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The Human Connectome Project (HCP) seeks to map the structural and functional connections between net-
work elements in the human brain. Magnetoencephalography (MEG) provides a temporally rich source of in-
formation on brain network dynamics and represents one source of functional connectivity data to be
provided by the HCP. High quality MEG data will be collected from 50 twin pairs both in the resting state
and during performance of motor, working memory and language tasks. These data will be available to the
general community. Additionally, using the cortical parcellation scheme common to all imaging modalities,
the HCP will provide processing pipelines for calculating connection matrices as a function of time and fre-
quency. Together with structural and functional data generated using magnetic resonance imaging methods,
these data represent a unique opportunity to investigate brain network connectivity in a large cohort of nor-
mal adult human subjects. The analysis pipeline software and the dynamic connectivity matrices that it gen-
erates will all be made freely available to the research community.

© 2013 Elsevier Inc. All rights reserved.
Introduction

The connectome was conceived as a comprehensive structural de-
scription of the network elements and connections comprising the
human brain (Sporns et al., 2005). This connectome theoretically
constitutes the structural support for brain function. While such a
connectome could be conceived at multiple scales, the Human
Connectome Project (HCP) has chosen to work at the macroscale
level, in which distinct brain regions comprising large neuronal popula-
tions are defined as network nodes (whether based on individual voxels
or on voxel clusters derived from functional imaging studies) between
which both structural and functional connections are defined (Van
Essen et al., 2013, 2012).
and Neurology, Washington
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For macroscopic connectome representation, the primary source of
structural connection data lies in diffusion weighted magnetic reso-
nance imaging (dMRI) methods (Sporns, 2011) which return a static
map of resolvable anatomical connections between brain regions.
While brain activity is underpinned by anatomical connectivity, it can-
not be understood in those terms alone. Thus, for example, functional
connectivity may be seen in the absence of direct anatomical connec-
tions (Deco et al., 2011; Honey et al., 2009; Vincent et al., 2007). The
value of correlating structural and functional connectivity has been rec-
ognized formany years (Rubinov et al., 2009; Sporns et al., 2005). Func-
tional information is provided to theHCP from two sources,whichdiffer
in their spatial and temporal resolution as well as on the basis of their
signal generation (see Table 1). While fMRI provides a vascular surro-
gate for neural activity that broadly correlates with anatomical connec-
tivity (Honey et al., 2010; Rubinov et al., 2009; Skudlarski et al., 2008),
MEG represents population neuronal activity, which is likely to have a
less straightforward correspondence to dMRI-derived anatomical map-
pings due to the rapid transit of information through indirect pathways
(Rubinov et al., 2009). Inclusion of MEG data provides a measure of
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Table 1
Connectivity characteristics of imaging modalities.

Dynamic structure Imaging basis Imaging characteristics Variety of
connectivity metrics

Anatomical
connectivity

Static Anisotropic diffusion of water Recoverable with DTI/DSI
(~1 mm resolution)

One

fMRI connectivity Weakly nonstationary,
frequency range nominally b0.1 Hz

Indirect measure of neural population activity
(hemodynamic response to synchronized neural
population activity, BOLD)

Recoverable with fMRI
(~3 mm resolution)

A few

Electrophysiological
connectivity

Strongly nonstationary,
frequency range DC to ~1000 Hz

Direct measure of synchronized neural population
activity (magnetic/electric fields generated by
synchronized synaptic current)

Model dependent
(~4 mm precision for sparse
cortical activations, ~10 mm
spatial resolution)

Many
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brain network connectivity at time scales used in neural communica-
tion, an important adjunct to that provided by themore staticmapspro-
vided by anatomical and BOLD functional connectivity data.

As a macroscale measure, MEG represents the activity of neuronal
populations in which communication has been shown to be accom-
plished in part via synchronized oscillatory activitywhich has been relat-
ed to binding of relevant, or inhibition of irrelevant, information during
cognitive activity (Buzsaki, 2009; Fries, 2009; Singer, 1993; Stanley,
2013; Varela et al., 2001). The goal of the MEG component of the HCP
is to integrate the temporal information provided by electrophysiological
methods with the structural data inherent in anatomical connectome
and fMRI functional connectivity studies to better understand the way
in which brain networks transmit and process information.

Owing to substantial differences in spatial resolution, temporal res-
olution and coverage, relating electromagnetic brain activity to the an-
atomical and fMRI connectome is challenging (Table 1). In the spatial
domain, the anatomical connectome is resolvable to submillimeter pre-
cision (Calamante et al., 2011; Calamante et al., 2010; Ugerbil et al.,
2013). The spatial resolution of fMRI in the HCP will be 2 mm isotropic
voxels (see Ugerbil et al., 2013). In contrast, the spatial resolution of
electrophysiological methods is, at best, 10 mm at the cortical surface
(Lin et al., 2006). In the temporal domain, the anatomical connectome
is, by definition, static. For fMRI, the upper frequency limit of physiolog-
icallymeaningful signal plausibly is ~0.1 Hz (Hathout et al., 1999)while
that forMEG could be up to 1 kHz (Xiang et al., 2009). This difference in
spectral content translates to a substantial difference in information ac-
quired over a typical recording epoch. Thus, MEG supports a wide vari-
ety of analytic strategies for characterizing signal interactions between
regional brain pairs that are not accessible to fMRI.

The HCP will deliver multimodal neuroimaging and behavioral data
on a large cohort of subjects with the goal of characterizing normal
brain connectivity patterns in healthy adult human subjects (Barch et
al., 2013; Van Essen et al., 2012). In keeping with initial definitions of
the human connectome, a major focus of the HCP will lie in characteri-
zation of structural brain connections. Expansion of the concept of
connectome to investigation of functional networks will include both
fMRI and MEG. Here we present the first full description of the MEG
component of the HCP. While the expectation is that this effort will
lead to substantial new contributions in the study of dynamic brain net-
work connectivity, the following will focus primarily on the fundamen-
tal approach taken in creating an electrophysiological complement to
the human connectome.

The electrophysiological approach to connectomics

A major goal of the HCP, in addition to data acquisition, is to provide
automated pipelines for processing of the data made publicly available
via ConnectomeDB,with visualization tools provided by the Connectome
Workbench (Glasser et al., 2013; Marcus et al., 2013, 2011). The MEG
component of the HCP will provide one set of utility pipelines and two
connectivity pipelines (see section on Utility pipelines: quality control
and artifact identification up to section on Task MEG (tMEG) below).
Data collection

MEG data is collected on a whole head MAGNES 3600 (4D Neuroim-
aging, SanDiego, CA) systemhoused in amagnetically shielded room, lo-
cated at the Saint Louis University medical campus (Fig. 1). Data
collection follows best practices for MEG data acquisition as detailed by
Gross and colleagues (Gross et al., 2013). One hundred subjects (50
same-sex monozygotic twin pairs) will be studied using both resting
and task evoked MEG. The use of twin pairs allows evaluation of her-
itable traits, and recent studies have shown that MEG responses to
somatosensory stimuli are partly heritable (Van't Ent et al., 2010).
These 100 subjects will also participate in the full HCP study design
including structural and functional magnetic resonance image stud-
ies (MRI, fMRI), diffusion tensor imaging (dMRI) and behavioral and
genetic testing (see Van Essen et al., 2012). Significant effort has
been made to ensure that MEG and fMRI are performed on the
same subjects using the same tasks performed, as closely as possible,
with the same timing. Together with behavioral and genetic infor-
mation on these subjects, these data will facilitate the study of indi-
vidual variability across a large population.

Utility pipelines: quality control and artifact identification

Empty room measurements (5 min) are acquired daily and used
to monitor the MEG system for hardware malfunctions or excessive
environmental noise. These data are compared to a set of reference
scans collected to estimate baseline noise levels and corrective action
will be taken appropriately.

During pre-processing of human data, one quality assessment
(QA) module detects noisy channels by examining the signal similar-
ity between each sensor and its neighbors. Channels exhibiting poor
correlation or high variance ratio to neighboring channels (Winter
et al., 2007) will be flagged as bad and removed from further analysis.
A second QA module based on an iterative independent components
analysis (ICA) algorithm removes bad channels and bad segments
using spatial and temporal criteria (Mantini et al., 2011).

Physiological artifacts are identified using ICA (Mantini et al., 2011).
Signal decomposition is done iteratively starting from different initial
guesses. For each decomposition, independent components (ICs) are clas-
sified as ‘Brain’ or ‘Noise’ using six parameters derived from a large num-
ber of recordings. The values of three parameters (correlation between IC
signals, correlationbetweenpower time courses, and correlationbetween
spectra) are thresholded based on receiver operating characteristics
(ROC) obtained from a large number of subject's MEG data. Three addi-
tional parameters derived from both spectral and temporal properties
are added to aid in classification of system or environmental noise (see
Mantini et al., 2011). The final classification is made automatically by
selecting the iteration accounting for the highest brain component sub-
space dimensionality and the lowest residual artifact contamination.
Identified noise components usually consist of magneto- and electro-
cardiogram, eyemovements, power supply bursting and 1/f-like environ-
mental noise.



Fig. 1. Data acquisition. Data will be collected on a whole head 4D neuroimaging system housed in a magnetically shielded room at Saint Louis University (SLU). The MEG system
includes 248 magnetometer channels together with 23 reference channels. Data will be sampled at 2 kHz and delta encoding is used to increase readout resolution, providing a
quantization of ~0.3 fT. Spatial digitization of head shape and fiducials will be accomplished using a Polhemus FASTRAK-III system. A Sun Blade running 64 bit Solaris 8 Unix
and communicating with a dedicated UltraAX-12 system is used for data collection and sensor configuration. Following data acquisition, data will be uploaded via https to the
Washington University in St. Louis (WashU) internal HCP database. Public data releases will be accomplished through the external ConnectomeDB interface.
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Utility pipelines: anatomy processing and source reconstruction

The anatomy pipeline linksMEG to structuralMRI (sMRI) and dMRI.
This pipeline begins with co-registration of the MEG sensors to the an-
atomical coordinate systemof the sMRI data. The sMRI data is then used
to generate volume conduction models of the head and provide ana-
tomical constraints for source localization analyses.

Accurate source reconstruction ofMEGdata is critical, since it is a pre-
requisite for comparison of the electrophysiological results to those
obtained from other imagingmodalities.Working in source space is nec-
essary to avoid errors in connectivity analyses (Schoffelen and Gross,
2009) and provides a more straightforward physiological interpretation
of the results (Schoffelen and Gross, 2009). Three source reconstruction
strategies are implemented. For resting state data (Fig. 2) weighted
minimum-norm estimates (wMNE) are used to reconstruct source
space current density maps from sensor-space ICs (Hyvarinen and Oja,
2000). In this approach, based on thework of de Pasquale and colleagues
(de Pasquale et al., 2010, 2012; Mantini et al., 2011), the regularization
for the minimum norm estimation is tuned to each IC and obtains com-
putationally efficient and reliable projections of resting activity into
source space. For task data, two beamformer reconstruction approaches
will be used. Linear constrained minimum variance beamformers
(LCMV) reconstruct source space data in the time domain and have
proven useful for detection of connectivity in oscillatory brain activity
(Brookes et al., 2011a; Schoffelen and Gross, 2009). Dynamic imaging
of coherent source (DICS) reconstructs source–space data in the frequen-
cy domain (Gross et al., 2001; VanVeen et al., 1997). Following source re-
construction, seed-based or data-driven group-ICAmethods can be used
to process data for dynamic connectivity.

The advantage of beamformers is that they are adaptive, data-driven
methods for deriving the inverse solution from empirical evidence
(sensor-space covariance or cross-spectral density). Beamformers
solve the inverse problem for each source independently. In contrast,
minimum norm solutions are model-driven methods for computing
the inverse solution. Minimum norm inverse estimates are affected by
the topology of the source model. The FieldTrip toolbox (Oostenveld
et al., 2011) supports wMNE, LCMV and DICS.

Additional processing is performed to map the electrophysiolog-
ical connectivity matrices onto the anatomical representation of the
connectome. An important aspect of thismapping is the use of a scheme
by which network nodes are defined on a common anatomical par-
cellation. MEG source reconstructions may consist of up to ~8000
nodes with electrophysiological connections between 64 million node
pairs. Dense connectivitymatrices produced using fMRI or dMRI consist
of several orders of magnitude greater numbers of nodes, which are
typically grouped into functionally or anatomically consistent regions.
For visualization, the electrophysiological connections are mapped
onto this anatomically parcellated representation.

Resting state MEG (rMEG)

Evidence frommultiple imaging studies shows that the brain at rest is
organized as a complex set of networks (Beckmann et al., 2005; Biswal et
al., 1995; Brookes et al., 2011a; Damoiseaux et al., 2006; de Pasquale et
al., 2010, 2012; Fiecas et al., 2012; Fox and Raichle, 2007; Fox et al.,
2005) in which the two fundamental properties of functional segrega-
tion and dynamic integration (Friston, 2002) can be implemented.
Three successive rMEG runs are collected at the beginning of each exper-
imental session during which subjects are instructed to lie quietly with
eyes fixed on a central cross.

Recent source level analyses of resting state MEG networks indicate
that stationary and non-stationary interactions occur within and/or
across networks and vary according to oscillation frequency (Brookes
et al., 2011b, 2011c; de Pasquale et al., 2010, 2012; Guggisberg et al.,



Fig. 2. MEG analysis pipelines. The upper part of the pipeline labeled as “raw data” operates on the entire data set and is shared between the task and rest pipelines. For TASK (left
panel), the box labeled as “all trials” operates on the concatenated epochs from all conditions; the box labeled “contrasts” operates on epochs of individual conditions and contrasts
between conditions. For REST (right panel), the box labeled “single subject ICA” operates on temporal ICs at the individual level and the box labeled “group level ICA” operates on
spatial ICA at the group level.
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2008; Hipp et al., 2012; Martino et al., 2011; Marzetti et al., 2013;
Sekihara et al., 2011). Two data-driven approaches will be used to
study this phenomenology. The first utilizes seed-based functional con-
nectivity in which signal stationarity is not assumed a priori (de
Pasquale et al., 2010, 2012). The second approach uses a data-driven
group-ICA for resting state network (RSN) identification (Brookes et
al., 2011b, 2011c).

Seed based functional connectivity
The approach developed by de Pasquale et al. (2010, 2012) is based

on identifying temporal epochs during which source space band limited
power (BLP) correlations within RSNs are maximal. These epochs are
termed maximal correlation windows (MCWs). The spatial topography
of RSNs is derived from independent fMRI experiments. Critically, the
temporal frequencies over which BLP correlations are defined are in
the infraslow range (b0.1 Hz), i.e., comparable to frequencies accessed
by fMRI.

In addition to correlation, alternative connectivitymetrics applicable
to faster time scales will be computed. One such alternative is the imag-
inary part of coherence obtained by the cross-spectrum normalized by
the power (Nolte et al., 2004), as is done for task-related data where it
is used to map frequency specific lagged interactions. Due to potential
mismatching in functional to structural image co-registration, together
with the potential to include currents oriented in multiple directions
due to the size of voxel patches used in analysis, local activity cannot
be assumed to occur along oneprincipal source orientation and an alter-
native strategy is needed. The Multivariate Interaction Measure (MIM)
is a frequency-specific connectivitymeasure (Ewald et al., 2011) that al-
lows characterization of interactions between multi-dimensional sub-
spaces. Electrophysiological activity is generated by current flow,
which inherently is a vector quantity while the blood oxygen level de-
pendent (BOLD) signal (the physiological basis of fMRI) is a scalar
quantity. MIM is based on finding the vector weights that maximize
the imaginary part of coherence between two brain loci. In a
seed-based approach, MIM provides seed- and frequency-specific
maps of lagged interactions. The MIM measure excludes non-lagged
(i.e. instantaneous) correlations, producing results indicative of lagged
interactions that are physiologically meaningful (Marzetti et al.,
2013). MIM, therefore, cannot be used to study zero-lagged interac-
tions. However, MIM can be used to study coupling between networks
or parcels at electrophysiological frequencies (1–800 Hz range).

Data-driven group-ICA approach
Source space group-ICA analysis is a technique that identifies RSNs in

MEG data (Brookes et al., 2011c). Resting state fMRI data is typically ana-
lyzed using spatial ICA (Beckmann et al., 2005) to derive RSNs of function-
al (Smith et al., 2009) and clinical relevance (Filippini et al., 2009). The
HCPwill apply temporal ICA to concatenated source-spaceMEG data rep-
resented as BLP time series (Brookes et al., 2011c; de Pasquale et al., 2010,
2012; Hipp et al., 2012)(see section on Seed based functional connectivity
above). Importantly, BLP time series are low pass filtered using a moving
averagewith a timewindow of 2 s to enhance the detection of functional
connectivity (Luckhoo et al., 2012) at low frequencies consistent with
those inherent to fMRI. In contrast to seed-basedMEG functional connec-
tivity, ICA analyses are independent of fMRI-derived spatial priors. The
comparison of MEG RSN spatial topography with that defined by fMRI is
a crucial step, since the original observations of RSN came from fMRI.

Task MEG (tMEG)

HCP task paradigms to be studied with MEG are a subset of those
used in tfMRI (Barch et al., 2013). The MEG paradigms are matched in
temporal structure to fMRI tasks to maximize the scientific value of the
multi-modal design of the HCP (Van Essen et al., 2012). Adapting the

image of Fig.�2
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paradigms for MEG requires increasing the total number of trials to over-
come the lower signal-to-noise properties of non-invasive
electrophysiology.
Experimental paradigms for tMEG
Three experimental paradigms will be used to provide data on

sensory-motor, working memory and language processing.
(1) In the sensory-motor task, participants execute a simple hand

or foot movement. Which limb on which side is instructed by a visual
cue, which serves to pace the movement (Fig. 3a). The paradigm in-
cludes task and rest blocks (Fig. 3b). Motor tasks modulate power in
sensorimotor cortex, mainly in the alpha (mu), beta and gamma
bands (Crone et al., 1998; Miller et al., 2009; Pfurtscheller and Lopes
da Silva, 1999) and motor preparation and execution have been
shown to be dependent on corticospinal gamma-band coherence
(Schoffelen et al., 2005). Open questions remain concerning the sen-
sorimotor areas in which these frequency specific modulations occur
(Jurkiewicz et al., 2006) and how the different oscillatory modes
interact.

(2) In theworkingmemory task, participants are presentedwith pic-
tures of tools or faces (Fig. 4). Working memory load is controlled by al-
ternating 0-back and 2-back conditions (Brookes et al., 2011b). Match
and no-match responses are recorded by right index and right middle
finger button presses respectively.Workingmemory tasks provide an in-
terface between perception, long term memory and action (Baddeley,
2003). fMRI studies indicate that working memory tasks activate mainly
prefrontal and parietal cortical areas (Collette et al., 2006; Curtis and
D'Esposito, 2003). Electrophysiological studies of working memory
have demonstrated that power and coherence in theta (Brookes et al.,
2011b; Klimesch, 2006) and alpha bands (Jensen et al., 2002; Khader et
al., 2010) increase with memory load. The role of gamma band is still
unclear (Brookes et al., 2011c; Howard et al., 2003; Roux et al., 2012).
Fig. 3. The motor task paradigm consists of a set of hand and foot movements (A) performe
task fMRI paces each movement (B). Each block begins with a 3 s cue telling the subject w
(3) The language processing taskwill be the same as that used in the
tfMRI component of the HCP (Barch et al., 2013). Subjects will listen ei-
ther to auditory narratives (30 s duration) or matched-duration simple
arithmetic problems (Binder et al., 2011) followed by a 2-alternative
forced choice question. Subjects will respond by right hand button
press (index or middle finger). While this is a somewhat unusual task
for MEG studies, it has been shown to activate a large cortically distrib-
uted language network (Barch et al., 2013). It is reported that slow tem-
poral modulation of speech is synchronized with low-frequency (δ and
θ) cortical activity during speech recognition (Ding and Simon, 2013);
the precision of the speech recognition can be predicted from this syn-
chronization. Phase locking of cortical oscillation to the low-frequency
(4–8 Hz) envelope of speech is predictive of important speech events
(Peelle and Davis, 2012). Use of the same task paradigm in MEG and
fMRI will facilitate integrated analysis of the combined datasets (Hari
and Salmelin, 2012; Pulvermueller, 2010; Renvall et al., 2012).

t-MEG processing pipeline
The tMEG processing pipeline is illustrated in Fig. 2. For each task

data set, all trials for all conditions are extracted over a predefined
pre- and post-stimulus time interval. Bad channels, noisy time seg-
ments and artifact ICs are removed to produce a “clean” set of all trials
in the time domain (event related field, ERF). Each trial is then analyzed
in the time–frequency domain (spectralmodulations as a function of la-
tency relative to task events) using the multitaper method (Mitra and
Pesaran, 1999; Oostenveld et al., 2011). Sensor-level time frequency
analysis is computed for a typical range of frequencies (1 to 100 Hz)
to produce a set of all trials in the time–frequency domain (TFR).

Following the separation of trials into conditions, response averages
are computed and contrasts between conditions are defined. The first
level of analysis is computation of basic statistics in sensor space.
Sensor-level analysis provides early insight into whether expected
effects of the task on brain activity are observed. The LCMVbeamformer
d with both right (RH/RF) and left (LH/LF) limbs. A block design matching that used in
hich appendage to move in that trial.
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Fig. 4. The working memory paradigm is designed to match the N-back task performed during task fMRI. For MEG studies, only two categories are presented (A) in a block design of
16 task blocks in each of two runs. (B) illustrates the design for a 2-back face task.
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is used to compute TFR contrasts between conditions based on sensory
covariance. DICS is a beamformer in the frequency domain. DICS
operates on the sensor-space cross-spectral density matrix to compute
band-limited power and coherence in source-space (see section on
Utility pipelines: anatomy processing and source reconstruction).
We will apply this method to compute BLP contrasts across condi-
tions in all experimental tasks. Complete 1 Hz spectral resolution
representation of responses in source space is not feasible owing to
memory and storage limitations. Therefore, the spectrum is divided
into frequency bands known to play distinct roles in brain function
under various conditions (δ(1–4), θ(4–7), α(8–13), β-lower(13
20), β-upper(20 30), γ-lower(30–50), γ-upper(50–90)).

The final step in the tMEG pipeline is computation of connectivity
metrics. These metrics are based on TFR source level representations
(see section on Connectivity metrics in tMEG below).

Connectivity metrics in tMEG
Numerous functional and effective connectivity metrics are avail-

able to assess brain networks as participants perform cognitive tasks.
In general, these can be computed both in sensor and source space.
For task based data analysis, connectivity will be initially assessed
with a set of established metrics selected for computational efficien-
cy. This set of measures includes coherence, imaginary coherence,
MIM, phase locking value (PLV), phase slope index (PSI), bivariate
Granger causality and power envelope correlation. Each of these met-
rics is available in the FieldTrip toolbox (Oostenveld et al., 2011).

Coherence (correlation in the frequency domain) is the most basic
measure of synchrony between two oscillatory signals. However, sim-
ple coherence suffers from bias resulting from field spread. MIM (see
section on Seed based functional connectivity) avoids this problem.
PLV (Lachaux et al., 1999) is similar to coherence but with the effect
of amplitude in synchrony estimates removed. However it still de-
pends on the SNR of the data and significant power changes can
lead to confounded PLV differences (Muthukumaraswamy and Singh,
2011). The PSI (Nolte et al., 2008) is a metric tailored to provide robust
estimates of the direction of information flow in the presence of inde-
pendent background activity. The theoretical basis of PSI is that a causal
relationship between two signals at a consistent time lagmanifests as a
constant proportionality between cross-spectral phase and frequency.
Granger causality (Geweke, 1984; Granger, 1969) is a technique for es-
timating causal relations between time-series. The method fundamen-
tally tests for the ability of one time series to forecast the behavior of a
second time series, under the assumption that the first causally drives
the second. Bivariate Granger causality is implemented based on the
derivation of the transfer function of the system from its time–frequen-
cy cross-spectra (Chen et al., 2009). Finally, instantaneous power enve-
lope correlations have been used (Hipp et al., 2012) to quantify
concurrent variations in symmetrical brain sub-networks in resting
state data. This method removes field spread effects through a joint or-
thogonalization and can be used to infer functional connectivity even
between spatially proximate areas.
HCP MEG deliverables

The ConnectomeDB is the public face of the HCP (Marcus et al.,
2013). The ConnectomeDB will manage all MEG data and analysis re-
sults and be the primary site from which raw and processed data may
be downloaded (Marcus et al., 2011). All data will be shared in stan-
dardized formats or well-defined custom formats should standard
formats not be readily available. Imaging data will be shared in the
original DICOM or in NIfTI format, with dense and sparse connectivity
matrices shared in the CIFTI format (Glasser et al., 2013; Marcus et al.,
2011). Since there is no commonly accepted format, MEG data will be
shared in the original 4D Magnes file format. Open Source reading
routines for the 4D data format are provided in FieldTrip and in com-
piled form, which allow conversion of the data to other formats, in-
cluding plain ASCII or binary. Parts of the processed data will be
shared in native MATLAB format, such as the volume conduction
models. Small files, such as lists of electrode positions and the speci-
fication of bad channels and time segments, will be shared in ASCII
format. The provided compiled software will allow for conversion of
all native MATLAB files into an ASCII representation to provide
MATLAB-independent users full access to the data.

The ConnectomeDB will also manage provenance information for
HCP data. Data and results will be released in versioned release pack-
ages. Results produced by HCP processing pipelines will be linked to
the version of the processing software used to create that set of re-
sults. The specific processing parameters will be included in process-
ing scripts that are released with the software. The goal is to
completely document all processing used to produce intermediate
and final results. This provenance information will permit the re-
search community to not only explore and use HCP generated results
via ConnectomeWorkbench but to move data sets into their own en-
vironment and re-analyze them starting at arbitrary points in the
pipeline.

image of Fig.�4
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MEG data

MEG data and associatedmetadata (e.g., sampling rate, event timing,
bad channels and data segments with excessivemotion artifacts) will be
managed in the ConnectomeDB. These datawill be linked to descriptions
of the experimental protocols and results of quality control processes.
The utility pipeline identifies bad channels and segments for each run
and each subject. These results will be shared in the form of ASCII files
containing the bad channel names and the start and end times of each
of the bad temporal segments in the respective run. Thesewill be accom-
panied by figures (bitmap imagefiles) presenting the topology and char-
acteristics of the bad segments.

One utility pipeline step consists of multiple fastICA iterations used
in automatic classification of signal into Brain and Noise components.
The results of the best iteration will be provided to the user in the
form of a mixing and unmixing matrix with the classification of each
IC noted. Additionally, figures characterizing each component will be
provided that include the IC sensor map and its corresponding time-
course and power spectral density.

Software pipelines

In addition to providing access to raw MEG data, the HCP will also
share the software that comprises the analysis pipelines. This will
allowusers of theHCP to reanalyze the shared data, optionally using dif-
ferent parameters with the various algorithms. Additionally, the soft-
ware allows for the same analyses to be performed on MEG data that
is or will be acquired outside the HCP.

All MEG analysis software will be implemented in MATLAB
(Mathworks, Natick, MA), using the FieldTrip toolbox (Oostenveld et al.,
2011). Most of the analyses will be implemented in scripts that call
FieldTrip functions and custom written HCP functions. The scripts com-
prise the HCP MEG analysis pipelines and extend the FieldTrip toolbox
according to the requirements of this project. The FieldTrip toolbox is
freely available as Open Source under the General Public License
(GPLv2) and analysis pipelines will be available for download.

Although all analysis scripts and functions are to be made available
free of charge, the MATLAB environment on which they are built is a
commercial software package thatmight not be available to all external
HCP users. To enable all researchers to use the software, wewill provide
compiled versions of all pipelines using the MATLAB Compiler toolbox.
The compiled executables use the MATLAB Compiler Runtime (MCR),
which can be shared with the compiled executables and is available
royalty-free fromMathworks. The executable andMCRwill be provided
for the 64 bit versions of the Linux, Mac OS X and Windows operating
systems. The Linux version of these compiled applications, running on
the Washington University Center for High Performance Computing
(CHPC) system (Marcus et al., 2011), are the instantiation of the MEG
pipelines used by the HCP team.

Anatomical data

Anatomical models are used to define the locations in the brain at
which electrical source activity are estimated. Because HCP MRI data
has been processed to remove facial features for subject privacy
(Milchenko and Marcus, 2012) pre-computed head models will be
made available for each subject.

The anatomy pipeline will generate three types of output: head
models, source models and coregistration information. For forward
modeling, a single shell model will be provided for MEG (Nolte,
2003). The BEM system matrix, computed with OpenMEEG (Gramfort
et al., 2011) will be provided for source modeling. The models for dis-
tributed sources in the HCP are based on high-quality extracted cortical
sheets. The volumetric source models for beamformer reconstruction
are based on regular 3Dgrids inMNI space, constructed from a template
brain. Individual anatomies are (non-linearly) warped to this template
brain, and we apply the inverse of this warp to the template source
model. The individually warped 3D volumetric grid facilitates group
analysis, as it allows for computationally efficient averaging in normal-
ized space without the need for interpolation. Coregistration informa-
tion is provided to link subject-specific head coordinate systems to
the standard coordinate system provided by the HCP. Co-registration
is accomplished using FSL's linear registration tool [FLIRT; (Greve and
Fischl, 2009; Jenkinson et al., 2002; Jenkinson and Smith, 2001)].

rMEG results

The processing pipeline for rMEG data is modular, allowing for the
application of different source projection algorithms. Sensor level analy-
ses are used to identify independent components of brain origin, which
are then projected onto source space using the source model provided
by the anatomy pipeline. The single subject branch of the rMEG pipeline
provides source level network information based on a wMNE algorithm
(see section on t-MEG processing pipeline). As noted in the section on
the electrophysiological approach to connectomics, these data are then
analyzed for connectivity using either a correlation approach, or MIM
(Ewald et al., 2011).

Band limited power in the classic frequency bands will be provided
for each voxel/parcel in source space. At this stage, time-series data con-
sists of matrices of dimension K × N, where K is the number of voxels/
parcels in the brain and N is the number of time points. This data
representation supports seed-based or a data-driven analyses. For the
seed based approach, the MCW algorithm (see section on Seed based
functional connectivity) identifies epochs inwhich the contrast between
within-network vs. external-to-network correlation is maximal, while
the external-to-network correlation is minimal (de Pasquale et al.,
2010, 2012). The outputs provided by this approach are: i) a set of time
points of the observed maximum correlation windows (MCWs); ii)
seed-based connectivity matrices of every defined network (Fig. 5,
upper left); iii) cross-correlation matrices among different RSNs at the
node level (Fig. 5, upper right); iv) cross-correlationmatrices among dif-
ferent RSNs averaged across nodes at the network level; v) temporal cov-
erage of internal coupling of every network; vi) temporal overlap of
MCWs from different RSNs.

Similarly, MIM (see section on Seed based functional connectivity)
for each frequency bin will be provided for each voxel/parcel in source
space. The output of this connectivity pipeline is a connectome of size
Nsources × Nsources × Nfrequency bins, where a source can be a
voxel, a parcel or a network.

The group branch of the rMEG pipeline provides source level net-
work information based on a LCMV beamformer algorithm
(Schoffelen and Gross, 2009), and computation of RSN dynamics is
run separately for each frequency band. The input data is BLP time
courses over all K voxel/parcels for each of the J subjects in the
group. Following low pass filtering, the BLP time courses are
concatenated over subjects along the time dimension, to give an
(NJ × K) data matrix, where N is the number of time points. This ma-
trix is then fed into temporal ICA, using the fastICA algorithm. The
output from this is the (Q × NJ) matrix of component time courses
for each subject, and the (Q × K) matrix of component spatial maps,
where Q is the dimensionality of the ICA. These Q component spatial
maps correspond to the MEG resting state networks (Fig. 5, lower).
Group-ICA analyses depend on the selection of subjects and so cannot
be precomputed. However, the Connectome Workbench will provide
online selection of subjects based on user-specified criteria. The
group-ICA computation will be submitted to the CHPC-HCP compute
cluster and made available to the user when the job is completed.

tMEG results

The tMEG pipeline input divides each pre-processed dataset into
trials, providing a clean set of epochs in the time domain, which are



Fig. 5. Resting state network analysis. Upper: Seed-based approach allowing the study of network segregation/integration. Upper left: segregated RSNs obtained in the related
MCWs; upper right: 3D plot of covariance across RSN nodes showing the central role of DMN. Lower: Comparison of brain networks obtained using ICA independently on MEG
[lower] and fMRI [upper] data. (A) DMN; (B) left lateral frontoparietal network; (C) right lateral frontoparietal network; (D) sensorimotor network; (E) medial parietal regions;
(F) visual network; (G) frontal lobes including anterior cingulate cortex; (H) cerebellum.
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subsequently transformed to time–frequency representations. The
final output of the initial pipeline includes the sensor-level average
ERFs and TFRs for all conditions, which will be provided to the user
in native MATLAB format.

The next step of the pipeline is analysis of BLP contrasts in
source space (see section on t-MEG processing pipeline). The re-
sults of these computations will be available to users in CIFTI for-
mat. An example of DICS source localization for the left hand
motor task for the period prior to movement onset is shown in
Fig. 6A. The frequency range for which the inverse solution is
illustrated is the upper beta band, which can clearly be seen to
peak in motor and posterior areas.

The final step of the tMEG pipeline is the computation of a set of
connectivity metrics (see section on Connectivity metrics in tMEG).
Connectivity maps will be available to the users in CIFTI format.
Fig. 6B illustrates the result of analysis of motor seed regions using
imaginary coherence in the beta band as the connectivity metric of in-
terest. The final pipeline outputs will include all-to-all node connec-
tivity matrices for each metric together with the ability to project
resultant data to the HCP defined cortical surface parcellation.

image of Fig.�5


Fig. 6. Frequency specific source localization (A) and connectivity map based on Talairach
atlas labeling scheme (Lancaster et al., 2000). (A) DICS sourcemodeling in the beta band for
LH movement in the motor task (−0.5–0 s before movement onset). Beta band power is
greatest inmotor andmore posterior regions. (B) Seed regions of interestwere placed bilat-
erally in Brodmann's area 4, and imaginary coherence calculated in the beta band−0.5–0 s
before movement onset. Note high levels of connectivity cross-hemispherically to
homolateral motor cortex and medial prefrontal regions. Line thickness is proportional to
the value of imaginary coherence, blue lines represent connections originating in the left
hemisphere, and red lines originate in the right hemisphere.
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Exploring the connectome

The Connectome Workbench (Marcus et al., 2013, 2011) provides
interactive tools for visualizing HCP results and performing on-line ex-
periments primarily using data that has been pre-computed by the HCP
team. While dMRI and fMRI derived connectomes may be represented
by parcel × parcel connectivity matrices, MEG derived connectomes
have the additional dimensions of frequency and time given the greater
temporal resolution inherent in this modality. Thus basic visualization
tools in the Connectome Workbench will be extended to permit re-
searchers to explore the additional dimensionality of MEG results.

By necessity the HCP team must make specific choices from the
wide array of analytic techniques. These choices will be well docu-
mented in ConnectomeDB and in the open source pipeline software
released with the MEG data. ConnectomeDB will enable the global re-
search community to extract data at multiple levels in the processing
pipeline for alternative processing and analysis by investigators using
their own computational environments.

Preliminary estimates indicate that the rawMEGdata,metadata and
preprocessing information for each quarterly data release will total ap-
proximately 328 GB. The source–space time series and connection ma-
trices are not included in this calculation. ConnectomeDB provides a
user interface for identifying and downloading via the Internet each
data release. The download mechanism is based on multi-threaded
TCP. Total download time depends on the round-trip latency between
the ConnectomeDB servers and requester and is throttled by the lowest
bandwidth link between sender and receiver. Based on measurements
conducted between ConnectomeDB and requesters at the University
of Minnesota and Oxford University, we estimate that a complete quar-
terly MEG raw data release can be downloaded in approximately
3–3.5 h. It is also possible to request that the data release be shipped
on removable media (Connectome in a Box) (Marcus et al., 2011).

Discussion

Methodological considerations

InverseMEG sourcemodeling is fundamentally an ill-posedproblem
(Gramfort et al., 2012; Helmholtz, 1853). The relative advantages and
disadvantages of the various methods for computing source–space ac-
tivity are discussed above (see section on Utility pipelines: anatomy
processing and source reconstruction). Each method is associated
with a point-spread function (PSF) that varies across the brain (Hauk
et al., 2011). It is important to emphasize that these PSFs limit the ca-
pacity to correctly identify true interactions, since they might deter-
mine possible crosstalk between both nearby and distant regions. But,
there is no theoretical limit to the precisionwithwhich the center coor-
dinates of an extended source can be localized; although in practice,
mean squared localization error does vary across methods (Hauk et
al., 2011). The MEG component of the HCP will implement wMNE and
two varieties of beamforming spatial filters. These approaches have
provided meaningful results in resting state (Brookes et al., 2011c; de
Pasquale et al., 2010, 2012; Hipp et al., 2012) and task (Brookes et al.,
2012, 2011b) MEG. Compared to other inverse modeling techniques,
e.g., sLORETA and dSPM, wMNE has the smallest PSF (Hauk et al.,
2011). However, regardless of which inverse modeling technique is
used, the spatial resolution of MEG is much lower than tfMRI and
dMRI. Hence, spurious interactions in connectivity estimates cannot
be entirely avoided (Schoffelen and Gross, 2009). Results from both
source reconstructions will be made available in the ConnectomeDB
as they complement each other by highlighting different aspects of
MEG connectivity.

Two contrasting analytic approaches, specifically, seed-based cor-
relation mapping (Biswal et al., 1995) and spatial ICA (Beckmann et
al., 2005) currently dominate the field of resting state fMRI. A similar
situation obtains in the field of resting state MEG, as exemplified by
the work of de Pasquale and colleagues (de Pasquale et al., 2010,
2012) and Brookes and colleagues (Brookes et al., 2011a) respective-
ly. The MEG component of the HCP will support both approaches. The
main advantage of a seed based approach is that connectivity matri-
ces derived by different modalities can be directly compared. The
main drawbacks are reliance on prior knowledge of seed locations
based on fMRI, the assumption that ROIs are correctly chosen and
are concordant between modalities, and the dependence on accurate
inverse source modeling together with information on neurovascular
coupling to register BOLD data with electrophysiological sources. In
contrast, ICA directly estimates RSNs from the MEG data without
prior specification of ROIs. However, the over-arching design of the
HCP is formulated in terms of parcel-to-parcel connectivity. Presently,
it is unclear how best to map spatial components derived by MEG ICA
onto parcel × parcel connectivity matrices.

Linking MEG large-scale connectivity to the human connectome

Strong evidence links fMRI RSNs to task-evoked activity (Smith et
al., 2009). In addition, resting state functional connectivity based on
fMRI is linked to anatomical connectivity, both in humans (Honey et
al., 2009, 2010; Skudlarski et al., 2008) and in animals (Schwarz et al.,
2013). However, the correspondence between functional and anatomi-
cal connectivity is not one-to-one (for discussion see Deco et al., 2011;
Vincent et al., 2007). This correspondence is even less clear at the higher
frequencies of MEG data (Honey et al., 2010). Further, while structure
constrains the dynamics of complex systems such as the brain, plasticity
(Rubinov et al., 2009) can produce different functional network config-
urations on the same structural backbone. At present, few studies have
examined the relationship between structural connectivity at the mac-
roscopic level and functional connectivity derived from MEG. Initial
resting state studies have been directed at showing that spatial struc-
tures involved in complex brain networks derived fromMEG are similar
to those derived from fMRI where these networkswere initially defined
(Biswal et al., 1995; de Pasquale et al., 2010; Fox et al., 2005). Having
shown that similar spatial structures are involved in these complex net-
works at rest, MEG techniques can then be used to add valuable tempo-
ral and frequency information not available from fMRI. In addition to
illuminating the question of information transfer at higher frequencies,
on cross-frequency interactions or multiplexing (Marzetti et al., 2013),
MEG rules out the hypothesis that these networks are a vascular
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phenomena. Further, MEG directly reflects the dynamics of neural pop-
ulations at behaviorally meaningful temporal scales. Thus, integration
of MEG functional connectivity with the fMRI and dMRI components
of the HCP offers the potential for increased understanding of human
brain functions.

Because MEG and fMRI have complementary spatiotemporal charac-
teristics, integration of these twomodalities theoretically should increase
our understanding of the functional organization of brain network
dynamics (see Rosa et al., 2010; Snyder and Raichle, 2010 for reviews).
However, integration ofMEG and fMRI data remains elusive, despite con-
siderable efforts by several laboratories (Babajani and Soltanian-Zadeh,
2006; Dale et al., 2000; Debener et al., 2006; Larson-Prior et al., 2011;
Rosa et al., 2010; Sotero and Trujillo-Barreto, 2008). A fully integrated
analysis of MEG and fMRI requires a single biophysical model that de-
scribes data from both modalities (Babajani and Soltanian-Zadeh, 2006;
Riera et al., 2006; Sotero and Trujillo-Barreto, 2008). While such a bot-
tom–up approach symmetrically utilizes data from both modalities, it is
mathematically complicated. More commonly, an asymmetric approach
is taken in which data from one modality are used as prior information
for the other. For example, several studies have used fMRI-driven spatial
priors to inform the MEG inverse problem (Ahlfors and Simpson, 2004;
Dale et al., 2000; Henson et al., 2009).

The relation between the hemodynamic response and neuronal
activity is still not fully understood (Logothetis, 2008; Magri et al.,
2012). Recent evidence indicates that astrocytic processes govern the
dynamics of “neuro-vascular coupling” (Schummers et al., 2008). Vari-
ous studies have shown that trial-by-trial BOLD fluctuations during task
performance correlate negatively with power in the alpha and beta fre-
quency bands and positively in the gamma band (Feige et al., 2005;
Moosmann et al., 2003; Scheeringa et al., 2011; Yuan et al., 2010). Nev-
ertheless BOLD activation maps with their high spatial resolution are
used in many studies as priors for MEG inverse solutions.

The first part of this paper discussed the very different spatial
and temporal scales that characterize the domains of MEG, fMRI
and dMRI. Hence, integrating connectivity across these domains
is challenging. The HCP approach to meeting this challenge is
parcellation and measurement of parcel × parcel connectivity ma-
trices. Anatomical parcellations might provide the spatial smooth-
ing and integration required to confidently fuse the different
modalities. Atlases have been used in MEG analysis (Hillebrand et
al., 2012) to parcellate and examine connectivity of the entire
cortex. Source level group-ICA can be used to produce MEG
data-derived network parcellations, which can be used to interro-
gate different subpopulations of the HCP database. Alternatively,
parcels may be defined from ICA, resting-state fMRI, task-based
fMRI, or MEG data and used as seed regions for connectivity analy-
ses. It might be argued that high spatial resolution modalities, e.g.,
resting-state fMRI, should be used to define the parcels used in MEG
functional connectivity analyses. However, MEG derived parcellations
are adapted to the characteristics of the MEG data, and as such may be
more appropriate to use in subsequent analyses within this modality.

Future directions

The availability of resting and task MEG data in the ConnectomeDB
will enable the exploration of multiple features of the data using
both existing and yet to be developed analysis techniques. In the
future, more elaborate connectivity metrics are likely to become
available. Metrics such as those based onmultivariate autoregressive
models, e.g. Partial Directed Coherence (PDC) (Baccala and
Sameshima, 2001) and Directed Transfer Function (DTF) (Kaminski
et al., 2001), adopt a semi arbitrary normalization (making connec-
tivity comparisons meaningful only with the same starting or ending
voxel) and are generally sensitive to noise (Baccala and Sameshima,
2001; Michalareas et al., 2012). Metrics based on non-parametric
spectral factorization can be adopted to study directionality, such
as spectrally resolved Granger causality (Bosman et al., 2012).
These metrics are planned for implementation in the HCP at a later
stage, after initial evaluation. Other methods of inferring effective
connectivity such Dynamic Causal Modeling (DCM) (Friston et al.,
2003; Kiebel et al., 2008) or Transfer Entropy (TE) (Wibral et al.,
2011) are computationally limited to a few nodes. These methods
are best suited to studies where clear data- or theory-driven hypoth-
eses define the regions participating in a functional network. DCM
may be implemented if indicated by initial results.
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