . (A.5)

The construction of the map φ assigning a linear combination of noncommutative words (A.4) to each
motivic MZV is described in [21], where a complete set of examples for w ≤ 16 can be found in [12]. In
order to fix the normalization of the map φ, we choose single ζ’s to be directly translated into one-letter
words

φ(ζm
w ) = fw , f2k :=

ζ2k

(ζ2)k
fk
2 . (A.6)

The map φ preserves all the different relations between the MZVs, e.g. (cf. Eq. (A.1)):

φ(ζm
k ζm

l ) = φ(ζm
k,l) + φ(ζm

l,k) + φ(ζm
k+l) . (A.7)

In addition one finds for example:

φ(ζm
3,9) = −6f5f7 − 15f7f5 − 27f9f3

φ(ζm
3,3,5) = −5f5f3f3 +

4
7
f5f

3
2 − 6

5
f7f

2
2 − 45f9f2 . (A.8)

Employing the second example simplifies the coefficient of [M3, [M5, M3]] in Eq. (A.3) to −f5f3f3.
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Applying the map φ to Fm, the motivic version of the matrix F defined in Eq. (2.2), yields

φ(Fm) = ( 1 + f2P2 + f2
2 P4 + f3

2 P6 + f4
2 P8 + f5

2 P10 + f6
2 P12 + . . . )

×( 1 + f3 M3 + f5 M5 + f2
3 M2

3 + f7 M7 + f3f5 M5M3 + f5f3 M3M5

+f9 M9 + f3
3 M3

3 + f2
5 M2

5 + f3f7 M7M3 + f7f3 M3M7 + f11 M11

+f2
3 f5 M5M

2
3 + f3f5f3 M3M5M3 + f5f

2
3 M2

3 M5 + f4
3 M4

3 + f3f9 M9M3

+f9f3 M3M9 + f5f7 M7M5 + f7f5 M5M7 + . . .) . (A.9)

Thus, by means of the map φ all rational coefficients in Eq. (A.3) are converted to 1. The result is a sum
over all words in Eq. (A.4). In the odd part of Eq. (A.9), words fi1fi2 . . . fip are accompanied by matrix
products Mip . . .Mi2Mi1 with reversed ordering of indices. Writing Eq. (A.9) in a closed form yields
the formula (2.7) which completely covers the structure of the open superstring amplitude. All the si1...ip

content is expressed in terms of matrices, which already appeared as coefficients of single ζ’s in Eq. (A.3).
In order to use the same matrices in both expressions, one has to fix the freedom31 in the construction of
the map φ [39] such that the only elements of weight w in table 1 whose images contain fw or (f2)w/2 are
ζw and (ζ2)w/2, respectively. However, for any choice of basis for the MZVs the amplitude can be brought
into the form Eq. (2.7) by appropriately constructing the map and possibly redefining the matrices Pw and
Mw.

B Additional material on field-theory patterns in world-sheet integrals

This appendix provides supplementing material for Sect. 3. In particular, it supports the correspondence
between field-theory amplitudes AYM(σ) and world-sheet disk integrals ZΠ(σ) by connecting KK and BCJ
relations between AYM with partial-fraction and integration by parts manipulations on the world-sheet, see
Subsect. 3.4.

B.1 KK relations between disk integrals

KK relations among the AYM(σ) correspond to partial-fraction relations between various permutations
of the Green’s functions (z12z23 . . . zN−1,NzN,1)−1 in the integrand of ZΠ(σ). Let us demonstrate this
through the four-point example, where the photon decoupling identity

AYM(1, 2, 3, 4) + AYM(1, 2, 4, 3) + AYM(1, 3, 2, 4) = 0 (B.1)

corresponds to a partial-fraction relation at the level of the integrand,

ZΠ(1, 2, 3, 4) + ZΠ(1, 2, 4, 3) + ZΠ(1, 3, 2, 4) ∼ 1
VCKG

4∏
i=1

∫
D(Π)

dzi

4∏
i<j

|zij |sij

×
(

1
z12z23z34z41

+
1

z12z24z43z31
+

1
z13z32z24z41

)
= 0 . (B.2)

By iterating the manipulation shown in Eq. (B.2) one can verify the general KK relation (3.21). As men-
tioned before, the choice of the KK basis

{
ZΠ(1, ρ(2, 3, . . . , N), N − 1), ρ ∈ SN−2

}
in (3.21) is conve-

nient in view of the SL(2, R) fixing (3.3). Our methods for constructing the FΠ
σ basis of functions take

this (N − 2)! family of disk integrals as a starting point.

31 The φ action on MZVs ζm
n1,...,nr

of depth r ≥ 2 is fixed by the coproduct, except for the coefficient of fn1+...+nr . In the
conventions of [12], the φ images of the basis MZVs in table 1 do not involve fn1+...+nr , with the exception of single zeta
values.
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B.2 BCJ relations between disk integrals

BCJ relations correspond to the vanishing of a total derivative under the world-sheet integral
∫

D(Π)
dzi,

regardless of the integration domain D(Π) defined by zΠ(i) < zΠ(i+1). The linear Mandelstam dependence
enters through zi derivatives acting on the Koba-Nielsen factor:

∂

∂zk

N−1∏
i<j

|zij |sij =
N−1∏
i<j

|zij |sij

N−1∑
l 
=k

skl

zkl
(B.3)

The world-sheet analogue of BCJ relations is most conveniently derived after SL(2, R) fixing:

0 =
∫

D(Π)

dz2 dz3
∂

∂z3

∏4
i<j |zij |sij

z12
=

∫
D(Π)

dz2 dz3

∏4
i<j |zij |sij

z12

(
s13

z31
+

s23

z32
+

s34

z34

)
= − s13 ZΠ(1, 3, 2, 5, 4) − (s13 + s23)ZΠ(1, 2, 3, 5, 4) + s34 ZΠ(1, 2, 5, 3, 4) (B.4)

Partial fraction 1
z12z31

= 1
z12z32

+ 1
z13z23

in the first line of (B.4) leads to a literal copy of the five-point
BCJ relation

s13 AYM(1, 3, 2, 5, 4) + (s13 + s23)AYM(1, 2, 3, 5, 4) = s34 AYM(1, 2, 5, 3, 4) . (B.5)

More generally, we can obtain the ZΠ analogue of the N -point BCJ relation [2, 4, 5] generalizing (B.5) by
means of the following total derivative:

0 = −
N−2∏
i=2

∫
D(Π)

dzi
∂

∂zN−2

∏N−1
i<j |zij |sij

z12z23 . . . zN−4,N−3

=s1,N−2 ZΠ(1, N − 2, 2, 3, . . . , N, N − 1)

+ (s1,N−2 + s2,N−2)ZΠ(1, 2, N − 2, 3 . . . , N, N − 1)

+ . . . + (s1,N−2 + . . . + sN−3,N−2)ZΠ(1, 2, . . . , N − 3, N − 2, N, N − 1)

− sN−2,N−1 ZΠ(1, 2, . . . , N − 3, N, N − 2, N − 1) (B.6)

The proof of (B.6) is shown in appendix B.4.

B.3 The momentum-kernel representation of the basis functions

This subsection is devoted to proving equivalence between the momentum-kernel representation FΠ
σ =∑

ρ∈SN−3
S[ρ|σ]1ZΠ(1, ρ(2, 3, . . . , N − 2), N, N − 1) of the basis functions and their original form (3.2)

found in [6, 7]. Instead of performing algebraic manipulations between (3.2) and (3.8), we shall start from
from the (N − 2)! representation

Aopen(Π(1, . . . , N)) =
∑

σ∈N−2

n[1|σ(2, . . . , N − 2, N)|N − 1] ZΠ(1, σ(2, 3, . . . , N − 2, N), N − 1)

(B.7)

of the disk amplitude [6]. The numerators n[. . .] therein have been identified with BRST building blocks
T12...p [19, 53]

n[1|2, . . . , ν, N, ν + 1, . . . , N − 2|N − 1] = 〈T12...ν TN−1,N−2,...,ν+1 TN 〉 , (B.8)

and the bracket 〈. . .〉 denotes the pure-spinor zero-mode integration to extract superspace components [54].
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Without loss of generality, we restrict our discussion to the (N − 3)! terms of (B.7) with σ(N) = N
since the remaining terms where σ(N) �= N simply provide the BRST invariant completion towards AYM,
see [19]. The BRST building blocks T1σ(2...N−2) are related to their corresponding Berends-Giele currents
M1ρ(2...N−2) [19] through the momentum kernel,

T1σ(2...N−2) =
∑

ρ∈SN−3

S[ σ(2, . . . , N − 2) | ρ(2, . . . , N − 2) ]1 M1ρ(2...N−2) . (B.9)

The latter build up field-theory subamplitudes via AYM(1, 2, . . . , N) = 〈M12...N−2TN−1TN〉+gauge in-
variant completion [19]. The claim (3.8) then follows by substituting (B.9) into the (N −2)! representation
(B.7) of the open-string correlator:

Aopen(Π(1, . . . , N)) =
∑

σ∈SN−3

(
〈T1σ(23...N−2)TN−1TN 〉ZΠ(1, σ(2, 3, . . . , N − 2), N, N − 1)

+ gauge invariant completion
)

=
∑

σ∈SN−3

( ∑
ρ∈SN−3

S[ σ(2, . . . , N − 2) | ρ(2, . . . , N − 2) ]1 〈M1ρ(23...N−2)TN−1TN 〉

× ZΠ(1, σ(2, 3, . . . , N − 2), N, N − 1) + gauge invariant completion
)

=
∑

σ∈SN−3

∑
ρ∈SN−3

S[ σ(2, . . . , N − 2) | ρ(2, . . . , N − 2) ]1

× AYM(1, ρ(2, . . . , N − 2), N − 1, N)ZΠ(1, σ(2, 3, . . . , N − 2), N, N − 1) (B.10)

Matching the last line of (B.10) with (2.1) completes the proof of (3.8).

B.4 Deriving the N -point BCJ relation for disk integrals

We shall carry out the intermediate steps of (B.6) here. The claim can be reexpressed as

−
N−2∏
i=2

∫
D(Π)

dzi
∂

∂zN−2

∏N−1
i<j |zij |sij

z12z23 . . . zN−4,N−3
= − sN−2,N−1 ZΠ(1, 2, . . . , N−3, N, N−2, N−1)

+
N−3∑
j=1

sN−2−j,N−2

j∑
i=1

ZΠ(1, 2, . . . , N−2−i, N−2, N−1−i, . . . , N−3, N, N−1) .

(B.11)

The left hand side contains N − 2 terms from

∂

∂zN−2

N−1∏
i<j

|zij |sij =

(
N−3∑
k=1

sN−2,k

zN−2,k
+

sN−2,N−1

zN−2,N−1

)
N−1∏
i<j

|zij |sij (B.12)

So we have to check the sN−2,N−1 coefficients to match,

N−2∏
i=2

∫
D(Π)

dzi

∏N−1
i<j |zij |sij

z12z23 . . . zN−4,N−3 · zN−2,N−1
= ZΠ(1, 2, . . . , N−3, N, N−2, N−1) , (B.13)
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and, after relabeling k = N − 2 − j,

N−2∏
i=2

∫
D(Π)

dzi

∏N−1
i<j |zij |sij

z12z23 . . . zN−4,N−3 · zN−2,N−2−j
(B.14)

= −
j∑

i=1

ZΠ(1, 2, . . . , N − 2 − i, N − 2, N − 1 − i, . . . , N − 3, N, N − 1)

for the range j = 1, 2, . . . , N − 3. As usual, we fix z1 = 0, zN−1 = 1 and zN → ∞ such that any ratio
zi,N

zj,N
→ 1 for i, j = 1, 2, . . . , N − 1. Then, (B.13) easily follows from

ZΠ(1, 2, . . . ,N − 3, N, N − 2, N − 1) =
N−2∏
i=2

∫
D(Π)

dzi

×
∏N−1

i<j |zij |sij

z12z23 . . . zN−4,N−3zN−2,N−1
× z1,N−1z1,NzN−1,N

zN−3,NzN,N−2zN−1,1︸ ︷︷ ︸
→ 1 as zN→∞

(B.15)

and (B.14) can be shown inductively: At j = 1, it holds by virtue of

ZΠ(1, 2, . . ., N − 3, N − 2, N, N − 1)

=
N−2∏
i=2

∫
D(Π)

dzi

∏N−1
i<j |zij |sij

z12z23 . . . zN−4,N−3zN−3,N−2
× z1,N−1z1,NzN−1,N

zN−2,NzN,N−1zN−1,1︸ ︷︷ ︸
→ 1 as zN→∞

= −
N−2∏
i=2

∫
D(Π)

dzi

∏N−1
i<j |zij |sij

z12z23 . . . zN−4,N−3 · zN−2,N−3
. (B.16)

Assuming validity of (B.14) at j = l − 1, we conclude

l∑
i=1

ZΠ(1, 2, . . . , N − 2 − i, N − 2, N − 1 − i, . . . , N − 3, N, N − 1)

=ZΠ(1, 2, . . . , N − 2 − l, N − 2, N − 1 − l, . . . , N − 3, N, N − 1)

−
N−2∏
i=2

∫
D(Π)

dzi

∏N−1
i<j |zij |sij

z12z23 . . . zN−4,N−3 · zN−2,N−1−l

=
N−2∏
i=2

∫
D(Π)

dzi

∏N−1
i<j |zij |sij

z12z23 . . . zN−4,N−3 · zN−2,N−1−l

(
zN−2−l,N−1−l

zN−2−l,N−2
− 1

)

=
N−2∏
i=2

∫
D(Π)

dzi

∏N−1
i<j |zij |sij

z12z23 . . . zN−4,N−3 · zN−2−l,N−2
(B.17)

Hence, the coefficients of all the sN−2,k match in (B.11).
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C Application of the pole criterion for disk integrals

In this appendix, we gather examples for the rule (4.6) determining the pole content of disk integrals from
their KK basis (4.2). All of the results shown are in agreement with the closed formula (4.8) which is
equivalent to having a consistent field-theory limit FΠ

σ|α′→0 = δσ
Π for the disk amplitude (2.1).

C.1 Four-point examples

The first kinematic poles occur at four points:

Z(1, 2, 4, 3) =
∫ 1

0

dz2
|z12|s12 |z23|s23

z12
⇔ Rν=2(zij) = z12 ⇔ Z(1, 2, 4, 3) ∼ − 1

s12
(C.1)

Z(1, 4, 2, 3) =
∫ 1

0

dz2
|z12|s12 |z23|s23

z23
⇔ Rν=1(zij) = z23 ⇔ Z(1, 4, 2, 3) ∼ − 1

s23
(C.2)

In the four-point KK basis {Z(1, 2, 4, 3), Z(1, 4, 2, 3)}, the Rν are inevitably of the form zi,i+1, so they
directly translate into two-particle channels si,i+1 according to (4.6). The cubic diagrams arising from the
low-energy limits of Z(1, 2, 4, 3) and Z(1, 4, 2, 3) are shown in Fig. 9:

Z(1, 2, 4, 3) ∼

1

2

k12

4

3

Z(1, 4, 2, 3) ∼

2

3

k23

1

4

Fig. 9 Cubic diagrams generated by four-point integrals.

C.2 Five-point examples

Five points provide the first cases of incompatible pole channels within the same function. The six KK
basis elements {Z(1, 2ρ, 3ρ, 5ρ, 4), ρ ∈ S3} exhibit the following poles (cf. 4.6):

Table 2 Pole channels present in the five-point KK basis Z(1, ρ(2, 3, 5), 4).

Z(. . .) Rν,ρ s12 s23 s34 s123 s234 Z(. . .) Rν,ρ s12 s23 s34 s123 s234

Z(1, 2, 3, 5, 4) z12z23 � � × � × Z(1, 5, 2, 3, 4) z23z34 × � � × �
Z(1, 3, 2, 5, 4) z13z32 × � × � × Z(1, 5, 3, 2, 4) z32z24 × � × × �
Z(1, 2, 5, 3, 4) z12z34 � × � × × Z(1, 3, 5, 2, 4) z13z24 × × × × ×

The disk integrals Z(1, 3, 2, 5, 4), Z(1, 5, 3, 2, 4) have the right number of poles to describe a cubic
five-point diagram of YM field theory:

Z(1, 3, 2, 5, 4) ∼ − 1
s23s123

, Z(1, 5, 3, 2, 4) ∼ − 1
s23s234

, Z(1, 2, 5, 3, 4) ∼ 1
s12s34

(C.3)

Two functions Z(1, 2, 3, 5, 4) and Z(1, 5, 2, 3, 4) are singular in three Mandelstam variables with incom-
patible pairs therein: Neither s12, s23 nor s23, s34 can appear simultaneously. Hence, their field-theory
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limits give rise to two cubic diagrams each32, as depicted in Fig. 10:

Z(1, 2, 3, 5, 4) ∼ 1
s123

(
1

s12
+

1
s23

)
, Z(1, 5, 2, 3, 4) ∼ 1

s234

(
1

s23
+

1
s34

)
(C.5)

The sixth function Z(1, 3, 5, 2, 4) is regular: As we shall see below, its α′-expansion starts at ζ2. According
to table 2 the five-point KK basis exhausts all the five cubic diagrams compatible with the color ordering
(1, 2, 3, 4, 5).

Z(1, 5, 2, 3, 4) ∼

5

1

k234 k23

4
3

2

+

3

4

k34 k234

2
1

5

Fig. 10 Cubic diagrams generated by the five-point integral Z(1, 5, 2, 3, 4).

C.3 Six-point examples

At six points, the 24 elements Z(1, 2ρ, 3ρ, 4ρ, 6ρ, 5) of the KK basis can be split into four S3 subsets
according to ν = 4, 3, 2, 1 in the notation of (4.2). World-Sheet parity (zi, ki) �→ (z6−i, k6−i) connects the
ν = 4 integrals Z(1, 2ρ, 3ρ, 4ρ, 6, 5) with their ν = 1 counterparts Z(1, 6, 2ρ, 3ρ, 4ρ, 5) and likewise the
Z(1, 2ρ, 3ρ, 6, 4ρ, 5) at ν = 3 with Z(1, 2ρ, 6, 3ρ, 4ρ, 5) at ν = 2. Hence, it is sufficient to discuss the pole
structure of the parity-independent ν = 3, 4 sectors. Let us start with the ν = 4-sector:

Table 3 Pole channels present in the six-point integrals Z(1, 2ρ, 3ρ, 4ρ, 6, 5) at ν = 4.

Z(. . .) Rν,ρ s12 s23 s34 s45 s1234 s2345 s123 s234 s345

Z(1, 2, 3, 4, 6, 5) z12z23z34 � � � × � × � � ×
Z(1, 2, 4, 3, 6, 5) z12z24z43 � × � × � × × � ×
Z(1, 3, 2, 4, 6, 5) z13z32z24 × � × × � × � � ×
Z(1, 3, 4, 2, 6, 5) z13z34z42 × × � × � × × � ×
Z(1, 4, 2, 3, 6, 5) z14z42z23 × � × × � × × � ×
Z(1, 4, 3, 2, 6, 5) z14z43z32 × � � × � × × � ×

Two of the six KK integrals Z(1, . . . , 6, 5) have exactly three pole channels and thus corresponds to a
single cubic six-point diagram,

Z(1, 3, 4, 2, 6, 5) ∼ 1
s34s234s1234

, Z(1, 4, 2, 3, 6, 5) ∼ 1
s23s234s1234

. (C.6)

32 In the parametrization (4.3), the poles of Z(1, 2, 3, 5, 4) can be traced back to the x2 → 0 limit of

Z(1, 2, 3, 5, 4) =

∫ 1

0
dz3

∫ z3

0
dz2

∏4
i<j |zij |sij

z12z23

=

∫ 1

0
dx1

∫ 1

0
dx2 xs12−1

1 (1 − x1)
s23−1 xs123−1

2 (1 − x2)s34 (1 − x1x2)
s24 . (C.4)

The boundaries of the x1 integration range give rise to the dual two-particle channel in either s12 (from x1 → 0) or s23 (from
x1 → 1).
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Three functions involve pairs of incompatible pole channels (s12, s234), (s123, s234) and (s23, s34), respec-
tively, so their field-theory limits involve two diagrams

Z(1, 2, 4, 3, 6, 5) ∼ 1
s1234s34

(
1

s12
+

1
s234

)

Z(1, 3, 2, 4, 6, 5) ∼ 1
s1234s23

(
1

s123
+

1
s234

)
(C.7)

Z(1, 4, 3, 2, 6, 5) ∼ − 1
s1234s234

(
1

s23
+

1
s34

)
.

The Z(1, 2, 3, 4, 6, 5) integral has six pole channels, five of which form a cycle s12, s23, s34, s123, s234 with
incompatible neighbors. The only way of exhausting all possible singularities is a sum of five diagrams

Z(1, 2, 3, 4, 6, 5) ∼ − 1
s1234

(
1

s12s34
+

1
s23s123

+
1

s34s234
+

1
s123s12

+
1

s234s23

)
. (C.8)

Table 4 Pole channels present in the six-point integrals Z(1, 2ρ, 3ρ, 6, 4ρ, 5) at ν = 3.

Z(. . .) Rν,ρ s12 s23 s34 s45 s1234 s2345 s123 s234 s345

Z(1, 2, 3, 6, 4, 5) z12z23z45 � � × � × × � × ×
Z(1, 3, 2, 6, 4, 5) z13z32z45 × � × � × × � × ×
Z(1, 2, 4, 6, 3, 5) z12z24z35 � × × × × × × × ×
Z(1, 4, 2, 6, 3, 5) z14z42z35 × × × × × × × × ×
Z(1, 3, 4, 6, 2, 5) z13z34z25 × × � × × × × × ×
Z(1, 4, 3, 6, 2, 5) z14z43z25 × × � × × × × × ×

The ν = 3 sector incorporates two integrals with a non-vanishing field-theory limit which resembles
the five-point Z(1, 2ρ, 3ρ, 5, 4) functions (up to an additional s45-propagator):

Z(1, 2, 3, 6, 4, 5) ∼ − 1
s123s45

(
1

s12
+

1
s23

)
, Z(1, 3, 2, 6, 4, 5) ∼ 1

s123s23s45
(C.9)

Table 4 provides further examples of a general feature of (N ≥ 5)-point integrals: some of them contribute
to fewer pole channels than present in a cubic YM diagrams. Functions with k = 0, 1, 2, . . . , N − 5
pole channels decouple from the field-theory limit, and their leading low-energy contribution occurs at
transcendentality ζN−3−k at the residue of k simultaneous poles33. From table 4 one can extract three
six-point examples

Z(1, 2, 4, 6, 3, 5) ∼ − ζ2

s12
, Z(1, 3, 4, 6, 2, 5) ∼ ζ2

s34
, Z(1, 4, 3, 6, 2, 5) ∼ − ζ2

s34
(C.10)

with a single pole channel k = 1 and leading transcendentality ζ2. The integral Z(1, 4, 2, 6, 3, 5) is free of
poles and furnishes a k = 0 example: the leading terms of its α′-expansion is accompanied by ζ3.

33 Note that the non-existence of (a shuffle-regularized version of) ζ1 ties in with the absence of N − 4 simultaneous poles in
the leading low energy behavior of disk integrals.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org



Fortschr. Phys. 61, No. 9 (2013) 863

C.4 Seven-point examples

Instead of showing the lengthy list of 120 seven-point KK integrals Z(1, 2ρ, 3ρ, 4ρ, 5ρ, 7ρ, 6) including
all permutations ρ ∈ S5, we shall present some examples here, others can be found in [7]. In the ν =
5 sector Z(1, 2ρ, 3ρ, 4ρ, 5ρ, 7, 6) of (4.2), the pole prescription (4.6) applies to polynomials Rν=5,ρ =
z12ρz2ρ3ρz3ρ4ρz4ρ5ρ .

• Z(1, 2, 3, 4, 5, 7, 6) has ten pole channels s12, s23, s34, s45, s123, s234, s345, s1234, s2345 and s12345

where the former nine are subject to various incompatibilities. The complete set of singularities is
captured by summing fourteen diagrams resembling a six-point YM subamplitude:

Z(1, 2, 3,4, 5, 7, 6) ∼ 1
s12345

(
1

s12s123s1234
+

1
s23s123s1234

+
1

s23s234s1234
+

1
s34s234s1234

+
1

s12s34s1234
+

1
s23s234s2345

+
1

s34s234s2345
+

1
s34s345s2345

+
1

s45s345s2345

+
1

s23s45s2345
+

1
s12s123s45

+
1

s23s123s45
+

1
s12s34s345

+
1

s12s45s345

)
(C.11)

• Z(1, 2, 3, 5, 4, 7, 6) has seven pole channels, two universally compatible ones s12345, s45 and a cycle
of five pole channels s12, s23, s345, s123, s2345 with incompatibility between neighbors

Z(1, 2, 3, 5, 4, 7, 6) ∼ − 1
s12345s45

(
1

s12s345
+

1
s23s123

+
1

s345s2345
+

1
s12s123

+
1

s23s2345

)
(C.12)

• Z(1, 2, 5, 4, 3, 7, 6) has six pole channels, two universally compatible ones s12345, s345, and two in-
compatible pairs s12, s2345 as well as s34, s45.

Z(1, 2, 5, 4, 3, 7, 6) ∼ 1
s12345s345

(
1

s12
+

1
s2345

) (
1

s34
+

1
s45

)
(C.13)

• Z(1, 2, 4, 5, 3, 7, 6)has five pole channels, s12345, s345, s45 being universally compatible and s12, s2345

as an incompatible pair:

Z(1, 2, 4, 5, 3, 7, 6) ∼ − 1
s12345s345s45

(
1

s12
+

1
s2345

)
(C.14)

• Z(1, 3, 5, 4, 2, 7, 6) has four pole channels s45, s345, s2345, s12345 leading to a unique diagram

Z(1, 3, 5, 4, 2, 7, 6) ∼ 1
s45s345s2345s12345

(C.15)

• Z(1, 3, 5, 2, 4, 7, 6) has two pole channels s2345, s12345 such that its leading low-energy contribution
occurs at ζ2 order

Z(1, 3, 5, 2, 4, 7, 6) ∼ ζ2

s2345s12345
(C.16)

The ν ≤ 4 sectors of the seven-point KK basis additionally involve integrals with leading transcendentality
ζ3 and ζ4, respectively, e.g.

Z(1, 2, 5, 3, 7, 4, 6) ∼ 2ζ3

s12
, Z(1, 5, 3, 7, 2, 4, 6) ∼ − 17

4
ζ4 . (C.17)

Further examples of integrals with leading low-energy behavior ∼ ζN−3−k

∏k
i=1(sai,ai+1,...,bi)−1 can be

found in Subsect. 4.2.
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D Singularity structure of further six-point integrals

This appendix supplements the discussion of Subsect. 4.3.3 on residues in six-point integrals. We investi-
gate pole structures present in the ν = 4 sector (4.16) of the pole basis which we can relate to the F σ via
(3.34):

Z[s12s123s1234] =
1

s1234

( F (234)

s12s123
+

F (243)

s12s124
+

F (324)

s13s123
+

F (342)

s13s134
+

F (423)

s14s124
+

F (432)

s14s134

)

Z[s12s34s1234] =
1

s1234

(F (234)

s12s34
+

F (342)

s34s134
− F (432)

s134

( 1
s14

+
1

s34

)

− F (423)

s14s124
− F (243)

s12

( 1
s124

+
1

s34

))

Z[s23s123s1234] =
1

s1234

( F (234)

s23s123
− F (324)

s123

( 1
s13

+
1

s23

)
− F (342)

s13s134

+
F (423)

s14s23
− F (432)

s14

( 1
s23

+
1

s134

))

Z[s34s234s1234] =
1

s1234

( F (234)

s34s234
− F (243)

( 1
s34s234

+
1

s24s124
+

1
s24s234

)
+

F (324)

s24s234
(D.1)

− F (342)
( 1

s34s134
+

1
s24s234

+
1

s34s234

)
+ F (423)

( 1
s14s124

+
1

s24s124
+

1
s24s234

)
+ F (432)

( 1
s14s134

+
1

s34s134
+

1
s34s234

))

Z[s23s234s1234] =
1

s1234

( F (234)

s23s234
+

F (243)

s24

( 1
s124

+
1

s234

)
− F (324)

s234

( 1
s23

+
1

s24

)
+

F (342)

s24s234

− F (423)
( 1

s14s23
+

1
s14s124

+
1

s23s234
+

1
s124s24

+
1

s24s234

)

+
F (432)

s23

( 1
s14

+
1

s234

))

Z[ζ2s1234] =
1

s1234

( F (243)

s24s124
+

F (324)

s13s24
− F (342)

s13

( 1
s134

+
1

s24

)

− F (423)

s124

( 1
s14

+
1

s24

)
− F (432)

s14s134

)
Figures 11 and 12 summarize the diagrams contributing to the singular part of Z[s12s123s1234] and Z[s12

s34s1234]. They cover the two topologies possible for cubic six point graphs. The methods of Subsect. 4.3
yield the following residues for the six functions in (D.1):

Z[s12s123s1234] =
1

s12s123s1234
+

I reg
21 (k1, k2, k3)

s123s1234
+

I reg
21 (k12, k3, k4)

s12s1234
+

I reg
21 (k123, k4, k5)

s12s123
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+
I reg
21,31(k1, k2, k3, k4)

s1234
+

I
reg
21 (k1, k2, k3)I

reg
21 (k123, k4, k5)

s123

+
I reg
21,31(k12, k3, k4, k5)

s12
+ I

reg
21,31,41 (D.2)

Z[s12s34s1234] =
1

s12s34s1234
+

I reg
21 (k1, k2, k34)

s34s1234
+

I reg
32 (k12, k3, k4)

s12s1234
+

I reg
21 (k12, k34, k5)

s12s34

+
I reg
21,43(k1, k2, k3, k4)

s1234
+

I reg
21,31(k1, k2, k34, k5)

s34

+
I reg
31,32(k12, k3, k4, k5)

s12
+ I reg

21,43,41 (D.3)

Z[s23s123s1234] =
1

s23s123s1234
+

I reg
21 (k123, k4, k5)

s23s123
+

I reg
32 (k1, k2, k3)
s123s1234

+
I reg
21 (k1, k23, k4)

s23s1234

+
I reg
21,31(k1, k23, k4, k5)

s23
+

I reg
21 (k123, k4, k5)I

reg
32 (k1, k2, k3)

s123

+
I reg
31,32(k1, k2, k3, k4)

s1234
+ I reg

31,32,41 (D.4)

Z[s23s234s1234] =
1

s23s234s1234
+

I reg
21 (k1, k234, k5)

s23s234
+

I reg
32 (k1, k23, k4)

s23s1234
+

I reg
21 (k2, k3, k4)

s234s1234

+
I reg
23,24(k1, k2, k3, k4)

s1234
+

I reg
21 (k1, k234, k5)I

reg
21 (k2, k3, k4)

s234

+
I reg
31,32(k1, k23, k4, k5)

s23
+ I reg

32,41,42 (D.5)

Z[s34s234s1234] =
1

s34s234s1234
+

I reg
21 (k1, k234, k5)

s34s234
+

I reg
32 (k2, k3, k4)
s1234s234

+
I reg
32 (k1, k2, k34)

s34s1234

+
I reg
31,32(k1, k2, k34, k5)

s34
+

I reg
21 (k1, k234, k5)I

reg
32 (k2, k3, k4)

s234

+
I

reg
42,43(k1, k2, k3, k4)

s1234
+ I reg

41,42,43 (D.6)

Z[ζ2s1234] =
I

reg
31,42(k1, k2, k3, k4)

s1234
+ I reg

31,41,42 (D.7)

Following the off-shell completion (4.40) of the quartic contact vertices, the non-vanishing mass con-
tributions to I reg

21 and I reg
23 are given by

I reg
21 (k1, k23, k4) =I reg

21 [s123, s24 + s34] , I reg
21 (k1, k234, k5) = I reg

21 [s1234, s25 + s35 + s45]

I
reg
21 (k12, k34, k5) =I

reg
21 [s13 + s14 + s23 + s24 + s34, s35 + s45] (D.8)

I reg
32 (k1, k23, k4) =I reg

21 [s234, s12 + s13]

Also, we discover additional off-shell completions for five-point contact vertices

I reg
21,31(k1, k2, k34, k5) =I reg

21,31[s12, s134, s23 + s24, s25, s35 + s45] (D.9)
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Fig. 11 Pole structure of the function Z[s12s123s1234].
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Fig. 12 Pole structure of the function Z[s12s34s1234].

I reg
21,31(k1, k23, k4, k5) =I reg

21,31[s123, s14, s24 + s34, s25 + s35, s45] (D.10)

I
reg
31,32(k1, k2, k34, k5) =I

reg
31,32[s12, s134, s23 + s24, s25, s35 + s45] . (D.11)

Unfortunately, the regular part I
reg
32,41,42 is incompatible with the prerequisite (5.1) for the polylogarithm

methods of Sect. 5, hence, we cannot determine the dependence of I reg
31,32(k1, k23, k4, k5) on k2

23. The
remaining six-point vertices I reg

21,31,41, I
reg
21,43,41, I

reg
31,32,41, I

reg
41,42,43 and I reg

31,41,42, on the other hand, can be

inferred by equating the pole structures (D.2) to (D.7) with the F σ(234) basis expansions (D.1) of the
Z[. . .] functions. The low-energy expansion of these I reg

... is relevant for seven point pole residues, so we
can increase the efficiency of our setup by extracting it from the six point integral basis.

E Polylogarithm material

In this part of the appendix, we collect some examples of the identities derivable from Eq. (5.21) at weights
two and three. Note that the idenities containing 0′s are treated separately and thus ak �= 0 below:

G(a1, z; z) = −G(0, a1; z) + G(a1, a1; z) (E.1)

G(0, z, a1; z) = G(0, 0, a1; z) − G(a1, 0, a1; z) − G(a1; z) ζ2
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G(0, a1, z; z) = −2 G(0, 0, a1; z) + G(0, a1, a1; z) + G(a1, 0, a1; z) + G(a1; z) ζ2

G(a1, 0, z; z) = G(0, 0, a1; z) − G(0, a1, a1; z) − G(a1; z) ζ2

G(a1, z, z; z) = G(0, 0, a1; z) − G(0, a1, a1; z) − G(a1, 0, a1; z) + G(a1, a1, a1; z)

G(a1, z, a2; z) = G(a1, a1, a2; z) − G(a2, 0, a1; z) + G(a2, a1, a1; z) − G(a2, a1, a2; z)

G(a1, a2, z; z) = −G(0, a1, a2; z) − G(a1, 0, a2; z) + G(a1, a2, a2; z)

+G(a2, 0, a1; z) − G(a2, a1, a1; z) + G(a2, a1, a2; z) . (E.2)

These identities are given only for polylogs with the first entry not equal to the argument and, at the same
time, nonzero last entry. The remaining polylogs have to be dealt with using the methods of Eq. (5.8) and
Eq. (5.10) beforehand.

F Seven-point material

This appendix closes some of the gaps in the presentation of the seven-point α′-expansion.

F.1 The pole structure of integrals from the {2, 4} and {4, 5} blocks

In this appendix we show the singularity structure of seven point integrals from the {2, 4} and {4, 5} blocks
which were omitted in Subsect. 4.3.4.

The {2, 4} functions are characterized by polynomials ∈ {z21z41, z41z42} × {z53z65, z63z65}
5∏

i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z21z35z41z56
=

I reg
31,42(k12, k3, k4, k56)

s12s56
+

I reg
31,42,54(k12, k3, k4, k5, k6)

s12

+
I

reg
21,41,53(k1, k2, k3, k4, k56)

s56
+ I reg

21,41,53,65 (F.1)

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z24z35z41z56
= − I reg

41,42,53(k1, k2, k3, k4, k56)
s56

− I
reg
41,42,53,65 (F.2)

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z21z36z41z56
=

I
reg
31,42(k12, k3, k4, k56)

s12s56
+

I
reg
31,52,54(k12, k3, k4, k5, k6)

s12

+
I reg
21,41,53(k1, k2, k3, k4, k56)

s56
+ I reg

21,41,63,65 (F.3)

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z24z36z41z56
= − I reg

41,42,53(k1, k2, k3, k4, k56)
s56

− I reg
41,42,63,65 (F.4)

without any mass dependence.
The {4, 5} functions are characterized by polynomials ∈ {z41z51, z51z54} × {z32z63, z62z63}

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z32z63z51z54
=

I reg
31,42(k1, k23, k45, k6)

s23s45
+

I reg
41,43,52(k1, k23, k4, k5, k6)

s23

+
I reg
32,41,53(k1, k2, k3, k45, k6)

s45
+ I reg

32,51,54,63 (F.5)
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5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z32z63z41z51
=

I reg
31,41,52(k1, k23, k4, k5, k6)

s23
+ I reg

32,41,51,63 (F.6)

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z62z63z51z54
=

I reg
41,52,53(k1, k2, k3, k45, k6)

s45
+ I reg

51,54,62,63 (F.7)

5∏
i=2

∫ zi+1

0

dzi

∏6
i<j |zij |sij

z62z63z41z51
= I

reg
41,51,62,63 (F.8)

with mass dependence

I reg
31,42(k1, k23, k45, k6) = I reg

31,42[s123, s145, s2345 − s23 − s45, s26 + s36, s46 + s56] (F.9)

I reg
41,43,52(k1, k23, k4, k5, k6) = I reg

41,43,52[s123, s14, s15, s24 + s34, s25 + s35, s45, s26 + s36, s46, s56]

I reg
32,41,53(k1, k2, k3, k45, k6) = I reg

32,41,53[s12, s13, s145, s23, s24 + s25, s34 + s35, s26, s36, s46 + s56]

I reg
31,41,52(k1, k23, k4, k5, k6) = I reg

31,41,52[s123, s14, s15, s24 + s34, s25 + s35, s45, s26 + s36, s46, s56]

I
reg
41,52,53(k1, k2, k3, k45, k6) = I

reg
41,52,53[s12, s13, s145, s23, s24 + s25, s34 + s35, s26, s36, s46 + s56]

F.2 Cyclic transformations towards functions from the {2, 3} block

According to Subsect. 6.3.2, the seven point basis functions F (3245) and F (3254) can be inferred from
cyclicity. The required identities are

F (3425)
∣∣∣
i�→i+1

=
F (3245) (s36 + s37)

s13
+ F (2453) − F (4325)s24 (s36 + s37)

s14s134
− F (4253)(s14 + s24)

s14

− F (3425) (s134 + s24) (s36 + s37)
s13s134

− F (5324) (s36 + s37) (s25 + s45)
s15s135

+
F (5423) (s145 + s24) (s1245 − s124)

s15s145
− F (5243) (s1245 − s124)

s15
+

F (4523)s24 (s1245 − s124)
s14s145

− F (3524) (s36 + s37) (s135 + s25 + s45)
s13s135

+
F (5342) (s36 + s37) (s25 + s45) (s1345 + s24)

s15s135s1345

+
F (3542) (s36 + s37) (s135 + s25 + s45) (s1345 + s24)

s13s135s1345
+

F (4352)s24 (s36 + s37) (s1345 + s25)
s14s134s1345

+
F (5432)s24 (s36 + s37) (s1245 − s124)

s15s145s1345
− F (3452)s24 (s36 + s37) (s56 + s57)

s13s134s1345

− F (4532)s24 (s14 − s25) (s36 + s37)
s14s145s1345

. (F.10)

F (4235)
∣∣∣
i�→i+1

= − F (3254) (s13 + s23 + s35)
s13

+ F (2534) +
F (3524) (s13 + s23 + s35) (s135 + s25)

s13s135

− F (5234)(s15 + s25)
s15

+
F (5324)s25 (s13 + s23 + s35)

s15s135
− F (3425) (s23 + s35) (s46 + s47)

s13s134

− F (5423)s25(s46 + s47)
s15s145

− F (4523) (s145 + s25) (s46 + s47)
s14s145

+
F (4253)(s46 + s47)

s14
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− F (4325) (s134 + s23 + s35) (s46 + s47)
s14s134

+
F (5432)s25(s46 + s47) (s1345 + s23)

s15s145s1345

+
F (3452) (s23 + s35) (s46 + s47) (s1345 + s25)

s13s134s1345
+

F (3542)s25 (s13 + s23 + s35) (s46 + s47)
s13s135s1345

+
F (4352) (s134 + s23 + s35) (s46 + s47) (s1345 + s25)

s14s134s1345
− F (5342) (s15 − s23) s25(s46 + s47)

s15s135s1345

− F (4532)s25 (s36 + s37) (s46 + s47)
s14s145s1345

. (F.11)
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