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We derive a recursive formula for the α0 expansion of superstring tree amplitudes involving any number
N of massless open string states. String corrections to Yang-Mills field theory are shown to enter through
the Drinfeld associator, a generating series for multiple zeta values. Our results apply to any number of
spacetime dimensions or supersymmetries and chosen helicity configurations.

DOI: 10.1103/PhysRevD.89.066014 PACS numbers: 11.25.-w, 02.10.De

I. INTRODUCTION

Scattering amplitudes are the most fundamental observ-
ables in both quantum field theory and string theory. In
recent years, numerous hidden structures underlying the S-
matrix have been revealed in both disciplines. Several of
these discoveries can be attributed to and have benefited
from the close interplay between amplitudes of string
theory in the low-energy limit and supersymmetric
Yang-Mills (YM) field theory.
A main challenge in the study of field theory amplitudes

originates from the transcendental functions in their quan-
tum corrections. Novel mathematical techniques such as
the symbol [1] helped to streamline the polylogarithms and
multiple zeta values (MZVs) in loop amplitudes of (super-)
YM theory. In string theory, MZVs appear in the α0

corrections already at tree level due to the exchange of
infinitely many heavy vibrational modes. These effects are
encoded in integrals over world sheets of genus zero.
The study of α0 expansions in the superstring tree-level

amplitude is interesting from both a mathematical and a
physical point of view. On the one hand, the pattern of
MZVs appearing therein can be understood from an
underlying Hopf algebra structure [2]. On the other hand,
explicit knowledge of the associated string corrections is
crucial for the classification of candidate counterterms in
field theories with unsettled questions about their UV
properties [3].
In spite of technical advances to evaluate α0 expansions for

anymultiplicity [4], compact andstraightforwardlyapplicable
formulas for string corrections are still lacking. This paper
closes this gap by describing a novel method to recursively
determine the α0 dependence of N-point trees through the
generating function of MZVs—the Drinfeld associator. Its
connection with superstring amplitudes—in particular the
commonpattern ofMZVappearance—was firstly pointed out
in [5]. Our techniques are based on the Knizhnik-
Zamolodchikov (KZ) equation [6] obeyed by world-sheet

integrals and thereby resemble ideas in field theory to
determine loop integrals [7]. Along the lines of [8], the
associator is shown to connect boundary values, given by
N-point and (N − 1)-point disk amplitudes, respectively. The
method presented in this article bypasses the cumbersome
direct evaluation of world-sheet integrals and reduces their α0
expansions to simple matrix multiplications. Apart from its
conceptual accessibility, it substantially reduces the computa-
tional effort in deriving the explicit form1 of α0 corrections.

A. The structure of disk amplitudes

The color-ordered N-point disk amplitude Aopenðα0Þ≔
Aopenð1; 2;…; N; α0Þ was computed in [10,11] based on
pure spinor cohomology methods [12]. Its entire polariza-
tion dependence was found to enter through color-ordered
tree amplitudes AYM of the underlying YM field theory
which emerges in the point particle limit α0 → 0:

Aopenðα0Þ ¼
X

σ∈SN−3

Fσðα0ÞAσ
YM: (1)

The ðN − 3Þ! linearly independent [13] subamplitudes2

AYMð1; σð2; 3;…; N − 2Þ; N − 1; NÞ are grouped into a
vector Aσ

YM. The objects F
σðα0Þ describe string corrections

to YM amplitudes and will be recursively determined as the
main result of this paper. They are generalized Selberg
integrals [14] over the boundary of the open string world
sheet of disk topology,

Fσ ¼ ð−1ÞN−3
YN−2

i¼2

Z
zi<ziþ1

dziIσ
�YN−2

k¼2

Xk−1
j¼1

sjk
zjk

�
; (2)

1The web site [9] provides expressions for string corrections to
five- to seven-point amplitudes as well as material to apply the
presented method up to nine points.

2Labels 1; 2;…; N in the subamplitude Eq. (1) denote any state
in the gauge supermultiplet.
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I ¼
YN−1

i<j

jzijjsij ; ðz1; zN−1; zNÞ ¼ ð0; 1;∞Þ: (3)

The SN−3 permutation σ acts on labels 2; 3;…; N − 2
of zij≔ zi − zj and of the dimensionless Mandelstam
invariants

si1i2…ip ¼ α0ðki1 þ ki2 þ � � � þ kipÞ2; (4)

which carry the α0 dependence of the string amplitude (1).
The ki denote external on-shell momenta. Hence, the sij
expansion of the integrals (2) encodes the low-energy
behavior of superstring tree amplitudes.

B. Multiple zeta values

As discussed in both mathematics [8,15,16] and physics
[2,11,17] literature, the α0 expansion of Selberg integrals
involves (products of) MZVs. They can be defined by
iterated integrals over differential forms ω0≔ dz

z and
ω1≔ dz

1−z

ζn1;…;nr ¼
Z
0<zi<ziþ1<1

ω1ω0…ω0|fflfflfflffl{zfflfflfflffl}
n1−1

ω1ω0…ω0|fflfflfflffl{zfflfflfflffl}
n2−1

…ω1ω0…ω0|fflfflfflffl{zfflfflfflffl}
nr−1

;

(5)

where nj ∈ N and nr ≥ 2. The overall weights
P

r
j¼1 nj of

MZV factors match the power of α0 in the string ampli-
tudes’ expansion. Instead of labeling MZVs by the set of
nj, one can equivalently encode the integrand of Eq. (5) in a
word w in the alphabet f0; 1g (i.e. w ∈ f0; 1g×) where the
function w½ω0;ω1� translates this word into sequences of
fω0;ω1g [5]:

ζðwÞ ≔
Z
0<zi<ziþ1<1

w½ω0;ω1�: (6)

The pattern of MZVs in the α0 expansion of (2) has been
revealed in [2] on the basis of a Hopf algebra structure.

C. The Drinfeld associator

Consider the KZ equation with z0 ∈ C⃥ f0; 1g and Lie-
algebra generators e0, e1:

dF̂ðz0Þ
dz0

¼
�
e0
z0

þ e1
1 − z0

�
F̂ðz0Þ: (7)

The solution F̂ðz0Þ of the KZ equation takes values in the
vector space the representation of e0 and e1 is acting upon.
The regularized boundary values

C0≔ lim
z0→0

z−e00 F̂ðz0Þ; C1 ≔ lim
z0→1

ð1 − z0Þe1 F̂ðz0Þ (8)

are related by the Drinfeld associator [18,19]

C1 ¼ Φðe0; e1ÞC0; (9)

where C0, C1 and Φ take values in the universal enveloping
algebra of the Lie algebra generated by e0 and e1. The
regularizing factors z−e00 and ð1 − z0Þe1 are included into
Eq. (8) as to render the z0 → 0, 1 regime of F̂ðz0Þ real-
single-valued. In the notation of Eq. (6), the Drinfeld
associator can be represented as a generating series of
MZVs [20],

Φðe0; e1Þ ¼
X

w∈f0;1g×
~w½e0; e1�ζðwÞ; (10)

where ~w denotes the reversal of the word w. The series
expansion of Eq. (10) in a basis of MZVs starts with the
following commutators ½·; ·�:

Φðe0; e1Þ ¼ 1þ ζ2½e0; e1� þ ζ3½e0 − e1; ½e0; e1��

þ ζ4

�
½e0; ½e0; ½e0; e1��� þ

1

4
½e1; ½e0; ½e1; e0���

− ½e1; ½e1; ½e1; e0��� þ
5

4
½e0; e1�2

�
þ…: (11)

D. Main result

In this paper, we identify the Drinfeld associator Φ as the
link between N-point string amplitudes and those of
multiplicity N − 1. Thus, starting from the α0-independent
three-point level, one can build up any tree-level string
amplitude recursively.
We will construct a matrix representation for the asso-

ciator arguments e0 and e1 in Sec. I C for each multiplicity.
Starting with a boundary value C0 containing the world-
sheet integrals for the (N − 1)-point amplitude, Eq. (9)
yields a vector C1, which we will show to encode the
integrals Eq. (2) for multiplicity N. Consequently, one can
express the N-point world-sheet integrals Fσ in terms of
those at (N − 1)-points,

Fσi ¼
XðN−3Þ!

j¼1

½Φðe0; e1Þ�ijFσj jkN−1¼0; (12)

where the soft limit kN−1 ¼ 0 gives rise to (N − 1)-point
integrals on the right-hand side,

Fσð23…N−2ÞjkN−1¼0 ¼
�
Fσð23…N−3Þ if σðN − 2Þ ¼ N − 2

0 otherwise:

(13)

The permutations σi are canonically ordered in Eq. (12).
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II. THE METHOD

The backbone of the recursion Eq. (12) is a vector F̂
of auxiliary functions and a corresponding matrix repre-
sentation of e0, e1 such that the KZ equation (7) holds.
Moreover, the boundary values C0 and C1 derived from
F̂ via Eq. (8) need to reproduce basis functions Eq. (2) of
multiplicity N − 1 and N, respectively. As we will see,
these requirements are met by components

F̂σ
νðz0; s0kÞ ¼ ð−1ÞN−3

Z
z0

0

dzN−2

YN−3

i¼2

Z
ziþ1

0

dziI

×
YN−2

k¼2

zs0k0k σ

�Yν
k¼2

Xk−1
j¼1

sjk
zjk

YN−2

m¼νþ1

XN−1

n¼mþ1

smn

zmn

�
:

(14)

The vector F̂ is composed from N − 2 subvectors F̂ν of
length ðN − 3Þ!. Numbered by ν ¼ 1; 2;…; N − 2, they
appear in decreasing order, that is, F̂¼ ðF̂N−2; F̂N−3;…; F̂1Þ.
Entries of the F̂ν are labeled by permutations σ ∈ SN−3.
The integrals in (14) generalize the functions Eq. (2)

through an auxiliary world-sheet position z0 and auxiliary
Mandelstam variables s0k.

3 This z0 enters in the integration
limit of the outermost integral as well as in the deformationQ

N−2
k¼2 ðz0kÞs0k of the Koba-Nielsen factor I and serves as the

differentiation variable for the KZ equation (7). As visu-
alized in the Fig. 1, the position z0 downscales the
integration domain on the disk boundary and thus inter-
polates between world-sheet configurations of an N-point
and (N − 1)-point tree amplitude.
At z0 ¼ 1 and s0k ¼ 0—in absence of the augmentation—

the functions F̂σ
ν in Eq. (14) approach the integrals Fσ in the

amplitude for any ν. In this regime, ν labels different
equivalent representations [4] of the integrals Eq. (2).
Matching the length of the auxiliary vector, e0 and e1 in

Eq. (7) are ðN − 2Þ! × ðN − 2Þ!matrices. It is known [8] that
their entries are linear formsonsij. They canbedeterminedby
matching the z0 derivatives

4 of F̂σ
ν with the right hand side of

theKZ equation (7). Once the resultingmatrices e0 and e1 are
available, one can calculate the Drinfeld associator to any
desired order employing its series expansionEq. (10).Having
set up theKZequation (7) for the auxiliary function F̂, wewill
now relate its regularized boundary terms Eq. (8) to the
integrals Eq. (2) in the string amplitude.

A. The z0 → 0 boundary value C0

The boundary term C0 is determined by taking the limit
z0 → 0 of z−e00 F̂ðz0Þ. This amounts to squeezing the

world-sheet positions z2;…; zN−2 into an interval ½0; z0�
of vanishing size, see Fig. 1. This effectively removes one
of the N − 3 integrations and makes contact with the
(N − 1)-point problem. Let us make this more precise:
the first ðN − 3Þ! components of F̂ðz0 → 0Þ at ν ¼ N − 2,

F̂σ
N−2ðz0 → 0; s0iÞ ¼ zsmax

0 Fσjsi;N−1¼s0i þOðs0iÞ; (15)

involve the eigenvalue smax ¼ s12…N−2 þ
P

N−2
j¼2 s0j of e0

[8]. The remaining subvectors of F̂ðz0 → 0Þ at ν ≤ N − 3
are suppressed by N − 2 − ν powers of z0

5 and do not
contribute to C0. The action of z−e00 compensates the z0
dependence of the resulting vector ðzsmax

0 Fσ; 0ðN−3ÞðN−3Þ!Þ.
The desired (N − 1)-point integrals can be achieved

through a soft limit kN−1 → 0, see (13). This can be
realized by setting s0i ¼ si;N−1 ¼ 0 in Eq. (15) which
converts the subvector F̂σ

N−2 into (N − 1)-point data,

C0 ¼ ðFσjkN−1¼0; 0ðN−3ÞðN−3Þ!Þ: (16)

B. The z0 → 1 boundary value C1

The z0 → 1 regime of ð1 − z0Þe1F̂ðz0Þ underlying C1

restores the integration domain of the N-point functions
Eq. (2). Considering the schematic form of the first
ðN − 3Þ! rows in

ð1 − z0Þe1 ¼
 1ðN−3Þ!×ðN−3Þ! 0ðN−3Þ!×ðN−3ÞðN−3Þ!

..

. ..
.

!
; (17)

we can neglect all components of F̂ðz0 → 1Þ except

F̂σ
N−2ðz0 → 1; s0iÞ ¼ Fσ þOðs0iÞ: (18)

Setting s0i ¼ 0 as motivated in Sec. II A leads to

C1 ¼ ðFσ;…Þ: (19)

Our setup does not require the delicate evaluation of the
remaining components in the ellipsis.

FIG. 1 (color online). World sheet with an auxiliary position z0.

3As will be explained below, we will eventually set s0k → 0
and therefore do not display them as arguments of F̂ðz0Þ.

4The boundary term from acting with d
dz0

on the integration
limit does not contribute as can be seen by analytic continuation
of ðz0;N−2Þs0;N−2 jzN−2¼z0 ¼ 0∀ s0;N−2 ∈ Rþ.

5This can be seen by a change of integration variables zi¼ z0wi
rescaling the integration region to 0≤w2≤w3≤…≤wN−2≤1.
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C. Summary

Our main result Eq. (12) follows by specializing the
central property Eq. (9) of the associator to the representa-
tions of Ci, ei extracted from the auxiliary vector F̂ðz0Þ
defined in Eq. (14). In Eqs. (16) and (19), we have
identified C0 and C1 with (N − 1)- and N-point world-
sheet integrals Eq. (2), respectively. This turns Eq. (9) into
a recursion in N where the arguments e0, e1 of the
connecting associator can be straightforwardly read off
from the KZ equation (7) satisfied by F̂ðz0Þ. Starting from
the trivial three-point amplitude, this allows to determine
the complete α0 expansion to any order and for any
multiplicity.

III. EXAMPLES

A. From N ¼ 3 to N ¼ 4

Any four-point disk integral is proportional to

Fð2Þ ¼
Z

1

0

dz2jz12js12 jz23js23
s12
z21

¼ Γð1þ s12ÞΓð1þ s23Þ
Γð1þ s12 þ s23Þ

:

We will rederive its α0 expansion from the Drinfeld
associator along the lines of Sec. II. The auxiliary vector
Eq. (14) contains two subvectors of length one:

�
F̂ð2Þ
2

F̂ð2Þ
1

�
¼
Z

z0

0

dz2jz12js12 jz23js23zs0202

�
s12=z21
s23=z32

�
: (20)

Partial fraction decomposition ðz12z02Þ−1 ¼ ðz12z01Þ−1 −
ðz01z02Þ−1 followed by discarding a z2 derivative,

0 ¼
Z

dz2jz12js12 jz23js23zs0202

�
s02
z02

þ s12
z12

−
s23
z23

�
; (21)

leads to the following KZ equation after setting s02 ¼ 0:

d
dz0

�
F̂ð2Þ
2

F̂ð2Þ
1

�
¼
�
e0
z01

−
e1
z03

��
F̂ð2Þ
2

F̂ð2Þ
1

�
; (22)

e0 ¼
�
s12 −s12
0 0

�
; e1 ¼

�
0 0

s23 −s23

�
: (23)

The regularized boundary values (8) read

C0 ¼
�
1

0

�
; C1 ¼

�
Fð2Þ

…

�
; (24)

and Eq. (12) becomes�
Fð2Þ

…

�
¼ ½Φðe0; e1Þ�2×2

�
1

0

�
; (25)

with e0, e1 given in Eq. (23). Their particular form implies
that products of any two matrices adk0ad

l
1½e0; e1� with k; l ∈

N0 vanish, where adix≔ ½ei; x�. According to [5], this
allows to express the four-point disk amplitude exclusively
in terms of single ζ’s [r ¼ 1 in Eq. (5)].

B. From N ¼ 4 to N ¼ 5

Next we shall derive a closed formula expression for the
five-point versions Fð23Þ and Fð32Þ of Eq. (2) by applying
the associator method to the auxiliary functions Eq. (14)
at N ¼ 5,

0
BBBBBBBBBBBB@

F̂ð23Þ
3

F̂ð32Þ
3

F̂ð23Þ
2

F̂ð32Þ
2

F̂ð23Þ
1

F̂ð32Þ
1

1
CCCCCCCCCCCCA

¼
Z

z0

0

dz3

Z
z3

0

dz2Iz
s02
02 z

s03
03

0
BBBBBBBBBB@

X12ðX13 þX23Þ
X13ðX12 þX32Þ

X12X34

X13X24

ðX23 þX24ÞX34

ðX32 þX34ÞX24

1
CCCCCCCCCCA
;

where Xij ≔
sij
zij
. Partial fraction and integration by parts

analogous to (21) leads to the (6 × 6) matrices,

e0 ¼

0
BBBBBBBBB@

s123 0 −s13 − s23 −s12 −s12 s12
0 s123 −s13 −s12 − s23 s13 −s13
0 0 s12 0 −s12 0

0 0 0 s13 0 −s13
0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCA

e1 ¼

0
BBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

s34 0 −s34 0 0 0

0 s24 0 −s24 0 0

s34 −s34 s23 þ s24 s34 −s234 0

−s24 s24 s24 s23 þ s34 0 −s234

1
CCCCCCCCCA

for which the KZ equation (7) is satisfied after setting
s02 ¼ s03 ¼ 0. The corresponding (6 × 6) associator con-
nects the boundary values C0 and C1,

C0 ¼

0
B@Fð2Þ

0

04

1
CA; C1 ¼

0
B@

Fð23Þ

Fð32Þ

..

.

1
CA; (26)

via Eq. (9); i.e., we recursively obtain the desired Fð23Þ and
Fð32Þ from
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0
B@

Fð23Þ

Fð32Þ

..

.

1
CA ¼ ½Φðe0; e1Þ�6×6

0
B@Fð2Þ

0

04

1
CA: (27)

Given that the four-point amplitude ∼Fð2Þ only involves
simple zeta values ζn, all the MZVs (5) of depth r ≥ 2

occurring in the five-point integrals Fð23Þ and Fð32Þ (see [2]
for their appearance at weights w ≤ 16) emerge from the
associator in Eq. (27).

C. Higher multiplicity

The techniques to simplify derivatives of F̂ðz0Þ and to
identify the matrices e0, e1 in the KZ equation (7) are
universal to all multiplicities. Expressions for e0, e1 up to
nine points are provided at [9], and the resulting α0
corrections at N ¼ 8, 9 have been unknown before.
Higher N representations of e0, e1 are not only straightfor-
ward to compute but also suggested by the explicit form of
their lower multiplicity cousins. The efficiency of the
associator-based recursion Eq. (12) becomes particularly
apparent at large multiplicities: The straightforward deri-
vation of e0, e1 avoids the growing manual effort (such as
pole treatment) required by the method of [4].

IV. CONCLUSIONS AND OUTLOOK

In our main result, Eq. (12), we relate the world-sheet
integrals Eq. (2) carrying the α0 dependence of N-point disk
amplitudes to (N − 1)-point results by the Drinfeld asso-
ciator Φðe0; e1Þ. The challenge of evaluating world-sheet
integrals is converted to elementary matrix multiplications
among N-dependent representations of e0, e1.

The construction works for any multiplicity and—in
principle—to any order in α0. It produces previously
inaccessible results, e.g. through the explicit form of e0,
e1 for N ≤ 9 available from [9]. At lowest orders in α0, the
new results at N ¼ 8, 9 have been checked to preserve the
amplitudes’ collinear limits, cyclicity and monodromy
relations [21,22].
The different origin of α0 corrections therein from either

the associator or the lower point integrals might shed light
on the arrangement of reducible and irreducible diagrams in
the underlying low energy effective action.
The string corrections are universal to massless open

superstring tree amplitudes in any number of spacetime
dimensions, independent on the amount of supersymmetry
or chosen helicity configurations. Their α0 expansion in
terms of MZVs can be directly carried over to closed string
trees which are expressed in terms of a specific subsector of
the open string’s expansion [2]. It would be desirable to
extend this analysis to a higher genus such as the max-
imally supersymmetric one-loop amplitudes calculated
in [23].
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