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Abstract

Neutrino mass requires new physics beyond the Standard Model: sterile neutrinos are one such
example. In general the mass scale of such particles is unknown, so that different model build-
ing scenarios arise. The aim of this thesis is to accommodate light sterile neutrinos in working
models and study the phenomenological consequences. Indeed, sterile neutrinos at the eV scale
could explain observed short-baseline anomalies, whereas keV-scale warm dark matter particles
could resolve tensions in the standard cosmological model. Different A4 flavour symmetry mod-
els are modified to include sterile neutrinos, with the Froggatt-Nielsen mechanism controlling
their mass spectrum and higher-order effects explicitly taken into account. The resulting sig-
natures in neutrinoless double beta decay are focussed on. In addition, the connection between
that process and neutrino mass is studied in the left-right symmetric model: the multitude
of contributions are categorised and various special cases are studied numerically. The role of
mixed helicity diagrams is emphasised, and the inverse neutrinoless double beta decay process
at a linear collider is analysed in detail. These and other experimental signatures will be crucial
in deciphering the nature and origin of neutrino mass.

Zusammenfassung

Neutrinomassen benötigen neue Physik jenseits des Standardmodells, z.B. sterile Neutrinos.
Verschiedene Modell-Szenarien sind möglich, da die Masse solcher sterilen Zustände unbekannt
ist. Das Ziel dieser Arbeit ist es, leichte sterile Neutrinos in erfolgreiche Modelle einzubauen
und die phänomenologischen Konsequenzen zu analysieren. In der Tat könnten sterile Neu-
trinos an der eV-Skala einige beobachtete Anomalien in Experimenten zu Neutrinooszillatio-
nen erklären, während keV sterile Neutrinos als warme dunkle Materie manche Probleme des
kosmologischen Standardmodells lösen könnten. Verschiedene auf A4 basierende flavoursym-
metrische Modelle werden mit sterilen Neutrinos erweitert, wobei das Massenspektrum durch
den Froggatt-Nielsen-Mechanismus kontrolliert wird; der Einfluss höherer Ordnungen wird ex-
plizit berücksichtigt. Die Auswirkungen der Modelle auf neutrinolosen doppelten Betazerfall
stehen im Mittelpunkt. Außerdem wird die Verbindung zwischen diesem Prozess und Neutrino-
masse in einem links-rechts-symmetrischen Modell untersucht: die Vielzahl von Beiträgen wird
kategorisiert und verschiedene Sonderfälle numerisch untersucht. Die Wichtigkeit von Diagram-
men mit gemischter Helizität wird betont und der in einem Linearbeschleuniger beobachtbare
invertierte neutrinolose doppelte Betazerfall im Detail analysiert. Diese und andere experi-
mentelle Signaturen könnten Licht auf den Ursprung und die Natur der Neutrinomassen wer-
fen.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has been largely successful in explaining the
elementary particles that make up our world, and the discovery of a Higgs-like particle at the
LHC has provided important confirmation of one of the key ingredients of that model [1, 2].
Be that as it may, many fundamental questions remain unanswered, and experiments at the
high-energy frontier have so far been unsuccessful in their quest to uncover physics beyond the
SM. There are several theories that predict new particles at the TeV scale, the signatures of
which have yet to be discovered.

Indeed, the only real (direct) evidence for new physics comes from neutrinos:1 oscillation
experiments have shown that neutrinos are massive and that they mix, which immediately
requires an extension of the SM. The Higgs mechanism gives mass to all known fermions
except for neutrinos, due to the fact that there are no right-handed neutral fermions in the
theory, so that Dirac mass terms are not allowed. This maximal violation of parity is confirmed
from studies of beta decay, in which only neutrinos with left-handed helicity have been observed.
A popular way to allow neutrino mass terms in the SM is to introduce right-handed (sterile)
neutrinos and/or Higgs triplets, which mediate the type I [3–7] and type II [8–13] seesaw
mechanisms, respectively. The right-handed fermions are sterile in the sense that they do
not directly interact with SM fields; they can only reveal themselves through mixing with the
active sector. However, gauge extensions to the SM elevate sterile neutrinos to be non-singlets,
so that they feel gauge interactions from the new physics sector: the left-right symmetric
model (LRSM) is one such example.

The term “seesaw” traditionally refers to two widely varying mass scales, thus linking the
extremely light (sub-eV) masses of neutrinos to the very heavy Majorana masses of right-
handed neutrinos, which are close to the Grand Unified Theory (GUT) [14] scale of order
1015 GeV. However, placing right-handed neutrinos at the GUT scale renders them completely
unobservable, barring the indirect evidence of leptogenesis, which cannot be empirically proven.
For that reason there has been renewed interest in seesaw models at observable energy scales,
specifically around the TeV scale, accessible at collider experiments. Although the LHC is
unable to detect neutrinos directly it could still observe processes involving heavy neutrinos
as mediators. Moreover, there are experimental hints that point towards sterile neutrinos at
even lower mass scales, which lead one to consider models with “light” sterile neutrinos. In
that sense phenomenology becomes the driving motivation for model building with neutrinos.
Chapter 3 provides a summary of the relevant experimental signatures as well as the status of
experimental searches.

One example is the idea that sterile neutrinos at the keV scale are a dominant component
of the dark matter (DM) [15] in the universe: the so-called “warm dark matter” (WDM)
models [16]. A link between neutrino mass and DM has long been postulated [15], since the
latter provides an indirect proof of the existence of physics beyond the SM, complementing

1Indirect evidence comes from dark matter.
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Chapter 1 Introduction

the direct proof of the former. The light neutrinos observed in oscillation experiments are one
form of DM, albeit hot dark matter (HDM), which is incompatible with cosmological models.
The typical assumption is that the DM particle is much heavier, in other words it is cold dark
matter (CDM), usually in the form of a weakly interacting massive particle (WIMP). Several
theories such as supersymmetry predict the existence of such particles, and the experimental
search for their extremely weak interaction with normal matter is ongoing. Although the
standard ΛCDM paradigm is reasonably successful, it still suffers from several inconsistencies
at smaller scales. Warm dark matter models have been shown to solve some of those problems,
in particular by reducing the number of Dwarf satellite galaxies or smoothing the cusps in DM
halos. An ideal candidate for WDM is a sterile neutrino with keV-scale mass and tiny mixing
to the active neutrinos, and it is interesting to study how to incorporate such a particle in the
usual type I seesaw model.

If one lowers the right-handed neutrino mass scale from the GUT scale to the keV scale
then it is not inconceivable that it could be a few orders of magnitude lower, at the eV scale.
There are longstanding anomalies in neutrino oscillation physics, specifically the LSND [17]
and MiniBooNE [18] results, which could be explained by sterile neutrinos with eV masses.
The case for eV-scale sterile neutrinos has recently been strengthened by the so-called “reactor
anomaly” [19]: a number of short-baseline (SBL) reactor experiments (past and present) may
have observed a flux deficit of electron anti-neutrinos, which went unobserved due to an inaccu-
rate knowledge of the flux of those particles from nuclear reactors. Interestingly, there are also
hints for additional relativistic degrees of freedom from cosmology, specifically from studies of
the cosmic microwave background (CMB) as well as from Big Bang Nucleosynthesis (BBN),
both of which constrain the effective number of neutrino species [20]. Piecing together these
different clues leads to a rather incomplete picture, and future experiments must confirm or
refute the existence of light sterile neutrinos [21]. The signatures of eV-scale sterile neutrinos
in neutrinoless double beta decay (0νββ), beta decay and cosmology will be discussed in Chap-
ter 3. From the theoretical point of view it is a challenge to build models that can accommodate
such particles; that is one of the goals of this thesis.

Sterile neutrinos are introduced to explain neutrino mass, the evidence for which comes from
neutrino mixing. Models to explain the latter are typically based on flavour symmetries, which
extend the SM gauge group by further (usually discrete) symmetry groups [22]. It is therefore
natural to ask what the effect of light sterile neutrinos is on active neutrino mixing, and whether
such particles can be accommodated in flavour symmetry models. One of the most popular
symmetry groups is A4, upon which countless models have been based. The leading order
prediction of A4 (as well as many other) models for active neutrino mixing is tri-bimaximal
mixing (TBM), which is now ruled out by data [23], so that higher-order effects must necessarily
be taken into account. Those could have various sources, such as renormalisation group running
or higher-dimensional operators. Of particular interest in seesaw models are corrections from
next-to-leading order (NLO) seesaw terms, in which case there is a definite correlation between
active-active mixing and active-sterile mixing. Chapter 4 presents two A4 models that include
sterile neutrinos of varying mass scales: (i) an existing effective mass model extended with
sterile neutrinos and (ii) a seesaw model built to accommodate three sterile neutrino states,
one of which is a keV WDM particle. In both cases the sterile neutrino mass spectrum is
controlled by the Froggatt-Nielsen (FN) mechanism, NLO terms are studied in detail and
phenomenological consequences are discussed. The A4 seesaw model is the first fully working
model of its kind in the literature, combining the known aspects of flavour symmetry models
with the FN mechanism and light sterile neutrinos.

Another possibility for neutrino masses is the so-called pseudo-Dirac scenario [24, 25], in
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which each active neutrino has a partner of almost the same mass. This could be seen as
the opposite extreme to the usual seesaw model, since the Dirac mass terms are now much
greater than their Majorana counterparts. The tiny mass-splitting makes these states “pseudo-
Dirac”, in the sense that a small Majorana mass term is added to a Dirac neutrino term; the
mass-squared difference should be smaller than 10−11 eV2 in order to evade bounds from solar
neutrino experiments [26]. An intermediate case is the “bimodal” model [27], in which flavour
eigenstates receive similar admixtures of Majorana and Dirac type masses. Interesting exper-
imental signatures arise, both in the flavour flux ratios of high energy astrophysical neutrinos
measured at neutrino telescopes as well as in 0νββ, discussed in Chapter 3. A model combining
the bimodal scenario with a flavour symmetry will be presented in Chapter 4.

The lepton number violating neutrinoless double beta decay is an important process in parti-
cle physics, since it is connected to the generation of neutrino masses and is able to distinguish
the Dirac or Majorana nature of the neutrino. All of the above-mentioned neutrino mass
models are in some way connected to 0νββ, and sterile neutrinos at different mass scales give
distinctive contributions to this process. In the ideal scenario, one should be able to pin down
the absolute scale of neutrino mass with a combination of 0νββ and beta decay experiments,
as well as with cosmology. However, since several new physics operators could contribute to
0νββ it is difficult to draw any conclusions without a comprehensive study of this and other
related phenomenology. For instance, lepton flavour violating decays of charged leptons could
help restrict the parameter space of models, since such processes depend on similar quantities
to 0νββ and are experimentally very well constrained. It is this interplay between experimental
signatures that forms a large part of this thesis, an approach necessitated by the large number
of parameters in the seesaw model.

In what regards neutrino masses, a certain ambiguity still exists due to the presence of both
type I and type II seesaw terms, allowed in the most general case. If one approaches the
problem from a “top-down” perspective, it is notable that both mechanisms of neutrino mass
generation can be embedded into the left-right symmetric model, a theory in which parity
symmetry is restored at high energies, following on naturally from the introduction of right-
handed neutrinos. Again, if one chooses the scale of new physics to be TeV, there are a variety of
experimental signatures. In particular, the TeV-scale LRSM can be tested at both hadron and
linear colliders, as well as in lepton flavour violation (LFV) and 0νββ experiments. There are
many different diagrams leading to 0νββ in the LRSM, all of which are connected to neutrino
mass in some way. The theoretically distinct cases of type II and type I seesaw dominance will
be studied in Chapter 5. In the former case there is a simple relationship between the left- and
right-handed sectors, making comparison rather straightforward. The constraints from LFV,
0νββ and colliders can be combined to restrict the allowed parameter space. In the context
of type I dominance the previously overlooked so-called “mixed” λ− and η-diagrams for 0νββ,
proportional to the active-sterile mixing, will be shown to be non-negligible. This will be
backed up with a numerical study of a specific matrix texture, where the various bounds from
lepton flavour violating processes are explicitly taken into account. The possible observation
of the inverse of the λ-diagram at a linear collider running in electron-electron mode will also
be discussed.

In summary, this thesis presents a phenomenological analysis of new physics models with ster-
ile neutrinos at different mass scales. Chapter 2 provides the necessary theoretical background;
Chapter 3 summarises the various experimental signatures and hints for sterile neutrinos; 0νββ
and flavour flux ratios are discussed there in detail. Three different flavour symmetry models
accommodating sterile neutrinos are presented in Chapter 4, with further details in Appen-
dices B and C. Chapter 5 is a phenomenological study of lepton number and lepton flavour
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Flavour

symmetry

Left−right

symmetry

Neutrinoless

decay
double beta

neutrinos

Sterile

Seesaw

models

mass

Neutrino

mixing

Lepton

Figure 1.1: Graphic summarising the connections between the main topics of the thesis. The
dotted line refers to the fact that the sterile neutrinos in the left-right symmet-
ric model are not fully sterile; the dashed line connects two separate parts – this
connection will not be discussed.

violation in the left-right symmetric model, with a focus on 0νββ and inverse 0νββ, and Chap-
ter 6 presents the conclusions. A schematic representation of the most important aspects and
their relation to each other can be found in Fig. 1.1.

Parts of this thesis have been published before. Sections 3.2.2, 3.4.2, 4.2, Appendix C and
parts of Appendix B are based on Refs. [28, 29], in collaboration with Werner Rodejohann and
He Zhang. A summary of those works was presented at the FLASY conference in July 2012, and
can be found in the proceedings [30]. Sections 3.4.3, 3.5.2 and 4.3 are based on collaboration
with Rabindra Mohapatra and Werner Rodejohann, published in Ref. [31]. Parts of Section 5.6
(and Appendix E) have been published as Ref. [32], with Luis Dorame and Werner Rodejohann.
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Chapter 2

Beyond the Standard Model with sterile
neutrinos

Active neutrinos participate in weak interactions mediated by gauge bosons, whereas sterile
neutrinos have no interactions with SM particles besides through mixing.1 In order to provide
a theoretical background for sterile neutrinos it is appropriate to briefly review the lepton sector
of the SM. Extensions to the SM that give neutrinos mass through the introduction of sterile
neutrinos will be focussed on here; variants of those models will be used later in the thesis.

2.1 Fermion masses in the Standard Model

Standard Model fermions receive masses via the so-called Higgs mechanism. The Yukawa
interaction between the Higgs doublet Φ = (φ+, φ0)T and the SM flavour eigenstate fermion
fields is

LY = −Q′
LYuΦ̃u′R −Q

′
LYdΦd

′
R − L

′
LYℓΦℓ

′
R + h.c. , (2.1)

where Yu,d,ℓ are Yukawa coupling matrices, Φ̃ = iσ2Φ
∗, and the fermions are grouped into

left-handed SU(2) doublets and right-handed SU(2) singlets, viz.

L′
Li =

(

ν ′L
ℓ′L

)

i

∼ (2,−1) , Q′
Li =

(

u′L
d′L

)

i

∼ (2, 1

3
) ,

ℓ′Ri ∼ (1,−2) , u′Ri ∼ (1, 4

3
) , d′Ri ∼ (1,−2

3
) ,

(2.2)

where i = 1, 2, 3. The subscripts L and R are associated with the projection operators PL,R =
1
2(1 ∓ γ5) and the numbers in brackets indicate the charges under SU(2)L ⊗ U(1)Y , with
electric charge given by Q = T 3

L + Y/2. Note that the SM Lagrangian conserves both total
lepton number, i.e., the number of leptons nℓ′ minus the number of anti-leptons nℓ̄′ ,

Ltot ≡ nℓ′ − nℓ̄′ , (2.3)

as well as individual family lepton numbers Le, Lµ and Lτ , where each charged lepton ℓ′ (anti-
lepton ℓ̄′) and its associated neutrino ν ′ℓ (anti-neutrino ν̄ ′ℓ) are assigned Lℓ = +1 (Lℓ̄ = −1).

Once the Higgs field develops a non-zero vacuum expectation value (VEV) 〈Φ〉 = (0, v/
√

2)T ,
(v = 246 GeV) the electroweak symmetry is broken down to U(1)Q and the quarks and charged
leptons receive mass. The relevant mass matrices are

Mu =
v√
2
Yu, Md =

v√
2
Yd and Mℓ =

v√
2
Yℓ ; (2.4)

1In principle they could interact through Yukawa couplings to the Higgs boson and/or via gravity.
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Chapter 2 Beyond the Standard Model with sterile neutrinos

the physical masses are obtained by rotating the fields by unitary matrices, i.e.,

u′L,R = V u
L,RuL,R , d′L,R = V d

L,RdL,R , and ℓ′L,R = V ℓ
L,RℓL,R , (2.5)

leading to

V u†
L YuV

u
R = diag(mu,mc,mt) , and V d†

L YdV
d
R = diag(md,ms,mb) , (2.6)

for the quarks and

V ℓ†
L YℓV

ℓ
R = diag(me,mµ,mτ ) (2.7)

for the charged leptons.

Since both up and down type quarks have mass, the quarks can mix flavours in the hadronic
charged current interaction via the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix, de-

fined as VCKM ≡ V d†
L V u

L . The existence of three generations of quarks with different masses is
required for CP violation, and the complex phase δCP of VCKM is the only known source of CP
violation in the SM. The elements of the CKM matrix have been measured to relatively high
precision [33]: the matrix is close to unity, with small off-diagonal entries. Note that models
with four chiral generations are excluded (at ∼ 5σ) by a combination of electroweak precision
observables and the latest Higgs results [34].

Despite the remarkable success of the SM it cannot accommodate massive neutrinos. Indeed,
from the description given above it is evident that there are no right-handed neutrinos in the
model, so that dimension-four neutrino mass terms analogous to those for the quarks and
charged leptons in Eq. (2.1) are not allowed. This means that the leptonic charged current is
flavour diagonal. However, the established phenomenon of neutrino oscillations (see Section 3.1)
requires massive neutrinos and therefore an extension of the SM. Several different models have
been proposed and will be reviewed in the following section.

2.2 Neutrino mass in extensions of the Standard Model

Dirac couplings to the Higgs boson [cf. Eq. (2.1)] are responsible for the masses of the quarks
and charged leptons in the SM. Augmenting the SM with right-handed neutrinos would allow
similar Dirac mass terms for neutrinos, however, this would not explain their smallness. Indeed,
light active neutrino masses are commonly believed to be the low-energy manifestation of some
new high-energy theory. In that sense, if the SM is treated as an effective low-energy theory one
can write down a non-renormalisable dimension-five operator that gives neutrinos a Majorana
mass: remarkably there is only one such operator in the SM,

Ld=5 =
1

2Λ
(L

′
LΦ̃)Yν(Φ̃TL′

L
c
) + h.c.

〈Φ〉=v−−−−→ ν ′Lmνν
′
L

c
+ h.c., (2.8)

first written down by Weinberg [35]. Here Yν is a dimensionless matrix of couplings and Λ is
the scale of new physics, which once integrated out leads to a neutrino mass matrix mν given
by

mν = Yν
v2

2Λ
. (2.9)

The Weinberg operator violates lepton number Ltot by two units, and the smallness of neutrino
mass is explained by the large scale Λ. That neutrino mass allows for neutrino mixing can be
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2.2 Neutrino mass in extensions of the Standard Model

seen from the leptonic charged current interaction, which in the diagonal mass basis is given
by

Llep
CC =

g√
2
ℓLγ

µV ℓ†
L VννLW

−
Lµ + h.c., (2.10)

with Vν the matrix diagonalising mν via V †
ν mνV

∗
ν = diag(m1,m2,m3), V

ℓ
L defined in Eq. (2.7)

and mi (i = 1, 2, 3) the light neutrino masses. The product

Ũ = V ℓ†
L Vν

is responsible for neutrino oscillations and is commonly referred to as the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [36–38], which turns out to be quantitatively very different
from the nearly-diagonal CKM matrix. Experimental constraints on the PMNS mixing matrix
will be discussed in Sect 3.1. The various UV completions of the operator in Eq. (2.8) are
referred to as the seesaw mechanism(s) (see the review in Ref. [39]). The type I and type II
seesaw models will be employed later in Chapters 4 and 5 and are reviewed in detail here; other
variants are also briefly mentioned.

2.2.1 Type I seesaw model

Lagrangian and mass scales

Extending the particle content in Eq. (2.2) by ns sterile right-handed neutrinos2 ν ′Ri ∼ (1,0),
of mass Mi (i = 1, 2, . . . , ns) results in the Lagrangian

Ltype I = Lkin − L
′
LYℓΦℓ

′
R − L

′
LYDΦ̃ν ′R − 1

2
ν ′R

cMRν
′
R + h.c.,

〈Φ〉=v−−−−→ Lkin − L
′
LMℓℓ

′
R − L

′
LMDν

′
R − 1

2
ν ′R

cMRν
′
R + h.c.,

(2.11)

which after symmetry breaking leads to an arbitrary 3×ns Dirac mass matrix MD = v/
√

2YD

for neutrinos (see Fig. 2.1), i.e., MD is expected to be at the electroweak scale of O(100) GeV.
The scale of the symmetric ns × ns Majorana mass matrix MR is as yet unknown and is
not protected by any symmetry, since right-handed neutrinos are gauge singlets. One might
“naturally” expect MR to lie at the Planck scale or GUT scale, but this naturalness argument
could also be turned around since setting MR to zero in fact increases the symmetry of the
Lagrangian in Eq. (2.11) [40]. Note that the decay width of the Z boson observed at LEP [41]
implies that any additional active neutrinos must be at least half as heavy as mZ , but sterile
neutrinos can in principle have any mass scale. The undetermined mass scale MR is the main
subject of this thesis: models which allow for small MR (light sterile neutrinos) will be focussed
on.

In the basis (ν ′L, ν
′
R

c) of active and sterile states, the symmetric (3 + ns)× (3 + ns) neutrino
mass matrix is

Mν =

(

0 MD

MT
D MR

)

, (2.12)

and the resulting mass spectrum depends on the relative magnitudes of MD and MR. There
are several distinct possibilities:

2Since those fields are gauge singlets, it is possible to add an arbitrary number to the SM without creating
anomalies.
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Chapter 2 Beyond the Standard Model with sterile neutrinos

νL νL

NR NR

〈Φ〉 〈Φ〉

Figure 2.1: Feynman diagram for the type I seesaw model.

• The seesaw case: MD ≪ MR

This is the usual type I seesaw model [3–7], with MR near the GUT scale [14] of roughly
1014 GeV, so that the entries of MD are much less than the eigenvalues of MR and the
matrix Mν in Eq. (2.12) can be block-diagonalised [42–44] via

W ≡
(

V ν
L

V ν
R

)

=

(

U S
T V

)

≃
(

1− 1
2BB

† B
−B†

1− 1
2B

†B

)(

Vν 0
0 VR

)

, (2.13)

to W †MνW
∗ = diag(m1,m2,m3,M1,M2, . . . ,Mns), with

B = MDM
−1
R + O

(

M3
D(M−1

R )3
)

, (2.14)

and WW † = 1. Note that V ν
L = (U S) and V ν

R = (T V ) are unitary 3 × 6 matrices.
This yields the famous seesaw formula,

mν = −MDM
−1
R MT

D + O
(

M4
D

M3
R

)

, (2.15)

which means that light neutrinos acquire mass after the heavy neutrinos have been in-
tegrated out. Note that at least two sterile neutrinos are required to account for the
mass-squared differences of active neutrinos (cf. Section 3.1), and that the higher order
term in Eq. (2.15) is negligible in the usual seesaw case. The unitary mixing matrices Vν

and VR are defined by

mν = Vν diag(m1,m2,m3)V
T
ν ,

MR = VR diag(M1,M2, . . . ,Mns)V
T
R ,

(2.16)

describing the mixing amongst light active neutrinos and heavy right-handed neutrinos,
respectively. The matrix VR is unphysical, however, so that one can always go to a basis
where MR is diagonal.3 The mixing between active and sterile neutrinos is negligible, i.e.,
MD/MR ≃ 10−12, and can indeed be disregarded in models with MR > O(keV), barring
cancellations. As one example, in SO(10) models heavy sterile neutrinos are placed into
a 16-dimensional representation along with all SM particles, leading to mass relations
between the quark and lepton sectors [14, 45].

3That is not the case in the LRSM (Section 2.3.2), due to the presence of right-handed currents, or in cer-
tain flavour symmetry models where right-handed neutrino transform non-trivially under the flavour group
(Section 4.2).
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2.2 Neutrino mass in extensions of the Standard Model

• The pure Dirac case: MR = 0
Although perhaps theoretically unappealing, it is possible to have only the term pro-
portional to YD in Eq. (2.11), so that neutrinos are Dirac particles. The smallness of
neutrino mass must then be explained by tiny Yukawa couplings of order 10−12, which
could be explained by higher-dimensional operators [46] or in theories with large extra
dimensions [47]. However in theories without a conserved lepton number the tree level
Dirac states will get tiny Majorana corrections at the one-loop level, making neutrinos
effectively pseudo-Dirac (see Section 4.3.2).

• The pseudo-Dirac case: MD ≫ MR

Here one cannot use the expansion in Eq. (2.13). As an instructive example, in the case
of one generation the approximate (real) mass matrix is

mν = mD

(

0 1
1 ǫ

)

, (2.17)

which gives the eigenstates m± = mD (±1 + ǫ/2) and nearly maximal mixing (θ ≃ π/4).
The resulting neutrino eigenstate is termed pseudo-Dirac [24, 25, 48, 49], with the small
term ǫ splitting a Dirac neutrino into two Majorana neutrinos. A variation of the pseudo-
Dirac case is the so-called “schizophrenic” or bimodal (BM) scenario, proposed in Ref. [27],
where all flavour eigenstates receive comparable contributions from both Dirac and Ma-
jorana terms. Interesting signatures result, and will be discussed in the context of 0νββ
and astrophysical neutrinos in the next chapter; a concrete model will be presented in
Section 4.3.

• The pure Majorana case: MD = 0
Here there is no mixing between the active and sterile sectors, so that the sterile neutrino
is stable and is an example of fermionic dark matter. This case will not be discussed
further here.

• The intermediate or mixed case: MD ≃ MR

In this phenomenologically interesting case one can expect large mixing between active
and sterile states. The block-diagonalisation in Eq. (2.13) is still technically valid as long
as MD < MR, since the remaining off-diagonal terms BM2

D/MR ≃M3
D/M

2
R are still much

smaller than the mass difference between the active and sterile neutrinos. However, the
higher order terms in Eqs. (2.13), (2.14) and (2.15) are sizeable and must be taken into
account when calculating both active-active and active-sterile neutrino mixing.4 Those
effects are described below, and different ways of achieving this scenario in models will
be summarised. In order to keep neutrinos light there are two main alternatives: (i) MR

and MD are both situated at eV or sub-eV scales, so that mν ≃ M2
D/MR ≃ 0.05 eV, as

required;5 or (ii) MD is at the usual electroweak scale and MR is only slightly heavier
(around the TeV scale), so that cancellations are needed in order to suppress active
neutrino masses. Both options will be considered in this thesis: in Chapter 4 a concrete
flavour symmetry model with light sterile neutrinos and large mixing is presented and in
Chapter 5 the case of cancellations is studied in the LRSM context.

4Note that in actual numerical calculations it is often more convenient to simply numerically diagonalise the
full neutrino mass matrix Mν in Eq. (2.12).

5There are also various subcases in which the sterile neutrinos are at different mass scales, see Section 2.2.1
and the model in Section 4.2.3.
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Chapter 2 Beyond the Standard Model with sterile neutrinos

Neutrino mixing in the type I seesaw model

From Eq. (2.13), the Majorana neutrino mass eigenstates ν = νL + νc
L and N = NR +N c

R are
defined by

ν ′L = UνL + SN c
R , and ν ′R = T ∗νc

L + V ∗NR , (2.18)

with the 3×ns (ns ×3) matrix S (T ) describing the mixing between active and sterile neutrino
states, see Eq. (2.13). This mixing is the only way to probe the existence of the sterile neutrinos,
and will be discussed in more detail in Chapter 3. Note that UU †+SS† = 1 and TT †+V V † = 1

[cf. Eq. (2.55)]. The leptonic charged current in Eq. (2.10) now becomes

Llep
CC =

g√
2
ℓLγ

µV ℓ†
L (UνL + SN c

R)W−
Lµ + h.c. , (2.19)

so that the (non-unitary) PMNS mixing matrix describing the mixing of active neutrino flavours
is

Ũ ≡ V ℓ†
L U ≃ V ℓ†

L

(

1− 1
2BB

†
)

Vν , (2.20)

whereas the mixing between sterile neutrinos is

V =
(

1− 1
2B

†B
)

VR . (2.21)

In the basis where the charged leptons are diagonal the mixing between the active neutrino να

(α = e, µ, τ) and the sterile neutrino N c
Ri (i = 1, 2, . . . , ns) is given by

Sαi ≡ [BVR]αi ≃
[

MD(V ∗
RM̃

−1
R V †

R)VR

]

αi
=

[MDV
∗
R]αi

Mi
, (2.22)

where M̃−1
R = diag(M−1

1 ,M−1
2 ,M−1

3 ), illustrating that active-sterile mixing is typically de-
scribed by a ratio of two scales, MD and MR. The mixing between each sterile neutrino N c

Ri

and the entire active sector is
S2

i ≡
∑

α=e,µ,τ

|Sαi|2 . (2.23)

The seesaw formula in Eq. (2.15) can be re-expressed as

[mν ]αβ = −
[

MDM
−1
R MT

D

]

αβ
= −

∑

i=1,2,3

SαiSβiMi , (2.24)

indicating that each sterile neutrino N c
Ri makes a contribution to the active neutrino masses of

order S2
iMi.

A useful parameterisation of the type I seesaw formula in Eq. (2.15) is the orthogonal param-
eterisation, first written down in Ref. [50], which allows one to express the Dirac mass matrix
in terms of a complex orthogonal matrix O, i.e.,

MD = i Vνm̃
1/2
ν OM̃

1/2
R V T

R , OOT = OTO = 1 , (2.25)

with m̃ν = diag(m1,m2,m3) and M̃R = diag(M1,M2,M3). In the usual seesaw model this
expression can be simplified by setting VR = 1, in the LRSM the full formula should be used.
Put into words, Eq. (2.25) is a way of parameterising the unknown right-handed sector via six
real (three complex) parameters in O and three real masses in M̃R, and proves to be convenient
for finding Dirac mass matrix textures that reproduce the light neutrino mass and mixing
observables for a specific choice of sterile neutrino mass scale(s).
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2.2 Neutrino mass in extensions of the Standard Model

Light sterile neutrinos in type I seesaw models

The seesaw formula in Eq. (2.15) results in light active neutrino masses that are roughly
mν ≃ M2

D/MR, sterile neutrinos of mass MR and active-sterile mixing of order MD/MR

[cf. Eq. (2.22)]. Obtaining light sterile neutrinos (MR) while keeping their mixing with the
active sector (MD/MR) large essentially requires a mechanism of suppressing both the Dirac
and Majorana mass scales, leading to small MR as well as MD ≃ MR. If all of the sterile
neutrinos are light this is essentially a “mini-seesaw” mechanism [51, 52], where both MD and
MR are much smaller than usually expected. At the renormalisable level MD comes from the
Yukawa coupling to the electroweak VEV, v ≃ 246 GeV; the required suppression could there-
fore be achieved by introducing higher-dimensional operators. On the other hand, it is also
conceivable to have sterile neutrinos at different mass scales, preserving some features of the
high-energy seesaw but at the same time having one (or more) sterile neutrino(s) to explain
various experimental anomalies (see Chapter 3). The seesaw then proceeds in stages: the heav-
ier particles are integrated out first, followed by the lighter ones, but if S2

i Mi is small enough
the sterile neutrino N c

Ri is decoupled since it has negligible effect on neutrino masses.

As an explicit example, with three right-handed neutrino mass eigenstates NRi (i = 1, 2, 3)
and M1 ≪M2,3, the full 6 × 6 neutrino mass matrix in the basis where MR is diagonal is

M6×6
ν =

















0 0 0 [mD]11 [MD]11 [MD]12
0 0 0 [mD]21 [MD]21 [MD]22
0 0 0 [mD]31 [MD]31 [MD]32

[mD]11 [mD]21 [mD]31 M1 0 0
[MD]11 [MD]21 [MD]31 0 M2 0
[MD]12 [MD]22 [MD]32 0 0 M3

















, (2.26)

and integrating out NR2 and NR3 leads to the 4 × 4 matrix

M4×4
ν =

(

−MDM̃
−1
R MT

D mD

mT
D M1

)

, (2.27)

where M̃R = diag(M2,M3). If M1 ≫ mD one can apply the seesaw formula again to arrive at
the light neutrino mass matrix

mν ≃ −MDM̃
−1
R MT

D − mDm
T
D

M1
. (2.28)

The mixing between N c
R1 and the active neutrinos is mD/M1, and if it is small enough the

second term in Eq. (2.28) is much smaller than the first so that the sterile neutrino N c
R1

decouples from the seesaw. There have been several proposals in the literature as to how this
can be achieved in a concrete model, some of which are summarised below:

• Extra dimensional theories
By localising one of the right-handed neutrinos on a brane separated from the SM brane
it is possible to suppress the mass of NR due to small wave function overlap. The “split
seesaw” model was first proposed in Ref. [53], in the context of keV-scale warm dark
matter, and later extended to include an A4 symmetry in Ref. [54]. The right-handed
neutrino mass is suppressed by roughly e−2m̃k, where m̃ is the bulk mass of NR and k is
the distance between the branes.
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Chapter 2 Beyond the Standard Model with sterile neutrinos

• Flavour symmetries
Flavour symmetries such as Le−Lµ−Lτ [25, 55] predict one of the sterile neutrino masses
to be exactly zero; small breaking of the symmetry (either explicitly or via loop effects)
will then generate a small but non-zero mass. This idea has been pursued in the context
of keV dark matter [56–58] and could in principle be used for light sterile neutrinos at
other mass scales.

• The Froggatt-Nielsen mechanism
The Higgs mechanism described in Section 2.1 above does not predict the masses of
fermions: those are governed by the magnitude of the Yukawa couplings Yu,d,ℓ in Eq. (2.4).
For that reason the FN mechanism [59] attempts to predict fermion mass hierarchies by
introducing a new high-energy sector of heavy scalars and fermions charged under a new
U(1)FN symmetry. Integrating out the heavy fermions leads to a strong mass suppression,
λ ≃ 〈Θ〉/Λ, where Θ is the FN scalar field and Λ the cut-off scale of the theory. This
approach is often used to explain the pattern of quark and/or charged lepton masses in
flavour symmetry models, in most cases without detailed description of a UV completion.

An interesting point about the FN mechanism applied to the seesaw model is that the
U(1)FN charges of right-handed neutrinos drop out of the seesaw formula [60], so that
light neutrino masses are unaffected. This idea will be studied in a concrete A4 flavour
symmetry model in Chapter 4, and it will be shown that several different mass spectra
may be achieved. Note that since only right-handed fields may be charged under the
U(1)FN symmetry this scenario is incompatible with left-right symmetry, see Ref. [60].

• Extended seesaw mechanisms
In this case one simply extends the type I seesaw model with additional singlet states.
In Refs. [61, 62] a concrete model in that regard is described, with three right-handed
neutrinos NRi and another singlet χR. The 7 × 7 neutrino mass matrix in the basis
(νL, N

c
R, χ

c
R) is

M7×7
ν =





0 MD 0
MT

D MR MT
S

0 MS 0



 , (2.29)

where certain mass matrix entries are forbidden by flavour symmetries. In the case where
MR ≫MS > MD, block-diagonalisation leads to the effective neutrino mass matrix

M4×4
ν = −

(

MDM
−1
R MT

D MDM
−1
R MT

S

MS

(

M−1
R

)T
MT

D MSM
−1
R MT

S

)

, (2.30)

in the basis (νL, χ
c
R). With MS larger than MD one can apply the seesaw formula again

to obtain

mν ≃MDM
−1
R MT

S

(

MSM
−1
R MT

S

)−1
MS

(

M−1
R

)T
MT

D −MDM
−1
R MT

D , (2.31)

for the active neutrinos and

ms ≃ −MSM
−1
R MT

S , (2.32)

for the sterile ones. The active-sterile neutrino mixing is controlled by

B = MDM
−1
R MT

S

(

MSM
−1
R MT

S

)−1
. (2.33)
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2.2 Neutrino mass in extensions of the Standard Model

Note that the right-hand-side of Eq. (2.31) does not vanish since MS is a vector rather
than a square matrix; if MS were a square matrix this would lead to an exact cancellation
between the two terms of Eq. (2.31).

This model is a “minimal extension” of the type I seesaw in the sense that one needs at
least three heavy neutrinos to suppress the masses of both active and sterile neutrinos.
Since M4×4

ν has rank three, one of the light neutrinos is massless, which means that two
of the heavy right-handed neutrinos give rise to two light active neutrinos, while the third
one is responsible for the mass of νs. The implication is that in order to accommodate
more than one light sterile neutrino, more than three heavy neutrinos are required. In
addition, this scenario will not be gauge anomaly free if embedded into a GUT, since
there is only one generation of χR.

2.2.2 Type II seesaw model

It is also possible to generate the dimension-five operator in Eq. (2.8) by the exchange of heavy
Higgs triplets of SU(2)L, without introducing right-handed neutrino states: this is known as
the type II seesaw [8–13] mechanism, depicted in Fig. 2.2. The triplets can be written in the
matrix representation as

∆ ≡
(

δ+/
√

2 δ++

δ0 −δ+/
√

2

)

∼ (3,1), (2.34)

and the neutrino mass term comes from the Lagrangian

Ltype II = Lkin + Y∆L′c
Liσ2∆L

′
L − V (Φ,∆), (2.35)

where Y∆ is a symmetric matrix of Yukawa couplings and

V (Φ,∆) = −m2
ΦΦ†Φ +m2

∆Tr∆†∆ + (µ∆ΦT iσ2∆
∗Φ + h.c.) + quartic terms. (2.36)

The doublet Φ and the triplet ∆ obtain non-zero VEVs 〈Φ〉 = vΦ ≫ 〈δ0〉 = v∆ = µ∆v
2
Φ/

√
2m2

∆,
leading to a seesaw type relation for neutrino mass, viz.

mν = ML =
√

2Y∆v∆ = Y∆
µ∆v

2
Φ

m2
∆

. (2.37)

The electroweak vacuum now becomes

v2 ≡ v2
Φ + 2v2

∆ ≃ (246 GeV)2 , (2.38)

which leads to a modification of the tree-level ρ parameter,

ρtree ≡
m2

WL

m2
Z cos2 θW

≃ 1 − 2v2
∆

v2
φ

; (2.39)

the experimental constraint ρexp = 1.0008+0.0017
−0.0007 [33] corresponds to the bound v∆ <∼ 8 GeV on

the triplet VEV. This model has various other experimental signatures [39], some of which will
be discussed in the following chapter. Examples include tree-level mediation of LFV processes
or collider signatures.

Note that in principle one could have both type I and type II seesaw terms present,

mν = ML −MDM
−1
R MT

D , (2.40)

leading to an interplay of the different contributions to neutrino mass: the type I+II seesaw
mechanism. Since that scenario is naturally included in the LRSM it will be discussed in more
detail in Section 2.3.2 below.
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Chapter 2 Beyond the Standard Model with sterile neutrinos

〈Φ〉 〈Φ〉

νL νL

∆

µ∆

Y∆

Figure 2.2: Feynman diagram for the type II seesaw model.

2.2.3 Other neutrino mass models

Extended seesaw models

As already discussed above in the context of sterile neutrinos, the usual type I seesaw can be
extended in a variety of different ways. In the general case with n right-handed neutrinos NRi

and m additional singlets χRj one has a (3 + n+m) × (3 + n+m) mass matrix,

Mν =





ML MD MDS

MT
D MR MRS

MT
DS MT

RS MS



 , (2.41)

in the basis (νL, N
c
R, χ

c
R), where the diagonal blocks are symmetric Majorana mass matrices and

the off-diagonal ones arbitrary Dirac mass matrices. Setting some of the blocks to zero leads
to the double [63, 64], inverse and linear [65, 66] seesaw schemes, depending on the relevant
magnitude of the various blocks. As one example, in the inverse seesaw mechanism one sets
MDS = MR = ML = 0 in Eq. (2.41), and with the hierarchy MS ≪ MD ≪ MRS the neutrino
mass matrix becomes

mν = −MD(MT
RS)−1MSM

−1
RSM

T
D . (2.42)

The smallness of neutrino mass now comes directly from MS , and lepton number is indeed
conserved in the limit of MS → 0.

Type III seesaw

Another alternative is the type III seesaw mechanism [67], in which a set of Majorana SU(2)L
fermion triplets Σ couple with the SM lepton doublets via fΣLLΦΣ, generating light seesaw
neutrino masses. The model is formally analogous to type I seesaw: the neutral components
of the fermion triplets play the role of heavy neutrinos. However, since those particles are
not gauge singlets they will have interactions with gauge bosons and thus provide various
experimental signatures (see Ref. [39] for a review). The type III seesaw model will not be
discussed further in this thesis.
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2.3 The left-right symmetric model

Radiative neutrino mass models

It is also conceivable that small neutrino masses are generated at a lower scale, with the required
suppression originating from loops. The most famous model in that regard is the two-loop Zee-
Babu model [68–70], in which additional singly and doubly charged SU(2)L singlet scalars
h+ and k++ are introduced. Here one expects rich phenomenology, both in 0νββ and LFV
experiments as well as at colliders [71, 72], illustrating the connection between neutrino mass
models and other observables. Note that the Zee-Babu model is just another way of generating
the dimension-five operator in Eq. (2.8), at the two-loop level. In fact several authors have
performed systematic studies of the Weinberg operator at the one-loop level [73] as well as of
loop-induced operators with even higher dimensions [74, 75].

There are also models connecting loop suppressed neutrino mass with dark matter, such as
the “scotogenic” model in Ref. [76, 77]. In that case there is usually a discrete Z2 symmetry
introduced to separate the visible and hidden sectors. This idea has also been extended to
include an A4 flavour symmetry in order to predict neutrino mixing patterns [78]. A related
model [79, 80] with only one right-handed neutrino and two Higgs doublets exists; in that case
the atmospheric and solar mass scales are generated at the tree level and loop level, respectively,
providing a natural mass hierarchy that fits the data (see Section 3.1). As in any two Higgs
doublet model, the misalignment of charged lepton Yukawa couplings leads to various flavour
violating effects.

2.3 The left-right symmetric model

2.3.1 Background and motivation

It is well known that the weak interactions of the SM violate parity maximally, so that left-
handed particles participate in gauge interactions with W bosons, while right-handed particles
do not. The particle assignments and interactions presented in Eqs. (2.2) and (2.19) show that
explicitly. Historically, the V − A structure of the model was inspired by the measurement of
the neutrino helicity [81], which implied its masslessness. The LRSM is an attempt to connect
those issues: the restoration of parity (the introduction of V + A interactions) is linked to
neutrino mass. Put simply, the central idea is that at some high energy scale parity symmetry
is restored, so that right-handed fermions are placed on an equal footing with their left-handed
counterparts. Right-handed neutrinos are necessary ingredients, and neutrino mass results.

The original model was first constructed by several authors [82–85]. In those papers the
parity symmetry is broken by Higgs doublets, which would lead to Dirac neutrino masses. The
connection between light (Majorana) neutrino mass and the right-handed scale was made with
the introduction of Higgs triplets in Ref. [7], leading to the relation mν ∝ 1/mWR

, where mWR

is the mass of the right-handed W boson. Massless neutrinos are thus recovered in the limit
mWR

→ ∞, and the presence of Majorana neutrinos leads to phenomena such as 0νββ, LFV
and collider production of WR, first discussed in Refs. [11, 86, 87].

As is often the case in new physics models, the requirement of experimental accessibility at
the LHC (mWR

≃ TeV) leads to several undesirable features in the model. This is largely due
to the existence of tree level flavour changing neutral currents [88] mediated by the neutral
component of the Higgs bi-doublet H0

1 , which place severe constraints on the right-handed
scale [89].6 Explicitly, mH0

1
> 25 TeV, so that one has to accept a certain amount of fine-

6The physical Higgs state H0
1 is a linear combination of the φ0

1 and φ0
2 fields, see Eq. (2.46).
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Chapter 2 Beyond the Standard Model with sterile neutrinos

tuning in order to keep the right-handed scale low enough for observability.7 In addition, a
detailed analysis [91] of the Higgs sector reveals a “VEV seesaw” relation between parameters
at widely differing scales, which will be discussed in Section 2.3.2.

Following Ref. [92], right-handed neutrinos in the LRSM can be termed “weakly sterile”,
to be distinguished from those introduced in the pure type I seesaw model in Section 2.2.1,
which are “fully sterile”. The former are charged under a new gauge group but do not feel
SM interactions, whereas the latter feel no gauge interactions at all. For that reason the
phenomenology of the LRSM is necessarily richer than the type I seesaw model. The features
of the type I (heavy neutrinos) and type II (Higgs triplets) seesaw models are all contained
within the LRSM. Furthermore, the seesaw terms can be related by the assumption of a discrete
symmetry, which allows one to partially solve the type I+II seesaw relation in Eq. (2.40) [93, 94].

The theoretical background for the LRSM is introduced here, and will be applied in the
phenomenological analysis of Chapter 5.

2.3.2 Theoretical details

The LRSM is constructed by extending the SM to include the gauge group SU(2)R (with gauge
coupling gR 6= gL), and right-handed fermions are grouped into doublets under this group. The
fermion particle content under SU(2)L ⊗ SU(2)R ⊗ U(1)B−L becomes8

L′
Li =

(

ν ′L
ℓ′L

)

i

∼ (2,1,−1) , L′
Ri =

(

ν ′L
ℓ′L

)

i

∼ (1,2,−1) , (2.43)

Q′
Li =

(

u′L
d′L

)

i

∼ (2,1, 1

3
) , Q′

Ri =

(

u′R
d′R

)

i

∼ (1,2, 1

3
) , (2.44)

with the electric charge given by Q = T 3
L+T 3

R+ B−L
2 and i = 1, 2, 3. The model is similar to the

type I seesaw case discussed above, except that the right-handed neutrinos are no longer gauge
singlets, so that interactions with new right-handed gauge bosons are possible, and ns = 3 due
to the symmetry. An extended Higgs sector is also needed to break the symmetry such that
the correct low energy observables are reproduced.

In order to allow Majorana mass terms for neutrinos one introduces the B−L breaking Higgs
triplets [7]

∆L,R ≡
(

δ+L,R/
√

2 δ++
L,R

δ0L,R −δ+L,R/
√

2

)

, (2.45)

with ∆L ∼ (3,1,2) and ∆R ∼ (1,3,2); the electroweak symmetry is broken by the bi-doublet
scalar

φ ≡
(

φ0
1 φ+

2

φ−1 φ0
2

)

∼ (2,2,0) . (2.46)

The relevant Lagrangian in the lepton sector is

Llep
Y = − L

′
L(fφ+ f̃ φ̃)L′

R − L
′c
Liσ2∆LhLL

′
L − L

′c
Riσ2∆RhRL

′
R + h.c., (2.47)

where φ̃ ≡ σ2φ
∗σ2 and f, g and hL,R are matrices of Yukawa couplings. The additional assump-

tion of a discrete LR symmetry makes the gauge couplings equal (gL = gR ≡ g), leading to

7One way out is to introduced an additional discrete symmetry and another bi-doublet, as presented in Ref. [90].
8Notations and conventions are taken from Ref. [95].
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2.3 The left-right symmetric model

relations between the Yukawa coupling matrices in the model. With a discrete parity symmetry
it follows that

P : LL ↔ LR , φ↔ φ† , ∆L ↔ ∆∗
R ⇒ hL = h∗R , f = f † , f̃ = f̃ † ,

with a charge conjugation symmetry one has

C : LL ↔ (LR)c , φ↔ φT , ∆L ↔ ∆R ⇒ hL = hR , f = fT , f̃ = f̃T .

Applying these symmetries simplifies various expressions in the model, as will be discussed
later.

Making use of the gauge symmetry to eliminate complex phases, the most general vacuum is

〈φ〉 =

(

κ1/
√

2 0

0 κ2e
iα/

√
2

)

, 〈∆L〉 =

(

0 0

vLe
iθL/

√
2 0

)

, 〈∆R〉 =

(

0 0

vR/
√

2 0

)

. (2.48)

After spontaneous symmetry breaking, the charged lepton mass matrix is

Mℓ =
1√
2
(κ2e

iαf + κ1f̃), (2.49)

which can be diagonalised as in Eq. (2.7). With a discrete P (C) symmetry, Mℓ becomes
Hermitian (symmetric), so that the condition V ℓ

L = V ℓ
R (V ℓ

L = V ℓ
R
∗
) holds. The neutrino mass

Lagrangian contains both type I and type II seesaw terms, viz.

Lν
mass = −1

2n
′
LMνn

′c
L + h.c. = −1

2

(

ν ′L ν ′R
c
)

(

ML MD

MT
D MR

)(

ν ′L
c

ν ′R

)

+ h.c. , (2.50)

with

MD =
1√
2
(κ1f + κ2e

−iαf̃) , ML =
√

2vLe
iθLhL , MR =

√
2vRhR . (2.51)

Once again, with a parity (charge conjugation) symmetry the condition MD = M †
D (MD =

MT
D) holds. Note that in the most general case the phase θL cannot be set to zero. Due to

the presence of the so-called “VEV seesaw” relation relating the various VEVs, one expects
x ≡ vLvR/κ

2
+ = O(1), since x is a function of (order one) couplings in the scalar potential [91].

However, from a purely phenomenological point of view, x can take any value between 0 and
1014 [93]. Assuming that ML ≪MD ≪MR, the light neutrino mass matrix can be written in
terms of the model parameters as

mν = ML −MDM
−1
R MT

D =
√

2vLe
iθLhL − κ2

+√
2vR

hDh
−1
R hT

D , (2.52)

where

hD ≡ 1√
2

κ1f + κ2e
−iαf̃

κ+
, κ2

+ ≡ |κ1|2 + |κ2|2 . (2.53)

The 6 × 6 neutrino mass matrix Mν in Eq. (2.50) can be diagonalised as in Eqs. (2.13) and
(2.16), where in this case the (physical) unitary matrix VR is the right-handed equivalent of
the PMNS matrix. The neutrino mass eigenstates n = nL + nc

L = nc are defined by

n′L =

(

ν ′L
ν ′R

c

)

= WnL =

(

U S
T V

)(

νL

N c
R

)

,

n′cL =

(

ν ′L
c

ν ′R

)

= W ∗nc
L =

(

U∗ S∗

T ∗ V ∗

)(

νc
L

NR

)

,

(2.54)
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Chapter 2 Beyond the Standard Model with sterile neutrinos

as before, and the unitarity of W leads to the useful relations

V ν
LV

ν†
L = UU † + SS† = 1 = V ν

RV
ν†
R = TT † + V V † ,

V ν
L V

ν†
R = UT † + SV † = 0 .

(2.55)

In the LRSM there is also a right-handed charged current interaction, so that Eq. (2.19) is
extended to

Llep
CC =

g√
2

[

ℓ′γµPLν
′W−

Lµ + ℓ′γµPRν
′W−

Rµ

]

+ h.c., (2.56)

in the flavour basis, where
(

W±
L

W±
R

)

=

(

cos ξ sin ξ eiα

− sin ξ e−iα cos ξ

)(

W±
1

W±
2

)

(2.57)

characterises the mixing between left- and right-handed gauge bosons, with

tan 2ξ = − 2κ1κ2

v2
R − v2

L

. (2.58)

With negligible mixing the gauge boson masses become

mWL
≃ mW1 ≃ g

2
κ+ and mWR

≃ mW2 ≃ g√
2
vR , (2.59)

and assuming that9 κ2 < κ1, it follows that

ξ ≃ −κ1κ2/v
2
R ≃ −2

κ2

κ1

(

mWL

mWR

)2

, (2.60)

so that the mixing angle ξ is at most the square of the ratio of left and right scales (mWL
/mWR

)2.
Although the experimental limit is ξ < 10−2 [33], for mWR

= O(TeV) one has ξ <∼ 10−3 [96],
and supernova bounds for right-handed neutrinos lighter than 1 MeV are even more stringent
(ξ < 3 × 10−5) [96, 97]. For small ξ the charged current in the mass basis becomes

Llep
CC =

g√
2

[

ℓLγ
µKLnL(W−

1µ + ξeiαW−
2µ) + ℓRγ

µKRn
c
L(−ξe−iαW−

1µ +W−
2µ)
]

+ h.c., (2.61)

an equation that will be used extensively in the phenomenological analysis of Chapter 5. Here
KL and KR are 3 × 6 mixing matrices

KL ≡ V ℓ†
L V ν

L , and KR ≡ V ℓ†
R V ν∗

R , (2.62)

with [using Eq. (2.55)] KLK
†
L = KRK

†
R = 1 and KLK

T
R = 0. The standard neutrino mixing

matrix is just the left half of KL, i.e., Ũ = V ℓ†
L U [cf. Eq (2.20)].

There is also a new neutral gauge boson, Z ′, which mixes with the standard model Z boson.
The mass eigenstates Z1,2 have the masses

mZ1 ≃ g

2 cos θW
κ+ ≃ mW1

cos θW
and mZ2 ≃ g cos θW√

cos 2θW
vR ≃

√

2 cos2 θW

cos 2θW
mW2 , (2.63)

where g = e/ sin θW and the U(1) coupling constant is g′ ≡ e/
√

cos 2θW . The mixing is also of
order (mWL

/mWR
)2, i.e.,

φ = −1

2
sin−1 g2κ2

+

√
cos 2θW

2c2W (m2
Z2

−m2
Z1

)
≃ −

m2
Z1

√
cos 2θW

m2
Z2

−m2
Z1

≃ −
√

cos 2θW

(

mZ1

mZ2

)2

. (2.64)

Eqs. (2.59) and (2.63) imply that mZ2 ≃ 1.7mW2 . The current limits [33, 98] on the neutral
gauge boson parameters are mZ′ > 1.162 TeV and |φ| < 1.2 × 10−3.

9That can be justified by assuming no cancellations in generating quark masses [89].
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2.4 Summary

2.4 Summary

The main message of this chapter is that the SM needs to be extended to accommodate massive
neutrinos, with a variety of existing models having been built for this purpose. New particles
introduced will invariably produce new experimental signatures, unless the scale of new physics
is very high and/or some symmetry forbids couplings to the active sector; the nature of those
signatures depends on whether the particles are gauge singlets or not. Models with “light”
sterile neutrinos have been focussed on, both as a prelude to the discussions of the next two
chapters and because they are in a sense the only “testable” form of sterile neutrinos. In-
deed, the only real phenomenological implication of extremely heavy sterile neutrinos is the
generation of the baryon asymmetry of the universe via leptogenesis (cf. Sect 3.6.3). The
LRSM, an extended gauge theory that naturally accommodates right-handed neutrinos, was
also introduced. The theoretical details outlined here support the analysis in Chapter 5. The
phenomenology of sterile neutrinos will be presented in the following chapter, with a view to
providing a solid motivation for the model building efforts of Chapter 4.

19



Chapter 2 Beyond the Standard Model with sterile neutrinos

20



Chapter 3

Phenomenology of sterile neutrinos

Sterile neutrinos at different mass scales have various phenomenological consequences, or, put
another way, can be used to explain various observed phenomena, depending on one’s view-
point. The observations serve as both motivations and tests for theoretical models. After an
introduction to oscillations amongst active neutrinos this chapter provides a systematic sum-
mary of the different signatures of sterile neutrinos, with a brief discussion of the experimental
situation in each case. The discussion merges a review of the literature with the original re-
search from Refs. [31, 99], found in Sections 3.2, 3.3, 3.4 and 3.5.2. For a comprehensive review
of this topic see Ref. [21].

3.1 Oscillations of active neutrinos

Neutrino oscillations provide proof that neutrinos are massive (see the review in Ref. [33]), so
that neutrino flavour eigenstates can be written as a linear combination of mass eigenstates,
viz.1

ν ′ℓ =
3
∑

i=1

Ũℓiνi , (3.1)

with ℓ = e, µ, τ . In the standard three-neutrino framework Ũ is a 3 × 3 unitary matrix [see
Eq. (2.20)], and the phenomenon of neutrino oscillations also means that lepton flavour is
violated in the charged current interaction in Eq. (2.10). When neutrinos propagate in a
vacuum, the probability of a neutrino of initial flavour α oscillating into a neutrino of flavour
β at the baseline L is given by

Pνα→νβ
≡ Pαβ = δαβ − 4

∑

i>j

Re
(

Ũ∗
αiŨαjŨβiŨ

∗
βj

)

sin2

(

∆m2
ijL

4E

)

+ 2
∑

i>j

Im
(

Ũ∗
αiŨαjŨβiŨ

∗
βj

)

sin

(

∆m2
ijL

2E

)

,

(3.2)

where ∆m2
ij ≡ m2

i −m2
j ; the oscillation probability for anti-neutrinos can be simply obtained

from Eq. (3.2) by the replacement Ũ → Ũ∗. In the standard parameterisation [33]

Ũ =





1 0 0
0 c23 s23
0 −s23 c23









c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13









c12 s12 0
−s12 c12 0

0 0 1









1 0 0

0 eiα/2 0

0 0 ei(β/2+δ)



 , (3.3)

1Active neutrinos are left-handed; the subscript L is dropped for convenience.
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Chapter 3 Phenomenology of sterile neutrinos

where cij ≡ cos θij, sij ≡ sin θij and θij (0 ≤ θij ≤ π/2) are the three mixing angles measured
in oscillation experiments, δ is the CP -violating Dirac phase and α and β are Majorana phases,
with 0 ≤ δ, α, β ≤ 2π. The diagonal phase matrix has been defined so that only α and β show
up in 0νββ, see Eq. (3.25). The experimental status of each of the six parameters in Ũ will be
discussed below.

The factorised form of Ũ is useful for interpreting the data and reflects the fact that it is
sufficient to consider two-neutrino mixing in most practical situations. The first matrix contains
the parameter θ23, which together with the mass-squared difference ∆m2

A has been measured in
experiments with atmospheric neutrinos (such as Super-Kamiokande [100]2) and in long baseline
accelerator experiments (such as K2K [101], T2K [102, 103] and MINOS [104]). The second
matrix depends on θ13, which is accessible to short baseline reactor experiments and has recently
been shown to be non-zero by the Daya Bay [105] and RENO [106] experiments, following on
from the earlier indications in the Double Chooz [107] reactor experiment and the T2K [107]
and MINOS [108] accelerator experiments. The third matrix contains the solar mixing angle
θ12, which along with ∆m2

S is measured in solar neutrino experiments such as SNO [109]3 and
Borexino [110, 111], as well as the long baseline reactor experiment KamLAND [112].

The mass eigenstates have been labelled by convention such that

∆m2
S ≡ ∆m2

21 and ∆m2
A ≡ |∆m2

31|, (3.4)

and the three independent mass-squared differences obey the relations

∆m2
21 ≪ |∆m2

31| ≃ |∆m2
32| . (3.5)

Although the oscillation term in Eq. (3.2) is insensitive to the sign of ∆m2
ij, matter effects

(the MSW [113, 114] effect) on the 1−2 mixing in the Sun have determined ∆m2
21 to be

positive-definite, which means that the electron neutrino νe is mostly made up of the lightest
mass eigenstate ν1. The sign of ∆m2

31 is not known: there are two possible arrangements for
the neutrino mass ordering, shown in Fig. 3.1. In the “normal” ordering (NO), the smallest
mass-squared difference is between the two lightest eigenstates so that a natural neutrino mass
hierarchy can be realised, whereas in the “inverted” ordering (IO), the smallest mass-squared
difference is between the two heaviest and almost degenerate eigenstates.

There are various proposals for determining the mass ordering in current and future oscillation
experiments. Since matter effects make νe heavier (and θ13 is now known to be non-zero) one can
study 1−3 mixing for neutrinos and anti-neutrinos, which will show opposite behaviour for the
different mass orderings. This is the same principle used to determined the sign of ∆m2

21 in the
Sun. Some ideas include studying the atmospheric neutrino flux with magnetised (INO [116])
or large scale (PINGU [117]) detectors,4 or using Earth matter effects with long-baseline (LBL)
accelerator experiments such as NOνA [118], LBNE [119] or Fermilab–PINGU [120]. Another
method would be to compare electron neutrino and anti-neutrino spectra from supernovae [121],
but here the differences are very small and a recent study has shown that they will be difficult
to observe with current detectors [122]. Spectral analysis of reactor data could also be used, and
although limited by experimental sensitivity may indeed be possible with detectors at medium
baselines (L ≃ 50 km) [123, 124]. Note that neutrino oscillations only yield information on

2This was the initial discovery of neutrino oscillations in 1998.
3Comparison of charged and neutral current data from the SNO experiment provided definitive proof of solar

neutrino oscillations.
4The influence of neutrino mass ordering on active-sterile oscillations of atmospheric neutrinos will be discussed

in Section 3.2.
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Figure 3.1: The two possible active neutrino mass orderings, adapted from Ref. [115] using

current data (Table 3.1) and δ = 0. The colour coding indicates the fraction |Ũℓi| of
each distinct flavour νℓ, ℓ = e, µ, τ contained in each mass eigenstate νi, i = 1, 2, 3.

the mass-squared differences, not the absolute masses themselves. Instead, information on the
masses may be obtained from beta decay and neutrinoless double beta decay, as well as from
cosmological considerations; all of those probes could also shed light on the neutrino mass
ordering, and will be discussed in Sections 3.3, 3.4 and 3.6 below.

There are several global fits [23, 125, 126] to the mass and mixing parameters from neutrino
oscillation experiments: the latest best-fit and 3σ ranges are shown in Table 3.1, taken from
Ref. [23]. Using the best-fit values for the mixing angles in the normal ordering case, the
magnitude of the PMNS matrix is

|Ũ |δ=0 ≃





0.814 0.559 0.157
0.453 0.444 0.773
0.362 0.701 0.614



 , |Ũ |δ=0.80π ≃





0.814 0.559 0.157
0.276 0.571 0.773
0.510 0.602 0.614



 , (3.6)

for δ = 0 and the best-fit value of δ = 0.80π (the Majorana phases have been set to zero).
Explanation of the neutrino mixing pattern, Ũ , which is completely different to the small mixing
in the quark sector, has prompted research into flavour symmetry models (cf. Section 4.1).

The CP -violating phase δ is only weakly constrained by global fits, but the prospects of its
measurement have significantly improved now that θ13 6= 0 (see Ref. [127] for a review). One
approach is to compare electron neutrino and anti-neutrino appearance probabilities using LBL
experiments such as T2K and NOνA. Due to parameter degeneracies it may also be necessary to
examine both the first and the second oscillation maxima, either with two detectors at different
baselines, such as at T2KK [128], or with a single detector that measures successive oscillation
peaks over a wide energy range [129]. An alternative approach is to use cyclotron stopped-pion
decay-at-rest neutrino sources situated at different distances from a single detector, as in the
DAEδALUS [130, 131] experiment. However, one of the cleanest ways to measure δ would be at
a neutrino factory [132, 133], where the energy spectrum of muon neutrinos is more accurately
known.

Note that the Majorana phases α and β do not affect the neutrino oscillation probability; they
have physical consequences only if neutrinos are Majorana particles, influencing the amplitude
for 0νββ, discussed in Section 3.4 below.
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Table 3.1: Best fit and 3σ ranges of neutrino oscillation parameters, taken from Ref. [23]. For
∆m2

31, sin2θ23, sin2θ13, and δ the upper (lower) row corresponds to normal (inverted)
ordering. The number in brackets for sin2θ23 is a local minimum in the first octant.

parameter best fit 3σ range

∆m2
21 [10−5 eV] 7.62 7.12–8.20

|∆m2
31| [10−3 eV]

2.55
2.43

2.31–2.74
2.21–2.64

sin2θ12 0.320 0.27–0.37

sin2θ23
0.613 (0.427)

0.600
0.36–0.68
0.37–0.67

sin2θ13
0.0246
0.0250

0.017–0.033

δ
0.80π
−0.03π

0–2π

3.2 Sterile neutrinos in oscillation experiments

3.2.1 Sterile neutrino mixing and mass spectra

It is instructive to study sterile neutrino mixing from a purely phenomenological point of view,
without introducing a specific theoretical model. In the presence of ns = n−3 sterile neutrinos,
the n × n neutrino mass matrix mν can be diagonalised by an n × n unitary matrix Ũ ; the
linear combination in Eq. (3.1) now becomes

ν ′ℓ =

n
∑

i=1

Ũℓiνi , (3.7)

where ℓ = e, µ, τ, s1, s2, . . . , sn−3. In general, for n massive families with 0 6= ns = n−3 massive
sterile neutrinos, there are n− 1 = ns + 2 Majorana phases, 3(n− 2) = 3(ns + 1) mixing angles
and 2n−5 = 2ns+1 Dirac phases. The number of angles and Dirac phases is less than the naive
1
2n(n− 1) angles and 1

2 (n− 1)(n− 2) phases, because the 1
2ns(ns − 1) rotations between sterile

states are unphysical.5 As an example, for ns = 1 one can parameterise Ũ as [cf. Eq. (3.3)]

Ũ = R34R̃24R̃14R23R̃13R12P̃ , (3.8)

where the matrices Rij are rotations in ij space, i.e.,

R34 =









1 0 0 0
0 1 0 0
0 0 c34 s34
0 0 −s34 c34









or R̃14 =









c14 0 0 s14e
−iδ14

0 1 0 0
0 0 1 0

−s14eiδ14 0 0 c14









. (3.9)

The diagonal P̃ matrix contains three Majorana phases α, β and γ, viz.

P̃ = diag
(

1, eiα/2, ei(β/2+δ13), ei(γ/2+δ14)
)

, (3.10)

5See the discussion below Eq. (2.16), in the seesaw model context.
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3.2 Sterile neutrinos in oscillation experiments

Figure 3.2: (From Ref. [134].) Mass spectra of sterile neutrino schemes with one sterile neutrino:
the 3+1 (left) and 1+3 (right) scenarios. In each case the active neutrinos can have
normal or inverted mass ordering, and the inequalities |∆m2

21| ≪ |∆m2
31| ≪ |∆m2

41|
hold.

and there are in total three Dirac CP -violating phases δij , where again P̃ has been defined
so that the effective mass in 0νββ can be written in terms of Majorana phases only (see
Section 3.4). The probability formula in Eq. (3.2) now contains additional oscillation terms
proportional to ∆m2

4i (i = 1, 2, 3). In the same vein, one can parameterise the mixing matrix
for two sterile neutrinos as

Ũ = R̃25R34R25R̃24R23R̃15R̃14R̃13R12P̃ , (3.11)

where P̃ = diag(1, eiα/2, ei(β/2+δ13), ei(γ/2+δ14), ei(φ/2+δ15)); the additional mass-squared differ-
ences are ∆m2

4i, ∆m2
5i (i = 1, 2, 3) and ∆m2

54.
As discussed above, the active neutrinos responsible for solar and atmospheric oscillations

can be normally (m1 < m2 < m3) or inversely (m3 < m1 < m2) ordered. The mass-squared
differences associated with sterile neutrinos (see Section 3.2.3) are generally much larger6 than
the ones between active mass eigenstates: the sterile states are thus separated in mass from
the active ones and can be either much heavier or much lighter than their active counterparts.
In the case of one sterile neutrino of mass ms there are in total four possible mass orderings,
divided into the 3 + 1 case with m1,2,3 ≪ ms and the 1 + 3 case with ms ≪ m1,2,3, where
the active neutrinos can have normal or inverted ordering in each case. Figure 3.2 shows this
distinct difference in the normal ordering case; the phenomenological consequences of different
spectra will be presented below.

In the case of two sterile neutrinos with masses ms1 and ms2, there are three classes of mass
spectra: m1,2,3 ≪ ms1,ms2 (3+2), ms1,ms2 ≪ m1,2,3 (2+3) and ms1 ≪ m1,2,3 ≪ ms2 (1+3+1).
In the latter case [135] the active states are sandwiched between the sterile ones, a fact not taken
into account in some global fits [136]. Although current oscillation data cannot distinguish 3+1
from 1+3, or 3+2 from 2+3 scenarios, they are sensitive to 1+3+1 vs. 3+2/2+3, as will be
discussed below. Note that there are two possible permutations of the mass spectrum in the
1+3+1 case: the sterile neutrino separated from the active ones by a larger mass splitting could

6Except in the pseudo-Dirac case.
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Chapter 3 Phenomenology of sterile neutrinos

Figure 3.3: (From Ref. [134].) Mass spectra of sterile neutrino schemes with two sterile neutri-
nos: the 3+2 (left), 2+3 (middle) and 1+3+1 (right) scenarios. In each case the
active neutrinos can have normal or inverted mass ordering, and the inequalities
|∆m2

21| ≪ |∆m2
31| ≪ |∆m2

41| < |∆m2
51| hold. In the 1+3+1 case the indices k and

j are chosen such that |∆m2
41| < |∆m2

51|.

be either the lighter or the heavier of the two sterile states, corresponding to j = 5, k = 4 or
j = 4, k = 5 in Fig. 3.3, respectively. The individual masses m1,2,3,4,5 expressed in terms of the
mass-squared differences ∆m2

S, ∆m2
A, ∆m2

41 and ∆m2
51 can be found in Ref. [135], where the

generalisation to three sterile neutrinos (with sixteen possible mass orderings) is also discussed.
It turns out that the 3+2 scenarios are more attractive than the others, due to the cosmological
limit on the sum of neutrino masses (see Section 3.6.1).

3.2.2 Sterile neutrino oscillations at short baselines

The presence of sterile neutrinos modifies the oscillation probabilities in appearance and disap-
pearance experiments. As alluded to before, in most experimental situations the full expression
in Eq. (3.2) can usually be approximated by a two-neutrino version. In reactor anti-neutrino
experiments such as Double Chooz or Daya Bay, the detector is typically located at a base-
line of around 1 km, while the average anti-neutrino energy is 〈E〉 ≃ 4 MeV. One can thus
estimate that L/E = O(103) eV−2, so that the oscillation term containing ∆m2

21 can be safely
neglected. Since the oscillation frequency related to the mass-squared difference ∆4i (∆m2

5i)
is much smaller than the baseline, those terms simply generate a fast oscillation that can be
averaged out. In that case the anti-neutrino survival probability approximates to

Pνe→νe ≃ 1 − 2|Ũe4|2 − 4|Ũe3|2 sin2

(

∆m2
31L

4E

)

= 1 − 2 sin2 θ14 − cos4 θ14 sin2 (2θ13) sin2

(

∆m2
31L

4E

)

,

(3.12)

for the case of one sterile neutrino (3+1 and 1+3), and

Pνe→νe ≃ 1 − 2|Ũe4|2 − 2|Ũe5|2 − 4|Ũe3|2 sin2

(

∆m2
31L

4E

)

, (3.13)
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3.2 Sterile neutrinos in oscillation experiments

for the case of two sterile neutrinos (3+2, 2+3 and 1+3+1): the presence of sterile neutrino(s)
thus simply reduces the total neutrino flux seen in reactor neutrino experiments. At even shorter
baselines (L = O(10) m) the ∆m2

31 contribution can be neglected whereas the oscillation due
to ∆m2

41 is observable, so that the survival probability becomes

Pνe→νe ≃ 1 − 4|Ũe4|2 sin2

(

∆m2
41L

4E

)

= 1 − sin2 (2θ14) sin2

(

∆m2
41L

4E

)

, (3.14)

for the 3+1/1+3 case, and

Pνe→νe ≃ 1 − 4|Ũe4|2 sin2

(

∆m2
41L

4E

)

− 4|Ũe5|2 sin2

(

∆m2
51L

4E

)

, (3.15)

for the 3+2, 2+3 and 1+3+1 cases. Here the sterile mass splittings mediate very-short-baseline
oscillations, which will be discussed in the following section. Note that the oscillation term

proportional to sin2
(

∆m2
54L

4E

)

is suppressed by a factor |Ũe4Ũe5|2, and can hence be neglected.

Here it is still not possible to distinguish 3+2/2+3 from 1+3+1 scenarios.
Disappearance experiments such as LSND and MiniBooNE (see Section 3.2.3) are charac-

terised by L/E = O(1) eV−2, and again the oscillation term related to ∆m2
31 can be ignored.

In that case the oscillation probability is given by

Pνµ→νe ≃ 4|Ũe4|2|Ũµ4|2 sin2

(

∆m2
41L

4E

)

, (3.16)

for the 3+1/1+3 case, and

Pνµ→νe ≃ 4|Ũe4|2|Ũµ4|2 sin2

(

∆m2
41L

4E

)

+ 4|Ũe5|2|Ũµ5|2 sin2

(

∆m2
51L

4E

)

+ 8|Ũe4Ũµ4Ũe5Ũµ5| sin
(

∆m2
41L

4E

)

sin

(

∆m2
51L

4E

)

cos

(

∆m2
54L

4E
+ δ̃

)

, (3.17)

for the five neutrino case with δ̃ ≡ arg
(

Ũ∗
e4Ũµ4Ũe5Ũ

∗
µ5

)

≃ δ14 − δ24 − δ15, where the phase

is given in the explicit parameterisation of Eq. (3.11). The additional CP -violating phase in
Eq. (3.17) leads to a CP asymmetry in the transition probability between the neutrino and
anti-neutrino modes. In addition, the last term of Eq. (3.17) shows a distinction between
the 3+2/2+3 and 1+3+1 cases due to the presence of ∆m2

54: in the 3+2/2+3 cases one has
∆m2

54 = |∆m2
51|−|∆m2

41| whereas in the 1+3+1 case, ∆m2
54 ≃ |∆m2

51|+ |∆m2
41|, which changes

the transition probability regardless of the choice of CP -violating phases.
As an example of the effect of sterile neutrino spectra, the oscillation probabilities with

respect to the ratio L/E are shown in Fig. 3.4 for the 3+2/2+3 and 1+3+1 cases. It is
evident that the appearance probabilities are dependent on the ordering schemes, whereas the
disappearance probability is not, since the ∆m2

54 contributions are suppressed. Furthermore, if
non-vanishing CP -violating phases are included there are visible differences between neutrino
and anti-neutrino flavour transitions, implying that a detector at very short distances would
be an ideal place to search for the CP violation related to sterile neutrinos.

3.2.3 Experimental evidence and global fits

There are several hints for eV-scale sterile neutrinos from oscillation experiments, past and
present. The LSND experiment found evidence for ν̄µ → ν̄e oscillations with ∆m2 ≃ 1 eV2
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Figure 3.4: The oscillation probabilities with respect to the quantity L/E in the 3+2/2+3
cases (solid lines) and 1+3+1 case (dashed lines). The mixing parameters are the
best-fit values from Tables 3.1 and 3.2. In the upper panel all CP -violating phases
are set to zero, whereas in the lower panel δ̃ = π

2 is assumed.

at 3.8σ [17]. This signal was considered an anomaly for several years, owing to the fact that
the KARMEN experiment found no corroborating evidence, although it did not rule out the
entire LSND parameter space [137]. The initial results from MiniBooNE (with neutrinos)
excluded the oscillation interpretation of LSND at 98% C.L. [138]. However, there is still a
poorly understood low-energy excess [139] in both the neutrino and anti-neutrino modes, and
the latest combined analysis [18] now shows some consistency with LSND and KARMEN.7

Active-sterile oscillations in appearance experiments imply that both Ũe4 and Ũµ4 are non-
zero [Eq. (3.16)], which means that νe and νµ disappearance experiments should see a signal as
well [Eq. (3.14)]. There are several hints for the former. Firstly, a reanalysis of the GALLEX
and SAGE solar neutrino detectors as well as tests carried out with radioactive sources show
that the number of measured neutrino events is smaller than expected [142]. This so-called
“Gallium anomaly” could be interpreted as νe disappearance, i.e., oscillation into eV-scale
sterile neutrinos [143]. Secondly, a recent re-evaluation of the anti-neutrino spectra of nuclear
reactors leads to increased fluxes [19, 144]. The new calculation combines (i) an ab initio
method that builds up the total anti-neutrino spectrum from a sum of thousands of β-branches
with (ii) reference electron spectra measured at ILL, which must be converted to anti-neutrino
spectra for each isotope. Several effects are taken into account, in particular the Coulomb and
weak magnetism corrections to the Fermi theory of β-decay, as well as a new value for the
neutron lifetime. The resulting anti-neutrino flux increases by roughly 4%, which means that

7Note that the extraction of oscillation parameters depends on the cross section for neutrino detection on
carbon [140, 141]; those effects are not fully accounted for in the MiniBooNE analysis.
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3.3 Sterile neutrinos in beta decay

Table 3.2: Best-fit (from Ref. [153]) and estimated 2σ values of the sterile neutrino parameters.

parameter ∆m2
41 [eV] |Ũe4|2 ∆m2

51 [eV] |Ũe5|2

3+1/1+3
best-fit 1.78 0.023

2σ 1.61–2.01 0.006–0.040

3+2/2+3
best-fit 0.47 0.016 0.87 0.019

2σ 0.42–0.52 0.004–0.029 0.77–0.97 0.005–0.033

1+3+1
best-fit 0.47 0.017 0.87 0.020

2σ 0.42–0.52 0.004–0.029 0.77–0.97 0.005–0.035

the negative results of previous reactor experiments at short baselines can in fact be interpreted
as the observation of a flux deficit. This could be explained by additional sterile neutrinos with
masses at the eV scale: the “reactor anomaly”. Independent confirmation of this electron
(anti-)neutrino disappearance at short baselines poses a new experimental challenge, since the
characteristic baseline for eV-scale oscillations at MeV energies is L ≃ 1 − 10 m. There are
various new experiments planned; one idea is to place a radioactive source inside or next to a
large detector such as SNO or KamLAND (see the review in Ref. [145]), another is to use a
research reactor with a detector at a baseline of L ≃ 7 m, the Nucifer experiment [146].

The results from electron neutrino disappearance are however not confirmed by νµ (ν̄µ)
disappearance results, for example from atmospheric neutrinos, MINOS [147], as well as from
a combination of MiniBooNE and SciBooNE data [148]. Future observations of atmospheric
neutrinos by IceCube should provide a sensitive probe of Ũµ4 [149]. Although disappearance
data seem to favour the 3+1 interpretation [150], there is considerable tension when appearance
and disappearance experiments are combined [151].8 Table 3.2 shows the best-fit and 2σ ranges
of the relevant parameters used in the present analysis. The best-fit values are taken from the
global fit in Table II of Ref. [153].9 In their analysis of the 3+1/1+3 scenarios, the authors
of Ref. [153] find several different allowed regions in the ∆m2

41 − sin2θ14 parameter space, at
2σ. In this work the region around the best-fit point is used, and (since the ranges are not
available) the parameters in the 3+2, 2+3 and 1+3+1 cases are assigned 2σ uncertainties of
the same relative magnitude as those in the 3+1/1+3 scenario. The 1+3+1 scenarios have a
slightly better fit than the 3+2/2+3 cases, which is also confirmed from a recent fit [154] that
updates the results in Ref. [153].

3.3 Sterile neutrinos in beta decay

Studies of the end-point of the electron energy spectrum in β-decay allow one to probe the
so-called “effective electron neutrino mass in β-decay”, defined by

mβ ≡

√

√

√

√

n
∑

i=1

|Ũei|2m2
i , (3.18)

where in the standard case n = 3, Ũei are the elements of the first row of the PMNS matrix in
Eq. (3.3) and mi are the light neutrino masses. The results of the Mainz [155] and Troitsk [156]

8There is also a recent fit that finds slightly less tension between appearance and disappearance data [152],
albeit with the inclusion of cosmological data sets.

9See also Ref. [134] for another global fit.
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Chapter 3 Phenomenology of sterile neutrinos

Tritium β-decay experiments give the combined upper limit (at 2σ) of [157]

mβ < 1.8 eV . (3.19)

The upcoming KATRIN experiment [158] will aim for a sensitivity of mβ ≃ 0.2 eV. Note that
the “direct” search for neutrino mass in β-decay experiments is not sensitive to their Dirac or
Majorana nature.

In the presence of ns sterile neutrinos the sum in Eq. (3.18) runs up to n = 3+ns, so that the
sterile states contribute to mβ. It is illustrative to consider the case of ns = 1 and ns = 2, with
sterile neutrinos at the eV scale and different spectra (see Figs. 3.2 and 3.3). In the 3+1 and
3+2 cases the active neutrinos are much lighter than the sterile one(s), and mβ is dominated
by the sterile contribution, i.e.,

m3+1
β

>∼
√

|Ũe4|2∆m2
41 ≃ 0.2 eV,

m3+2
β

>∼
√

|Ũe4|2 ∆m2
41 + |Ũe5|2 ∆m2

51 ≃ 0.16 eV.

(3.20)

For the cases where the sterile neutrino is lighter than the active ones (1+3 and 2+3) there
are three quasi-degenerate neutrinos at the eV scale with mass given by

√

∆m2
41 or

√

∆m2
51,

which effectively governs predictions for mβ, i.e.,

m1+3
β

>∼

√

√

√

√

3
∑

i=1

|Ũe1|2∆m2
41 ≃

√

∆m2
41 ≃ 1.3 eV,

m2+3
β

>∼

√

√

√

√

3
∑

i=1

|Ũei|2 ∆m2
51 ≃

√

∆m2
51 ≃ 0.93 eV.

(3.21)

The 1+3+1 cases are similar: the mass gap between the lightest sterile neutrino and the quasi-
degenerate active neutrinos (∆m2

j1 in Fig. 3.3) again dominates mβ.
Refs. [159, 160] show that sterile neutrinos with masses and mixings in the ranges considered

above will be observable in KATRIN, and will be distinguishable from active neutrinos. There
are however additional complications for eV-scale neutrinos with mass larger than the energy
resolution of KATRIN because the Kurie function cannot be approximated in the usual way
(see Ref. [161]). As an aside, the presence of right-handed currents could also affect the electron
energy spectrum observed in KATRIN [162].

3.4 Neutrinoless double beta decay with sterile neutrinos

Neutrinoless double beta decay is one of the central themes of this thesis, and will be discussed
at length here and in the context of the LRSM in Chapter 5. After a summary of the stan-
dard scenario, the particle physics phenomenology of 0νββ in the presence of eV-scale sterile
neutrinos as well as pseudo-Dirac neutrinos is presented, and several special features of 0νββ
in the type I seesaw model are described. The final subsection provides an overview of the
experimental situation and the calculation of nuclear matrix elements (NMEs).

3.4.1 The standard scenario

Observation of the lepton number violating decay,

(A,Z) → (A,Z + 2) + 2e− , (3.22)
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Figure 3.5: Feynman diagram of 0νββ in the standard case of light active neutrino exchange
(Aν), where q is the momentum of the neutrino.

would imply that neutrinos are Majorana particles [163], but extracting more specific infor-
mation requires an assumption as to the underlying mechanism of the process. New physics
beyond the SM is required to make it observable, and the necessary operators arise in several
different theoretical frameworks (see the reviews in Refs. [164, 165]). The standard case of light
active Majorana neutrino exchange is depicted in Fig. 3.5, with an amplitude proportional to

Aν ≃ G2
F

〈mee〉3ν

q2
, (3.23)

where the effective Majorana mass is

|〈mee〉3ν | =

∣

∣

∣

∣

∣

3
∑

i=1

Ũ2
eimi

∣

∣

∣

∣

∣

(3.24)

=
∣

∣

∣
c212c

2
13m1 + s212c

2
13m2e

iα + s213m3e
iβ
∣

∣

∣
, (3.25)

with α and β the Majorana phases. This equation holds for mass eigenstates lighter than |q| ≃
100 MeV, the characteristic momentum of the process. The current limit is |〈mee〉3ν | <∼ 0.4 eV,
from the KamLAND-Zen experiment with 136Xe [166].

The currently allowed regions of the effective mass are plotted against the lightest mass in
Fig. 3.6, using data from Table 3.1, with CP -conserving and CP -violating areas indicated.
The coherent sum |〈mee〉3ν | contains 7 out of 9 parameters of the neutrino mass matrix and is
the only observable carrying information about the Majorana phases. As can be seen in the
left panel of Fig. 3.6, it is possible for |〈mee〉3ν | to vanish in the case of normal neutrino mass
ordering, equivalent to a zero in the (1,1) element of the low energy Majorana neutrino mass
matrix mν . In the inverted ordering case |〈mee〉3ν | cannot vanish, and the lower limit is given
by

|〈mee〉3ν | ≃
∣

∣

∣

∣

(c212 + s212e
iα)
√

∆m2
A

∣

∣

∣

∣

>∼ (c212 − s212)
√

∆m2
A ≃

√

∆m2
A

3
≃ 17 meV, (3.26)
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Figure 3.6: The effective mass |〈mee〉| as a function of the lightest neutrino mass in both the
normal and inverted ordering, with the oscillation parameters varied in their 3σ
ranges [23]. CP -conserving (violating) areas are indicated by black lines (blue
hashes), and prospective values of

∑

mν and mβ are shown. The latest limit on
|〈mee〉| is indicated by the red horizontal dashed line.

where ∆m2
A is the mass-squared difference of atmospheric neutrinos. The final extraction of

the decay halflife is affected by uncertainties in the NMEs, to be discussed in Section 3.4.5.
The standard scenario is by no means the only one: there are several particle physics candi-

dates that can lead to 0νββ [164, 167]. Other contributions could come from heavy neutrinos,
particles in R-parity violating supersymmetric theories, leptoquarks, Majorons, as well as par-
ticles arising in extra-dimensional and left-right symmetric theories. Current limits on the
lifetime of 0νββ can be used to set constraints on different particle physics parameters [164].
The presence of light sterile neutrinos can significantly alter the predictions shown in Fig. 3.6,
and the specific model of neutrino masses also plays a decisive role. Several different situations
will be discussed below; 0νββ in the LRSM will be discussed in Section 5.2.

3.4.2 Phenomenological analysis of 0νββ with eV-scale sterile neutrinos

With ns massive sterile neutrinos in the eV range the sum in Eq. (3.25) will extend to n = 3+ns,
and there will be ns + 2 Majorana phases. The allowed regions for the modified effective mass
|〈mee〉nν | (n = 4, 5) can be found from the parameter ranges in Tables 3.1 and 3.2, updating
the results in Refs. [135, 168].

One sterile neutrino

In the presence of one sterile neutrino, the effective neutrino mass in 0νββ is given by

|〈mee〉4ν | =
∣

∣

∣c212c
2
13c

2
14m1 + s212c

2
13c

2
14m2e

iα + s213c
2
14m3e

iβ + s214m4e
iγ
∣

∣

∣ , (3.27)

using the parameterisation in Eq. (3.8). If the sterile neutrino is heavier than the active ones,
the approximation

|〈mee〉(3+1)ν | ≃
∣

∣

∣

∣

c214〈mee〉3ν + s214

√

∆m2
41e

iγ

∣

∣

∣

∣

(3.28)
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Figure 3.7: The allowed ranges in the |〈mee〉| −mlight parameter space, both in the standard
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holds, where 〈mee〉3ν is the standard expression in Eq. (3.25). The upper panel of Fig. 3.7
displays the allowed range of |〈mee〉(3+1)ν | as a function of the lightest mass mlight. Also shown
in this plot and the following ones is the allowed range of |〈mee〉3ν |, as in Fig. 3.6, and it is
evident that the usual situation is completely altered by the presence of one or more sterile
neutrinos. If the lightest neutrino mass is reasonably small, e.g., mlight < 0.01 eV, the allowed

range of |〈mee〉(3+1)ν | is dominated by the term s214
√

∆m2
41 ≃ 0.031 eV, which means that

|〈mee〉(3+1)ν | cannot vanish in the normal ordering case (the contribution of the two light active
neutrinos cannot cancel that of the sterile neutrino).

The inverted ordering shows noticeable modifications to the standard case, since |〈mee〉(3+1)ν |
can vanish for a large range of lightest masses, including the regime where the active neutrinos
are quasi-degenerate (mlight > 0.1 eV). This means that the usual lower bound on the effective
mass (cf. Eq. (3.26) and the solid and dashed lines in Fig. 3.7) is no longer valid. If future 0νββ
experiments measure a tiny effective mass and the neutrino mass ordering is confirmed to be
inverted from oscillation experiments (see Section 3.1), the sterile neutrino hypothesis would
be an attractive explanation for this inconsistency.

The lower panel of Fig. 3.7 shows the effective mass when the sterile neutrino is lighter than
the active ones (the 1+3 scenario). In that case there are three quasi-degenerate neutrinos
at the eV scale, with their mass given by

√

∆m2
41 ≃ 1.3 eV, which also governs predictions

for other observables. The effective mass then takes its standard form for quasi-degenerate
neutrinos:

|〈mee〉(1+3)ν | ≃
√

∆m2
41

√

1 − sin2 2θ12 sin2 α/2 . (3.29)

However, this situation is relatively disfavoured by cosmological bounds on the sum of neutrino
masses (cf. Section 3.6.1). Note that if the current limit of about 0.4 eV on the effective mass is
taken at face value, then

√

1 − sin2 2θ12 sin2 α/2 <∼ 0.3, thus already putting strong constraints
on the solar neutrino mixing angle and in particular on the Majorana phase.

Two sterile neutrinos

If there are two sterile neutrinos, the effective mass is

|〈mee〉5ν | =
∣

∣

∣
c212c

2
13c

2
14c

2
15m1 + s212c

2
13c

2
14c

2
15m2e

iα + s213c
2
14c

2
15m3e

iβ + s214c
2
15m4e

iγ + s215m5e
iφ
∣

∣

∣
,

(3.30)
with φ the additional Majorana phase. In the 3+2 cases where both of the sterile neutrinos are
at the eV scale, |〈mee〉(3+2)ν | can be approximated by

|〈mee〉(3+2)ν | ≃
∣

∣

∣

∣

c214c
2
15〈mee〉3ν + s214

√

∆m2
41e

iγ + s215

√

∆m2
51e

iφ

∣

∣

∣

∣

, (3.31)

in analogy to the 3+1 case. The upper panel of Fig. 3.8 shows the allowed regions in this case:
the phenomenology is similar to that discussed for 3+1 above, except that the presence of two
sterile terms in Eq. (3.31) allows |〈mee〉(3+2)ν | to take smaller values in the hierarchical region
for the normal ordering. The inverted ordering is essentially the same as in the 3+1 case.

The lower panel of Fig. 3.8 displays the 2+3 cases, where the sterile neutrinos are lighter
than the active ones. The three active neutrinos are quasi-degenerate at the eV scale, with
their mass given by the largest sterile mass-squared difference

√

∆m2
51 ≃ 0.93 eV, so that

Eq. (3.29) applies for |〈mee〉(2+3)ν |, with ∆m2
41 replaced by ∆m2

51. The mass ordering of the
active states plays no role. Once again these scenarios are disfavoured by cosmology. There
is little difference between this case and the 1+3+1 case; plots for the latter can be found in
Ref. [99].
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Figure 3.8: Same as Fig. 3.7, for the 3+2 (top) and 2+3 (bottom) cases.
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In summary, the presence of eV-scale sterile neutrinos can significantly modify the predictions
for 0νββ, which provides a complementary test of the existence of those particles and could be
used to constrain the sterile neutrino explanation of oscillation anomalies.

3.4.3 0νββ with pseudo-Dirac and bimodal neutrinos

The approximately degenerate eigenstates, m±
i , of the pseudo-Dirac pair have opposite CP

parities, see Eq. (2.17). With three pseudo-Dirac neutrinos (six Majorana neutrinos), the
expression in Eq. (3.25) becomes

|〈mee〉PD| =
1

2

∣

∣

∣

∣

∣

3
∑

i=1

Ũ2
ei(m

+
i +m−

i e
iπ)

∣

∣

∣

∣

∣

≃
∣

∣

∣

∣

∣

3
∑

i=1

Ũ2
ei

δm2
i

2mi

∣

∣

∣

∣

∣

, (3.32)

where δm2
i ≡ (m+

i )2 − (m−
i )2. Stringent limits on the pseudo-Dirac mass splitting exist from

oscillation experiments: δm2
i
<∼ 10−11 eV2 for m1 and m2 from solar neutrino data [26]10

and δm2
i
<∼ 10−3 eV2 for m3 from atmospheric data [169]. The contribution in Eq. (3.32) is

therefore effectively vanishing (|〈mee〉PD| . 10−4 eV) and can be neglected. However, if only
one or two neutrino mass eigenstates are pseudo-Dirac (the BM scenario), one effectively has
a combination of the standard case in Eq. (3.25) and the pure pseudo-Dirac case in Eq. (3.32).
Those neutrinos that are pseudo-Dirac do not significantly contribute to |〈mee〉PD|, whereas
the normal Majorana mass eigenstates contribute as in Eq. (3.25).

Figures. 3.9 and 3.10 show the allowed ranges in |〈mee〉|−
∑

mν parameter space, for different
combinations of pseudo-Dirac neutrinos and both normal and inverted neutrino mass ordering,
using data from Ref. [170]. The parameter space in the standard case is included for comparison.
In each case, the contribution from the pseudo-Dirac pair is assumed to be vanishing so that

|〈mee〉BM| =

∣

∣

∣

∣

∣

∣

N
∑

j=1

Ũ2
ejmj

∣

∣

∣

∣

∣

∣

, (3.33)

where the index j runs over the neutrinos that are not pseudo-Dirac, and N = 1 or N = 2.
For instance, in the case where only ν2 is pseudo-Dirac, the effective Majorana mass becomes

|〈mee〉ν2
BM| =

∣

∣

∣c212c
2
13m1 + s213m3e

iβ
∣

∣

∣ , (3.34)

and there is only one phase, β. One can see from the plots in Figs. 3.9 and 3.10 that in the cases
of ν2 and ν2,3 pseudo-Dirac and inverted mass ordering, the lower limit for |〈mee〉| is increased
by a factor of two [27]. Explicitly, the lower bound for the inverted ordering becomes

|〈mee〉ν2
BM| ≃ c212

√

∆m2
A
>∼

2
√

∆m2
A

3
≃ 34 meV , (3.35)

to be compared with the bound for the standard case in Eq. (3.26). Due to the fact that
c212 − s212 ≃ s212, the case in which ν1 is pseudo-Dirac results in |〈mee〉| taking its minimal value
in the inverted ordering. Another interesting case is when ν1,3 are pseudo-Dirac with normal
ordering, where the lower limit of |〈mee〉| is given by (∆m2

S is the mass-squared difference of
solar neutrinos)

|〈mee〉ν1,3

BM | >∼ s212

√

∆m2
S ≃ 2.9 meV , (3.36)

10Note that ν1 and ν2 contain a large amount of νe, see Fig. 3.1.
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Figure 3.9: Allowed regions in the |〈mee〉| −
∑

mν plane for the three different cases of one
pseudo-Dirac neutrino (indicated on the right of each row). The black regions are
for exact TBM, and the light green (red) shaded regions correspond to the 3σ ranges
of the oscillation parameters for normal (inverted) ordering. The solid (dashed) lines
indicate the best-fit (3σ) allowed regions in the standard three-neutrino scenario.
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3.4 Neutrinoless double beta decay with sterile neutrinos

and the amplitude for 0νββ can never vanish, in contrast to the usual normal ordering case.
The cases where both ν1 and ν2 are pseudo-Dirac obviously lead to small values of |〈mee〉|,

since the only term contributing is s213m3. In those cases the effective mass can lie outside
the regions in which one expects it in the general case. Another interpretation of this would
be that one of the non-standard mechanisms of 0νββ destructively interferes with the usual
mass mechanism. The strategy to test this would be to perform multi-isotope investigation,
as the cancellation is not expected to be on the same level in different nuclei. However, the
pseudo-Dirac suppression discussed here is the same for all nuclei.

In summary, there are several cases for which there is a significant difference from the standard
case of pure Majorana neutrinos. If long baseline oscillation experiments establish the neutrino
mass ordering, and/or the neutrino mass scale is pinned down by cosmology or direct searches,
neutrinoless double beta decay can distinguish the different cases, once again illustrating the
discriminative power of the process.

3.4.4 0νββ in type I seesaw models

The type I seesaw model contains ns sterile neutrinos N c
Ri, which can contribute to the am-

plitude for 0νββ through mixing with the active neutrinos. The relevant Lagrangian (in the
diagonal charged lepton basis) is [cf. Eq. (2.19)]

Llep
CC =

g√
2
eLγ

µ

(

3
∑

i=1

UeiνLi +

n−3
∑

i=1

SeiN
c
Ri

)

W−
Lµ , (3.37)

with U and S describing active-active and active-sterile mixing, respectively. The mass scale of
the sterile states (MR) is essentially unknown, and there are various special cases, outlined in
Section 2.2.1. Neutrinos with mass below |q| ≃ 100 MeV will contribute to the 0νββ process
via the effective mass defined in Eq. (3.25), where the sum is extended to included the new
mass eigenstates. However, examination of the neutrino propagator,11

Mi

q2 −M2
i

≃











Mi

q2
for M2

i ≪ q2

− 1

Mi
for M2

i ≫ q2
, (3.38)

shows that the contribution of right-handed neutrinos with masses much larger than |q| is
suppressed by the inverse of their mass. The 0νββ amplitude thus depends on the relative
magnitudes of Mi and |q|: three different cases are outlined below, see also Ref. [171].

• All sterile states heavier than |q|
If all of the heavy neutrinos Mi have mass at the GUT scale, their mixing contribution
to 0νββ is negligible, as it is proportional to 1/Mi, viz.

AL
NR

≃ G2
F

n−3
∑

i=1

S2
ei

Mi
, (3.39)

shown in Fig. 3.11. This contribution can only become relevant for sterile neutrinos at or
below the TeV scale with sizeable mixing (S ≃ 0.01 − 0.001) to the active sector, which
will be discussed in the context of the LRSM in Section 5.2. Note that in the language
of effective operators the exchange of heavy neutrinos is short range, i.e., the interaction
is point like, so that the NMEs differ from the standard case.

11The momentum-dependent term in the numerator vanishes due to chirality, see Eq. (5.3).
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Figure 3.11: Heavy neutrino contribution to 0νββ in the type I seesaw model (AL
NR

), with the
matrix S characterising the mixing between active and sterile neutrinos.

• All sterile states lighter than |q|
If all of the ns = n − 3 right-handed neutrinos are light, M2

i ≪ q2, the effective mass
becomes

|〈mee〉| =

∣

∣

∣

∣

∣

3
∑

i=1

U2
eimi +

n−3
∑

i=1

S2
eiMi

∣

∣

∣

∣

∣

=
[

Mn×n
ν

]

ee
= 0 , (3.40)

showing that the effective mass cancels exactly, since the (1, 1) entry of the full n × n
neutrino mass matrix in Eq. (2.12) is vanishing. However, the cancellation is not realised
as soon as one of the right-handed neutrinos is heavier than |q|, which will be discussed
below.

The result in Eq. (3.40) holds in the general framework of type I seesaw models. How-
ever, in certain flavour symmetric seesaw models in which neutrino mixing is entirely
determined by the Dirac mass term, MD can be expressed as [172, 173]

MD = Vν diag
(

√

−m1M1,
√

−m2M2, . . . ,
√

−miMi

)

V T
R , (3.41)

which also corresponds to O = 1 in the parameterisation of Eq. (2.25). The active-sterile
mixing in Eq. (2.22) is now given by Sαi = (Vν)αi

√

−mi/Mi, which (for i = 1, 2, 3) is
merely a rescaling of each column of Vν , indicating a direct connection between active
and sterile sectors. Interestingly, this implies that the above-mentioned cancellation for
light right-handed neutrinos in |〈mee〉| occurs pairwise, since

S2
eiMi =

[

−(V 2
ν )ei

mi

Mi

]

Mi = −U2
eimi , (i = 1, 2, 3) , (3.42)

neglecting terms of order B2 in Eq. (2.13). Here Mℓ is assumed to be diagonal, but
the result still holds with non-trivial V ℓ

L, which can be factored out from both Uei and
Sei. Put into words, this result means that the contribution to |〈mee〉| from the i-th
active neutrino is exactly cancelled by the contribution from the i-th sterile neutrino, for
i = 1, 2, 3, where the latter is responsible for the mass of the former via seesaw. The
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3.4 Neutrinoless double beta decay with sterile neutrinos

computation of |〈mee〉| is now simplified since in Eq. (3.40) one only needs to count the
effects of those active neutrinos whose corresponding sterile neutrinos are heavier than
|q|, which will be applied to the model in Section 4.2.

• Mixed case, with heavy and light sterile neutrinos
In this case some sterile neutrinos are heavier than |q| while others are lighter than |q|.
This is the most interesting case from a phenomenological point of view, since in addition
to the usual light neutrino term there are two types of sterile contributions, i.e.,

AL
NR

(Mi < |q|) ∝ S2
eiMi

q2
and AL

NR
(Mi > |q|) ∝ S2

ei

Mi
(3.43)

for light and heavy states, respectively. Heavy neutrinos at the GUT scale should be
integrated out first (their “direct” contribution is suppressed by the inverse of their mass),
so that their only contribution to 0νββ is “indirect”, via the masses of the light active
neutrinos. However, heavy neutrinos close to the TeV scale could in fact dominate via
the contribution on the right side of Eq. (3.43), as long as the active and light sterile
contributions cancel each other [cf. Eq. (3.40)]. An example of this case will be given in
Section 4.2. Note that the NMEs for light and heavy neutrino exchange are also different,
as discussed in Section 3.4.5 below.

The Higgs triplets in the type II seesaw model introduced in Section 2.2.2 can also contribute
to 0νββ, which will be discussed in the context of the LRSM in Chapter 5.

3.4.5 Experimental situation

A conclusive measurement of 0νββ requires improved precision in both particle and nuclear
physics parameters. The decay rate for 0νββ is often written as

[T 0ν
1/2]

−1 = Γ0ν ≡ Gk(Q,Z)|Mk(A,Z)ηk|2 , (3.44)

where Gk(Q,Z) is the phase space factor, Mk(A,Z) the nuclear matrix element and ηk the
lepton number violating particle physics parameter; the subscript k refers to different contribut-
ing mechanisms. The phase space factor comes from integrating over the wave functions of the
electrons in the final state, and depends on the Q-value for the decay and to an extent on the
particle physics process involved. The NME depends on the nucleus as well as whether the
mechanism is mediated by long or short range forces, i.e., by light or heavy particles.

The current best limits on the lifetime for the 0νββ of 136Xe are

T 0ν
1/2 > 1.9 × 1025 yrs ,

T 0ν
1/2 > 1.6 × 1025 yrs ,

(3.45)

which come from the KamLAND-Zen [166] and EXO [174] experiments, respectively. The
Heidelberg-Moscow (HM) experiment [175] sets an upper limit of T 0ν

1/2 > 1.9 × 1025 yrs using
76Ge, and although part of the collaboration [176] claims a positive signal, this is somewhat con-
troversial [177, 178] and requires independent confirmation. Ref. [164] lists the upper limits from
various other experiments. Future experiments such as GERDA [179] and SuperNEMO [180]
aim to reach a sensitivity for |〈mee〉| of order 10 meV and should thus be able to rule out
the inverted mass ordering [cf. Eq. (3.26)], as long as the relevant parameter uncertainties are
reduced.
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Table 3.3: Phase-space factors G0ν
01 [182] and nuclear matrix elements for light (M0ν

ν ) [181] and
heavy (M0ν

N ) [183, 184] neutrino exchange, for different isotopes, for gA = 1.25 and
r0 = 1.1 fm.

Isotope G0ν
01 [10−14 yrs−1] M0ν

ν M0ν
N

76Ge 0.686 2.58–6.64 233–412
82Se 2.95 2.42–5.92 226–408
130Te 4.13 2.43–5.04 234–384
136Xe 4.24 1.57–3.85 160–172

The extraction of limits on particle physics parameters requires knowledge of the NMEs,
which are difficult to calculate and prone to large theoretical uncertainties due to the overlap of
nuclear wave functions. Several methods have been used in the literature, ranging from Nuclear
Shell Model (NSM) to Quasi-Random Phase Approximation (QRPA) techniques, and although
there is some consensus this varies for different nuclei. The reader is referred to Refs. [164, 181]
for a comprehensive discussion of those issues. The analysis in Chapter 5 will make use of
several different NMEs (cf. Table 5.2); for illustration the results for the standard mechanism
(M0ν

ν ) and heavy neutrino exchange (M0ν
N ) are shown in Table 3.3, for various nuclei. In the

standard case the dimensionless particle physics parameter is

|ην | =
|〈mee〉3ν |
me

<∼ 7.1 × 10−7 , (3.46)

whereas in the heavy neutrino case it is

∣

∣ηL
NR

∣

∣ = mp

∣

∣

∣

∣

∣

∑

i

S2
ei

Mi

∣

∣

∣

∣

∣

<∼ 7.0 × 10−9 . (3.47)

using the most conservative value for the NME and the KamLAND-Zen limit. Figure 3.12
shows the variation of the lifetime for the 0νββ of 76Ge with light neutrino mass for normal
and inverted mass ordering, assuming only light neutrinos contribute via Eq. (3.46) and using
the smallest matrix element (M0ν

ν = 2.58). Comparison with Fig. 3.6 shows that the lifetime is
obviously just the inverse of the effective mass squared, with various numerical prefactors. The
variation in M0ν

ν can bring the minimum allowed lifetime down by one order of magnitude.

3.5 Sterile neutrinos from astrophysical sources

3.5.1 Astrophysical sources of neutrinos

The experimental evidence for neutrino oscillations described in Section 3.1 stems partly from
the detection of astrophysical neutrinos, either those from the Sun or those produced in the
atmosphere by cosmic-ray collisions. There are various other astrophysical neutrino sources,
and their detection by neutrino telescopes would provide complementary information to other
probes of the universe (see the review in Ref. [185]). For instance, neutrinos radiate from objects
such as supernovae, neutron stars and red giants. In addition, scattering of ultra-high-energy
cosmic rays off photons produce pions, which decay to (anti-)neutrinos. Sources capable of
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Figure 3.12: The standard light neutrino contribution to the 0νββ halflife of 76Ge plotted
against the lightest light neutrino mass, using best fit values (lines) and 3σ ranges
(shaded regions) of the oscillation data from Ref. [23] as well as the relevant coeffi-
cients from Table 3.3. The grey shaded region is excluded by the KamLAND-Zen
experiment [166], the horizontal dashed (dashed-dotted) lines show the planned
sensitivities of the GERDA [179] experiment, with 40 kg (1 ton) of isotope. The
Heidelberg-Moscow limit is indicated by a horizontal (red) dotted line.

accelerating particles to such high energies (greater than 1019 eV) include supernovae, active-
galactic nuclei (AGN), quasars and gamma-ray bursts (GRBs).

Sterile neutrinos at the eV-scale have various effects on astrophysical processes. In the Sun,
one expects an upturn of the energy spectrum of low-energy events; the absence of that feature
can be attributed to sterile neutrinos [186, 187] (see Ref. [188] for a general discussion of solar
neutrino phenomenology in the presence of sterile states). Another example is the influence of
active-sterile oscillations on r-process nucleosynthesis in core collapse supernovae [189]. The
heavy element yield seems to be too low in standard calculations, and sterile neutrinos have
been proposed as a way to increase it, see e.g., Refs. [190–192].

The latest search for high energy neutrino point sources in IceCube finds no evidence for a
neutrino signal [193], which places a strong bound on the neutrino flux of GRBs. Nevertheless,
extra-galactic neutrinos are a useful probe of neutrino properties: studying the evolution of the
neutrino flux flavour ratios not only provides information about astrophysical sources but also
constrains neutrino mass and mixing (see Ref. [194, 195] for reviews). In the following section
the case of pseudo-Dirac neutrinos is analysed in detail, and flavour ratios are shown to be
useful in constraining the bimodal scenario (cf. Sections 2.2.1 and 4.3). The effect of eV-scale
sterile neutrinos on flavour ratios was studied in Ref. [196].

3.5.2 Flavour ratios of pseudo-Dirac and bimodal neutrinos

Extra-galactic neutrinos travel large distances in space and have different energies, depending
on their source. In most cases [197] the neutrinos originate from pion (and kaon) decay, followed
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by muon decay, viz.
π− → µ− + ν̄µ and µ− → e− + ν̄e + νµ , (3.48)

leading to the initial flavour flux ratios Φ0
e : Φ0

µ : Φ0
τ = 1 : 2 : 0. However, in neutron sources

the initial ratios are 1 : 0 : 0, with electron anti-neutrinos originating from β-decays [198, 199];
in muon-damped sources they become 0 : 1 : 0, since the muons (but not pions) lose energy
before they decay [200, 201]. Although the latter two sources are presumably less common
and harder to measure (there is less total neutrino flux), they allow for interesting comparative
studies with the usual pure pion source.

In general, the initial flux composition may be described as [202]

(Φ0
e : Φ0

µ : Φ0
τ ) = (1 : n : 0) . (3.49)

Here the parameter n distinguishes the different types of neutrino sources: for neutron sources,
the initial ratio of 1 : 0 : 0 is represented by the limit n→ 0, whereas in muon-damped sources
the initial ratio of 0 : 1 : 0 is the limit n → ∞. Pure pion sources have n = 2. In each case
neutrino mixing will affect the final flavour flux ratios at Earth detectors, and those ratios will
also depend on whether the neutrinos are pseudo-Dirac or bimodal. It is well known that for
the initial ratios of 1 : 2 : 0, the final ratios turn out to be 1 : 1 : 1 [197], assuming µ-τ symmetry
(actually, it suffices to assume that Re(Ũe3) = 0 and θ23 = π/4) and three standard neutrinos.
Deviations from this symmetry limit will be discussed below.

If some or all of the neutrinos are pseudo-Dirac, the detected flux ratios are modified, and it
is possible to study the effects of deviations in each different case [203]. In the standard three-
neutrino scenario (no pseudo-Dirac effects), the flavour conversion probability for extra-galactic
neutrinos is

Pαβ = δαβ − 2
∑

i>j

Re(ŨαjŨ
∗
αiŨ

∗
βjŨβi) =

∑

i

|Ũαi|2|Ũβi|2 , (3.50)

where the oscillation term in Eq. (3.2) has been averaged out due to the large propagation
distance (L ≃ 100 Mpc). However, it can be shown that if all neutrinos are pseudo-Dirac [204],

PPD
αβ =

∑

i

|Ũαi|2|Ũβi|2 cos2

(

δm2
iL

4E

)

, (3.51)

where δm2
i = (m+

i )2 − (m−
i )2 is the small mass-squared difference between the pseudo-Dirac

pairs, so that Eq. (3.50) is recovered for δm2
i = 0. Here the oscillations due to the atmospheric

and solar mass-squared differences are decoherent, whereas those due to the tiny pseudo-Dirac
mass splittings (δm2

i ) remain coherent. The bimodal flavour neutrino case is different in that
not all of the three states νi are pseudo-Dirac, but only one or two (see Section 4.3). If the
corresponding δm2

iL/4E ≫ 1, in other words if L/E is large enough, the cosine term averages
out to 1/2. The standard effects from neutrino mixing are therefore modified and neutrinos
from very distant sources could probe the tiny pseudo-Dirac mass-squared differences [203–206].
As discussed in Section 3.4.3, mass splittings of less than about 10−11 eV2 have no effect on
the solar neutrino flux.

If one assumes that only one neutrino is pseudo-Dirac (say ν2), then the corresponding term
(i = 2) of the sum in Eq. (3.51) is modified by a factor of 1/2, leading to the probability

P ν2
αβ = |Ũα1|2|Ũβ1|2 +

1

2
|Ũα2|2|Ũβ2|2 + |Ũα3|2|Ũβ3|2 . (3.52)

This can be extended to cases in which different combinations of neutrinos are pseudo-Dirac;
the reduction factor of 1/2 is applied to the relevant terms in each case. The measured neutrino
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Table 3.4: The observed Φµ/Φe neutrino flux ratio at the detector for different combinations
of pseudo-Dirac neutrinos, assuming the initial flux ratios of 1 : 2 : 0 and exact µ-τ
symmetry. Numerical values are calculated from the global fit data in Ref. [170]; the
value of sin2θ12 is approximately the same as in Table 3.1.

Pseudo-Dirac neutrinos
Φµ/Φe

General case Best-fit 3σ

None & all 1 : 1 1.00 1.00

ν1 1 − 1
4 sin2θ12 : 1

2(1 + sin2θ12) 1.40 1.32−1.46

ν2 & ν3
1
4(2 + sin2θ12) : 1 − 1

2 sin2θ12 0.67 0.66−0.73

ν2
1
4(3 + sin2θ12) : 1 − 1

2 sin2θ12 0.99 0.95−1.04

ν1 & ν3
1
4(3 − sin2θ12) : 1

2 (1 + sin2θ12) 0.58 0.55−0.60

ν3
3
4 : 1 0.75 0.75

ν1 & ν2
3
2 : 1 1.50 1.50

flux, Φα, is the sum of the product of each initial flux Φ0
α with the relevant flavour conversion

probability,

Φα =
∑

β

PβαΦ0
β , (3.53)

so that the presence of one or more pseudo-Dirac neutrinos will change the final detected flux
(and flux ratios) compared to the standard case. Table 3.4 shows the observable Φµ/Φe ratio
as a function of θ12 for the different combinations of pseudo-Dirac neutrinos, for µ-τ symmetry
and initial fluxes of 1 : 2 : 0. Note that if all three neutrinos are pseudo-Dirac the observed
flux ratio is again 1 : 1, with an overall reduction in flux of 1/2. In several cases the ratio
is independent of θ12. In addition, if ν2 or ν1,3 are pseudo-Dirac, then Φµ/Φe is 1 : 1 only if
sin2 θ12 = 1

3 , i.e., for exact TBM (see Section 4.1), which is now ruled out by neutrino data.
Indeed, the data in Table 3.1 indicate deviation from µ-τ symmetry as well as non-zero θ13,

so that the simple picture presented in Table 3.4 will be modified. Flux ratios can be expressed
in terms of the deviation parameter

ǫ =
π

4
− θ23 , (3.54)

as well as the correction parameters ∆ and Γ, defined in Eqs. (A.2) and (A.4), respectively. Ex-
plicit expressions for the relevant flavour conversion probabilities can be found in Appendix A,
and can be used to calculate the final flux ratios in each case. The ratio Φµ/Φe is the most
straightforward to measure and will be discussed below; results for the ratio Φe/Φτ , which is
harder to measure, are also displayed.

The plots in Figs. 3.13 and 3.14 show the variation in the flux ratios Φµ/Φe and Φe/Φτ with
sin2θ12 for the different possible combinations of one or two pseudo-Dirac neutrinos, assuming
the standard case of an initial flux ratio of 1 : 2 : 0 (a pure pion source) and using data from
Ref. [170]. For comparison, the standard case without any pseudo-Dirac nature is also shown,
for which the ratios can be approximated by

Φµ

Φe
≃ 1 − ∆

1 + 2∆
≃ 1 − 3∆ and

Φe

Φτ
≃ 1 + 2∆

1 − ∆
≃ 1 + 3∆ , (3.55)
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using Eq. (A.3) and neglecting quadratic terms. One can see from the plots in Figs. 3.13 and
3.14 that the two cases in which ν3 and ν1,2 are pseudo-Dirac show very little dependence on θ12
(compare with Table 3.4), even with deviations applied. The ratio Φµ/Φe differs considerably
from the standard case if either ν1 or both ν1 and ν2 are pseudo-Dirac, and can be approximated
by

Φν1
µ

Φν1
e

≃ {1 − 3∆} +
2 − s212 − 3s412
2(1 + s212)

2
− 2ǫ(s212 + s412)

(1 + s212)
2

− 3∆(3 − 4s212 − 2s412)

2(1 + s212)
2

+
2Γ(1 − 4s212)

(1 + s212)
2

,

Φ
ν1,2
µ

Φ
ν1,2
e

≃ {1 − 3∆} +
1

2
− 2ǫ− ∆ .

(3.56)

In both cases the expressions are given to first order in the deviation parameters and the curly
brackets correspond to the standard case [Eq. (3.55)]. For the ratio Φe/Φτ , Fig. 3.14 shows that
there are potentially strong effects if either ν3 or both ν2 and ν3 are pseudo-Dirac, in which
case

Φν3
e

Φν3
τ

≃ {1 + 3∆} +
1

3
+

13

9
∆ ,

Φ
ν2,3
e

Φ
ν2,3
τ

≃ {1 + 3∆} +
8 + 4s212 − 8c212s

2
12 − 18s412 − 3s612

(2 + s212)
3

+
3∆(8 + 4s212 − 6s412 − s612)

(2 + s212)
3

+
32Γ(2 + s212)

(2 + s212)
3

.

(3.57)

As mentioned above, the initial flavour ratios of other interesting neutrino sources, such as
neutron or muon-damped sources, can be parameterised as in Eq. (3.49). Figures 3.15 and 3.16
indicate the dependence of the ratios Φµ/Φe and Φe/Φτ on n for the different pseudo-Dirac
combinations. It is evident that in certain cases the observed ratio can be much larger than
in the standard case. Specifically, in the case of ν2 being pseudo-Dirac, the ratios Φµ/Φe and
Φe/Φτ can become large for n → ∞ and n → 0, respectively. Expanding to first order in the
deviation parameters, the ratios are given in those cases by

Φν2
µ

Φν2
e

n→∞−−−→
P ν2

µµ

P ν2
eµ

≃
{

1 − c212s
2
12

2c212s
2
12

− 1 + c212s
2
12

2c412s
4
12

∆

}

− 1 + 4ǫ

6s212
+

1 + 12Γ

6c212s
2
12

+
3∆ + 4Γ

18c212s
4
12

− 3∆ + 16Γ

18c412s
4
12

,

Φν2
e

Φν2
τ

n→0−−−→ P ν2
ee

P ν2
eτ

≃
{

1 − 2c212s
2
12

c212s
2
12

+
1 − 2c212s

2
12

c412s
4
12

∆

}

+
1

3c212s
2
12

− 6∆ + 8Γ

9c412s
2
12

+
3∆ + 16Γ

9c412s
4
12

.

(3.58)

The terms in curly brackets again denote the flux ratios corresponding to the general case,
without pseudo-Dirac neutrinos, in the same limit (n → ∞ or n→ 0). Additionally, if both ν1

and ν2 are pseudo-Dirac, the ratio Φµ/Φe becomes large for n→ ∞,

Φ
ν1,2
µ

Φ
ν1,2
e

n→∞−−−→ P
ν1,2
µµ

P
ν1,2
eµ

≃
{

1 − c212s
2
12

2c212s
2
12

− 1 + c212s
2
12

2c412s
4
12

∆

}

+
1 − 4ǫ

4c212s
2
12

− 1

c412s
4
12

∆ , (3.59)
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Figure 3.13: The observable flux ratio Φµ/Φe against sin2θ12, assuming the initial neutrino flux
ratios of 1 : 2 : 0 and different combinations of pseudo-Dirac neutrinos (denoted
by red dashed lines), with the parameters θ13, θ23, and δ varying in their allowed
3σ ranges. The black hatched region shows the general case with no pseudo-Dirac
neutrinos; the red cross (black plus sign) shows the value of Φµ/Φe in each pseudo-
Dirac case (the general case), assuming TBM.
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Figure 3.14: Same as Fig. 3.13 for the observable flux ratio Φe/Φτ .
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and if both ν2 and ν3 are pseudo-Dirac, the ratio Φe/Φτ becomes large for n→ 0,

Φ
ν2,3
e

Φ
ν2,3
τ

n→0−−−→ P
ν2,3
ee

P
ν2,3
eτ

=
P ν2

ee

P ν2
eτ

≃
{

1 − 2c212s
2
12

c212s
2
12

+
1 − 2c212s

2
12

c412s
4
12

∆

}

+
1

3c212s
2
12

− 6∆ + 8Γ

9c412s
2
12

+
3∆ + 16Γ

9c412s
4
12

.

(3.60)

The plots in Figs. 3.15 and 3.16 could in principle be used to rule out certain cases. If, for
instance, measurements of the neutrino flux ratios from a muon-damped source give Φµ/Φe & 5,
four of the six possibilities would be ruled out so that either ν2 or both ν1 and ν2 would have
to be pseudo-Dirac neutrinos. A similar result applies for the case of Φe/Φτ & 7 and neutron
sources, where only ν2 or ν2 and ν3 could be pseudo-Dirac.

In conclusion, the flux ratios of extra-galactic high energy neutrinos are a good test of the
bimodal scenario, complementing the non-standard signatures in 0νββ (cf. Section 3.4.3). A
combination of measurements of flux ratios and the effective mass in 0νββ should be able to
rule out or confirm this scenario, using Figs. 3.9, 3.10, 3.13, 3.14, 3.15 and 3.16.

3.6 Sterile neutrinos in cosmology

Neutrinos play a vital role in our understanding of cosmology, and their properties are therefore
constrained by cosmological data sets (see the reviews in Refs. [20, 207, 208]). New particles
such as sterile neutrinos affect different parts of the evolution of the universe, depending on
their mass, and can also be used to explain features such as dark matter [209] or the baryon
asymmetry of the universe (BAU) [210]. This section provides a summary of the most relevant
constraints on eV-scale light sterile neutrinos, an introduction to sterile neutrino WDM, as
well as a brief discussion of leptogenesis, the process of producing the BAU by the decay of
right-handed neutrinos.

3.6.1 Light (sterile) neutrinos in the early universe

In the expanding universe, the light neutrinos of the SM decouple at T ≃ 1 MeV, which means
that they are relativistic. Annihilation of electrons and positrons at T ≃ me/3 ≃ 0.2 MeV
leads to a reheating of the photon plasma, but the decoupled neutrinos are unaffected. The

relation Tν =
(

4
11

)1/3
Tγ ≃ 1.95K ≃ 10−4 eV follows from entropy conservation arguments and

provides a reasonably good estimate of the temperature of relic neutrinos, still valid today.
However, there are corrections from QED effects and a slight reheating of neutrinos, which lead
to a small increase in the neutrino energy density, parameterised by

∑

i

ρν,i ≡ Neff ρν,0 . (3.61)

Here ρν,0 = 7
8

π2

15T
4
ν is the energy density in a single neutrino flavour, assuming complete de-

coupling, and Neff is the effective number of neutrino species. The SM prediction is Neff =
3.046 [211], where the calculation assumes that the additional relativistic energy density is in
the form of neutrinos. However, the cosmological parameter Neff is often used to refer to any
weakly interacting particle light enough to be relativistic at the time of CMB decoupling. Ster-
ile neutrinos are obvious candidates, but others include axions, dark photons or even gravitons.
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Figure 3.15: The observable flux ratio Φµ/Φe against n, assuming the initial neutrino flux ratios
of 1 : n : 0 and different combinations of pseudo-Dirac neutrinos (denoted by red
dashed-dotted lines), with the parameters θ13, θ23, and δ varying in their allowed
3σ ranges. The black hatched region shows the general case with no pseudo-Dirac
neutrinos; the green dashed line shows the value of Φµ/Φe in each pseudo-Dirac
case, assuming TBM.
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Figure 3.16: Same as Fig. 3.15 for the observable flux ratio Φe/Φτ .
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In order for sterile states to contribute to Neff they must be thermalised, which is usually ac-
complished via oscillations with active neutrinos [212, 213]. This would indeed be the case for
sterile neutrinos with the mass and mixing parameters from Table 3.2.

The expansion of the universe during the epoch of radiation domination is directly pro-
portional to the energy density stored in radiation, which at the time of photon decoupling
(T ≃ 0.26 eV) is given by

ρrad = ργ +
∑

i

ρν,i = ργ

[

1 +
7

8

(

4

11

)4/3

Neff

]

≃ ργ(1 + 0.2271Neff ) , (3.62)

where ργ = π2

15T
4
γ . The effective number of neutrinos thus controls the expansion rate of the

universe, which shows up in measurements of the temperature anisotropy spectrum of the
CMB and affects the predictions for the primordial abundances of light elements from BBN.
Oscillation experiments (cf. Section 3.1) have shown that at least two neutrinos are heavier
than the relic neutrino background temperature Tν ≃ 10−4 eV, so that those neutrinos are
non-relativistic and their contribution to the energy density of the universe is given by

Ων h
2 ≃ 1

94 eV

∑

mν , (3.63)

where
∑

mν is the sum of neutrino masses and H0 = 100h km s−1 Mpc−1 is the Hubble
parameter today. Requiring that Ων < 1 places a bound [214, 215] on the sum of neutrino
masses, which can be strengthened by assuming that all dark matter is in the form of neutrinos:
∑

mν
<∼ 11 eV. However, bounds from large scale structure formation turn out to be far more

stringent, as will be seen below.
Neutrinos and any other relativistic energy density affect the CMB power spectrum in several

different ways, summarised in Ref. [216]. Sub-eV mass neutrinos effectively increase the ratio
of radiation to matter at the time photons decouple, which is shortly after the epoch of matter-
radiation equality (T ≃ 1 eV). Thus Neff affects the positions of the peaks in the spectrum,
as well as their height (via the early integrated Sachs-Wolfe effect). In addition, the growth of
perturbations during the radiation era can be affected by Neff , and the diffusion damping tail
can be enhanced. The latest nine-year WMAP data [216], combined with ACT and SPT data
(from 2011) leads to

NCMB
eff = 3.89 ± 0.67 (68% C.L.) ; (3.64)

the inclusion of measurements of H0 as well as BAO data changes the result to Neff = 3.84 ±
0.40 (68% C.L.). The result is consistent with the SM within 2σ, but the existence of one
additional relativistic species has not yet been definitively ruled out. A new analysis [217]
combining nine-year WMAP data with the latest ACT or SPT data gives Neff = 3.23± 0.47 or
Neff = 3.76 ± 0.34, respectively. The situation is more complex since the new ACT and SPT
data contradict each other, with the former favouring the standard value for Neff [152]. Note
that heavier particles (mν ≫ 10 eV) are non-relativistic at matter-radiation equality and thus
do not affect Neff .

A complementary probe of Neff is the observed primordial abundance of 4He, YP , which
depends on the neutron-to-proton (n/p) ratio at the start of BBN, i.e., at T ≃ 0.07 MeV.
Once the rate of charged current weak interactions equals the rate of expansion, the reactions
freeze out and the n/p ratio is fixed. As discussed above, the expansion rate of the universe is
increased by additional relativistic particles [cf. Eq. (3.62)], which leads to earlier freeze-out and
thus increases YP . Current data [218–220] support a higher 4He abundance and lead to [221]

NBBN
eff = 3.77+0.47

−0.45 , (3.65)
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which is consistent with the existence of one additional sterile neutrino [222, 223]. Once again,
this effect could be mimicked by another type of relativistic particle, or even by other effects
such as a non-zero lepton asymmetry [224] or the decay of heavy particles [225]. The joint
CMB and BBN constraints reported in Ref. [216] are consistent with the SM value as well as
with Neff = 4; an extensive list of the results of various authors can be found in Ref. [21].

CMB data is also sensitive to the sum of neutrino masses via the effects described above, as
long as

∑

mν
>∼ 1.8 eV. From WMAP data alone [216],

∑

mCMB
ν < 1.3 eV (95% C.L.) , (3.66)

whereas adding ACT, SPT, HST as well as BAO data leads to
∑

mν < 0.44 eV (95% C.L.),
which is a very tight constraint. It is important to note that changes in the neutrino mass
inferred from cosmology can also be compensated for by changing the Hubble parameter H0,
which warrants the combination of different data sets in order to reduce parameter degeneracies.

The theory of large scale structure (LSS) formation in the early universe places a strong
bound on the sum of neutrino masses. Free-streaming of neutrinos affects the large-scale matter
power spectrum, suppressing the growth of fluctuations on scales below the horizon when they
become non-relativistic (the free-streaming length). That suppression is proportional to the
neutrino-to-matter fraction Ων/Ωm, which can also be affected by sterile neutrinos. Thus LSS
can be used to “weigh neutrinos” [226]: the Sloan Digital Sky Survey (SDSS) reports a bound of
∑

mν < 0.62 eV (95% C.L.) [227].12 In addition the matter power spectrum on small scales can
be probed by the Lyman-alpha (Ly-α) forest data, corresponding to the absorption of photons
from distant quasars by neutral hydrogen in the intergalactic medium. Density fluctuations
of the gas along the line of sight allow reconstruction of the matter density profile, although
the processes involved are not entirely well understood. In spite of this, various authors have
obtained even more stringent bounds on

∑

mν by combining various data sets, see for example
Ref. [231]. The bottom line is that there is no single cosmological bound for

∑

mν , and values
in the range 0.2–1.5 eV can be found in the literature.

As mentioned above, the sterile neutrinos required to explain the oscillation anomalies out-
lined in Section 3.2.3 will be thermalised and thus effect Neff . However, eV-scale sterile states
are in danger of contradicting cosmological constraints on the sum of neutrino masses. Data
from Table 3.2 lead to

∑

m3+1
ν

>∼
√

∆m2
41 ≃ 1.3 eV, (3.67)

∑

m3+2
ν

>∼
√

∆m2
41 +

√

∆m2
51 ≃ 1.6 eV, (3.68)

for the 3+1 and 3+2 cases, respectively. The sum of masses is much higher in the cases where
the sterile neutrinos are heavier than the active ones (1+3, 2+3, 1+3+1), e.g.,

∑

m1+3
ν

>∼ 3
√

∆m2
41 ≃ 4 eV, (3.69)

∑

m2+3
ν

>∼ 3
√

∆m2
51 +

√

∆m2
51 − ∆m2

41 ≃ 3.4 eV, (3.70)

for the 1+3 and 2+3 cases, respectively. The analyses of Refs. [222, 223] find the upper bound
Ms < 0.45 eV (68% C.L.) on the sterile neutrino mass, assuming the 3+1 mass spectrum

12Although LSS measurements are generally only sensitive to the sum of neutrino masses, some authors have
argued that future experiments may be able to constrain the neutrino mass ordering [228, 229], but a recent
analysis [230] using simulations of Planck and EUCLID data shows that that is rather unlikely.
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(Neff = 4); the bound for the 3+2 case is similar. However, recent works have shown that in
general one needs exotic modifications to cosmology in order to explain all of the data [232–
235]. For instance, a large initial lepton asymmetry could lead to partial thermalisation of one
or more of the sterile states, which alleviates the constraints to some extent, but tension with
the data still remains, especially when adding two sterile neutrinos. A new analysis [152] has
shown that there is reasonable agreement between SBL data and cosmology, as long as at least
one of the sterile neutrinos are not completely thermalised.

The present hints for extra radiation will soon be constrained by Planck data, with a pre-
cision of ∆Neff ∼ ±0.3 [222]. This means that Planck could in fact constrain the existence
of a sterile neutrino species before beta decay or 0νββ experiments see a signal. However,
cosmological data are rather model-dependent, so that a definitive exclusion or confirmation is
not so straightforward. If Planck restricts the effective number of light neutrinos to be close
to the SM value one could still build exotic models to explain the oscillation anomalies, for
instance by introducing an MeV dark matter particle with different couplings to electrons than
to neutrinos [236, 237] or even by modifying gravity [238]. On the other hand, confirmation of
sterile neutrinos by Planck may provoke a re-examination of the standard cosmological model.
Whatever the outcome, the hints from short-baseline and reactor experiments described in
Section 3.2.3 remain and require independent verification from other terrestrial experiments.

3.6.2 Sterile neutrino warm dark matter

Massive neutrinos affect structure formation and are thus a source of dark matter, but sim-
ulations [239] of the evolution of LSS have shown that the light active neutrinos of the SM
cannot make up all of the DM in the universe, since their free-streaming length13 would erase
observed small scale structures. In contrast to HDM in the form of neutrinos, the WIMPs of
the ΛCDM model are cold thermal relics with negligible free-streaming length, which clump
together to allow structures to form. There are several particle physics candidates with the
required properties [15], one example would be the neutralino in supersymmetric theories.

Although the ΛCDM model is remarkably successful on larger scales, several hints for DM
with a non-negligible free-streaming length have emerged on smaller scales. Firstly, the ΛCDM
model predicts the number of dwarf satellite galaxies to be too large, in conflict with obser-
vations. Secondly, CDM simulations produce halos with concentrated cores whereas rotation
curves of galaxies imply low-density cores. In addition, observations have shown that faint
dwarf galaxies do not fill voids in the bright galaxy distribution, so that smaller halos are cor-
related with large scale structures, which one would not expect with CDM. These problems
can be alleviated by WDM, primarily due to its velocity, which damps structures on sub-Mpc
scales [240].

Sterile neutrinos at the keV scale are good candidates for WDM [16, 241, 242],14 since their
maximal free-streaming length is given by [209]

λFS ≃ 1 Mpc

(

keV

Mi

)

. (3.71)

This value can be slightly smaller depending on the way the WDM is produced. There are
various constraints on the WDM mass and its mixing with the active sector, some of which
depend on the production mechanism. The universal Tremaine-Gunn bound [245] means that

13For eV-scale neutrinos, λFS ≃ 100 Mpc (eV/mν).
14keV sterile neutrinos could also provide an explanation for pulsar kicks [243, 244].
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any fermionic DM should be heavier than about 0.4 keV, from arguments about the phase-
space density of a Fermi gas; this bound increases to roughly 1 keV in specific WDM models.
Furthermore, the radiative decay of a sterile neutrino (N1) would lead to a monochromatic
X-ray line of energy Eγ = M1/2 and decay width

ΓN1→γν ≃ 5.5 × 10−27

(

S2
1

10−5

)(

M1

keV

)5

s−1 , (3.72)

where S1 is the mixing defined in Eq. (2.23); non-observation of that line leads to the bound [246]

S2
1
<∼ 1.8 × 10−5

(

keV

M1

)5

. (3.73)

The constraint of DM stability requires τ1 > τuniverse ≃ 1017 s, where the lifetime comes
from the tree-level decay into three (anti-)neutrinos, with a decay width roughly given by
ΓN1→3ν ≃ G2

FS
2
1M

5
1 . This is easily fulfilled with a keV-mass particle and mixing satisfying

Eq. (3.73), since

τN1→3ν ≃ 5 × 1023 s

(

keV

M1

)5(10−5

S2
1

)

. (3.74)

In realistic sterile neutrino WDM models, a specific mechanism for the relic production
of sterile neutrinos is required. The Dodelson-Widrow scenario [16] employs non-resonant
production via active-sterile mixing. In that case, if one assumes that the sterile neutrino N1

with mass M1 and mixing S1 makes up all the DM in the Universe, its abundance is given
by [209]

ΩN1 ≃ 0.2

(

S2
1

3 × 10−9

)(

M1

3 keV

)1.8

, (3.75)

so that the mass is bounded to be around 1-3 keV. However, Ly-α constraints lead to M1
>∼

8 keV [247], which combined with the X-ray bound in Eq. (3.73) effectively excludes non-
resonant production. In the so-called Shi-Fuller mechanism [248], production proceeds via
resonant flavour oscillations (the MSW effect), which require a significant primordial lepton
asymmetry. The Ly-α bounds are weaker in this case, roughly M1

>∼ 2 keV [249]. Other
approaches discussed in the literature include production via the decay of scalar singlets [250,
251] as well as thermal production achieved by extending the gauge group to that of the
LRSM [252, 253] (cf. Section 2.3). A specific model encompassing both sterile neutrino WDM
as well as the BAU is the neutrino Minimal Standard Model (νMSM) [254, 255], discussed in
Section 3.6.3 below, in which three sterile neutrinos below the electroweak scale are introduced.

Equation (3.75) is used as a guideline for the model building efforts of Chapter 4, without
too much concern for the production mechanism. The main challenge from a particle physics
perspective is how to obtain a sterile neutrino with keV mass and mixing of order S2

1 ≃ 10−8 in
a realistic model. Several approaches have already been discussed in Section 2.2.1. Note that
a sterile neutrino characterised by Eq. (3.75) results in a contribution S2

1M1
<∼ 10−5 eV to the

active neutrino masses, which means that one of the active neutrinos is effectively massless.

3.6.3 Leptogenesis and the νMSM

The discussion of sterile neutrinos in cosmology would not be complete without mentioning
leptogenesis, which is a mechanism to generate the baryon asymmetry of the universe,

ηB ≡ nB − nB̄

nγ
≃ 6 × 10−10 , (3.76)
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from the decays of heavy sterile neutrinos, where nB (nB̄) refers to the number of baryons (anti-
baryons), and nγ to the number of photons. Indeed, the only known source of CP violation
in the SM comes from the CKM matrix (cf. Section 2.1), which is not enough to explain the
number in Eq. (3.76). The type I seesaw mechanism introduced in Section 2.2.1 provides the
setting for the standard thermal leptogenesis scenario, in which the out-of-equilibrium decays
of GUT-scale heavy neutrinos generate a lepton asymmetry that is subsequently converted into
baryon asymmetry via sphaleron processes. The lepton asymmetry is proportional to Y †

DYD,
where YD is the Dirac coupling defined in Eq. (2.11). If the heavy neutrinos are thermally
produced they need to be heavier than about 109 GeV to give large enough ηB [256].

In the νMSM, N1 is the keV WDM particle whereas the two heavier sterile neutrinos N2,3

are at the GeV scale; the required baryon asymmetry is produced via CP -violating oscilla-
tions [257] of N2,3. In order to simultaneously explain the BAU and DM production one needs
resonant enhancement [258], which implies that the right-handed neutrinos are nearly degen-
erate, roughly |M2 −M3|/M2 ≃ 10−11 [259]. A comprehensive study of the parameter space of
the model was performed in Ref. [260], and models that achieve the required mass spectrum
have been considered in the literature, see Section 2.2.1 as well as Ref. [261]. The A4 model in
Chapter 4 can indeed accommodate the νMSM scenario presented here.

3.7 Colliders, lepton flavour violation and electroweak precision
observables

Sterile neutrinos can also be probed at hadron and lepton colliders, and in charged lepton
flavour violating processes. In some cases they can lead to a modification of the electroweak
precision observables (EWPO). After a brief discussion of LHC signals the interesting case of
inverse double beta decay at a linear collider is introduced, as a prelude to the analysis of the
LRSM in Chapter 5. The constraints from searches for charged lepton flavour violation are
also relevant for that case; and will be summarised here. For completeness the constraints from
electroweak physics are briefly mentioned.

3.7.1 LHC signatures

Although (sterile) neutrinos are not directly detectable at the LHC, their presence could still
be felt through couplings to other particles. In particular, heavy neutrinos can be produced in
pp collisions via a process that can be obtained by rotating the 0νββ diagram in Fig. 3.11, and
they subsequently decay to two like-sign dileptons and two jets. However, since the relevant
energy scale is O(TeV), the requirement of observation at the LHC places several restrictions
on models of neutrino mass. In the type I seesaw mechanism with TeV-scale right-handed
neutrinos, tiny Dirac Yukawa couplings YD are required in order to suppress light neutrino
mass [see Eqs. (2.11) and (2.15)]. A signal at the LHC is therefore unlikely, unless cancellations
are at play [262–265],15 which could be due to a flavour symmetry [263, 265], for example. In
that case, if the Yukawas are large enough there could be other signatures such as modified
Higgs decays [266–268]. A similar situation occurs in the inverse seesaw model, and bounds on
Yukawa couplings have been derived in Ref. [269] using recent LHC data.

The situation is quite different in the type II seesaw model, since the Higgs triplet mass need
not be large for neutrino mass to be small [see Eq. (2.37)]. The phenomenology is also richer
due to the gauge couplings of Higgs triplets, which allow for both single and pair production

15See the analysis in Chapter 5 for an explicit example of this.
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Figure 3.17: Lepton number violating inverse double beta decay, mediated by light Majorana
neutrinos.

via charged and neutral gauge bosons [270–272], as long as the triplets are not too heavy. In
addition, the striking signature of their decay into like-sign dileptons is related to the neutrino
mass matrix [271, 273–275]. The latest results from ATLAS [276] give the exclusion limits
mδ±±

L
> 409 GeV for e±e± final states and assuming a branching ratio of 100% to each final

state. For a comprehensive analysis of seesaw models at the LHC see Ref. [277].

The LRSM contains all the features of the type I and type II seesaw mechanisms, but the
additional gauge symmetries allow production of heavy right-handed neutrinos via the right-
handed W boson [11, 86, 87]. Furthermore, the new neutral gauge boson Z ′ could in principle
be seen at the LHC [278], although the relation mZ′ ≃ 1.7mWR

[see Eq. (2.63)] means that
the cross sections for processes such as pp → Z ′ → ℓ+ℓ− will be lower than those involving
charged gauge bosons (see Ref. [279] for a review and further references). The latest ATLAS
limits for the right-handed Higgs triplet are mδ±±

R
> 322 GeV [276]. Several authors have

analysed the phenomenology of the LRSM at hadron colliders, see e.g., Refs. [278, 280–283].
The relationship between collider and 0νββ phenomenology in the LRSM will be discussed in
Chapter 5.

3.7.2 Linear collider signatures

A linear collider provides an extremely clean environment to test lepton number violation, in
comparison to 0νββ, which suffers from nuclear physics uncertainties (cf. Table 3.3). Indeed,
the process

e− e− →W−W− , (3.77)

shown in Fig. 3.17, directly tests the central part of the 0νββ diagram in Fig. 3.11, and has often
been called inverse neutrinoless double beta decay. Observation at a linear collider running in
like-sign electron mode would provide a cross-check for the mechanism of 0νββ, and has been
proposed by several authors in the past [284–296].

As discussed in the case of the LHC, the like-sign dilepton signature from the decay of Higgs
triplets could also be seen at a linear collider. Here the relevant s-channel process is e− e− →
αβ, mediated by the doubly charged Higgs δ−−, which has been studied in Refs. [297, 298].
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The direct connection to neutrino mass and LFV allows one to probe the couplings Y∆ in
Eq. (2.35).

The LRSM can also be studied at a linear collider, and the various diagrams that mediate
0νββ could in principle be tested: this topic will be discussed in detail in Chapter 5. At an
e+e− collider the Z ′ could mediate new four fermion interactions, i.e., e+e− → Z ′ → f f̄ , and
could be detected due to interference with the virtual γ and Z contributions [299]. In addition,
the doubly charged components of the left- and right-handed Higgs triplets could be produced
in e+e− collisions [275, 300].

3.7.3 Lepton flavour violation and dipole moments

The oscillation results presented in Section 3.1 show that lepton flavour is violated in the neu-
trino sector, implying new physics in the form of neutrino mass. However, the small active
neutrino masses “GIM suppress” charged lepton flavour violating processes, making them ex-
perimentally inaccessible. For instance, the branching ratio for µ → eγ mediated by light
neutrinos is

BRµ→eγ =
3α

32π

∣

∣

∣

∣

∣

∑

i

Ũ∗
µiŨei

m2
i

m2
WL

∣

∣

∣

∣

∣

2

≃ 3α

32π

(

∆m2
A

m2
WL

)2

≃ 10−52 , (3.78)

where α is the fine-structure constant and ∆m2
A the atmospheric mass squared difference, and

here Ũ is unitary. In seesaw models Ũ is no longer unitary [cf. Eq. 2.20], and the existence of
heavy right-handed neutrinos and/or Higgs triplets allow the LFV decays µ→ eγ and µ→ 3e
as well as µ → e conversion in nuclei to occur at rates observable in current experiments.16

Those decay rates will be proportional to similar combinations of mass and mixing parameters
as the 0νββ amplitudes, thus providing complementary constraints. Defining

Γν ≡ Γ(µ− → e−νµν̄e) and Γcapt ≡ Γ(µ− + A(Z,N) → νµ + A(Z − 1,N + 1)), (3.79)

the relevant branching ratios

BRµ→eγ ≡ Γ(µ+ → e+γ)

Γν
,

RA
µ→e ≡

Γ(µ− +A(N,Z) → e− +A(N,Z))

Γcapt
, (3.80)

BRµ→3e ≡ Γ(µ+ → e+e−e+)

Γν
,

are constrained at 90% C.L. to17

BRµ→eγ < 2.4 × 10−12 [302], RAu
µ→e < 7.0 × 10−13 [303] and BRµ→3e < 1.0 × 10−12 [304]

by experiment. Future experiments aim for even greater precision: the MEG upgrade aims at
a sensitivity of 6 × 10−14 for µ → eγ [305], whereas the Mu3e experiment aims to get down to
10−16 for µ→ 3e [306]. The COMET and PRISM/PRIME experiments will constrain the rate
of µ → e conversion down to 10−16 [307] and 10−18 [308], respectively. A complementary test
of the lepton flavour violating decay of the muon is via the process µ−e− → e−e− in a muonic
atom, proposed in Ref. [309].

16Tau decays are also searched for in experiments, but will not be analysed here.
17During the preparation of this thesis a stronger limit on the branching ratio for µ → eγ was published [301],

but the limit from Ref. [302] will be used in the analysis of Chapter 5.
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3.8 Summary

A detailed discussion of LFV in the framework of the LRSM will be presented in Chapter 5.
In that context another relevant observable is the dipole moment of the electron, which depends
on similar parameters to µ→ eγ. The current experimental limit is

|de| < 10−27 e cm [310].

3.7.4 Electroweak precision observables

The introduction of sterile neutrinos has several other consequences, mostly related to the non-
unitarity of the lepton mixing matrix [311], shown explicitly in Eq. (2.19). Some examples
include a modification of the invisible Z decay width, violation of the universality of lepton
couplings, or additional contributions to the electroweak precision parameters. Those effects all
constrain the magnitude of the active-sterile mixing (S), and were recently studied in Ref. [312].
However, for the most part it is the stringent bounds from LFV and 0νββ that constrain the
elements of S the most, as will be seen in the analysis of Chapter 5.

3.8 Summary

The discussions and analyses of this chapter have shown that sterile neutrinos may be tested
in a multitude of different physical processes, all of which constrain their mixing to the active
sector. Although the standard three-neutrino oscillation framework described in Section 3.1 is
well-established, the hints for eV-scale sterile neutrinos in short-baseline experiments remain.
The cosmological data on Neff seem to point in the same direction, but this is quite model
dependent and more precision is required in order to draw any reliable conclusions. 0νββ
processes are very sensitive to additional eV-scale sterile states: the effective mass can behave
quite differently to the normal case. Heavier keV sterile neutrinos could explain dark matter,
whereas even heavier particles could generate the required baryon asymmetry of the universe.
The signatures of sterile neutrinos at the TeV scale are varied, ranging from collider signals to
0νββ and LFV.

The remainder of this thesis is devoted to (i) flavour symmetry models with light sterile
neutrinos and (ii) a phenomenological analysis of lepton number and lepton flavour violation
in the left-right symmetric model.
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Chapter 4

Sterile neutrinos in flavour symmetry models

4.1 Introduction to flavour symmetries

The data in Table 3.1 summarise the current status of neutrino physics: the era of precision
measurements has begun, with the aim of constraining the mixing parameters even further,
determining the mass hierarchy and measuring CP violation. On the theoretical side, the
majority of research in the past decade has centred on explaining the peculiar mixing in the
neutrino sector [see Eq. (3.6)] by employing flavour symmetries [22, 313]. However, sterile
neutrinos somewhat complicate the simple three-neutrino framework, and one needs to expand
flavour symmetry models to take them into account. In addition, since many models predict
θ13 = 0 at the leading order, the recent evidence for non-zero θ13 requires that they be extended.
This chapter will provide several examples of flavour symmetry models, modified to include
sterile neutrinos at different mass scales.

The SM symmetries discussed in Section 2.1 do not constrain the form of the mass matrices:
Mℓ is an arbitrary 3×3 matrix and mν must be symmetric if neutrinos are Majorana particles.
The idea of flavour symmetries is to extend the SM by a so-called flavour (or family) symmetry,
i.e.,

G = SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗Gfamily , (4.1)

so that invariance under Gfamily leads to further restrictions on the mass matrices. By assigning
the lepton doublets and singlets to different representations of the symmetry group one obtains
specific matrix structures once the symmetry is broken. Models in the literature look to find
an underlying symmetry that can explain the pattern of neutrino mixing, in a sense employing
a “bottom-up” approach. A popular starting point is the TBM pattern,

UTBM ≡







2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2






≃





0.816 0.577 0.
−0.408 0.577 −0.707
−0.408 0.577 0.707



 , (4.2)

proposed in Ref. [314], which implies

sin2θ12 =
1

3
, sin2θ23 =

1

2
and sin2θ13 = 0 , (4.3)

for the neutrino mixing angles. However, comparison with Eq. (3.6) shows that the TBM
hypothesis is ruled out, primarily because θ13 6= 0. This has led to other alternatives being
considered in the literature, see for instance Ref. [315]. Several authors have also performed
scans over discrete groups in order to find candidates that fit the data [316–318].

The leading-order TBM prediction could be modified by higher-order effects, such as those
from NLO operators or VEV misalignment [319]. Corrections to the leptonic mixing pattern
could also arise from the charged lepton sector [cf. Eq. (2.20)] or from renormalisation group
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Table 4.1: Classification of A4 models in the literature, simplified from Ref. [28]. Lepton dou-
blets, charged lepton singlets and right-handed neutrinos are denoted by Li, ℓ

c
i and

νc
i , respectively.

Type Li ℓci νc
i Examples

A 3 1, 1′, 1′′ · · · [328, 329]

B 3 1, 1′, 1′′ 3 [330, 331]

E 3 3 1, 1′, 1′′ [332, 333]

G 3 1, 1′, 1′′ 1, 1′, 1′′ [334]

I 3 1, 1, 1 1, 1, 1 [335]

running [320–322]. On the other hand, since the parameters in Eq. (3.6) are all roughly order
one, it is conceivable that neutrino mixing does not originate from a symmetry at all: the
anarchy hypothesis [323, 324]. In that case one obtains no concrete predictions, barring a
parameterisation-dependent probability distribution for the elements of Ũ . This idea has re-
ceived recent attention due to evidence for non-zero θ13 [325], and has also been extended to
the sterile neutrino case in Ref. [326]. There have even been attempts at combining anarchy
and symmetry in specific models, e.g., Ref. [327]. One could argue as to whether the order one
“random” mixing in the lepton sector is more natural than the small mixing in the quark sector.
Nevertheless, the idea that some underlying symmetry is behind the observed fermion mixing
patterns still seems more appealing, and that approach will be followed here.

A4 models accommodating light (eV-scale) as well as keV-scale sterile neutrinos will be
discussed in Section 4.2. Flavour symmetries are introduced to explain the observed mixing
parameters, but in most cases mass scales and hierarchies remain free parameters. One way to
explain the charged lepton mass hierarchy is the Froggatt-Nielsen (FN) mechanism [59], already
mentioned in Section 2.2.1. In the models in Section 4.2 the FN mechanism will be used for
both the charged lepton and sterile neutrino mass hierarchies. In Section 4.2.2 the original
model from Ref. [328] is outlined and then modified, following Ref. [99]. As mentioned before,
the seesaw model in Section 4.2.3 (based on Ref. [29]) is the first of its kind in the literature. In
Section 4.3 an S3 flavour symmetry model for the bimodal scenario is briefly outlined, following
Ref. [31]. The phenomenology of this interesting and exotic case for 0νββ and astrophysical
flavour ratios has already been described in Sections 3.4.3 and 3.5.2, respectively.

4.2 A4 models with light sterile neutrinos

4.2.1 Introduction to A4 symmetry

The non-Abelian discrete symmetry group A4 is the smallest group that contains a three di-
mensional irreducible representation, which is one of the main reasons it has been employed as
a symmetry group for leptons. A discussion of the relevant group theory aspects can be found
in Appendix B. Its connection to TBM can be seen from the fact that the most general mass
matrix leading to TBM is invariant under one of the generators of the group, see Eq. (B.7).
The economical structure of A4 models has led to their relative popularity in the literature:
around 100 papers have been devoted to this topic. For that reason a classification table for
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A4 models has been drawn up in Ref. [28] (see also Ref. [336]); a simplified version is shown in
Table 4.1, with several categories and subcategories omitted. The models presented here belong
to category G, since right-handed neutrinos need to be in singlet representations in order to
separate their mass scales.

Before discussing A4 models it should be noted that the symmetry group needs to be broken
in a specific way in order to generate TBM. Explicitly, the group should be broken down to Z3 in
the charged lepton sector and Z2 in the neutrino sector, implying particular symmetry-breaking
vacua as well as a separation between the neutral and charged sectors. It turns out that one
requires two triplet flavons with different VEV alignments, and in the end those alignments are
not a natural minimum of the scalar potential. This is the so-called “vacuum alignment prob-
lem”, for which several solutions have been proposed. Some of those include extra-dimensional
models, where the flavons are localised on different branes [328], or supersymmetric models
with an additional R-symmetry [331]. Extensions of the flavour group provide another solu-
tion [337, 338]. This general problem will not be tackled here, since the focus is on including
sterile neutrinos in existing flavour models.

In the following section a popular A4 model is modified in order to accommodate one or
two eV-scale sterile neutrinos; the resulting deviations from exact TBM as well as the effect of
higher-order operators will be discussed. keV sterile neutrinos, which could be a candidate for
WDM, will also be added to the same model. Section 4.2.3 details an A4 seesaw model with
one of the three right-handed neutrinos at the keV scale. Various cases for the mass scales of
the other two neutrinos are discussed, along with the resulting phenomenological consequences.
The role of higher-order corrections is described in detail, both here and in Appendix C.

4.2.2 An effective A4 model with sterile neutrinos

Original model

In the Altarelli-Feruglio A4 model [328], neutrinos get mass from effective operators [cf. Eq. (2.8)],
and the judicious choice of particle and flavon content along with the correct VEV alignment
leads to TBM, at leading order. The relevant particle assignments are shown in Table 4.2,
where the additional Z3 symmetry separates the neutrino and charged lepton sectors, and the
U(1)FN symmetry reproduces the charged lepton mass hierarchy via the FN mechanism, with
the FN charges Fℓ (ℓ = e, µ, τ) assigned to the right-handed charged leptons. The additional
sterile neutrino νs with FN charge Fν will be discussed below.

The particle assignments along with the A4 multiplication rules (see Appendix B) lead to
the A4-invariant Lagrangian

LY =
ye

Λ
λFeec(ϕL)hd +

yµ

Λ
λFµµc(ϕL)′hd +

yτ

Λ
λFτ τ c(ϕL)′′hd

+
xa

Λ2
ξ(LhuLhu) +

xd

Λ2
(ϕ′LhuLhu) + h.c.+ . . . , (4.4)

where Λ is the cut-off scale and the dots stand for higher-dimensional operators. The notation
(ab)′ means that the product of the fields a and b transforms as 1′, which will be used from now
on. λ ≡ 〈Θ〉/Λ < 1 is the FN suppression parameter, where Λ is assumed to be the cut-off scale
of both the A4 and U(1)FN symmetries. If one chooses the real basis for A4 (see Appendix B),
along with the flavon VEV alignments1 〈ξ〉 = u, 〈ϕ〉 = (v, 0, 0) and 〈ϕ′〉 = (v′, v′, v′), then the

1Note that the model contains two Higgs doublets for the up- and down-sector, respectively, and therefore can
be accommodated within supersymmetry. The VEV alignment could in that case be arranged by “driving
fields” [331]. In the SM hu = iσ2h

∗
d, see Eq. (2.1).
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Table 4.2: Particle assignments of the A4 model, modified from Ref. [328] to include a sterile
neutrino νs. The additional Z3 symmetry decouples the charged lepton and neutrino
sectors; the U(1)FN charge generates the hierarchy of charged lepton masses and
regulates the scale of the sterile state.

Field L ec µc τ c hu,d ϕ ϕ′ ξ Θ νs

SU(2)L 2 1 1 1 2 1 1 1 1 1
A4 3 1 1′′ 1′ 1 3 3 1 1 1
Z3 ω ω2 ω2 ω2 1 1 ω ω 1 1

U(1)FN - Fe Fµ Fτ - - - - −1 Fν

charged lepton mass matrix is diagonal, whereas the neutrino mass matrix,

mν =
v2
u

Λ





a′ + 2d′

3 −d′

3 −d′

3

· 2d′

3 a′ − d′

3

· · 2d′

3



 , (4.5)

is diagonalised by the TBM matrix in Eq. (4.2). Here a′ = 2xa
u
Λ and d′ = 2xd

v′

Λ , and the light
active neutrino masses are

m1 = a′ + d′ , m2 = a′ , m3 = a′ − d′ , (4.6)

This means that mν is form-diagonalisable: the eigenvectors are independent of the parameters
in the neutrino mass matrix, and there is a sum rule between the light masses, 2m2 = m1 +
m3 [339].

The charged lepton mass hierarchy is generated by the FN mechanism: the negative unit
of U(1)FN charge carried by the flavon Θ suppresses each mass term by powers of the small
parameter 〈Θ〉/Λ = λ < 1. Explicitly,

mℓ = yℓvd
v

Λ
λFℓ , (4.7)

where Fℓ is the relevant U(1)FN charge. The relevant mass scales are obtained by assuming
that (i) the Yukawa couplings yℓ, xa and xd remain in the perturbative regime; (ii) the flavon
VEVs are smaller than the cut-off scale and (iii) all flavon VEVs fall in approximately the
same range, which leads to the relation [328]

0.004 <
v′

Λ
≃ v

Λ
≃ u

Λ
< 1 , (4.8)

with the cut-off scale Λ ranging between 1012 and 1015 GeV, and vu ≃ 174 GeV. As an explicit
example, if one assumes that v′/Λ ≈ v/Λ ≈ u/Λ ≃ 10−1.5, in keeping with the constraints from
Eq. (4.8), and that the cut-off scale is Λ ≃ 1012.5 GeV, the charged lepton masses are

mℓ = yℓvd
v

Λ
λFℓ ≃ 3

( vd

102 GeV

)( v

1011 GeV

)

(

1012.5 GeV

Λ

)(

λ

10−1.5

)Fℓ

GeV , (4.9)

where λ ≃ 10−1.5 means that 〈Θ〉 is in the same range as the other flavon VEVs. The U(1)FN

charges Fe,µ,τ = (3, 1, 0) result in the correct mass spectrum, with yℓ = O(1). The light neutrino
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mass scale is roughly

v2
u

Λ
a′ ≃ v2

u

Λ
d′ ≃ 0.1

( u

1011 GeV

)( vu

102 GeV

)2
(

1012.5 GeV

Λ

)2

eV , (4.10)

with O(1) Yukawa couplings.

The leading order TBM prediction of the model depends on the triplet VEV alignments
in the scalar sector. In the general case [28, 340], those alignments could be modified to
〈ϕ〉 = (v, v ǫch1 , v ǫ

ch
2 ) and 〈ϕ′〉 = (v′, v′(1+ ǫ1), v

′(1+ ǫ2)), where the deviation parameters come
from higher-dimensional operators or renormalisation group effects. Mixing angles will then
receive corrections of the same order, proportional to ǫch1,2 and ǫ1,2. The effects of next-to-
leading order (NLO) operators, suppressed by additional powers of the cut-off scale Λ, will be
considered below, following Ref. [331].

In the charged lepton sector, corrections to Mℓ come from terms like

1

Λ2

[

y′eλ
Fe (ϕϕLhd) e

c + y′µλ
Fµ (ϕϕLhd)

′ µc + y′τλ
Fτ (ϕϕLhd)

′′ τ c
]

, (4.11)

which replicate the leading order patterns and can thus be simply absorbed into the coefficients
yℓ. The higher-order operators contributing to light neutrino masses are of order 1/Λ3. There
exist only three such terms that cannot be absorbed by a redefinition of the parameters a′ and
d′ [331], viz.

x1

Λ3
(ϕϕ′)′(LhuLhu)′′ ,

x2

Λ3
(ϕϕ′)′′(LhuLhu)′ , and

x3

Λ3
ξ(ϕLhuLhu) , (4.12)

so that the light neutrino mass matrix is modified to

mν = m(0)
ν +m(1)

ν =





a′ + 2d′

3 −d′

3 −d′

3

· 2d′

3 a′ − d′

3

· · 2d′

3



+





2
3η3 η2 η1

· η1 −1
3η3

· · η2



 , (4.13)

where η1 = 2x1
vv′v2

u

Λ3 , η2 = 2x2
vv′v2

u

Λ3 and η3 = 2x3
uvv2

u

Λ3 . The ηi terms are a factor of v/Λ ≃ 0.03
smaller than the terms in Eq. (4.10). The neutrino masses become

m1 ≃ a′ + d′ − 1

2
(η1 + η2) +

1

3
η3 ,

m2 ≃ a′ + η1 + η2 ,

m3 ≃ −a′ + d′ +
1

2
(η1 + η2) +

1

3
η3 ,

(4.14)

to first order in ηi, and the corrected mixing angles are

sin2θ13 ≃ (η1 − η2)
2

8a′2
, sin2θ12 ≃ 1

3

(

1 − 2η3

3d′

)

, sin2θ23 ≃ 1

2

(

1 − η1 − η2

4a′

)

. (4.15)

It is possible to find numerical values that generate a large enough value of θ13, although one
must carefully choose the relative signs of η1 and η2. In the following the focus will be on
introducing one or more sterile neutrino(s) into the model.
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One eV sterile neutrino

It is possible to add an additional sterile singlet, νs,
2 transforming as 1 under A4 and 1 under

Z3 (see Table 4.2). The A4 invariant dimension-5 operator 1
Λ(ϕ′Lhu)νs is not allowed by the

Z3 symmetry; the remaining terms are

LYs =
xe

Λ2
λFνξ(ϕ′Lhu)νs +

xf

Λ2
λFν (ϕ′ϕ′Lhu)νs +msλ

2Fννc
sνs + h.c., (4.16)

where for now ms is a bare Majorana mass. The modified 4 × 4 mass matrix is [cf. Eq. (4.5)]

M4×4
ν =









a+ 2d
3 −d

3 −d
3 e

· 2d
3 a− d

3 e

· · 2d
3 e

· · · ms









, (4.17)

where a = 2xa
uv2

u

Λ2 , d = 2xd
v′v2

u

Λ2 and e =
√

2xe
uv′vu

Λ2 have dimensions of mass. Note that the
first three elements of the fourth row of M4×4

ν are identical because of the VEV alignment
〈ϕ′〉 = (v′, v′, v′), which was necessary to generate TBM in the 3 neutrino case; that align-
ment combined with the A4 multiplication rules also causes the second term in Eq. (4.16)
(proportional to xf ) to vanish.3

With the mass scales discussed above one obtains a ≃ d ≃ 0.1 eV, as before, as well as

e ≃ 0.1

(

λ

10−1.5

)6
( u

1011 GeV

)

(

v′

1011 GeV

)

( vu

102 GeV

)

(

1012.5 GeV

Λ

)2

eV , (4.18)

again with the assumption that the Yukawa couplings xa,d,e are of order 1. The U(1)FN charge
of Fν = 6 has been assigned to νs, in analogy to the mechanism used in the charged lepton
sector. Indeed, in order to fit the data, the parameters a and d should be between 10−3 and
10−1 eV, the ratio e/ms = O(10−1) to generate sufficient mixing, and ms ≃ 1 eV for the sterile
neutrino mass. The Majorana mass term msλ

2Fννc
sνs is doubly suppressed by the U(1)FN

charge, and the leading order contribution is

xs

Λ
(ϕϕ)λ2Fν νc

sνs =⇒ xs
v2

Λ
λ2Fν , (4.19)

resulting in a Majorana mass of order eV, i.e.,

ms ≃ 100.5

(

λ

10−1.5

)12 ( v

1011 GeV

)2
(

1012.5 GeV

Λ

)

eV . (4.20)

This shows that usual choice of scales and charges easily allows a ≃ d ≃ e < ms in the mass
matrix in Eq. (4.17); higher-order terms will be discussed below.

Assuming that the parameters are all real, Eq. (4.17) is exactly diagonalised by

U =















2√
6

1
6e

K−

N−
0 1

6e
K+

N+

− 1√
6

1
6e

K−

N−
− 1√

2
1
6e

K+

N+

− 1√
6

1
6e

K−

N−

1√
2

1
6e

K+

N+

0 1
N−

0 1
N+















, (4.21)

2The notation in this chapter conforms to that usually employed in flavour symmetry models, and primes for
flavour eigenstates are omitted.

3Since no additional flavons are introduced, one can assume that the solution of the VEV alignment problem
remains valid.
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where K± = a−ms ±
√

12e2 + (a−ms)2 and N2
± = 1 +

“

a−ms±
√

12e2+(a−ms)2
”2

12e2 . For a < ms,
expansion in e/ms results in the mixing matrix

U ≃











2√
6

1√
3

0 0

− 1√
6

1√
3

− 1√
2

0

− 1√
6

1√
3

1√
2

0

0 0 0 1











+











0 0 0 e
ms

0 0 0 e
ms

0 0 0 e
ms

0 −
√

3e
ms

0 0











+













0 −
√

3e2

2m2
s

0 0

0 −
√

3e2

2m2
s

0 0

0 −
√

3e2

2m2
s

0 0

0 0 0 − 3e2

2m2
s













, (4.22)

giving the eigenvalues

m1 = a+ d , m2 = a− 3e2

ms
, m3 = −a+ d , m4 = ms +

3e2

ms
. (4.23)

It is evident that M4×4
ν is not form-diagonalisable anymore: the second and fourth column of U

are sensitive to the entries of M4×4
ν . The sum rule between light active neutrino masses will be

violated, leading to different predictions for 0νββ [339]. The mass-squared differences as well
as the active-sterile mixing angles sin2 θi4 (i = 1, 2, 3) are controlled by the four parameters in
Eq. (4.17), with the mixing most sensitive to the ratio e/ms. Note that both the normal and
inverted orderings are allowed, in contrast to the standard three neutrino version of the model,
which only allowed the normal ordering. By fitting the parameters a, d, e and ms to the allowed
range of the four parameters ∆m2

S, ∆m2
A, ∆m2

41 and sin2θ14, one can show that the masses are
arbitrary, are not constrained to any particular region, and are in general uncorrelated with
the mixing parameters. However, the lightest mass increases with sin2θ14, which means that
the effective mass in 0νββ, |〈mee〉| ≡

∣

∣a+ 2d
3

∣

∣, also increases with sin2θ14, as expected from
Eq. (3.28). Fig. 4.1 shows the allowed ranges of a, d, e. In general, a and d are approximately
inversely proportional to each other.

Comparison of Eqs. (3.8) and (4.22), shows that sin θ13 = 0, i.e., this parameter retains its
TBM value, whereas sin2θ12 and sin2θ23 receive small corrections:4

sin2θ12 =
|Ue2|2

1 − |Ue4|2
≃ 1

3

[

1 − 2

(

e

ms

)2
]

,

sin2θ23 =
|Uµ3|2(1 − |Ue4|2)
1 − |Ue4|2 − |Uµ4|2

≃ 1

2

[

1 +

(

e

ms

)2
]

.

(4.24)

Note the correlation sin2θ23 ≃ 3
4(1−sin2θ12) following from the above expressions. Other results

of the model are Us1 = Us3 = 0 and Ue4 = Uµ4 = Uτ4. The three active-sterile mixing angles
can be expressed in terms of the matrix elements Uℓ4 as

sin2θ14 = |Ue4|2 , sin2θ24 =
|Uµ4|2

1 − |Ue4|2
, sin2θ34 =

|Uτ4|2
1 − |Ue4|2 − |Uµ4|2

, (4.25)

and the model predicts them all to be of similar magnitude:

sin2θ14 ≃ sin2θ24 ≃ sin2θ34 ≃
(

e

ms

)2

≃ 1

2
(1 − 3 sin2θ12) ≃ 2 sin2θ23 − 1 , (4.26)

to second order in the ratio e/ms. The correlation [see Eqs. (4.24) and (4.26)] between the
solar and atmospheric mixing parameters (sin2θ12 and sin2θ23) and the active-sterile mixing
parameter (sin2θ14) is shown in Fig. 4.2, and is the same for both mass orderings.

4Since the charged lepton sector is diagonal, V ℓ
L = 1 so that U = Ũ .
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Figure 4.1: The allowed values in a−d and a−e parameter space for normal (NO) and inverted
(IO) ordering, obtained by varying each parameter between −0.5 and 0.5 eV, varying
ms between −1.5 and 1.5 eV, and requiring that the oscillation parameters lie in
the correct range [153, 341].

In the general sense, small mixing with sterile neutrinos will modify active mixing angles. The
active-sterile mixing is of order e/ms, where e is any of the entries (M4×4

ν )ℓs with ℓ = e, µ, τ .
Deviations from initial mixing angles θ12,13,23 are then of the same order. Although the example
discussed here has the particular feature that Ue4 = Uµ4 = Uτ4 and that the first and third row
of U are identical to TBM (see the discussion in Section B.2), this will be different in other
cases.

Higher-order operators modify both active and sterile sectors; the former have been discussed
above. The NLO corrections to ms are given by

(xs′

Λ2
ξξξ +

xs′′

Λ2
(ϕ′ϕ′)ξ

)

λ2Fννc
sν

c
s =⇒

(

xs′
u3

Λ2
+ xs′′

3v′2u
Λ2

)

λ2Fν , (4.27)

which for the scales chosen above give contributions of O(0.1) eV, thus not significantly affecting
the scale of ms [cf. Eq. (4.20)]. Note that the term proportional to (ϕ′ϕ′ϕ′)νc

sν
c
s is in principle

also allowed, but vanishes after A4 symmetry breaking, just like the xf term in Eq. (4.16).
Next-to-leading order corrections to the e parameter come from terms like

x′e
Λ3
λFν ξ(ϕ′ϕLhu)νs , (4.28)

which lead to

e′ ≃ 0.01

(

λ

10−1

)8( u v′

(1010 GeV)2

)

( v

1011 GeV

)( vu

102 GeV

)

(

1012 GeV

Λ

)3

eV , (4.29)

indicating that the active-sterile mixing [Eq. (4.26)] is hardly affected.
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Figure 4.2: sin2θ14 against sin2θ12 and sin2θ23, for both the normal and inverted ordering. The

dashed (black) lines corresponds to the TBM values of sin2θ12 and sin2θ23, the solid
(red) lines indicate the 2σ ranges of the parameters and the (red) square is the
best-fit point [153, 341].

Two eV sterile neutrinos

In order to have two sterile neutrinos in the A4 model one can simply add a second sterile singlet
νs2 , which is a singlet 1 under A4 and 1 under Z3, and carries the U(1)FN charge Fν = 6, as
before. In the basis where the sterile sector of the mass matrix is diagonal, the symmetric 5×5
mass matrix is

M5×5
ν =













a+ 2d
3 −d

3 −d
3 e f

· 2d
3 a− d

3 e f

· · 2d
3 e f

· · · ms1 0
· · · · ms2













. (4.30)

Note that one always has the freedom to work in this basis, since the rotations between sterile
states are unphysical in this case, and mixing in the sterile sector can be absorbed by redefining
e and f . Since f and ms2 arise in the same way as e and ms in the case of one sterile neutrino,
one expects that e and f , as well as ms1 and ms2, are each of similar magnitude, respectively.
In analogy to the case discussed in the previous subsection, the mass matrix is approximately
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diagonalised by

U =















2√
6

1√
3

0 0 0

− 1√
6

1√
3

− 1√
2

0 0

− 1√
6

1√
3

1√
2

0 0

0 0 0 1 0
0 0 0 0 1















+



















0 0 0 e
ms1

f
ms2

0 0 0 e
ms1

f
ms2

0 0 0 e
ms1

f
ms2

0 −
√

3e
ms1

0 0 0

0 −
√

3f
ms2

0 0 0



















+























0 −
√

3
2

(

e2

m2
s1

+ f2

m2
s2

)

0 0 0

0 −
√

3
2

(

e2

m2
s1

+ f2

m2
s2

)

0 0 0

0 −
√

3
2

(

e2

m2
s1

+ f2

m2
s2

)

0 0 0

0 0 0 − 3e2

2m2
s1

− 3ef
2ms1ms2

0 0 0 − 3ef
2ms1ms2

− 3f2

2m2
s2























,

(4.31)

assuming that a < ms1,2 and that the ratios e/ms1 and f/ms2 are small. The mass eigenvalues
are

m1 = a+ d , m2 = a− 3e2

ms1

− 3f2

ms2

, m3 = −a+ d ,

m4 = ms1 +
3e2

ms1

, m5 = ms2 +
3f2

ms2

,

(4.32)

to second order in the ratios e/ms1 and f/ms2.
Once again, the reactor mixing angle retains its TBM value, and the predictions for sin2θ12

and sin2θ23 are

sin2θ12 ≃ 1

3

[

1 − 2

(

(

e

ms1

)2

+

(

f

ms2

)2
)]

,

sin2θ23 ≃ 1

2

[

1 +

(

e

ms1

)2

+

(

f

ms2

)2
]

,

(4.33)

in analogy to the 4×4 case. Using the explicit parameterisation [Eq. (3.11)] of the 5×5 mixing
matrix, the six active-sterile mixing angles can be approximated by

sin2θi4 ≃
(

e

ms1

)2

, sin2θi5 ≃
(

f

ms2

)2

(i = 1, 2, 3) , (4.34)

with the additional assumption that U is real.

One keV sterile neutrino

It is straightforward to recast the model above in the context of keV sterile neutrino WDM
rather than eV-scale sterile neutrinos. With the same particle assignments as in Table 4.2, the
U(1)FN charge of Fν = 8 and the correct choice of scales one can have ms at the desired keV
scale with active-sterile mixing, e/ms = O(10−4). For instance, with

u ≃ v′ ≃ 1010 GeV , v ≃ 1011 GeV , Λ ≃ 1012 GeV ,

vu,d ≃ 102 GeV , 〈Θ〉 ≃ 1011 GeV , (4.35)
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which means that λ = 〈Θ〉/Λ ≃ 0.1, one obtains

a ≃ d ≃ 0.1
( u

1010 GeV

)( vu

102 GeV

)2
(

1012 GeV

Λ

)2

eV ,

e ≃ 0.1

(

λ

10−1

)8 ( u

1010 GeV

)

(

v′

1010 GeV

)

( vu

102 GeV

)

(

1012 GeV

Λ

)2

eV ,

(4.36)

with order one Yukawas. From Eq. (4.19), the leading order contribution to ms is

(xs

Λ
ϕϕ
)

λ16νc
sν

c
s =⇒

(

xs
v2

Λ

)

λ16 ; (4.37)

the resulting Majorana mass is

ms ≃
(

λ

10−1

)16
( v

1011 GeV

)2
(

1012 GeV

Λ

)

keV . (4.38)

The active-sterile mixing is given by
e

ms
≃ 10−4 , (4.39)

in accordance with the astrophysical constraints discussed in Section 3.6.2. Next-to-leading
order contributions in Eq. (4.27) are of order 10−4 keV, and do not affect the scale of ms signif-
icantly. The contribution to m2 proportional to e2/ms is negligible in this case [cf. Eq. (4.23)],
so that the sum rule holds to good approximation.

With the scales in Eq. (4.35), the FN charges Fe,µ,τ = (4, 2, 0) give the correct charged lepton
mass spectrum, using

mℓ = yℓvd
v

Λ
λFℓ ≃ 10

( vd

102 GeV

)( v

1011 GeV

)

(

1012 GeV

Λ

)(

λ

10−1

)Fℓ

GeV . (4.40)

Summary

In summary, an effective flavour symmetry model has been extended to include light sterile
neutrino(s) at different scales, with their mass suppressed by the Froggatt-Nielsen mechanism.
This is one of the first working models that combines flavour symmetries with light eV-scale
sterile neutrinos. Corrections to the leading order mixing pattern amongst active neutrinos are
correlated with the active-sterile mixing, which is a general feature of such approaches. Indeed,
one could imagine using a different flavour symmetry group as a starting point for such models,
since in the A4 case the leading order prediction of TBM is ruled out by current data, and
NLO terms are required. Those extra terms could come from higher-order operators, which
give sizeable modifications to active neutrino mixing but have little effect on the active-sterile
mixing. The smallness of θ13 is a general problem in A4 models, but the main point here is
that sterile neutrinos can be added to flavour symmetry models. The effective model presented
here can be extended to a seesaw version, discussed in the following section.

4.2.3 A4 seesaw model with one keV sterile neutrino

Introduction

The type I seesaw model has been introduced in Chapter 2, and different ways (including the
FN mechanism) to achieve light sterile neutrinos within that model have been summarised in
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Section 2.2.1. In this section an A4 seesaw model with three right-handed neutrinos is described,
with one sterile state at the keV scale and the other two at either the eV scale, the heavy scale
(>∼ GeV), or both. The FN mechanism is used to control the mass spectrum of right-handed
neutrinos and to set the charged lepton mass hierarchy. There are various possible scenarios,
differing by the mass spectra of both active and sterile neutrinos, and each scheme exhibits
distinct phenomenology.

Due to the fact that most A4 seesaw models place right-handed neutrinos in the triplet repre-
sentation (see the full classification table in Ref. [28]), one has to make non-trivial modifications
to those models in order to assign different FN charges to each sterile neutrino.5 Indeed, in or-
der to get TBM at leading order with diagonal right-handed neutrinos as A4 singlets, one must
choose the VEV alignments of the flavon fields Φi along the directions of the columns of the
TBM matrix, i.e., Φ1 ≃ (2,−1,−1)T , Φ2 ≃ (1, 1, 1)T , Φ3 ≃ (0,−1, 1)T , similar to the method
outlined in Refs. [342–344]. The crucial point is that each light neutrino mass eigenvalue mi is
then suppressed by only one of the heavy right-handed neutrinos Mi, viz.

m1 ≃ Φ1Φ
T
1

M1
, m2 ≃ Φ2Φ

T
2

M2
, m3 ≃ Φ3Φ

T
3

M3
, (4.41)

so that one can decouple any one of the right-handed neutrinos and still achieve TBM with the
remaining two columns, at the price of one massless active neutrino. Sincem2 6= 0 (see Fig. 3.1),
it is only viable to decouple the neutrinos that correspond to the first or third columns, giving
normal (m1 = 0) or inverted (m3 = 0) ordering, respectively. The decoupled right-handed
neutrino becomes the keV WDM candidate. It is worth stressing that the phenomenology of
0νββ will now be different to the effective model discussed above, since in that case sterile
states are simply added to an existing model and the analysis in Section 3.4.2 applies.

Outline of the leading order model

Table 4.3 shows the particle assignments of the A4 seesaw model, with right-handed neutrinos
νc

i (i = 1, 2, 3) transforming as singlets under A4. Three triplet flavons ϕ, ϕ′ and ϕ′′ are needed
to construct the columns of MD as well as the charged lepton mass matrix, and the singlet
flavons ξ, ξ′ and ξ′′ are introduced in order to give masses to the right-handed neutrinos and
keep MR diagonal at leading order. The NLO terms implied by the presence of the flavons will
be discussed later. The Lagrangian invariant under the SM gauge group and the additional
A4 ⊗ Z3 ⊗ U(1)FN symmetry is

−LY =
ye

Λ
λ3 (ϕLhd) e

c +
yµ

Λ
λ (ϕLhd)

′ µc +
yτ

Λ
(ϕLhd)

′′ τ c

+
y1

Λ
λF1(ϕLhu)νc

1 +
y2

Λ
λF2(ϕ′Lhu)′′νc

2 +
y3

Λ
λF3(ϕ′′Lhu)νc

3 (4.42)

+
1

2

[

w1λ
2F1ξνc

1ν
c
1 + w2λ

2F2ξ′νc
2ν

c
2 + w3λ

2F3ξ′′νc
3ν

c
3

]

+ h.c.,

at leading order, with the same notation as before, where Λ is the cut-off scale and yℓ, yi and
wi are coupling constants.

Once again, with the vacuum alignment 〈ϕ〉 = (v, 0, 0), the charged lepton mass matrix is

5The model in Ref. [335] also has right-handed neutrinos as singlets, but instead of the FN mechanism a
hierarchy amongst the flavons is assumed.
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Table 4.3: Particle assignments of the A4 type I seesaw model, with three right-handed sterile
neutrinos and additional Z3 and U(1)FN symmetries, as before.

Field L ec µc τ c hu,d ϕ ϕ′ ϕ′′ ξ ξ′ ξ′′ Θ νc
1 νc

2 νc
3

SU(2)L 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1
A4 3 1 1′′ 1′ 1 3 3 3 1 1′ 1 1 1 1′ 1
Z3 ω ω2 ω2 ω2 1 1 ω ω2 ω2 ω 1 1 ω2 ω 1

U(1)FN - 3 1 0 - - - - - - - −1 F1 F2 F3

diagonal, viz.6

Mℓ =
vd v

Λ





yeλ
3 0 0

0 yµλ 0
0 0 yτ



 , (4.43)

where vd = 〈hd〉 and the charged lepton mass hierarchy is generated by the FN mechanism,
as already described in Section 4.2.2. The same mechanism will be used in the right-handed
neutrino sector; for the moment the FN charges of the right-handed sterile neutrinos are left
as free parameters.

As discussed in Section 2.2.1, a sterile neutrino νc
i with mass Mi = O(keV) and mixing of

order S2
i ≃ 10−8 will give a negligible contribution to neutrino mass, i.e., mi ≃ S2

i Mi ≃ 10−5 eV,
and can thus be decoupled from the seesaw mechanism. It is then expedient to work in a 5× 5
basis, with the Dirac mass matrix MD a 3× 2 matrix and MR a 2× 2 symmetric matrix. This
is similar to the minimal seesaw model [345, 346] and the νMSM (cf. Section 3.6.3), in which
the lightest active neutrino is massless. The mass spectrum of active neutrinos can either
have normal ordering, with m3 ≫ m2 ≫ m1 ≃ 0, or inverted ordering, with m2

>∼ m1 ≫
m3 ≃ 0. However, there exist different scenarios depending on the FN charges assigned to the
remaining right-handed neutrinos. General analytical formulae are given in this subsection,
whereas specific mass spectra will be discussed later on.

The sterile neutrino νc
1 is assumed to be the WDM candidate, with a mass given by

M1 = w1uλ
2F1 , (4.44)

where u = 〈ξ〉. The full 6 × 6 neutrino mass matrix takes the form in Eq. (2.12); the vacuum
alignment 〈ϕ〉 = (v, 0, 0) means that at leading order the first column of the Dirac mass matrix
is (y1vvuλ

F1/Λ, 0, 0)T , so that the sterile neutrino νc
1 only mixes with the electron neutrino.7

From Eqs. (2.22) and (2.23), the active-sterile mixing is

Se1 ≃ [MD]e1
M1

=
y1vvu

w1uΛ
λ−F1 , (4.45)

so that the FN charge F1 actually enhances the active-sterile mixing, and the contribution of
the sterile neutrino νc

1 to the lightest neutrino mass is

m1,3 =
y2
1v

2v2
u

w1uΛ2
, (4.46)

6Next-to-leading order operators will modify the structure of Mℓ, introducing non-trivial mixing in the charged
lepton sector (see Appendix C).

7Next-to-leading order terms will induce mixing between νc
1 and νµ,τ (cf. Section 4.2.3).
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which turns out to be negligible. Once the scale of the various flavon VEVs are fixed then F1

is fixed by the WDM constraints [cf. Eq. (3.75)], and the various scenarios to be discussed will
differ only by the choice of the FN charges F2 and F3, i.e., the scale of the remaining two sterile
neutrinos.

With the keV sterile neutrino νc
1 decoupled, the seesaw proceeds with the remaining two

right-handed neutrinos, νc
2 and νc

3. For the NO case, the triplet VEV alignments8

〈ϕ′〉 = (v′, v′, v′), 〈ϕ′′〉 = (0, v′′,−v′′) , (4.47)

result in the following 5 × 5 neutrino mass matrix in the basis (νe, νµ, ντ , ν
c
2, ν

c
3):

M5×5
ν =

(

0 MD

MT
D MR

)

, (4.48)

with the Dirac mass matrix

M
(NO)
D =

vu

Λ





y2v
′λF2 0

y2v
′λF2 −y3v

′′λF3

y2v
′λF2 y3v

′′λF3



 (4.49)

and the right-handed neutrino mass matrix

MR =

(

w2u
′λ2F2 0
0 w3u

′′λ2F3

)

, (4.50)

where u′ = 〈ξ′〉 and u′′ = 〈ξ′′〉.
The neutrino masses and flavour mixing can be obtained by the full diagonalisation of M5×5

ν ,
i.e., U †M5×5

ν U∗ = diag(m1,m2,m3,m4,m5), where m4 and m5 denote the masses of right-
handed neutrinos. Since eV-scale sterile neutrinos may be present, one should include NLO
seesaw terms, as discussed in Section 2.2.1. Using Eq. (2.13) and assuming real matrices for
simplicity, one arrives (up to order ǫ2i ) at

U (NO) ≃















2√
6

1√
3

0 0 0

− 1√
6

1√
3

− 1√
2

0 0

− 1√
6

1√
3

1√
2

0 0

0 0 0 1 0
0 0 0 0 1















+













0 0 0 ǫ1 0
0 0 0 ǫ1 −ǫ2
0 0 0 ǫ1 ǫ2
0 −

√
3ǫ1 0 0 0

0 0 −
√

2ǫ2 0 0













+

















0 −
√

3
2 ǫ

2
1 0 0 0

0 −
√

3
2 ǫ

2
1

1√
2
ǫ22 0 0

0 −
√

3
2 ǫ

2
1 − 1√

2
ǫ22 0 0

0 0 0 −3
2ǫ

2
1 0

0 0 0 0 −ǫ22

















,

(4.51)

where the expansion parameters are given by

ǫ1 =
y2v

′vu

w2u′Λ
λ−F2 and ǫ2 =

y3v
′′vu

w3u′′Λ
λ−F3, (4.52)

8Ref. [335] employs a radiative symmetry breaking mechanism in order to achieve this VEV alignment.
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in analogy to Eq. (2.22). The ǫi parameters control the size of active-sterile mixing and NLO
corrections to neutrino masses and mixing, and will be important in the discussions of various
scenarios in the following subsections. The neutrino mass eigenvalues are

m
(NO)
1 = 0 ,

m
(NO)
2 = m

(0)
2

(

1 − 3ǫ21
)

,

m
(NO)
3 = m

(0)
3

(

1 − 2ǫ22
)

, (4.53)

m
(NO)
4 = w2u

′λ2F2 −m
(0)
2

(

1 − 3ǫ21
)

,

m
(NO)
5 = w3u

′′λ2F3 −m
(0)
3

(

1 − 2ǫ22
)

,

plus higher-order terms, where

m
(0)
2 ≡ −3y2

2v
′2v2

u

w2u′Λ2
, m

(0)
3 ≡ −2y2

3v
′′2v2

u

w3u′′Λ2
, (4.54)

are the leading order seesaw terms in the NO.
For the IO case the following VEV alignments are assumed:

〈ϕ′〉 = (v′, v′, v′), 〈ϕ′′〉 = (2v′′,−v′′,−v′′) . (4.55)

The Dirac mass matrix is modified to

M
(IO)
D =

vu

Λ





y2v
′λF2 2y3v

′′λF3

y2v
′λF2 −y3v

′′λF3

y2v
′λF2 −y3v

′′λF3



 , (4.56)

while the right-handed neutrino mass matrix MR remains unchanged. In this case the diago-
nalisation matrix approximates (up to order ǫ2i ) to

U (IO) ≃















2√
6

1√
3

0 0 0

− 1√
6

1√
3

− 1√
2

0 0

− 1√
6

1√
3

1√
2

0 0

0 0 0 1 0
0 0 0 0 1















+













0 0 0 ǫ1 2ǫ2
0 0 0 ǫ1 −ǫ2
0 0 0 ǫ1 −ǫ2
0 −

√
3ǫ1 0 0 0

−
√

6ǫ2 0 0 0 0













+

















−
√

6ǫ22 −
√

3
2 ǫ

2
1 0 0 0

√

3
2ǫ

2
2 −

√
3

2 ǫ
2
1 0 0 0

√

3
2ǫ

2
2 −

√
3

2 ǫ
2
1 0 0 0

0 0 0 −3
2ǫ

2
1 0

0 0 0 0 −3ǫ22

















,

(4.57)

and the neutrino masses are given by

m
(IO)
1 = m

(0)
1

(

1 − 6ǫ22
)

,

m
(IO)
2 = m

(0)
2

(

1 − 3ǫ21
)

,

m
(IO)
3 = 0 , (4.58)

m
(IO)
4 = w2u

′λ2F2 −m
(0)
2

(

1 − 3ǫ21
)

,

m
(IO)
5 = w3u

′′λ2F3 −m
(0)
1

(

1 − 6ǫ22
)

,
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where

m
(0)
1 ≡ −6y2

3v
′′2v2

u

w3u′′Λ2
(4.59)

is the leading order expression for the lightest mass in the IO and m
(0)
2 is defined in Eq. (4.54).

Note from Eqs. (4.51) and (4.57) that the mixing pattern |Ue3| = 0 and |Uµ3| = |Uτ3| is stable
with respect to higher-order seesaw terms, which is actually true to all orders in ǫi [44].

It deserves to be mentioned that the leading order contributions to the active neutrino masses
in Eqs. (4.54) and (4.59) do not depend on the FN charges assigned to the right-handed neu-
trinos, a feature of the seesaw model already discussed in Section 2.2.1. In general, the leading
seesaw mass term is M2

D/Mi, so that the one unit of FN charge λFi from MD cancels with
the two units λ2Fi from Mi. On the other hand, the NLO term M4

D/M
3
i ∝ ǫ2i does depend on

the FN charge, which therefore controls the magnitudes of NLO corrections. The larger the
charge Fi (equivalent to a smaller sterile neutrino mass), the larger the correction parameters
ǫi become, and thus the larger the corrections to the leading order seesaw masses.

In addition to NLO seesaw terms, one would expect higher-dimensional operators to mod-
ify the leading order predictions of the model, which has so far been constructed from the
leading order Lagrangian in Eq. (4.42). The magnitude of those corrections depends largely
on the actual numerical values chosen in the model, since they are suppressed by additional
powers of the cut-off scale Λ. It therefore makes sense to use leading order predictions as a
guide for mass scales. The requirements are that (i) the sterile neutrino mass [Eq. (4.44)] and
mixing [Eq. (4.45)] satisfy Eq. (3.75), (ii) active neutrino masses are at the correct scale and
(iii) Yukawa couplings are ≤ O(1). A rough numerical estimate shows that with the mass
scales

v ≃ 1011 GeV, u ≃ 1012 GeV, Λ ≃ 1013 GeV , (4.60)

the Higgs VEV vu = 〈hu〉 ≃ 174 GeV and λ ≃ 0.1, one needs the FN charge

F1 = 9 (4.61)

to obtain a sterile neutrino of mass M1 ≃ 1 keV with the desired mixing angle S2
1 ≃ 10−8, with

y1, w1 ≤ O(1). In order to stabilise the active neutrino masses around the sub-eV scale, one
can choose [together with the numbers in Eq. (4.60)] the scales

v′ ≃ v′′ ≃ u′ ≃ u′′ ≃ 1011 GeV (4.62)

for the other flavon VEVs, and the mass splitting among active neutrinos can be achieved by
properly choosing the corresponding Yukawa couplings, i.e., yi and wi (i = 2, 3). The scale
choices are fixed from now on.

Mixing corrections from higher-order terms

As has already been described in the effective model context, the presence of gauge singlet
flavons in the model will inevitably induce NLO corrections, which may modify the leading order
picture and affect both active and active-sterile neutrino mixing. Modifications to active mixing
are in fact desirable in order to generate non-zero θ13, and will be achieved by adding higher-
order operators to the Lagrangian in Eq. (4.42). Other methods of introducing corrections have
been mentioned in Section 4.1.

Since the charged lepton and right-handed neutrino mass matrices are diagonal at leading
order, TBM comes solely from the structure of the Dirac mass matrix. Without performing
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4.2 A4 models with light sterile neutrinos

a detailed numerical analysis, one can show that the higher-order corrections affect all three
mass matrices: Mℓ, MD and MR. The impact of those corrections is controlled by the ratios
of flavon VEVs to the cut-off scale, viz.

r1 ≡ u

Λ
≃ 0.1 and r2 ≡ u′

Λ
≃ u′′

Λ
≃ v

Λ
≃ v′′

Λ
≃ 0.01 . (4.63)

The terms containing the VEV 〈ξ〉 = u = r1Λ have the largest effect, and will be included in
the analysis (see Appendix C); terms containing the VEVs u′, u′′, v, v′ and v′′ are all of relative
order r2 ≃ 0.01 and can be safely neglected. The correction terms turn out to have a negligible
effect on the keV sterile neutrino mass, as well as its mixing with the active sector. Explicitly,
from Eqs. (C.12), (C.14) and (C.15), the corrected active-sterile mixing is

θ′e1
(NO) ≃ θe1

(

1 +
y′1v

′

y1v
r1

)

and θ′e1
(IO) ≃ θe1

[

1 +

(

y′1v
′

y1v
+ 2

y3v
′′

y1v

w′
1

w1

)

r1

]

, (4.64)

where the dimensionless couplings y′1 and w′
1 are defined in Eqs. (C.5) and (C.8), respectively,

and the leading order expression for θe1 is given in Eq. (4.45). In addition, the mixing angles
θµ1 and θτ1 become non-zero, but of the same magnitude as θe1, i.e.,

θ′µ,τ1
(NO) ≃ θe1

(

y′1v
′

y1v
∓ y3v

′′

y1v

w′
1

w1

)

r1 and θ′µ,τ1
(IO) ≃ θe1

(

y′1v
′

y1v
− y3v

′′

y1v

w′
1

w1

)

r1 . (4.65)

This shows that the active-sterile mixing is stable, illustrating the point that unlike active
neutrino mixing it is related to the ratio of two large scales, so that small changes in MD

and MR will have little effect on θℓi (assuming that |w′
1| <∼ |w1|). The WDM particle remains

decoupled from the seesaw and one can still work in the 5×5 basis. The relevant mixing matrix
elements are given here; details of the diagonalisation procedure and modified neutrino mass
eigenvalues can be found in Appendix C.

The final lepton mixing matrix is a 3 × 5 matrix connecting the three flavours of lepton
doublets to the five neutrino mass eigenstates. Corrections from the charged lepton sector
[Eq. (C.3)] and the neutrino sector [Eq. (C.16)] can be combined via Eq. (2.20) to give the
approximate mixing matrix elements

|Ũe3|2 ≃ r21
2

[

(

y′µ
yµ

− y′τ
yτ

)2
]

+
1

2
(χ− ρ3)

2 − (χ− ρ3)r1

(

y′µ
yµ

− y′τ
yτ

)

,

|Ũe2|2 ≃ 1

3

[

1 − 3ǫ21 − 2ρ2 − 2r1

(

y′µ
yµ

+
y′τ
yτ

)]

,

|Ũµ3|2 ≃ 1

2

[

1 − 2ǫ22 + 2
y′τ
yτ
r1 +

2

3
σN

+R
]

,

(4.66)

for active neutrino mixing and

|Ũe,µ4|2 ≃ ǫ21

[

1 ∓ 2ρ2 ∓ 2r1

(

y′µ
yµ

± y′τ
yτ

)]

,

|Ũe5|2 ≃ ǫ22

[

r21

(

y′µ
yµ

− y′τ
yτ

)2

− 2r1

(

y′µ
yµ

− y′τ
yτ

)

(χ− ρ3) + (χ− ρ3)
2

]

,

|Ũµ5|2 ≃ ǫ22

(

1 + 2r1
y′τ
yτ

)

,

(4.67)
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for active-sterile mixing, in the NO. Here the ǫi are generated by NLO seesaw terms, y′µ,τ stem
from corrections to the charged lepton mass matrix, while the other parameters come from
corrections to MD and MR. For the inverted ordering,

|Ũe3|2 ≃ r21
2

(

y′µ
yµ

− y′τ
yτ

)2

− ρ2r1

(

y′µ
yµ

− y′τ
yτ

)

+
ρ2
2

2
,

|Ũe2|2 ≃ 1

3

[

1 − 3ǫ21 − 2ρ2 − 2r1

(

y′µ
yµ

+
y′τ
yτ

)

− 2

3
σI

+G
]

,

|Ũµ3|2 ≃ 1

2

[

1 + 2ρ2 + 2
y′τ
yτ
r1

]

,

(4.68)

and

|Ũe,µ4|2 ≃ ǫ21

[

1 − 2ρ2 ∓ 2r1

(

y′µ
yµ

± y′τ
yτ

)]

,

|Ũe5|2 ≃ 4ǫ22

[

1 + r1

(

y′µ
yµ

+
y′τ
yτ

)

− (χ− ρ3)

]

,

|Ũµ5|2 ≃ ǫ22

[

1 − 2r1

(

2
y′µ
yµ

+
y′τ
yτ

)]

,

(4.69)

for active-active and active-sterile mixing, respectively. The parameters

σN
± ≡ χ± ρ2 − ρ3 , σI

± ≡ χ± 3ρ2 − ρ3 ,

χ ≡ y1v

y3v′′
w′

1

w1
r1 , ρ2 ≡ y′2v

′′

y2v′
r1 , ρ3 ≡ y′3v

y3v′′
r1 ,

R ≡ m
(0)
2

m
(0)
3

≃
√

∆m2
S

∆m2
A

= O(10−1) , (4.70)

G ≡ m
(0)
1

m
(0)
2 −m

(0)
1

≃ 2∆m2
A

∆m2
S

≃ 2

R2
= O(102) ,

control the size of the mixing terms, where ∆m2
S and ∆m2

A are the solar and atmospheric mass
squared differences, respectively. The dimensionless couplings y′2,3 are defined in Eq. (C.5).
R and G contain the leading order neutrino masses from Eqs. (4.54) and (4.59): while R is
quite small, G is large, which is a consequence of the two relatively large but nearly degenerate

neutrino masses in the IO, m
(0)
1 ≃ m

(0)
2 ≃ 0.05 eV. Thus an expansion to first order has been

performed in R, whereas G remains an exact expression in the mixing matrix. This means
that keeping the corrections to |Ũe2|2 under control in the IO requires σI

+ = χ+ 3ρ2 − ρ3 to be
O(10−3), which in turn puts a constraint on the Yukawa couplings y′2,3 and w′

1 in Eqs. (C.5)
and (C.8). The approximations r1 ≃ 0.1 and v ≃ v′ ≃ v′′ [cf. Eq. (4.63)] imply the relations

ρ2,3 ≃ 0.1
y′2,3

y2,3
and χ ≃ 0.1

y1

y3

w′
1

w1
, (4.71)

so that y′2,3 ≃ 0.01y2,3 and y1w
′
1 ≃ 0.01y3w1 are required in the inverted ordering. The full

neutrino mass eigenvalues are given in Eqs. (C.18) and (C.20): despite the appearance of G2

terms in the IO mass eigenvalues they will always be suppressed by (σI
+)2, which is constrained

to be small from the mixing matrix element Ũe2.
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As expected, by setting y′2, y
′
3, w

′
1, y

′
µ and y′τ to zero in Eqs. (4.66) to (4.69) one recovers the

matrix elements in Eqs. (4.51) and (4.57). Note that without the higher-order correction terms
Ũe3 remains exactly zero, to all orders in ǫi. The active-sterile mixing (Ũℓ4,5) is always propor-
tional to ǫi, or in other words to a ratio of scales [cf. Eqs. (2.22) and (4.52)]. In the different
scenarios discussed in the following subsections, the ǫi terms will have different magnitudes,
depending on the right-handed neutrino spectrum. In those cases with significant values of ǫi
(i.e., eV-scale sterile neutrinos) one must take into account both NLO seesaw corrections and
higher-order corrections, whereas in cases with negligible ǫi (heavy sterile neutrinos) one need
only worry about the higher-order correction terms controlled by y′2, y

′
3, w

′
1, y

′
µ and y′τ .

Even if y′2, y
′
3 and w′

1 are small and mixing corrections from the neutrino sector are negligible,
there are still effects from the charged lepton sector. Indeed, in order to keep the solar mixing
angle within its allowed range [347], one has the constraint (assuming for definiteness y′2 = y′3 =
w′

1 = 0 and ǫ1,2 ≃ 0)

− 0.4 ≤
(

y′µ
yµ

+
y′τ
yτ

)

≤ 0.95 , (4.72)

on the charged lepton Yukawa couplings; the extreme choice y′µ/yµ = −y′τ/yτ gives the reactor
mixing angle

sin2θ13 ≃ 2r21

(

y′τ
yτ

)2

≃ 0.02, (4.73)

in both mass orderings, assuming that y′τ ≈ yτ . In that case sin2θ23 ≃ 0.6, and sin2θ12 retains
its TBM value, see Eq. (4.3).

Explicit seesaw model scenarios

In order to illustrate the versatility of the model discussed, three scenarios with different mass
spectra in the right-handed neutrino sector will be presented. Each case differs by the choice
of FN charges F2 and F3, what one could call the “theoretical input”; the consequent neutrino
phenomenology is described in detail. Table 4.4 summarises the key differences in each case.

In all cases it has been checked that Yukawa couplings of order 1 or 0.1 can fit the model
to the active neutrino mass-squared differences [347], and, where appropriate, to sterile mass
parameters [153]. The effects of the higher-order corrections discussed in Section 4.2.3 are
described for each scenario. Due to the large number of parameters there will always be
enough freedom to fit the masses to the data, so that one only needs to take care that mixing
corrections are under control, particularly in the IO, as discussed above.

Scenario I: two eV-scale right-handed neutrinos

In this case the FN charges F1 = 9, F2,3 = 10 are assigned, so that the right-handed neutrino
masses are at the eV scale. It is now notable that ǫ1,2 = O(0.1) can be expected, indicating
that NLO seesaw terms should be considered. The effects are more pronounced in the IO case,
since two of the active neutrinos are nearly degenerate and are more sensitive to corrections.
The five neutrino mass eigenvalues are given by the full expressions in Eqs. (C.18) and (C.20).

In this scenario, there are no heavy right-handed neutrinos that could be used for leptogenesis
(cf. Section 3.6.3). Neutrinoless double beta decay is also vanishing since the contributions from
active and sterile neutrinos exactly cancel each other [see Eq. (3.40)], unless there are other new
physics contributions. This is different to the phenomenological analysis in Section 3.4.2, since
in that case sterile singlet states are simply added to an existing model, like in the effective
model described above.
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Table 4.4: Summary of the different scenarios discussed in the A4 seesaw model. In each case
the WDM sterile neutrino has a mass M1 = O(keV), and the corresponding active
neutrino is approximately massless.

F1, F2, F3 Mass spectrum |Ũℓ4| |Ũℓ5|
|〈mee〉|

NO IO

I 9, 10, 10 M2,3 = O(eV), O(0.1) O(0.1) 0 0

IIA 9, 10, 0
M2 = O(eV) O(0.1) O(10−11) 0 2

√

∆m2
A

3
M3 = O(1011 GeV)

IIB 9, 0, 10
M2 = O(1011 GeV) O(10−11) O(0.1)

√

∆m2
S

3

√

∆m2
A

3
M3 = O(eV)

III 9, 5, 5 M2,3 = O(10GeV) O(10−6) O(10−6)

√

∆m2
S

3

√

∆m2
A

The eV-scale right-handed neutrinos offer an explanation for the short-baseline oscillation
anomalies often attributed to them. In the NO case, one of the two sterile neutrinos could mix
with νe via Ũe4 ≃ ǫ1. The reactor flux loss is therefore explained since part of the total flux
of νe oscillates into sterile neutrinos. However, one finds that the active-sterile mixing turns
out to be too small to account for the reactor anomaly. That can be deduced from Eqs. (4.53)
and (4.58): at leading order, ǫ21 ∝ m2/m4. In the NO, m2 ≃ 0.009 eV is fixed by the neutrino
mass-squared differences, so that ǫ1 cannot be large enough for an eV-scale m4. The situation

is different in the IO case, since m1 ≃ m2 ≃
√

∆m2
A ≃ 0.05 eV. Furthermore, both Ũe4 and

Ũe5 are non-vanishing (see Fig. 4.3).

The effect of higher-order operators on the active-sterile mixing is very small. Switching on
w′

1 gives |Ũe5|2 ≃ O(r21) ǫ
2
2 in the NO [cf. Eq. (4.67)], which will still not give sufficient mixing

to explain the data. In the IO case, |Ũe5|2 ≃ 4[1+O(r1)]ǫ
2
2, so the small correction term makes

little difference. Indeed, the allowed ranges illustrated in Fig. 4.3 already include the effects
of higher-order operators. One observes that the desired active-sterile mixing can indeed be
achieved in the IO case.

In what regards active neutrino mixing, deviations from TBM come from both NLO seesaw
terms (∝ ǫi) and higher-order operators (∝ y′2, y

′
3, w

′
1, y

′
µ, y

′
τ ). If one considers only higher-

order corrections in the neutrino sector for simplicity, i.e., the y′2,3 and w′
1 terms in Eqs. (C.5)

and (C.8) respectively, then Eqs. (4.66) and (4.68) show that only Ũµ3 ∝ ǫ2 receives visible
corrections in the NO, since ǫ1 and the product σN

+R are both small. However, the higher-order

terms related to the product σI
+G lead to sizable corrections to |Ũe2|2 in the IO case; |Ũe2| could

be enhanced or reduced depending on the signs and magnitudes of y′2,3 and w′
1. In addition,

non-zero θ13 can be obtained from charged lepton corrections, as discussed above.

Scenario II: split seesaw with both eV-scale and heavy right-handed neutrinos

Equations (4.47) and (4.55) show that it is possible to get either normal or inverted ordering
by choosing the alignment of the flavon VEV 〈ϕ′′〉 correctly. If one assigns different FN charges
to the two seesaw right-handed neutrinos there will be four distinct possibilities, depending on
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Figure 4.3: The allowed ranges of |Ue4|2 −∆m2
41 (blue) and |Ue5|2 −∆m2

51 (red) in the inverted
ordering, requiring that the oscillation parameters lie in their currently allowed 2σ
ranges. The blue and red vertical and horizontal error bars indicate the allowed
2σ range for the 3 + 2 mass and mixing parameters from Refs. [153, 347], their
intersection is the best-fit point. The black errors bars are for the 3 + 1 case from
Ref. [153], to be discussed in scenario II in Section 4.2.3. Note that charged lepton
corrections are not included here.

the mass ordering (NO or IO) of active neutrinos and which sterile neutrino (νc
2 or νc

3) is chosen
as the heavy one. One can then use a two-stage seesaw, by integrating out the heavy sterile
neutrino first and then applying the seesaw formula again (see the discussion in Section 2.2.1).
With the assignments F1 = 9, F2 = 10 (0) and F3 = 0 (10) the sterile neutrino νc

3 (νc
2) has a

mass in the 1011 GeV range, and is integrated out first, whereas νc
2 (νc

3) is at the eV scale. The
third (second) column of MD is then used in the seesaw formula, leading to a 3 × 3 effective
neutrino mass matrix of rank 1 that gives one of the active neutrinos masses. The full 4 × 4
mass matrix in the basis (νe, νµ, ντ , ν

c
2(3)) is

M4×4
ν =

(

−[MD]ℓiM
−1
i [MT

D]ℓi [MD]ℓi

[MT
D ]ℓi Mi

)

, ℓ = e, µ, τ, i = 1 or 2 , (4.74)

with MD defined in Eqs. (4.49) or (4.56) and MR from Eq. (4.50), leading to mixing between the
active sector and the remaining eV-scale sterile neutrino νc

2 (νc
3). Applying the same method

and formulae outlined above results in a 4 × 4 mixing matrix, which can simply be obtained
from the formulae in Eqs. (4.51) and (4.57) by removing the relevant row and column.

• Case IIA: νc
3 heavy, (F3 = 0), νc

2 light (F2 = 10)
In this case one removes the fifth row and fifth column of U in Eqs. (4.51) and (4.57),
giving the same 4 × 4 mixing matrix in both mass orderings, and the matrix elements
|Ue5|2 and |Uµ5|2 are zero. The light neutrino mass eigenvalues mi (i = 1, 2, 3, 4) are given
by the expressions in Eqs. (C.18) and (C.20) with ǫ2 set to zero; the heavy neutrino has
the mass M3 = w3u

′′. It is the small value of F3 that leads to ǫ2 ≃ 0 [Eq. (4.52)], so
that m3 (or m1) does not receive any higher-order corrections, as this mass originates
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Chapter 4 Sterile neutrinos in flavour symmetry models

from the high-scale of M3, whose FN charge “cancelled” in the leading order seesaw
formula. Although in this example F3 = 0, so that M3 ≃ 1011 GeV, even with F3 = 5
and M3 ≃ 10 GeV, one has ǫ2 ≃ 10−6 (see scenario III), so that NLO corrections would
still be under control.

The FN charge F2 = 10 of the eV-scale neutrino gives corrections to m2 and m4, via
ǫ1 ≃ 0.1. With order one Yukawas and values for the VEVs as before, M3 lies around
1011 GeV. The effective mass in 0νββ is given by the (1, 1) element of the 4 × 4 mass
matrix, which, at leading order, is

|〈mee〉|(NO) = 0 , |〈mee〉|(IO) =

∣

∣

∣

∣

∣

2m
(0)
1

3

∣

∣

∣

∣

∣

=
2
√

∆m2
A

3
≃ 0.032 eV . (4.75)

Here one can see that the contribution of the light neutrino of mass m
(0)
2 has cancelled

with that of the light sterile neutrino νc
2, in both mass orderings. Note again that this is

different from the usually discussed effects of sterile neutrinos in 0νββ, and corresponds
to the pairwise cancellation described in Section 3.4.4. The effective mass is zero in the
NO since Ue3 = 0 at leading order. A non-zero value of Ue3 would give a very small
contribution to the effective mass in the NO, and a completely negligible one in the IO.

• Case IIB: νc
2 heavy (F2 = 0), νc

3 light (F3 = 10)
Here the mixing matrix is found by removing the fourth row and column of Eqs. (4.51) and
(4.57), so that the matrix elements in Eqs. (4.67) and (4.69) can be relabelled |Ũe5|2 →
|Ũe4|2 and |Ũµ5|2 → |Ũµ4|2. The light neutrino mass eigenvalues mi (i = 1, 2, 3, 4) are now
found by setting ǫ1 to zero in Eqs. (C.18) and (C.20), with the relabelling m5 → m4; the
heavy neutrino has the mass M2 = w2u

′. The roles of the sterile neutrinos are swapped,
and M2 is situated at the 1011 GeV scale. The effective mass at leading order is

|〈mee〉|(NO) =

∣

∣

∣

∣

∣

m
(0)
2

3

∣

∣

∣

∣

∣

=

√

∆m2
S

3
≃ 0.0029 eV ,

|〈mee〉|(IO) =

∣

∣

∣

∣

∣

m
(0)
2

3

∣

∣

∣

∣

∣

≃

√

∆m2
A

3
≃ 0.016 eV ; (4.76)

in this case the contribution of m
(0)
3 has cancelled. Again, corrections to the mixing angles

give very small corrections to the effective mass.

In both cases IIA and IIB one could potentially explain the 3+1 neutrino mixing scenario [151,
153], with |Ũe4|2 ≃ [1 + O(r1)] ǫ

2
1 in case IIA and |Ũe4|2 ≃ 4[1 + O(r1)]ǫ

2
2 in the IO in case B.

Once again only the IO fits the data: the allowed ranges in the mass-mixing plane for the IO in
case IIA (IIB) are shown by the blue (red) points in Fig. 4.3. One can see that the best-fit point
(the black cross) from Ref. [153] is compatible with case IIB. Finally, the effects of higher-order
operators on both active-sterile mixing and active mixing are the same as in scenario I, except
that one should switch off the effect of ǫ2 (ǫ1) in case IIA (IIB).

Scenario III: two heavy right-handed neutrinos

Here F1 = 9, F2,3 = 5, so that one can estimate that the ǫi ≃ 10−6 (i = 1, 2) are suppressed,
and the NLO seesaw terms in Eqs. (4.51) and (4.57) can be safely neglected. The 3×3 effective
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4.2 A4 models with light sterile neutrinos

neutrino mass matrix is given by Eq. (2.15), with MD defined in Eqs. (4.49) or (4.56) and MR

from Eq. (4.50); the active neutrino masses are simply given by the leading order masses m
(0)
i .

The heavy neutrinos have masses M2 = w2u
′λ10 and M3 = w3u

′′λ10. Without the effect of the
ǫi terms, the only modifications to the TBM pattern come from the higher-order operators in
Section 4.2.3.

The two heavy right-handed neutrinos that participate in the seesaw formula have masses
around 5 GeV, assuming order one Yukawas and the usual values of the VEVs. Note that
one could set w2 = w3 to obtain degenerate right-handed neutrinos M2 = M3. The choice of
degenerate sterile neutrinos in the few-GeV regime would correspond to the νMSM paradigm,
discussed in Section 3.6.3, where baryogenesis comes from oscillations. On the other hand, if
F2,3 = 0 then M2,3 ≃ 1011 GeV, so that the usual thermal leptogenesis scenario could be at
play. The required CP violation may originate from complex Yukawa couplings.

Neutrinoless double beta decay is allowed in this scenario, and the right-handed neutrinos
play no role in this process since their contribution

∑

i=2,3 S
2
i /Mi is strongly suppressed by the

inverse of their mass. Explicitly, at leading order the effective mass from the (1, 1) entry of
Eq. (2.15) is

|〈mee〉|(NO) =

∣

∣

∣

∣

∣

m
(0)
2

3

∣

∣

∣

∣

∣

=

√

∆m2
S

3
≃ 0.0029 eV , (4.77)

|〈mee〉|(IO) =

∣

∣

∣

∣

∣

2m
(0)
1

3
+
m

(0)
2

3

∣

∣

∣

∣

∣

≃
√

∆m2
A ≃ 0.049 eV , (4.78)

where the mass eigenvalues are real. If m
(0)
1 and m

(0)
2 are complex, the IO case becomes

|〈mee〉|(IO) <∼
√

∆m2
A. Corrections from higher-order terms are again small.

Summary

The explicit model constructed in this section shows that the seesaw mechanism also works even
if the scale of the sterile neutrinos is not the “natural” one of 1010 to 1015 GeV, as long as the
Dirac mass matrix can also be suppressed such that M2

D/MR is small. Indeed, the observations
pointing to sterile neutrinos at the eV and keV scales may require a modification of the usual
seesaw framework. Although one can explain both eV-scale and keV-scale sterile neutrinos in a
single model, it is not possible to have viable WDM, eV-scale neutrinos and heavy neutrinos for
leptogenesis in a model containing just three right-handed neutrinos. In the study presented
here the production mechanism of the WDM particle is not examined in detail; the purpose
is rather to show that seesaw models with flavour symmetries have the required ingredients to
provide a keV particle with the correct mass and small enough mixing with the active sector.

In the context of A4 flavour symmetry models it is relatively straightforward to use the
FN mechanism to suppress the masses of the right-handed neutrinos, and the required U(1)FN

symmetry is often already present in order to generate the charged lepton mass hierarchy. There
are different possible spectra in the sterile sector: once the keV WDM neutrino is decoupled one
can have the remaining two neutrinos at the eV scale or at a high scale (e.g, at either 10 GeV
or close to the flavour symmetry breaking scale of ≃ 1011 GeV). In each case there are distinct
phenomenological consequences, both for neutrino mass and neutrinoless double beta decay.
In particular, NLO corrections to the seesaw formula need to be taken into account when the
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Chapter 4 Sterile neutrinos in flavour symmetry models

sterile neutrinos are at the eV scale, and in general active neutrino mixing angles will receive
corrections of the same order. Higher-order operators are required in order to perturb the
leading-order TBM pattern, but active-sterile mixing is rather robust, since it is proportional
to the ratio of two scales.

4.3 Bimodal neutrinos in an S3 model

4.3.1 Pseudo-Dirac vs. bimodal neutrinos

Pseudo-Dirac neutrinos were introduced in Section 2.2.1: a tiny Majorana mass is added for
either one or both of the two two-component neutrino states that make up the Dirac neutrino.
The stringent constraints on the pseudo-Dirac mass splitting from solar neutrino experiments
have already been discussed: δm2

i
<∼ 10−11 eV2. The so-called bimodal or schizophrenic scenario

is an intermediate possibility, first introduced in Ref. [27]. The key point is that one defines
the Dirac or Majorana nature of neutrinos in terms of mass eigenstates instead of flavour
eigenstates, thus allowing some mass eigenstates to be Dirac and others to be Majorana. The
flavour eigenstates become “bimodal”, in the sense that they contain large admixtures of both
types of mass. One then needs to add as many sterile neutrino states to the standard model
as there are Dirac mass eigenstates.

The bimodal flavour case (MD ≃ MR) is different from the pseudo-Dirac case (MD ≫ MR)
and the seesaw case (MD ≪MR) in the sense that the lepton number conserving and violating
terms have comparable magnitude. Neutrino oscillations remain unaffected, unlike the case of
pseudo-Dirac flavour neutrinos. In addition, bimodal neutrinos propagate in matter in the same
way as those in the pure Majorana or pure Dirac case. However, the predictions for 0νββ will
be markedly different from both the pure Majorana and pseudo-Dirac possibilities, as described
in Section 3.4.3. From a model-building point of view, one needs to introduce symmetries that
treat some mass eigenstates differently from others. In most realistic cases (without additional
symmetries), the tree level Dirac mass eigenstate will receive a tiny (≤ 10−14 eV) amount of
Majorana mass from one-loop corrections, effectively making it pseudo-Dirac. This leads to
the effects discussed in Section 3.5.2, since one could have one, two or three mass-eigenstates
pseudo-Dirac, leading to different flavour ratios in neutrino telescopes.

An S3 model with one Dirac mass eigenstate was first written down in Ref. [27], and has
been extended in Ref. [348]; the main ingredients are summarised here.

4.3.2 Effective S3 model with one Dirac mass eigenstate

The permutation group S3 has six elements, corresponding to the symmetry of an equilateral
triangle.9 There are three irreducible representations: two singlets 1 and 1′ and a doublet 2,
with the product rules

1′ ⊗ 1′ = 1, 2 ⊗ 1′ = 2, 2 ⊗ 2 = 2 + 1 + 1′ . (4.79)

For two doublets (a1, a1) and (b1, b2) the tensor product is

(

a1

a2

)

2

⊗
(

b1
b2

)

2

= (a1b1 + a2b2)1 + (a1b2 − a2b1)1′ +

(

a1b2 + a2b1
a1b1 − a2b2

)

2

, (4.80)

9See Ref. [22] for a detailed description of the group theory of S3.
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Table 4.5: Particle assignments of the effective S3 model, where the subscripts L and R for left-
and right-handed fields have been dropped.

Field L2 (L1, L3) ec µc τ c N2 (N1, N3) hu,d σe σµ στ

SU(2)L 2 2 1 1 1 1 1 2 1 1 1
S3 1 2 1′ 1′ 1′ 1 2 1 1′ 1′ 1′

Z2e + + − + + + + + − + +
Z2µ + + + − + + + + + − +
Z2τ + + + + − + + + + + −

which will be useful in constructing the S3-invariant Lagrangian in what follows. The triplet
representation is reducible, i.e., 3 = 1 + 2, which reflects the fact that S3 is a subgroup of
S4, since the latter contains 3 as an irreducible representation. By separating the fermion
generations into singlets and doublets one naturally obtains a hierarchy amongst them, see for
instance Ref. [349]. Several authors have also applied S3 to neutrino mixing [350, 351]. The
discussion here follows the models in Refs. [27, 31].

With the particle assignments in Table 4.5, the S3 symmetry permutes the three families of
SU(2)L lepton doublets (Le, Lµ, Lτ ) ∼ 3 amongst themselves, where the subscript L has been
dropped. Decomposing the triplet representation into a singlet and doublet allows one to write
the mass eigenstates as linear combinations of lepton doublet fields, viz.

L2 =
1√
3
(Le + Lµ + Lτ ) ∼ 1 ,

(L1, L3) =

(

1√
6
(2Le − Lµ − Lτ ),

1√
2
(Lµ − Lτ )

)

∼ 2 . (4.81)

The S3 singlet field L2 couples to the right-handed neutrino field N2 ∼ 1, which must be isolated
from the other two right-handed neutrinos by additional quantum numbers that also forbid it
from receiving a Majorana mass term. Details will be not be discussed here, since they relate
to possible UV completions of the model. For instance, in one version with an anomaly-free
U(1)B−L symmetry, the B − L quantum number is chosen such that N2 has B − L = +5
and N1,3 each have B − L = −4 [348]. The B − L breaking Higgs can be chosen to have
quantum numbers such that only N1,3 have large Majorana masses (see Ref. [27] for details).
After integrating out the seesaw right-handed neutrinos N1 and N3, the effective lepton Dirac
Yukawa coupling and dimension-five terms [cf. Eq. (2.8)] can be written as

Lν = y2L2huN2 +
y1
2

MN1

(L1hu)2 +
y2
3

MN3

(L3hu)2 + h.c., (4.82)

with yi (i = 1, 2, 3) dimensionless coupling constants and hu the up-type Higgs doublet. After
electroweak symmetry breaking, the neutrino sector has one Dirac neutrino corresponding to
the mass eigenstate ν2, two Majorana eigenstates ν1 and ν3, as well as TBM.

The Lagrangian in Eq. (4.82), together with the S3 assignments in Eq. (4.81) and the group
multiplication rules in Eqs. (4.79) and (4.80) allow one to construct the symmetric 4×4 neutrino
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mass matrix in the flavour basis (νe, νµ, ντ , N2), i.e.,

Mν =
m2√

3









0 0 0 1
· 0 0 1
· · 0 1

· · · 0









+
m1

6









4 −2 −2 0
· 1 1 0
· · 1 0

· · · 0









+
m3

2









0 0 0 0
· 1 −1 0
· · 1 0

· · · 0









=













2m1
3 −m1

3 −m1
3

m2√
3

· m1
6 + m3

2
m1
6 − m3

2
m2√

3

· · m1
6 + m3

2
m2√

3

· · · 0













,

(4.83)

with m1 = y2
1v

2
u/MN1 , m3 = y2

3v
2
u/MN3 , and m2 = y2vu, where vu = 〈hu〉. In order for

the Majorana and Dirac mass matrix elements to have comparable magnitudes, the Yukawa
coupling y2 must be of order 10−12. One motivation for this comes from supersymmetric
versions of such models, where the right-handed sneutrino drives inflation and a small Dirac
coupling is required to give consistent predictions (see Ref. [27] for details).

The leading order mass matrix in Eq. (4.83) will receive small Majorana corrections from
one-loop effects [25, 27, 352, 353], if lepton number is not conserved. Indeed, the charged lepton
mass terms break the symmetry in the effective low energy Lagrangian of Eq. (4.82), resulting in
mixing between different mass eigenstates in the finite wave function renormalisation corrections
that arise at the one-loop level. This leads to new terms of the form δ12ν̄2γ

µ∂µν1, where

δ12 ∼ GF m2
τ

16π2
√

6
∼ 10−7; diagonalisation of the kinetic terms gives the new states ν ′1 ≈ ν1 + δ12ν2.

The Majorana mass term for ν1 in the new basis leads to a Majorana mass of magnitude δ212m1

for ν2. From these rough estimates, the pseudo-Dirac contribution to the Dirac eigenstate is

of order 10−14
√

∆m2
A ∼ 10−15 eV, corresponding to an oscillation length of O(10) kpc. This

implies that extra-galactic neutrinos from sources beyond 10 kpc will have half of their ν2

component oscillate into sterile neutrinos, as described in the previous chapter in Section 3.5.2.
As far as corrections to neutrino mixing are concerned, if the (4, 4) entry of mν is perturbed

to ǫm2, the diagonalisation matrix is

U =

(

UTBM 0T
3

03 1

)(

1 03

0T
3 R(π/4 + ǫ/4)

)

, (4.84)

where 03 = (0, 0, 0) and R(θ) is the 3 × 3 unitary rotation matrix

R(θ) =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 . (4.85)

The diagonal mass matrix is m̃ν = diag(m1,m2(1 + ǫ/2),m3,−m2(1− ǫ/2)), to first order in ǫ.
The full PMNS matrix will include rotations from the charged lepton sector [cf. Eq. (2.20)],

which can be described by writing down the most general Yukawa superpotential, viz.

Wℓ
Y =

1

Λ
hehd(Leσee

c + Lµσµµ
c + Lτσττ

c)

+
1

Λ
hµhd(Lµσee

c + Lτσµµ
c + Leσττ

c)

+
1

Λ
hτhd(Lτσee

c + Leσµµ
c + Lµσττ

c) + h.c.,

(4.86)
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where (σe, σµ, στ ) are gauge singlet superfields and hα (α = e, µ, τ) are Yukawa couplings. Three
extra Z2 symmetries that “glue” each charged lepton singlet (ec, µc, τ c) to the corresponding
σα gauge singlet have been assumed [351], as shown in Table 4.5. This means that although the
neutrino mass matrix is diagonalised by the TBM matrix, there are small corrections from the
charged lepton sector via the matrix V ℓ

L, see Eq. (2.7). The final PMNS matrix has a perturbed
TBM form, and the complete diagonalisation matrix takes the same form as Eq. (4.84), with

UTBM replaced by V ℓ†
L UTBM.

In this model only the ν2 mass eigenstate has a Dirac mass, but the idea can easily be
generalised in the sense that one or both of the other two neutrino mass eigenstates (ν1 and/or
ν3) could be Dirac. The case in which two of the eigenstates are Dirac has been discussed
in Ref. [31], where it was shown that a supersymmetric model with inverse seesaw can be
constructed to obtain this scenario.

In summary, it is possible to construct models in which some neutrino mass eigenstates are
Dirac while others are Majorana: the bimodal scenario. The S3 symmetric model described
above provides one example of embedding this idea into a flavour symmetry model. The devi-
ation from TBM implied by current data can be accommodated by charged lepton corrections.
Unfortunately the small Dirac masses are obtained at the price of tuning the Yukawa couplings;
it would clearly be more desirable to be able to predict those small values from theory. The
unusual signatures of bimodal neutrinos have already been described in the previous chapter.
Indeed, measurements of the flux ratios of extra-galactic high energy neutrinos as well as the
effective mass for 0νββ should be able to rule out this model for neutrino masses. On the
other hand, if the bimodal hypothesis is supported by experiment it will not only provide a
major departure from our current thinking about the nature of neutrino masses, but also its
theoretical origin from physics beyond the SM.

4.4 Summary and conclusion

The models considered in this chapter are examples of neutrino mass models with light sterile
neutrinos at different mass scales. They have been constructed in order to explain not only
active neutrino masses and mixing but also the various anomalies and phenomenological hints
for light sterile neutrinos summarised in Chapter 3. Although adding light states to existing
effective models is a relatively simple exercise, one would like to build UV-complete models.
The seesaw model in Section 4.2.3 is a step in this direction, but admittedly contains a large
number of parameters and extra scalar fields, generic to flavour symmetry models. In addition,
since the leading-order prediction for active neutrino mixing angles is disfavoured one might
consider a new symmetry as a starting point. The same can be said for the S3 bimodal model
in Section 4.3. In that sense the models built here can be used as a rough guide for future
sterile neutrino models with flavour symmetries.
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Chapter 5

Lepton number and lepton flavour violation in
the left-right symmetric model

5.1 Introduction

The “fully sterile” neutrinos in the models of the previous chapter only interact via their mixing
with the active sector, which in the seesaw model case can be expressed as a ratio of two scales,
S ≃ MD/MR. Those sterile states are gauge singlets, so that one is free to introduce as many
as required (ns). However, from a theoretical point of view it would be desirable to embed
new particles into a larger framework, which is the idea behind GUTs. Once sterile neutrinos
become “weakly sterile” they can also feel interactions from the new physics sector, which
from a phenomenological perspective means new types of signatures. Embedding into a gauge
theory results in interactions with new gauge bosons, which produce signatures at colliders, in
experiments searching for lepton flavour violation and in neutrinoless double beta decay.

The left-right symmetric model is an example of a theory in which right-handed neutrinos
are no longer gauge singlets, and light neutrino masses arise naturally from both type I and
type II seesaw terms [cf. Eq. (2.51)], with neutrino mass connected to the restoration of parity at
high energies. The magnitude of the two seesaw contributions is indistinguishable in neutrino
oscillation experiments, so that one needs another approach to discover the neutrino mass
generation mechanism. In particular, the particles responsible for neutrino mass can also
mediate several different diagrams leading to 0νββ and LFV processes, and could be produced
at colliders. It is however rather difficult to pin down the mechanism by which the 0νββ process
occurs.

The phenomenology of the LRSM is only observable in current experiments if parity restora-
tion occurs at the TeV scale, which will be assumed in what follows. Explicitly this means that
vR ≃ TeV [cf. Eq. (2.48)]. Other limits on the scales in the model come from the quark sector,
for instance from flavour changing processes in which right-handed W bosons are exchanged
in loops, or from the neutron electric dipole moment. Ref. [354] provides a summary of the
relevant constraints, which depend on whether one assumes charge or parity symmetry, see
Section 2.3.2. One of the most important observables is the K meson mass difference, which
leads to mWR

> 2.5 TeV and mH0
1
> 7.7 TeV. In the analysis that follows the mass of the WR

boson will be fixed to 3.5 TeV, which is still allowed by both LHC data as well as the indirect
bounds from neutral meson mixing.

The connection between double beta decay, colliders and lepton flavour violation has recently
been studied by several authors [94, 283, 355–359]. It is possible to simplify the analysis by
assuming the dominance of either type I or type II seesaw terms; the latter case is particularly
straightforward, and has been studied in the literature before [355, 357]. Here the number
of parameters is greatly reduced since the right- and left-handed Majorana mass terms are
proportional to each other. A detailed investigation of this case will be described below, with
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LFV constraints included in the calculation of the 0νββ halflife.

The case of type I seesaw dominance is more complicated: there are some contributions to
0νββ that involve the left- and right-handed sectors individually as well as others that involve
both sectors, through “left-right mixing”. A simplified version was studied in Ref. [357], and a
useful formula relating the various mass matrices of the theory was presented in Ref. [94], for
the case of symmetric Dirac coupling. Particularly noteworthy is the fact that 0νββ processes
involving left-right mixing could be enhanced for specific Dirac mass matrices, since that mixing
is simply a ratio of the Dirac and Majorana mass scales. This enhancement [263] is also required
for collider signatures of the TeV-scale seesaw mechanism, as discussed in Section 3.7.1 (see the
review in Ref. [360]), and there have been several studies of related phenomenology [361–364].
In the LRSM case both the so-called λ- and η-diagrams could be enhanced, although the latter
is further suppressed by the mixing between left- and right-handed gauge bosons. This idea has
also been emphasised in extended seesaw versions of the LRSM [358, 359]. A thorough analysis
of the type I seesaw scenario will be carried out here, with special attention paid to the correct
nuclear matrix elements for the different diagrams as well as the often severe constraints from
lepton flavour violating phenomena.

Due to the large number of competing mechanisms for 0νββ an independent test would
provide valuable information about the nature of lepton number violation. The inverse neu-
trinoless double beta decay process described in Section 3.7.2 is one such test that could be
performed at a linear collider. In the LRSM one could even produce the new gauge boson WR

in collisions with charged leptons. A recent analysis was performed in Ref. [295], excluding
right-handed currents; here the process e−e− →W−

L W
−
R is studied. This process is indeed the

most interesting, which will be shown from kinematical arguments and an examination of the
amplitudes for 0νββ.

A detailed discussion of 0νββ and LFV processes in the LRSM will be provided in Sections 5.2
and 5.3, and there is a brief summary of LHC signatures in Section 5.4. A quantitative analysis
of the various 0νββ amplitudes in the limit of type I or type II seesaw dominance is presented
in Section 5.5, with details of decay widths and loop functions for LFV processes delegated to
Appendix D. A complementary analysis of the linear collider process of inverse neutrinoless
double beta decay can be found in Section 5.6. The theoretical details of the model have been
introduced in Section 2.3, which provides the background necessary for the analysis of this
chapter.

5.2 Neutrinoless double beta decay

5.2.1 Particle physics amplitudes

There are several possible diagrams for 0νββ in the LRSM, due to the presence of right-handed
currents, heavy right-handed neutrinos and Higgs triplets (for one of the first analyses on this
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5.2 Neutrinoless double beta decay

topic, see Ref. [365]). The charged current Lagrangian in Eq. (2.61) can be written as

Llep
CC =

g√
2

6
∑

i=1

[

e γµ(KL)eiPLni(W
−
1µ + ξeiαW−

2µ)

+ e γµ(KR)eiPRni(−ξe−iαW−
1µ +W−

2µ)
]

+ h.c.

=
g√
2

3
∑

i=1

[

eLγ
µ(UeiνLi + SeiN

c
Ri)(W

−
1µ + ξeiαW−

2µ)

+ eRγ
µ(T ∗

eiν
c
Li + V ∗

eiNRi)(−ξe−iαW−
1µ +W−

2µ)
]

+ h.c.,

(5.1)

where in the second line the charged leptons are assumed to be diagonal (this basis will be
used from now on, so that Ũ = U and all processes can be expressed in terms of the matrices
U , S, T and V ). 0νββ amplitudes arise from second order terms in perturbation theory: it
is clear that one can combine either two left-handed currents, two right-handed currents or
one left- and one right-handed current. The relevant mixing matrix element also depends on
whether light or heavy neutrinos are exchanged in the process; the matrices U , V , S and T are
[cf. Eq. (2.13)]

U ≡
[

1− 1

2
MDM

−1
R (MDM

−1
R )†

]

Vν , V ≡
[

1− 1

2
(MDM

−1
R )†MDM

−1
R

]

VR,

S ≡MDM
−1
R VR, T ≡ −(MDM

−1
R )†Vν ,

(5.2)

to second order in MD/MR, which shows that light neutrino mixing is no longer unitary. The
additional possibility of WL−WR mixing allows for diagrams with, for instance, two left-handed
hadronic currents but one left- and one right-handed leptonic current [see Fig. 5.3(b)], with the
corresponding suppression factor of tan ξ [Eq. (2.60)].

Neutrinoless double beta decay processes in the LRSM can be categorised in terms of their
topology and the helicity of the final state electrons; the most relevant diagrams that will be
discussed in detail in what follows are shown in Figs. 3.5, 3.11, 5.1, 5.2 and 5.3 (see Ref. [165]
for a complete list). Limits on the particle physics parameters are calculated using the recent
KamLAND-Zen limit [166] and are summarised in Table 5.1. Note that the chiral structure of
the matrix element means that the neutrino propagator becomes [366]

PL,R
/q +mi

q2 −m2
i

PL,R =
mi

q2 −m2
i

or PL,R
/q +mi

q2 −m2
i

PR,L =
/q

q2 −m2
i

, (5.3)

leading to mass or momentum dependence when the leptonic vertices have the same or opposite
chirality, respectively, and providing a useful way to categorise the different possible mecha-
nisms. In order to give a rough estimate of the relative magnitudes of 0νββ amplitudes, the
masses of all particles belonging to the right-handed sector (Mi, WR and δR) will be denoted
as R ≃ TeV, and those from the left-handed sector as L ≃ 102 GeV (corresponding to the
weak scale, or the mass of the WL). The matrices T and S describing left-right mixing can be
written as L/R, and the gauge boson mixing angle ξ is of order (L/R)2. Note that with this
definition the order of magnitude of the type I seesaw contribution is mν ≃ L2/R, which is far
too large in the naive case (without cancellations). As mentioned above, the TeV scale for R
is a necessary choice if one wants to have signatures in current experiments.
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WR

WR

dR

dR

uR

e−R

e−R

uR

V ∗
ei

NRi

V ∗
ei

Figure 5.1: Feynman diagram of 0νββ in the LRSM, mediated by heavy neutrinos with right-
handed currents (AR

NR
), analogous to Fig. 3.11. Diagrams with light neutrino ex-

change and right-handed currents are negligible.

Mass-dependent mechanisms

In this case the emitted electrons have the same chirality and there are either light or heavy
neutrinos exchanged, with mass denoted by mi and Mi. With both electrons left-handed the
amplitude is proportional to

ALL ≃ G2
F

(

1 + 2 tan ξ + tan2ξ
)

∑

i

(

U2
eimi

q2
− S2

ei

Mi

)

, (5.4)

whereas if both are right-handed it becomes

ARR ≃ G2
F

(

m4
WL

m4
WR

+ 2
m2

WL

m2
WR

tan ξ + tan2ξ

)

∑

i

(

T ∗
ei

2mi

q2
− V ∗

ei
2

Mi

)

. (5.5)

These expressions take into account diagrams with gauge boson mixing at one or both vertices,
but the most relevant diagrams are:

• Fig. 3.5, the “standard” diagram, which has already been discussed in Section 3.4.1. The
amplitude and particle physics parameter given in Eqs. (3.23) and (3.46) are repeated
here for convenience:

Aν ≃ G2
F

〈mee〉3ν

q2
, (5.6)

with 〈mee〉3ν defined in Eq. (3.25), and

|ην | =
|〈mee〉3ν |
me

=<∼ 7.1 × 10−7 . (5.7)

Figure 3.6 displays the currently allowed regions of the effective mass.

• Fig. 3.11, discussed in the usual type I seesaw context in Section 3.4.4, in which heavy
neutrinos are exchanged with purely left-handed currents. The amplitude is proportional
to

AL
NR

≃ G2
F

∑

i

S2
ei

Mi
∝ L2

R3
, (5.8)
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WR

WR

δ−−
R

dR

dR

uR

e−R

e−R

uR

√
2g2vR hee

(a) AδR

WL

WL

δ−−
L

dL

dL

uL

e−L

e−L

uL

√
2g2vL hee

(b) AδL

Figure 5.2: Feynman diagrams of 0νββ in the left-right symmetric model, mediated by doubly
charged triplets: (a) triplet of SU(2)R and (b) triplet of SU(2)L.

with S ≃ L/R describing the mixing of the heavy neutrinos with left-handed currents.
The limit is given in Eq. (3.47), i.e.,

∣

∣ηL
NR

∣

∣ = mp

∣

∣

∣

∣

∣

∑

i

S2
ei

Mi

∣

∣

∣

∣

∣

<∼ 7.0 × 10−9 . (5.9)

Note that the sum in Eq. (5.8) can be written as

∑

i

S2
ei

Mi
=
[

MDM
−1
R M−1

R

∗
M−1

R MT
D

]

ee
, (5.10)

which vanishes for negligible Dirac Yukawa couplings. It is also possible to have light
neutrino exchange with right-handed currents [the term proportional to T in Eq. (5.5)],
but that diagram is highly suppressed.

• Fig. 5.1, which is the analogous diagram with purely right-handed currents, mediated by
right-handed neutrinos. The amplitude is proportional to

AR
NR

≃ G2
F

(

mWL

mWR

)4
∑

i

V ∗
ei

2

Mi
∝ L4

R5
, (5.11)

where mWR
(mWL

) is the mass of the right-handed WR (left-handed WL), Mi the mass
of the heavy neutrinos and V the right-handed analogue of the PMNS matrix U . The
dimensionless particle physics parameter is

∣

∣ηR
NR

∣

∣ = mp

(

mWL

mWR

)4
∣

∣

∣

∣

∣

∑

i

V ∗
ei

2

Mi

∣

∣

∣

∣

∣

<∼ 7.0 × 10−9 . (5.12)

Triplet exchange mechanisms

• Fig. 5.2(a) is a diagram with different topology, mediated by the triplet of SU(2)R. The
amplitude is given by

AδR
≃ G2

F

(

mWL

mWR

)4
∑

i

V 2
eiMi

m2
δ−−

R

∝ L4

R5
, (5.13)
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WR

NR

NR

νL

WL

dR

dL

uR

e−R

e−L

uL

(a) Aλ

WL

WR

NR

NR

νL

WL

dL

dL

uL

e−R

e−L

uL

(b) Aη

Figure 5.3: Feynman diagrams of neutrinoless double beta decay in the left-right symmetric
model with final state electrons of different helicity: (a) the λ-mechanism and (b)
the η-mechanism due to gauge boson mixing.

and the dimensionless particle physics parameter is

|ηδR
| =

∣

∣

∑

i V
2
eiMi

∣

∣

m2
δ−−

R

m4
WR

mp

G2
F

<∼ 7.0 × 10−9 . (5.14)

The dependence on the heavy neutrino mass comes from the fact that
√

2vRhee is nothing
but the ee element of the right-handed Majorana neutrino mass matrix MR diagonalised
by V [cf. Eq. (2.51)], with vR the VEV of the triplet δR and hee the coupling of the triplet
with right-handed electrons;

• Fig. 5.2(b) is a diagram mediated by the triplet of SU(2)L, also present in the usual
type II seesaw model (without left-right symmetry). The amplitude is given by

AδL
≃ G2

F

heevL

m2
δ−−

L

, (5.15)

which is suppressed with respect to the standard light neutrino exchange by at least a
factor q2/m2

δ−−

L

.

Momentum dependent mechanisms

In this case the emitted electrons have opposite helicity, and the amplitude is proportional to

ALR ≃ G2
F

(

m2
WL

m2
WR

+ tan ξ +
m2

WL

m2
WR

tan ξ + tan2ξ

)

∑

i

(

UeiT
∗
ei

1

q
− SeiV

∗
ei

q

M2
i

)

; (5.16)

the most important diagrams are those involving light neutrinos and two powers of the left-right
mixing in the prefactor, i.e.,

• The so-called λ-diagram in Fig. 5.3(a), with an amplitude

Aλ ≃ G2
F

(

mWL

mWR

)2
∑

i

UeiT
∗
ei

1

q
∝ L3

R3q
, (5.17)
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and particle physics parameter

|ηλ| =

(

mWL

mWR

)2
∣

∣

∣

∣

∣

∑

i

UeiT
∗
ei

∣

∣

∣

∣

∣

<∼ 4.8 × 10−7 . (5.18)

Note that this is a long-range diagram with light neutrinos exchanged, with the matrix
T ∗

ei = O(MD/MR) quantifying the mixing of light neutrinos with right-handed currents.

• The η-diagram in Fig. 5.3(b), which also has mixed helicity and light neutrino exchange
(long-range diagram). This is only possible due to WL −WR mixing, described by the
parameter tan ξ [see Eq. (2.57)]. The amplitude is

Aη ≃ G2
F tan ξ

∑

i

UeiT
∗
ei

1

q
∝ L3

R3q
, (5.19)

with particle physics parameter

|ηη| = tan ξ

∣

∣

∣

∣

∣

∑

i

UeiT
∗
ei

∣

∣

∣

∣

∣

<∼ 2.6 × 10−9 . (5.20)

Ref. [167] gives a detailed explanation of how a complicated cancellation of different
nuclear physics amplitudes leads to a limit on the η-diagram that is much stronger than
the one on the λ-diagram. The heavy neutrino contributions to both the λ- and η diagrams
are further suppressed, being proportional to

∑

i SeiV
∗
eiq/M

2
i [see Eq. (5.16)]. Using the

mixing matrices in Eq. (5.2), the relevant sums become

∑

i

UeiT
∗
ei =

[(

1− 1

2
MDM

−1
R (MDM

−1
R )†

)

Vν

(

−(M−1
R )TMT

DV
∗
ν

)T
]

ee

≃ −
[

MDM
−1
R

]

ee
,

∑

i

SeiV
∗
ei =

[

MDM
−1
R VR

((

1− 1

2
(MDM

−1
R )T (MDM

−1
R )∗

)

V ∗
R

)T
]

ee

≃
[

MDM
−1
R

]

ee
,

(5.21)

neglecting third order terms, demonstrating that the left-right mixing is a ratio of two
scales, MD and MR.

With all of the relevant diagrams written down one can make a rough estimate of their
relative magnitudes in terms of L ≃ 102 GeV and R ≃ TeV. Since the mixed λ- and η-diagrams
in Fig. 5.3 are of order (L/R)3/q and the purely right-handed short-range diagrams in Figs. 5.1
(heavy neutrino exchange and right-handed currents) and 5.2(a) (SU(2)R triplet exchange and
right-handed currents) are of order L4/R5, the mixed diagrams are expected to dominate by a
factor R2/(Lq) ∼ 105. In the same way, the amplitudes of the mixed diagrams are also larger
than the one for heavy neutrino exchange with left-handed currents in Fig. 3.11, proportional
to L2/R3. The main point is that mixed diagrams should be examined more thoroughly, which
will also be done in the context of inverse neutrinoless double beta decay in Section 5.6. It
should be obvious that the light neutrino mass from type I seesaw, mν ≃ M2

D/MR ≃ L2/R
cannot be small enough without matrix cancellations; the crucial point is that the left-right
mixing MD/MR ≃ L/R can still be large in those cases.
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The reliability of these rough approximations can be tested by calculating the ratios of
amplitudes, using known bounds on the left-right mixing. The limits on the difference of the
diagonal elements of the product ǫα ≡ [SS†]αα ≃ [T †T ]αα from lepton universality [367] are

ǫe − ǫµ <∼ 0.0022 , ǫµ − ǫτ <∼ 0.0017 , ǫe − ǫτ <∼ 0.0039 , (5.22)

which give a rather weak bound on the left-right mixing. In the absence of cancellations (i.e.,
neglecting matrix structures) one finds a much stronger bound from the seesaw formula, namely

|Sαi| ≃ |T T
αi| ≃

√

mν

Mi

<∼ 10−7

(

TeV

Mi

)1/2

, (α = e, µ, τ) , (5.23)

which will be applied in the estimates that follow, along with the light neutrino mass scale
mν ≃ 0.05 eV and momentum exchange |q| ≃ 100 MeV.

For heavy neutrino exchange with right-handed currents [Fig. 5.1],

AR
NR

Aν
≃
(

mWL

mWR

)4
∑

i

V ∗
ei

2

Mi

q2

mν
≃ 8.36

(

TeV

mWR

)4(TeV

Mi

)

, (5.24)

whereas for heavy neutrino exchange with left-handed currents [Eq. (5.8)] the ratio is

AL
NR

Aν
≃
∑

i

S2
ei

Mi

q2

mν

<∼
q2

M2
i

≃ 10−8

(

TeV

MR

)2

. (5.25)

One sees immediately that this process requires cancellations to be enhanced.1 However, for
the λ- and η-diagrams [Fig. 5.3],

Aη

Aν

<∼
Aλ

Aν
≃
(

mWL

mWR

)2
∑

i

UeiT
∗
ei

q

mν

<∼
(

mWL

mWR

)2 q√
mνMi

≃ 2.89

(

TeV

mWR

)2(TeV

MR

)1/2

,

(5.26)

where the first inequality comes from the upper limit |ξ| <∼
(

mWL

mWR

)2
. Without the bound in

Eq. (5.23) that connects the left-right mixing T to light neutrino mass, Aλ and Aη could be
even larger. However, even with such a stringent limit, Eq. (5.26) shows that the mixed helicity
diagrams can compete with the standard light neutrino diagram. Depending on the relative
magnitude of the bi-doublet VEVs κ1 and κ2, the amplitude Aη may be further suppressed [see
Eq. (2.60)], but this could be compensated for by the fact that M0ν

η ≃ 102M0ν
λ (cf. Table 5.2).

With the numerical values mWR
= 3.5 TeV and MR = 500 GeV, the naive estimates for AR

NR
,

Aλ and Aη turn out to be quite close in magnitude, whereas the small value for AL
NR

could still

be enhanced by cancellations. Inverting the seesaw formula gives MD ≃ √
mνMR ≃ 10−4 GeV,

which means that the Yukawa matrices f and f̃ need to have non-trivial flavour structure in
order to obtain the correct light neutrino mass [see Eq. (2.51)]. With O(1) couplings, MD ∝ κi,
so that MD would be near the electroweak scale of 102 GeV. Assuming that κ2 ≪ κ1 (see also
Ref. [89]) means that MD ≃ κ1f/

√
2 and Mℓ ≃ κ2f̃/

√
2, so that one has the freedom to choose

f without affecting the charged lepton sector.

1This case was also studied in Ref. [361, 363, 364, 368].
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Table 5.1: Summary of relevant mechanisms for 0νββ in the left-right symmetric model, with
limits on new physics parameters (written in bold face) in each case (see also
Ref. [164]).

Mechanism Amplitude Current limit

light neutrino exchange (Aν)
G2

F

q2
∣

∣U2

ei
mi

∣

∣ 0.36 eV

heavy neutrino exchange (AL
NR

) G2
F

∣

∣

∣

∣

S2

ei

Mi

∣

∣

∣

∣

7.4 × 10−9 GeV−1

heavy neutrino exchange (AR
NR

) G2
Fm

4
WL

∣

∣

∣

∣

∣

V ∗

ei

2

Mim
4

WR

∣

∣

∣

∣

∣

1.7 × 10−16 GeV−5

Higgs triplet exchange (AδR
) G2

Fm
4
WL

∣

∣

∣

∣

∣

∣

V 2

ei
Mi

m2

δ
−−

R

m4

WR

∣

∣

∣

∣

∣

∣

1.7 × 10−16 GeV−5

λ-mechanism (Aλ) G2
F

m2
WL

q

∣

∣

∣

∣

∣

UeiT
∗

ei

m2

WR

∣

∣

∣

∣

∣

7.5 × 10−11 GeV−2

η-mechanism (Aη) G2
F

1

q

∣

∣tan ξ
∑

i
UeiT

∗

ei

∣

∣ 2.6 × 10−9

5.2.2 Nuclear matrix elements and lifetime

In order to translate the dimensionless particle physics parameters ηk into actual lifetimes of
0νββ processes for different isotopes, one needs the relevant nuclear matrix elements and phase
space factors, discussed in Section 3.4.5. Most previous studies have focussed on the standard
light neutrino exchange mechanism, with fewer groups calculating the matrix elements relevant
to 0νββ in the LRSM. The QRPA calculation of the matrix elements for the mixed diagrams
in Ref. [369] will be used in this analysis (see also Refs. [370, 371]).2,3 In their notation, the
lifetime of 0νββ can be written as

[

T 0ν
1/2

]−1
= G0ν

01 |M0ν
GT|2

{

|XL|2 + |XR|2 + C̃2|ηλ||XL| cosψ1 + C̃3|ηη ||XL| cosψ2

+ C̃4|ηλ|2 + C̃5|ηη |2 + C̃6|ηλ||ηη| cos(ψ1 − ψ2) + Re
[

C̃2XRηλ + C̃3XRηη

]}

, (5.27)

where the coefficients C̃i are combinations of matrix elements and integrated kinematical fac-
tors, G0ν

01 is the usual phase space factor and ψi are complex phases. The parameters XL (XR)
include all processes in which the final state electrons are both left-handed (right-handed), i.e.,

XL ≡ M′0ν
ν ην + M′0ν

N η
L
NR

+ M′0ν
N ηδL

, and XR ≡ M′0ν
N η

R
NR

+ M′0ν
N ηδR

, (5.28)

with ηδL
the lepton number violating parameter associated with Eq. (5.15). In Eq. (5.27) the

interference termXLXR has been omitted: it is suppressed due to the different electron helicities
(e−Le

−
L vs e−Re

−
R). Interference terms with final states in which at least one of the electrons has

2p-n pairing effects [369] in general reduce the matrix elements compared to the ones reported in Ref. [370].
3There is also a shell model calculation [372] for 76Ge, 82Se and 136Xe.
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Table 5.2: Phase-space factors G0ν
01 [182, 369] and nuclear matrix elements for light (M0ν

ν ) [181]
and heavy (M0ν

N ) [183, 184] neutrino exchange, and for the λ- and η-diagrams [369,
371], for different isotopes and with gA = 1.25 and r0 = 1.1 fm [cf. Eq. (5.30)].

Isotope
G0ν

01 [10−14 yrs−1] G0ν
01 [10−14 yrs−1] M0ν

ν M0ν
N M0ν

λ M0ν
η

(old [369]) (new [182])

76Ge 0.793 0.686 2.58–6.64 233–412 1.75–3.76 235–637
82Se 3.53 2.95 2.42–5.92 226–408 2.54–3.69 209–234
130Te 5.54 4.13 2.43–5.04 234–384 2.85–3.67 414–540
136Xe 5.91 4.24 1.57–3.85 160–172 1.96–2.49 370–419

the same helicity have been included. The matrix elements M′0ν
ν and M′0ν

N include Fermi and
Gamow-Teller contributions.

An improved calculation of the phase space factor G0ν
01 for the light neutrino exchange mecha-

nism has recently been performed in Ref. [182], taking into account the finite nuclear size of the
Dirac wave function as well as electron screening effects and angular correlations. The factor
is slightly lower, with the difference becoming more marked for heavier nuclei. The coefficients
C̃i (i = 2, 3, 4, 5, 6) depend on different phase space factors [369, 373], which are assumed to be
reduced by the same percentage as G0ν

01 . More recent calculations [183, 184, 374] of light and
heavy neutrino matrix elements include the Gamow-Teller factor M0ν

GT in the relevant matrix
elements M0ν

ν and M0ν
N . For consistency of notation one can define

M0ν
ν ≡ M0ν

GTM′0ν
ν , M0ν

N ≡ M0ν
GTM′0ν

N ,

M0ν
λ ≡

√

|M0ν
GT|2C̃4 , M0ν

η ≡
√

|M0ν
GT|2C̃5 ,

(5.29)

so that the lifetime in Eq. (5.27) can be written as

[

T 0ν
1/2

]−1
= G0ν

01

{

|M0ν
ν |2|ην |2 + |M0ν

N |2|ηL
NR

|2 + |M0ν
N |2|ηR

NR
+ ηδR

|2

+|M0ν
λ |2|ηλ|2 + |M0ν

η |2|ηη|2
}

+ interference terms. (5.30)

The corresponding matrix elements are reported in Table 5.2 and will be used in the analysis
that follows. The new phase space numbers have been used to calculate limits.

In the limit of type II seesaw dominance, the expression in Eq. (5.30) will simplify consid-
erably, whereas with type I seesaw dominance all six terms should be considered (neglecting
the contribution stemming from the left-handed triplet δL, which is suppressed by light neu-

trino mass and mδ−−

L
). The notation [T 0ν

1/2]k (k = ν,N
(R)
R , N

(L)
R , δR, λ, η) is used to refer to

the lifetime stemming from one particular diagram. The variation of the lifetime [T 0ν
1/2]ν with

lightest neutrino mass was already displayed in Fig. 3.12; this plot will be repeated for other
mechanisms.

5.3 Lepton flavour violation

Lepton flavour violating decays of charged leptons are important probes of new physics models
at the TeV scale. The relevant processes and their corresponding limits have been introduced
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in Section 3.7.3, with a focus on LFV decays of the muon, i.e., µ → eγ, µ → 3e and µ → e
conversion. In the LRSM, the amplitudes for those processes receive contributions from (i)
right-handed gauge bosons and Higgs triplets, suppressed by (mWL

/mWR
)2; (ii) left-handed

gauge bosons, suppressed by ≃ |MDM
−1
R |2 and (iii) processes withWL−WR mixing, suppressed

by ξMDM
−1
R . Terms proportional to ξ2 are expected to be small and are neglected here. All of

the possible channels are in some way related to the right-handed neutrino mass, either directly
as a virtual particle in the loop or indirectly since the couplings of the triplets to leptons are
proportional to MR.

A detailed calculation of the LFV decay widths and branching ratios in the LRSM has been
performed in Ref. [375], where the results have been obtained by expanding to leading order
in the ratios MD/MR and κ+/vR, and thus ignore any effects of left-right mixing. The results
are (see also Refs. [376, 377])

BRtriplet
µ→3e =

1

8

∣

∣

∣h̃µeh̃
∗
ee

∣

∣

∣

2





m4
WL

m4
δ++
L

+
m4

WL

m4
δ++
R



 , (5.31)

for the tree-level process µ→ 3e and

BRµ→eγ ≃ 1.5 × 10−7 |glfv|2
(

1 TeV

mWR

)4

, (5.32)

RAu
µ→e ≃ 8 × 10−8 |glfv|2

(

1 TeV

mδ++
L,R

)4

α



log
m2

δ++
L,R

m2
µ





2

, (5.33)

for the loop-suppressed decays µ → eγ and µ → e conversion (in gold nuclei), where the
expressions are simplified by assuming the “commensurate mass spectrum” Mi ≃ mWR

≃
mδ++

L
≃ mδ++

R
≃ mδ+

R
. The parameters h̃ and glfv are defined to leading order in the ratio

MD/MR by

h̃αβ ≡
3
∑

i=1

VαiVβi
Mi

mWR

=
[MR]αβ

mWR

,

glfv ≡
3
∑

i=1

VµiV
∗
ei

(

Mi

mWR

)2

=
[MRM

∗
R]µe

m2
WR

,

(5.34)

assuming manifest left-right symmetry (see Appendix D). If one assumes that logarithmic
terms [cf. Eq. (D.14)] from doubly charged Higgs diagrams dominate and that no cancellations
occur amongst the LFV parameters (|glfv| ≃ |h̃µeh̃

∗
ee|), one expects BRµ→3e to be roughly two

orders of magnitude larger than RAu
µ→e for O(TeV) Higgs triplet masses [375]. In that simplified

case the limits on µ→ 3e will confine the model parameter space the most, which will be used
in the analysis of the case of type II seesaw dominance.

However, with right-handed neutrinos around the TeV scale the left-right mixing could be
enhanced, so that the usual type I seesaw contribution to LFV processes should also be con-
sidered. Those have been calculated in Refs. [363, 378–385]. Since the LRSM is effectively a
type I+II seesaw model one needs to take into account LFV processes mediated by both heavy
neutrinos and Higgs triplets, effectively allowing for interference between different amplitudes.
Ref. [385] has presented the full expressions for µ → eγ; in the present analysis type I seesaw
terms are included for µ → 3e and µ → e conversion, in the former case including possible
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Chapter 5 LNV and LFV in the left-right symmetric model

interference between loop and tree level diagrams. Detailed expressions for the decay widths
including form factors and loop functions can be found in Appendix D; the most constraining
processes will be summarised here. In the parameter scans in the type I dominance case all
relevant contributions are taken into account.

It turns out that the most important constraints on the mixing S ≃ MD/MR come from
µ→ eγ and µ→ e conversion. In both cases the constraint is roughly

S∗
µiSeiF(xi) ≃ S∗

µiSei
<∼ 10−5 , (5.35)

where the loop function F(xi) is taken to be of order one. This approximation is not always
valid for very large right-handed neutrino masses, in which case F(xi) ≃ ln(M2

i /m
2
WL

), but
since the mixing scales with 1/Mi the rate will vanish in the decoupling limit [384]. The decay
rate of µ → 3e depends on the same parameters as µ→ e conversion, but the limits are weaker
in that case: the bound BRµ→3e < 1.0 × 10−12 can be roughly translated into S∗

µiSei
<∼ 10−3.

These constraints come from diagrams with left-handed currents and left-right mixing, i.e. the
terms proportional to S2 in Eqs. (D.9), (D.14), (D.15) and (D.17), so that there is no other
dependence on the heavy particle masses besides from the loop functions. Another interesting
constraint comes from µ → eγ diagrams in which gauge bosons mix: the chirality flip occurs
within the loop, leading to a direct dependence on the Dirac mass matrix instead of the muon
mass [Eq. (D.9)], in a similar way to the mixed diagrams in 0νββ (see also Refs. [382, 385, 386]).
This enhances the contribution of mixed diagrams to µ→ eγ by a factor SMR/mµ ≃MD/mµ,
so that the product of the mixing angle ξ and the µe element of the Dirac mass matrix is
constrained to be

|M∗
D|µe

(

ξ

10−5

)

<∼ 0.2 GeV . (5.36)

In addition, the experimental limit of |de| < 10−27 e cm [310] on the electric dipole moment of
the electron [see Eq. (D.10)] constrains the ee element to be roughly

Im
{

[MD]eee
iα
}

(

ξ

10−5

)

<∼ 0.02 GeV , (5.37)

which also depends on the phase α. These limits effectively constrain the η-diagram in Fig. 5.3(b).
One might also expect large left-right mixing to allow loop-suppressed (type I) contributions

to µ → 3e to compete with the tree level triplet (type II) contribution. The full expression
is given in Eq. (D.12), and the condition for comparable magnitudes of type I and type II
contributions is roughly

S∗
µiSei ≃ 0.1

(

5 TeV

mδ++

)2
(
∣

∣MµeM
∗
ee

∣

∣

m2
WR

)

, (5.38)

assuming mδ++
L

= mδ++
R

≡ mδ++ . Thus for TeV-scale WR the most restrictive bound on S2 in

Eq. (5.35) means that one needs right-handed neutrinos around the electroweak scale for the
type I loop contribution to be competitive in µ→ 3e decay.

5.4 Signatures at the LHC

Collider searches provide a complementary probe of heavy neutrino models, as discussed in
Section 3.7.1. Specifically, in the LRSM the right-handed W boson and right-handed neutrinos
can be produced in pp collisions at the LHC via

pp→WR +X → Nℓ + ℓ+X , (ℓ = e, µ), (5.39)
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5.5 0νββ amplitudes in the seesaw limits

followed by the decay into like-sign dileptons and two jets, i.e.,

WR → ℓ1Nℓ → ℓ1ℓ2W
∗
R → ℓ1ℓ2qq

′ → ℓ1ℓ2jj , (5.40)

which for the ℓ = e case is equivalent to the 0νββ diagram in Fig. 5.1. Several studies in this
direction have been performed [87, 278, 355, 387], although the λ-diagram was not included.4

Recently the CMS collaboration looked for this signature in both 7 TeV [390] and 8 TeV [391]
data, where the integrated luminosity was 5.0 fb−1 and 3.6 fb−1, respectively. Their analysis
was simplified by assuming negligible mixing (ξ ≃ 0) between gauge bosons and between heavy
neutrino mass eigenstates (V ≃ 1), so that the final states are either both electrons or both
muons. ATLAS studied the same process with 2.1 fb−1 of data from 7 TeV collisions [392], and
in addition examined the case of maximal mixing between the first two heavy neutrino mass
eigenstates.

As a simple illustration of the complementarity of the different data sets the limits from the
latest CMS data as well as from the KamLAND-Zen 0νββ experiment [166] are plotted in the
MNe −mWR

parameter space in Fig. 5.4, using two different values for the mixing Ve1. Here
one assumes that only one heavy neutrino flavour Ne ≃ N1 is accessible, so that the LNV
parameter in Eq. (5.12) simply becomes |ηR

NR
| = mp(mWL

/mWR
)4|V ∗

e1|2/M1. It is evident that
colliders can place strong bounds on the parameter space.

It is also possible to probe the couplings hαβ of Higgs triplets to leptons [see Eq. (2.47)]
with collider searches. The latest results from ATLAS [276] give the exclusion limits mδ±±

L
>

409 GeV and mδ±±

R
> 322 GeV for e±e± final states and assuming a branching ratio of 100%

to each final state. In order to compare those results to the 0νββ bounds one needs to take
into account the other decay modes of doubly-charged Higgs scalars into gauge bosons and
singly-charged scalars. The bounds extracted depend on the mass spectrum of the different
components of the Higgs triplets ∆L,R, see the analysis in Ref. [275].

5.5 0νββ amplitudes in the seesaw limits

In the most general case the light neutrino mass matrix

mν = ML −MDM
−1
R MT

D , (5.41)

receives contributions from [see Eq. (2.52)] both the left-handed triplet (type II seesaw) and
the heavy right-handed neutrinos (type I seesaw), making quantitative studies of the 0νββ
amplitudes difficult. The two extreme cases of type II and type I dominance will be analysed
here in detail; a complete study (i.e., type I+II) is beyond the scope of this work. In the type II
case one sets the Dirac Yukawa couplings to zero, in the type I case one assumes that the triplet
VEV vanishes, i.e., vL = 0. The simpler case of type II seesaw dominance is dealt with first.

5.5.1 Type II seesaw dominance

With the approximations mentioned above, the lifetime in the limit of type II dominance is

[

T 0ν
1/2

]−1

type II
= G0ν

01

{

∣

∣M0ν
ν

∣

∣

2 |ην |2 +
∣

∣M0ν
N

∣

∣

2 |ηR
NR

+ ηδR
|2
}

; (5.42)

with all terms proportional to MD neglected, i.e., those with left-right mixing. Thus only heavy
neutrino (Fig. 5.1) and triplet exchange [Fig. 5.2(a)] contributions remain, in addition to the

4For other collider probes of 0νββ, see Ref. [388, 389].
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Figure 5.4: Comparison of the limits in MNe −mWR
parameter space from CMS and from the

KamLAND-Zen limit on 0νββ. The limit of 1.9 × 1025 yrs on the 0νββ halflife
of 136Xe means that all points to the left of the solid black line (dashed red line)
are excluded, for |Vei|2 = 1 (|Vei|2 = 2/3), assuming that only heavy neutrinos
contribute to 0νββ, i.e. only [T 0ν

1/2]N(R)
R

. The shaded region is excluded by CMS at

95% C.L. [391].

standard diagram (Fig. 3.5) (the amplitude AL
NR

also vanishes, being proportional to MD). As
discussed above, the interference term is suppressed, since the final state electrons in Fig. 3.5
are left-handed whereas those in Fig. 5.1 are right-handed.

In the case of type II dominance, the right-handed neutrino mass matrix can be expanded
as [93]

M type II
R ≃ vR

vLeiθL
mν + κ2

+hDm
−1
ν hT

D − κ4
+

vLe
iθL

vR
(hDm

−1
ν hD)m−1

ν (hDm
−1
ν hD)T + . . . , (5.43)

and since hD ≃ 0,

M type II
R ≃ vR

vLeiθL
mν , (5.44)

which simplifies the analysis considerably: the light and heavy neutrino spectra are proportional
to each other, and V = U , up to an overall complex phase. In addition, both U and V become
unitary in the limit that MD = 0 [cf. Eq. (5.2)]. These assumptions were first used in Ref. [355]
to quantify the heavy neutrino contribution to 0νββ, with the triplet contribution neglected
since the constraint from µ → 3e leads to MR/mδR

≪ 1 over a large part of parameter space.
Nevertheless, it is interesting to study this interplay more carefully. Replacing V with U
in Eq. (5.12), the dimensionless lepton number violating parameter corresponding to heavy
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Figure 5.5: The standard light neutrino contribution to the 0νββ halflife of 76Ge plotted against
the lightest light neutrino mass, including the LFV constraint BRµ→3e

<∼ 10−12, for
different values of the Higgs triplet mass, with mWR

= 3.5 TeV and the heaviest
right-handed neutrino Mheavy = 500 GeV. Experimental limits are explained in the
caption of Fig. 3.12.

neutrino exchange with right-handed currents (∝ [M−1
R ]ee) can now be written as

[ηR
NR

]NO = mp

(

mWL

mWR

)4(m3

m1
|Ue1|2 +

m3

m2
|Ue2|2e−iα + |Ue3|2e−iβ

)

1

M3
, (5.45)

[ηR
NR

]IO = mp

(

mWL

mWR

)4(m2

m1
|Ue1|2 + |Ue2|2e−iα +

m2

m3
|Ue3|2e−iβ

)

1

M2
, (5.46)

for normal and inverted ordering, respectively, where α and β are Majorana phases. Similarly,
the branching ratio for µ→ 3e in Eq. (5.31) depends on the product of the ee and µe elements
of h̃ = MR/mWR

, with

[MR]NO
σρ =

(

m1

m3
Uσ1Uρ1 +

m2

m3
Uσ2Uρ2e

iα + Uσ3Uρ3e
iβ

)

M3

[MR]IOσρ =

(

m1

m2
Uσ1Uρ1 + Uσ2Uρ2e

iα +
m3

m2
Uσ3Uρ3e

iβ

)

M2 . (5.47)

In the following the triplet masses are assumed to be equal, mδ++
L

= mδ++
R

.

Following Ref. [355], by fixing mWR
= 3.5 TeV and the heaviest right-handed neutrino mass

Mheaviest = 500 GeV, the three contributions can be plotted against the lightest light neutrino
mass (see Figs. 5.5 and 5.6). It is clear that the right-handed contribution [T1/2]

−1

N
(R)
R

[Fig. 5.6(a)]

is proportional to the inverse of MR, whereas the triplet contribution [T1/2]
−1
δR

[Fig. 5.6(b)]

is proportional to MR, and looks similar to the standard lifetime [T1/2]
−1
ν (Fig. 5.5), since
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Figure 5.6: The contribution to the 0νββ halflife of 76Ge from (a) heavy right-handed neutrinos
and (b), right-handed Higgs triplets, plotted against the lightest light neutrino
mass, with mWR

= 3.5 TeV and Mheavy = 500 GeV. In plot (a) the grey shaded
regions are excluded by LFV constraints, for different values of mδ++

R
, in plot (b)

mδ++
R

= mWR
= 3.5 TeV. Experimental limits are explained in the caption of

Fig. 3.12.

mν ∝ MR in the type II limit. For [T1/2]
−1

N
(R)
R

, the inverted ordering can have infinite lifetime

(zero effective mass), whereas the normal ordering cannot, so that the roles are reversed with
respective to the standard case. In each plot the regions excluded by the limit on µ → 3e are
indicated, for different values of mδ++

R
: in the normal hierarchy the constraint only comes into

play when the lightest mass is larger than about 0.01 eV, whereas in the inverted hierarchy the
whole parameter space is affected.5 In the case of the light neutrino and triplet contributions,

5These results agree with Fig. 2 of Ref. [355], which shows that Mheavy/m
δ
++

R

<∼ 0.1 in the inverted ordering

for all light neutrino masses, which corresponds to m
δ
++

R

= 5 TeV.
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Figure 5.7: The total 0νββ halflife of 76Ge including light neutrino, heavy neutrino and triplet
contributions, plotted against the lightest light neutrino mass, with mWR

= 3.5 TeV
and Mheavy = 500 GeV. The solid, dashed and dashed-dotted lines show the allowed
regions that satisfy BRµ→3e ≤ 10−12 for mδ++

R
equal to 1, 2 and 3.5 TeV respec-

tively; the black dotted lines enclose the regions allowed if one neglects the triplet
contribution and LFV constraints. Experimental limits are explained in the caption
of Fig. 3.12.

the only areas still allowed correspond to the largest possible value of |〈mee〉|, i.e., when both
Majorana phases are close to zero.

Figure 5.7 shows the total halflife, with all three contributions included. The chosen value of
mδ++

R
affects not only the LFV constraint but also the resulting halflife, due to the dependence

of the triplet contribution on this quantity [Eq. (5.13)]. The black dotted lines show the halflife
without the triplet contribution, and it is evident that the addition of the triplet part can
shorten the halflife by several orders of magnitude, bringing it within reach of the GERDA
experiment. There also exist regions where the lifetime can be longer, due to cancellations
between the ηR

NR
and ηδR

contributions. The key point here is that the triplet contribution can
still be allowed for certain values of the Majorana phases, even with the LFV constraint, thus
enhancing the total amplitude for 0νββ. This enhancement obviously depends on the triplet
mass, so that if mδ++

R

>∼ 5 TeV the results of Ref. [355] are recovered.

5.5.2 Type I seesaw dominance

In the limit of type I seesaw dominance all the terms in Eq. (5.30) must be considered (neglect-
ing the small contribution from ηδL

, as discussed above). There are six contributing diagrams:
(i) “standard” light neutrino exchange (ην); (ii) heavy neutrino exchange with left-handed
currents (ηL

NR
); (iii) heavy neutrino exchange with right-handed currents (ηR

NR
); (iv) light neu-

trino exchange via the λ-diagram (ηλ); (v) light neutrino exchange via the η-diagram (ηη) and

105



Chapter 5 LNV and LFV in the left-right symmetric model

(vi) right-handed triplet exchange (ηδR
). Interference terms are also possible [see Eq. (5.27)],

and distinguishing the different contribution becomes difficult. The contributions (iv) and (v)
are usually neglected in the literature, but they can actually be significant, as shown in the
rough estimates above.

Parameterising the relative magnitudes

In order to quantify the six contributions one needs more information about the right-handed
sector, specifically the right-handed mixing matrix VR and the mass spectrum Mi (i = 1, 2, 3)
of right-handed neutrinos. The right-handed mass matrix MR appears in the amplitudes AL

NR
,

AR
NR

, AδR
, Aλ and Aη, and in the case of type I seesaw dominance can be expanded as

M type I
R = κ2

+h
T
Dm

−1
ν hD + κ4

+

vLe
iθL

vR
(hDm

−1
ν hD)Tm−1

ν (hDm
−1
ν hD) + . . . . (5.48)

The leading term is a matrix product containing the unknown Dirac mass matrix, so that the
simple relations in Eq. (5.44) no longer hold and a different approach is required. The authors
of Ref. [357] simplify the analysis by assuming that (i) the Dirac mass matrix is diagonalised
by VR and (ii) the three Dirac Yukawas are equal. This scenario is very restrictive; another
approach would be to insert an ansatz for the matrix of Dirac Yukawa couplings hD. Often one
uses the condition Mu ≃MD = κ+hD, which holds at the GUT scale in SO(10) models [393].

More generally, the Dirac mass matrix can be parameterised using the so called top-down or
bi-unitary parameterisation,

MD = U †
LM̃DUR, (5.49)

where UL and UR are arbitrary unitary matrices and M̃D = κ+ diag(h1, h2, h3). In the LRSM
type I case, MD has 18 parameters and MR has 12 parameters, so that the left-right mixing
MDM

−1
R depends on 30 parameters, making it difficult to learn anything from a parameter scan.

An additional discrete parity (charged conjugation) symmetry [see Section 2.3.2] means that
MD becomes hermitian (symmetric) thus reducing the number of parameters by 6. However, it
is still numerically difficult to find Dirac mass matrix structures that give large enough left-right
mixing. One way is to start from a specific matrix structure in MD that gives zero neutrino
masses, and introduce small perturbations (see Refs. [263, 266]). It is also possible to scan the
entire allowed parameter space using the orthogonal parameterisation, defined in Eq. (2.25).
However, due to the large number of unknown parameters (6 in O, 3 in M̃R and 9 in VR) it is
difficult to learn anything. In addition, this approach does not allow one to define a symmetric
or Hermitian Dirac mass matrix in a unique way.

An alternative method is to go to the basis where MD is “diagonal” from the left. Starting
with a general Majorana mass matrix MR and the most general Dirac mass matrix in Eq. (5.49),
one rotates the left-handed neutrino fields by UL, leading to the light neutrino mass matrix

m′
ν = −M̃DURM

−1
R UT

RM̃D ≡ −M̃DM
′
R
−1
M̃D , (5.50)

with M ′
R
−1 = URM

−1
R UT

R . In this basis the mass matrix m′
ν can be diagonalised by the unitary

matrix XL, i.e. m′
ν = XLm̃νX

T
L , so that the neutrino mass matrix in the flavour basis is

mν = Vνm̃νV
T
ν = −VνX

†
L

(

M̃DM
′
R
−1
M̃D

)

X∗
LV

T
ν ≡ −U †

L

(

M̃DM
′
R
−1
M̃D

)

U∗
L , (5.51)

where Vν is the light neutrino mixing matrix [Eq. (2.16)] defined by Vν ≡ U †
LXL. Numerically,

this means one need only fit the mass eigenvalues after diagonalising Eq. (5.50), decoupling the
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PMNS mixing parameters, which turns out to be much more efficient than trying to fit both
mass eigenvalues and mixing eigenvectors.6 Put another way, one always has the freedom to
choose UL in order that the experimental values of Vν are reproduced, for any choice of UR.
The authors of Ref. [368] used this approach to find matrix structures that could enhance the
amplitude for 0νββ mediated by heavy sterile neutrinos (AL

NR
), albeit without right-handed

currents. In the LRSM case those same structures will also enhance the amplitudes for the
λ- and η-diagrams and influence the LFV branching ratios. However, one cannot recover the
non-trivial mixing VR in the right-handed sector simply by diagonalising M ′

R
−1. Defining

M ′
R
−1 = X∗

RM̃
−1
R X†

R means that
VR = UT

RXR , (5.52)

so that the only way to find VR is to invoke the symmetry (Hermiticity) of MD, which gives
UR = U∗

L (UR = UL). The right-handed mixing is then

VR = U †
LXR = VνX

†
LXR or VR = UT

LXR = V ∗
ν X

T
LXR , (5.53)

whereas the left-right mixing (in the flavour basis) is

MDM
−1
R = U †

LM̃DM
′
R
−1
UL or MDM

−1
R = U †

LM̃DM
′
R
−1
U∗

L , (5.54)

for symmetric or Hermitian MD, respectively. The expression [cf. Eq.(5.10)] characterising the
diagram with heavy neutrinos and left-handed currents is

MDM
−1
R M−1

R
∗
M−1

R MT
D = U †

LM̃DM
′
R
−1
M ′

R
−1∗

M ′
R
−1
M̃DU

∗
L . (5.55)

The corrected forms of U and V used for calculating 0νββ amplitudes and LFV branching
ratios can be found from Eq. (5.2), but the terms second order in B ≃ MDM

−1
R make little

numerical difference.
It has also been shown [94] that if the Dirac mass matrix is symmetric, there are only 23 = 8

discrete solutions to the seesaw equation, given by MD = i
√

MνM
−1
R MR. It is possible to

obtained large left-right mixing solutions that are consistent with this formalism. In that case
half of the eight solutions give large mixing, whereas the other half give small mixing.

Numerical example

In the most general case, obtaining zero light neutrino masses means solving the condition
MDM

−1
R MT

D = 0, and it turns out that in the basis in Eq. (5.50) this equates to [368]

M̃D ∝ diag(0, 0, 1) and M ′
R ∝





0 0 1
0 1 1
1 1 1



 . (5.56)

Inserting small parameters instead of zeros leads to non-zero light neutrino masses, with the
spectrum depending on any hierarchies introduced in M̃D and MR. One particular example
(from Ref. [368]) is

M̃D = κ+diag(a ǫ2, b ǫ, c), M ′
R
−1 ≃M−1





d e f
· g h ǫ
· · j ǫ2



 , (5.57)

6This approach is discussed in Ref. [394].
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Figure 5.8: The contributions to the 0νββ halflife of 76Ge from the λ- and η-diagrams plotted
against the lightest light neutrino mass, for symmetric MD. The standard con-
tribution is indicated by the region outlined in black, and the dashed and dotted
horizontal line correspond to the limits from Eqs. (5.18) and Eq. (5.20).

which leads to nonzero lightest neutrino mass. With all coefficients a, b, c etc. of order one
one needs |ǫ| = O(10−6) in order to get the correct mass for active neutrinos. Inverting M ′

R
−1

would give a matrix with small (1, 1), (1, 2) and (2, 1) entries, but since M ′
R
−1 =

(

URM
−1
R UT

R

)

,
the matrix MR can have large entries everywhere, which can enhance the LFV amplitudes.
This is simply a manifestation of the fact that one cannot go to a basis where the right-handed
neutrinos are diagonal without affecting the right-handed current, which is different to the
conventional case. For the parameter scans the values mWR

= 3.5 TeV and mδ++
R

= 5 TeV are

chosen, and the gauge boson mixing angle is varied in the range 10−8 ≤ ξ ≤ 10−6, otherwise
it would be difficult to evade the constraints from µ → eγ. The magnitudes of the complex
parameters a, b, c etc. are varied in the range [0.1, 1.0], and |ǫ| in the range [10−12, 10−5]. The
phases are taken to be between 0 and 2π, and κ+ = 174 GeV and M = 1 TeV are fixed. From
Eqs. (2.51) and (2.59) the relation MR = 2

gmWR
h ≃ 3mWR

h holds, which is used to check
perturbativity of the coupling h.

In the region of parameter space where cancellations are at play, one expects the different
halflife contributions to have similar orders of magnitude, so that the amplitudes AL

NR
, Aλ and

Aη, which all depend on the left-right mixing, are enhanced. The halflives for the amplitudes
Aλ and Aη are plotted in Fig. 5.8 and the halflives corresponding to heavy neutrino exchange,
i.e., the amplitudes AL

NR
, AR

NR
and AδR

in Fig. 5.9, in both cases for a symmetric Dirac mass
matrix. In each case the usual light neutrino contribution is shown for comparison, and one
can see that there are regions of parameter space in which the λ and η contributions dominate
over the light neutrino contribution. Remarkably the η contribution can still be sizeable, even
with such small values of ξ: this is largely due to the larger value of the matrix element M0ν

η

(cf. Table 5.2). The lightest mass could be smaller if the parameters a, b, c were allowed to be
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Figure 5.9: The contributions to the 0νββ halflife of 76Ge from heavy right-handed neutrinos,

with left- and right-handed currents (AL,R
NR

), for symmetric MD. The standard
contribution is indicated by the region outlined in black, and the dashed horizontal
line corresponds to the limit from Eq. (3.47).

smaller than 0.1, although in the NO case the LFV constraints favour larger values of mlight. It
also turns out that b and c need to be small in order to keep the left-right mixing small enough,
since the rotation matrices in Eq. (5.54) can lead to large entries in the (1, 1), (1, 2) and (2, 1)
positions of MDM

−1
R , which enhance LFV processes.

In order to ascertain whether one diagram might dominate over another it is interesting to
look at the ratios of different halflives. Some of those ratios are shown in Fig. 5.10, calculated
for the example texture. As expected, the halflives [T 0ν

1/2]NL
R

and [T 0ν
1/2]λ can both be larger than

the light neutrino contribution. Note that the possibility of interference terms has not been
taken into account, as that would considerably complicate the analysis. Indeed, distinguishing
the magnitude of different mechanisms in the presence of interference terms would require a
multi-isotope investigation [184]. One way of checking the results of this section would be at a
linear collider, which will now be discussed.

5.6 Inverse neutrinoless double beta decay

5.6.1 Relation to 0νββ

The linear collider signatures of the the LRSM have been briefly mentioned in Section 3.7.2.
Besides the existence of a new neutral gauge boson (Z ′) that could mediate four fermion
interactions, there are also processes depending on the doubly charged Higgs scalars δ±±

L,R [298,
300]. The detection of either of those particles would provide alternative tests of the left-
right model, although the Z ′ has no immediate connection to 0νββ. On the contrary, the
process e−e− → W−W− (see Fig. 3.17) allows one to directly test the mechanism of 0νββ.
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In the present analysis the process in which left- and right-handed W bosons are produced
[285, 287, 288],

e− e− →W−
L W−

R , (5.58)

will be discussed. Figure 5.11 shows the relevant Feynman diagrams, which correspond to the
λ-mechanism for 0νββ shown in Fig. 5.3(a). This process can be tested not only at a linear
collider, but also due to its unique angular distribution in 0νββ, which could be measured by
the SuperNEMO experiment [180]. It has not yet been studied at hadron colliders.

The fact that this particular process is dominant can be deduced by a process of elimination
from the 0νββ diagrams in Figs. 3.5, 3.11, 5.1 and 5.3. Using crossing symmetry one can
translate them into linear collider cross sections of the form e−e− → W−W−. In each case
the two gauge bosons can either have the same polarisation (W−

L W
−
L or W−

RW
−
R ), in which

case the process can be mediated by either Majorana neutrinos or Higgs triplets, or opposite
polarisations (W−

L W
−
R ), only possible with the exchange of Majorana neutrinos plus non-zero

left-right mixing. Since the experimental limits on WR are about 2.5 TeV (see Fig. 5.4),
diagrams with two WR are obviously disfavoured. In addition, for diagrams with two WL,
both the light and the heavy neutrino exchange contributions can be shown to be suppressed
and unobservable, see Ref. [295] for a recent reanalysis. The cross section corresponding to
left-handed triplet exchange [Fig. 5.2(b)] is proportional to

√
2vLhee = [ML]ee (see Eq. (2.51)

and Ref. [298]), so that it is suppressed by light neutrino mass. The only diagrams remaining
are those with only one WR, i.e. the mixed diagrams from Fig. 5.3. Since the limit on the
λ-diagram is less stringent by almost two orders of magnitude with respect to the one for η
[compare Eqs. (5.18) and (5.20)], one is led to the conclusion that the λ-diagram is the most
promising channel to study. Fig. 5.11 shows the relevant Feynman diagram; its cross section
will be evaluated in what follows. The analysis presented here is complementary to those in
Refs. [87, 278, 355, 387].

110



5.6 Inverse neutrinoless double beta decay

NRi

νLi

NRi

e−

e−

WR

WL

T ∗
ei

Uei

(a) t-channel production

NRi

νLi

NRi

e−

e−

WR

WL

T ∗
ei

Uei

(b) u-channel production

Figure 5.11: Inverse neutrinoless double beta decay diagrams with WL and WR in the final
state.

5.6.2 Cross section of e−e− → W
−

L
W

−

R

The two possible channels for the process e−(p1) e
−(p2) → W−

L (k1, µ)W−
R (k2, ν) are shown in

Fig. 5.11. Here p1,2 and k1,2 are the momenta of the particles and µ, ν the Lorentz indices of
the W polarisation vectors. The matrix element is

− iM = −i (Mt + Mu) , (5.59)

where the subscript denotes the t- or u-channel process. The differential cross section,

dσ

dΩ
=

1

64π2 s

1

4
|M|2

√

λ(s,m2
WL
,m2

WR
)

λ(s, 0, 0)
, (5.60)

where λ(a, b, c) = a2 + b2 + c2 − 2 (a b + a c+ b c), can be evaluated using the relations

|M|2 = |Mt|2 + |Mu|2 + 2Re
(

M∗
t Mu

)

. (5.61)

The result is (neglecting mWL
)

|Mt|2 =
8G2

F |∑i Uei T
∗
ei|2

(t−m2
i )

2

(

mWL

mWR

)2
{

4m4
WL
m2

WR
(t−m2

WR
) − t2

[

t(s+ t) −m2
WR

(2s + t)
]

+ m2
WL
t
[

4m4
WR

+ t(2s+ t) −m2
WR

(4s + 5t)
]}

,

|Mu|2 = |Mt|2 (t↔ u) , (5.62)

M∗
t Mu ∝ Tr{PRγνq/γµp/1γαq̃/γβp/2PL} = 0 .

The interference term vanishes because the final state particles are distinguishable. Fig. 5.12
shows the differential cross section dσ/d cos θ as a function of cos θ, for mWR

= 2.5 TeV and
2.7 TeV, normalised with respect to each other (the cross section for mWR

= 2.7 TeV is actually
a factor of two smaller). dσ/d cos θ is practically flat, and approaches a straight line as mWR

increases.
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Figure 5.12: Differential cross section for e−e− → W−
L W

−
R with

√
s = 3 TeV and for both

mWR
= 2.5 TeV (dashed red line) and 2.7 TeV (solid blue line), with the latter

normalised to facilitate comparison.

It is interesting to study the high energy behaviour of the total cross section in the case of
light neutrino exchange. In the limit that

√
s→ ∞, the cross section becomes

σ(e−e− →W−
L W

−
R ) ≃

G2
F m

2
WR

24πm2
WL

s |ηλ|2 ≤ 8.8 × 10−5
(mWR

TeV

)2
( √

s

TeV

)2( |ηλ|
9 × 10−7

)2

fb ,

(5.63)
where the upper bound on |ηλ| is taken from Ref. [164] and the mass of the light neutrinos mi

have been neglected. The apparent violation of unitarity can be explained by taking the full
theory into account, in which case the cross section will vanish when

√
s → ∞ and unitarity

is restored. Indeed, the high-energy limit of the cross section is obtained by neglecting the
neutrino mass in the propagator [see Eq. (5.62)], i.e.,

σ ∝
(

∑

i

UeiT
∗
ei

)2

, (5.64)

which does not seem to vanish. However, one needs to consider the full theory. In calculating
the cross section one combines two terms from the Lagrangian in Eq. (5.1):

∑

i

[

e γµ(KL)eiPLniW
−
Lµ

]

[

e γν(KR)eiPRniW
−
Rν

]

. (5.65)

The identity e γνPRni = −nc
i γ

νPLe
c allows one to contract nin

c
i to a propagator, so that in

the high energy limit the amplitude is proportional to

∑

i

(KL)ei(KR)ei = [KLK
T
R ]ee , (5.66)
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Figure 5.13: Cross section for e−e− → W−
L W

−
R with

√
s = 3 TeV and three limits for the ηλ

parameter: the solid (blue) line is for |ηλ| = 9 × 10−7, the dashed (green) line for
|ηλ| < 6.4 × 10−7 and the dotted (red) line for |ηλ| < 4.8 × 10−7 [Eq. (5.18)]. The
dotted (black) horizontal line corresponds to the cross section that would give five
events at an integrated luminosity of 3000 fb−1.

instead of
∑

i UeiT
∗
ei as in the naive case. As shown in Section 2.3.2, KLK

T
R = 0, which means

that the cross section vanishes in the high energy limit and unitarity is ensured. The helicity
amplitudes of the process are detailed in Appendix E, where their high-energy behaviour is also
discussed.

There is also another diagram analogous to Fig. 5.11, with heavy neutrinos exchanged. The
structure of the matrix elements is the same, one needs only to interchange mi ↔Mi, Uei ↔ V ∗

ei

and T ∗
ei ↔ Sei, where Mi is the mass of the heavy neutrinos and V ∗

ei and Sei are the mixing
matrices defined in Eq. (2.13) [see also the expression in Eq. (5.16)]. In that case the rate for
0νββ will be suppressed with respect to the case of light neutrino exchange in the λ-diagram.

To calculate the total cross section the limits from 0νββ experiments as well as the allowed
region for mWR

must be taken into account. Fig. 5.13 shows the cross section for e−e− →
W−

L W
−
R as a function of mWR

for
√
s = 3 TeV, assuming only light neutrinos are exchanged

and with three different limits for |ηλ|: the solid (blue) line corresponds to |ηλ| < 9× 10−7, the
dashed (green) to |ηλ| < 6.4×10−7 and the (red) line to the limit in Eq. (5.18). Note that a factor
of x improvement in |ηλ| corresponds to a factor of x2 improvement in lifetime. Also indicated
is the cross section that would give five events at an integrated luminosity of 3000 fb−1 [395],
corresponding to a few years of running. It is evident that for 2.5 TeV <∼ mWR

<∼ 2.7 TeV,
enough events are possible in case 0νββ is observed soon, and caused by the λ-diagram. Note
that since there is no SM background to the process, a small rate is tolerable. In the next
subsection it will be shown that polarisation of the electron beams could be used to enhance
the cross section by up to a factor of two. In addition, if different contributions to 0νββ interfere
destructively, the bound on |ηλ| would be relaxed and a larger cross section would be possible.
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Table 5.3: Suppression or enhancement factors (with respect to the unpolarised case) of the
cross section for inverse double beta decay with polarised beams.

Beam polarisation J
1 2

0% 0% 1

90% RH 0% 1

50% LH 50% LH 0.75

50% LH 50% RH 1.25

80% LH 50% RH 1.40

90% LH 90% RH 1.81

90% LH 80% RH 1.72

100% LH 100% RH 2

5.6.3 Polarised beams

Future linear colliders have the possibility to polarise their beams. In order to quantify the
effects on the process under discussion, one can define the polarisation for an electron beam
P1,2 as follows:

P1,2 ≡ N 1,2
R −N 1,2

L

N 1,2
R + N 1,2

L

, (5.67)

where NR and NL stand for the number of electrons having right- and left-handed helicity in
the electron beam 1 or 2, respectively. If beam 1 is fully left-handed, P1 = −1, whereas for a
fully right-handed beam, P1 = +1.

When the electron beam 1 has a polarisation of P1 and the electron beam 2 has a polarisation
of P2, the total cross section σ(P1,P2) of a process is calculated as

σ(P1,P2) =
1

4
{(1 − P1)(1 + P2)σLR + (1 − P1)(1 − P2)σLL

+ (1 + P1)(1 + P2)σRR + (1 + P1)(1 − P2)σRL} ,
(5.68)

where σLR stands for the cross section of the process when both electron beams are 100%
polarised, one left-handed and the other right-handed; σRL, σLL and σRR are defined in a
similar way. In our case for the λ-diagram σLL = σRR = 0, and σLR (σRL) is the cross section
that would arise from the t-channel (u-channel) diagram only. Furthermore, σLR = σRL. Thus,
equation (5.68) simply becomes

σ(P1,P2) = σ(P2,P1) =
σLR

2
(1 − P1 P2) . (5.69)

Table 5.3 gives numerical examples, where the ratio J between the cross section of polarised
and unpolarised beams has been defined as

J ≡ σ(P1,P2)

σ(0, 0)
= 1 − P1 P2 . (5.70)

Obviously, σ(0, 0) is the total cross section calculated before. It is evident that the event
numbers can in principle be doubled. Furthermore, polarisation could be used as an additional
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method to distinguish different mechanisms for processes of the form e−e− → W−W−. For
instance, the process e−e− → 4 jets [296] mediated by R-parity violating supersymmetry,
involves slepton exchange, which couple mainly to left-handed electrons.

5.7 Summary and conclusions

Lepton number and lepton flavour violation provide complementary tools to study the param-
eter space of the LRSM, and are connected with the origin of neutrino mass in the model. The
large number of contributions to 0νββ, coupled with the possibility of interference terms, makes
a comprehensive analysis rather difficult. In addition, both type I and type II seesaw terms are
present in the neutrino mass matrix. The present study examines the resulting phenomenology
of the type I and type II dominance for neutrino masses. Particular attention has been given
to 0νββ diagrams usually neglected in the literature.

In the case of pure type II seesaw it has been shown that the triplet contribution to 0νββ
should not be neglected for all light neutrino masses. For pure type I seesaw there exist regions
of parameter space in which all diagrams can have similar orders of magnitude, which makes
distinguishing the leading contribution difficult. In particular, the momentum-dependent λ-
diagram is not negligible, even without enhancement from cancellations. The bounds from LFV
are particularly severe in the type I case, and can be used to further restrict the parameter
space. A comprehensive study should include the type I+II case, which is beyond the scope of
this work.

Furthermore, the process e−e− → W−
L W

−
R as a clean check of the so-called λ-diagram has

been considered. Among the many possible diagrams for 0νββ that are possible in left-right
symmetric theories, it was shown to be the most promising one at a linear collider. Indeed, it
may be possible to observe the process at a linear collider that has a centre-of-mass energy of
3 TeV. It is however necessary that both the mass of the WR and the life-time of 0νββ are close
to their current experimental limits. Beam polarisation effects and the high energy behaviour
of the total cross section were also considered; the individual helicity amplitudes are discussed
in Appendix E.
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Chapter 6

Conclusion

Sterile neutrinos are not only integral parts of most neutrino mass models but reveal themselves
in a wide spectrum of physical phenomena at different energy scales. This thesis has summarised
the different theoretical and phenomenological motivations for the existence of sterile neutrinos,
specifically those at observable (low) mass scales, from sub-eV up to TeV scales. The usual
premise of the seesaw mechanism with heavy GUT scale particles must necessarily be modified
to allow for such light particles: several such models have been discussed and their consequences
for phenomenology outlined. The background information in Chapter 2 serves to place sterile
neutrinos within the general context of neutrino mass models, and describes various special
cases of the type I seesaw mechanism when different assumptions as to the relative scales of
the Dirac and Majorana mass terms are made. Mechanisms for obtaining light sterile neutrinos
are outlined, the FN mechanism being the example employed in this work.

It is possible to study eV-scale sterile neutrinos in a purely model-independent manner. This
was done in Sections 3.3, 3.4.2 and 3.6.1, where the signatures of those particles in beta decay,
0νββ and cosmology were outlined. In particular, 0νββ was focussed on, since the coherent
sum of products of neutrino mixing matrix elements and neutrino masses (the effective mass
|〈mee〉|) can show markedly different behaviour in the presence of sterile neutrinos. The effects
depend on the mass spectrum of sterile and active mass eigenstates: in the cases where the
active neutrinos are lighter than the sterile ones (3+1 and 3+2) the effective mass can vanish
even in the inverted ordering case, which it cannot in the usual three-neutrino scenario. Those
cases are indeed favoured, since when active states are heavier than their sterile counterparts
one generally runs into trouble with the bound on the sum of neutrino masses from cosmology.
In fact, a factor of four improvement in the experimental limit on the effective mass could even
rule such scenarios out. The different mass spectra are generally indistinguishable in oscillation
experiments, with one exception being the appearance probabilities at short baselines in the
case of two sterile neutrinos, discussed in Section 3.2.2. In principle one can distinguish between
3+2/2+3 and 1+3+1 cases, shown in Fig. 3.4.

The bimodal model contains sterile neutrinos at sub-eV scales, and is a subset of the pseudo-
Dirac scenario, with the main difference being that flavour eigenstates contain large admixtures
of both Dirac and Majorana type masses. Neutrino oscillations are unaffected, but there are
striking signatures in the flavour flux ratios at neutrino telescopes as well as in 0νββ, analysed
in Sections 3.5.2 and 3.4.3, respectively. The plots in those sections show that a combination
of measurements of the ratios of high energy astrophysical neutrinos and the effective mass in
0νββ should be able to confirm or rule out the bimodal model.

If some or all of the phenomena related to sterile neutrinos are observed one would like to
explain their mass scales and mixing in theoretical models. The models described in Chapter 4
embed sterile states into flavour symmetry models and study the phenomenological conse-
quences. An example of a model based on S3 that can accommodate the bimodal scenario
is given in Section 4.3. The leading order prediction of TBM must be modified by NLO cor-
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rections, in this case from the charged lepton sector. The central focus of the model building
chapter is on A4 models augmented with the FN mechanism. Both an effective and a seesaw
model were studied, in Sections 4.2.2 and 4.2.3, respectively. It was shown that light sterile
neutrinos can naturally be accommodated in those models, with the active-sterile mixing cor-
related to the deviation from exact TBM. In both cases one requires higher-order operators to
generate a non-zero θ13; in the seesaw model that can be achieved by charged lepton corrections,
studied in detail in Appendix C. Indeed, corrections to active neutrino mixing are generally
larger than corrections to active-sterile mixing, which is a ratio of two scales. In seesaw models
there are also higher-order terms from the seesaw expansion that should be taken into account.
The departure from the initial mixing scheme is a general feature of such approaches.

The A4 seesaw model in Section 4.2.3 contains one keV-scale neutrino, whereas the other
two neutrinos could be at different mass scales, depending on the FN charges assigned to the
respective right-handed fields. Various cases were studied, and it was shown that with one or
two sterile neutrinos at the eV scale one can explain the SBL oscillation anomalies, albeit only
in the inverted ordering case. There are distinct predictions for the effective mass in 0νββ in
each of the scenarios under study: if all of the sterile neutrinos are lighter than about 100 MeV
then the effective mass is zero, but as soon as one of the states is larger than 100 MeV one
expects a non-zero value (in the absence of other interference terms). This exact cancellation is
a well-known feature of seesaw models, and in the special case of the flavour symmetry model in
Section 4.2.3 it was shown to occur pairwise, as described in detail in Section 3.4.4. Note that
if one places the two sterile neutrinos at the GeV scale or higher it is possible to generate the
baryon asymmetry of the universe via oscillations (as in the νMSM), although one relinquishes
the explanation of eV neutrino anomalies. That would require additional sterile states above
the three introduced, a possibility not discussed here. The main point is that if one departs
from the common theoretical prejudice of right-handed neutrinos residing at around the GUT
scale, various interesting model building options can arise. Further experimental data in the
years to come will put those models to the test.

Once sterile neutrinos have been introduced, a natural question to ask is whether one can
embed them into a larger theory. In that sense the models of Chapter 4 could be seen as
“bottom-up” models, whereas the left-right symmetric model discussed in Chapter 5 is an
example of a “top-down” model, where sterile neutrinos are embedded into doublets under
SU(2)R. The additional gauge symmetry means that the sterile states participate in (right-
handed) gauge interactions at a higher scale, making them “weakly sterile”. Those interactions
manifest themselves in several phenomena in both the quark and lepton sectors, which allow
one to constrain the parameters of the model. Processes involving leptons have been studied
in detail, specifically the lepton number violating neutrinoless double beta decay and inverse
neutrinoless double beta decay, both of which are connected to neutrino mass. A systematic
description of all relevant 0νββ amplitudes was given, as well as a discussion of their expected
relative magnitudes. The cases of type II and type I dominance for neutrino mass were studied
in detail in Sections 5.5.1 and 5.5.2, respectively, with the relevant constraints from LFV taken
into account in each case.

In the case of type II dominance the explicit effect of the branching ratio for µ → 3e was
taken into account across all of parameter space, and it was shown that there can be non-
negligible interference between the contributions of right-handed neutrinos and Higgs triplets.
In the type I dominance case it was emphasised that the λ- and η-diagrams could provide
sizeable contributions to the lifetime of 0νββ, and a specific matrix texture was studied in
which light neutrino masses are small while left-right mixing is relatively enhanced. In that
case the contribution of right-handed neutrinos with left-handed currents can also be sizeable.
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The stringent constraints from the lepton flavour violating decays µ → eγ, µ → 3e and µ → e
conversion in nuclei were taken into account, since those processes also depend on the left-right
mixing. Explicit expressions for the relevant branching ratios, form factors and loop functions
are detailed in Appendix D.

The related process of inverse neutrinoless double beta decay was studied in Section 5.6,
in particular the process e−e− → WLWR, the inverse of the λ-diagram. Out of all possible
contributions associated with 0νββ in left-right models it was shown to be the largest, and
its cross section was calculated. Observation of the process could be possible at future linear
colliders, only if the mass of the right-handed W boson is small enough and 0νββ (caused by
the λ-diagram) is observed soon. However, the cross section could in principle be enhanced by
a factor of two by polarising the electron beams. Finally, the helicity amplitudes of the process
have also been calculated, both in the general case and in the high-energy limit, and are given
in Appendix E.

In summary, theoretical models and experimental signatures of sterile neutrinos at different
mass scales are invariably intertwined, and it is an interesting exercise to study the connection
between neutrino mass models, sterile neutrinos and beyond the SM phenomenology. In this
thesis several models with sterile neutrinos have been outlined in detail, in particular models
with flavour symmetries. The phenomenon of neutrinoless double beta decay as a tool to
distinguish models with sterile neutrinos has been focussed on, in various contexts. In addition
to a model-independent discussion of how the process is modified in the presence of sterile
neutrinos, neutrinoless double beta decay has been studied in detail in the context of the left-
right symmetric model. Several diagrams usually considered to be negligible have been shown to
be important, and all relevant constraints from LFV have been taken into account. This thesis
demonstrates that the large parameter space of neutrino mass models can only be disentangled
using the discriminative power of different phenomena, in the present case those induced by
sterile neutrinos, both with and without additional gauge interactions.
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Appendix A

Flavour conversion probabilities

Flavour flux ratios of bimodal neutrinos have been calculated in Section 3.5.2; explicit expres-
sions for the deviation parameters and probabilities are reported here.

In the general case without pseudo-Dirac effects, the probability matrix P with elements Pαβ

can be approximated as

P ≃





1 − 2c212s
2
12 c212s

2
12 + ∆ c212s

2
12 − ∆

· 1
2(1 − c212s

2
12) − ∆ 1

2(1 − c212s
2
12)

· · 1
2(1 − c212s

2
12) + ∆



 , (A.1)

where s212 ≡ sin2θ12, c
2
12 ≡ cos2θ12 and the universal correction parameter is defined as [396, 397]

∆ ≡ 1

4
(2ǫ sin22θ12 + θ13 cos δ sin 4θ12) = 2ǫs212c

2
12 +

1

4
θ13 cos δ sin 4θ12 , (A.2)

with ǫ parameterising the deviation from µ-τ symmetry [cf. Eq. (3.54)]. Terms of order O(θ2
13),

O(ǫ2), and O(θ13ǫ) have been neglected in this approximation. It can be shown that the flux
ratio evolves as [396, 397]

(1 : 2 : 0) −→ (1 + 2∆) : (1 − ∆) : (1 − ∆) , (A.3)

with the parameters ǫ and ∆ in the ranges −0.184 ≤ ǫ ≤ 0.142 and −0.11 ≤ ∆ ≤ 0.09 for
the current 3σ ranges [23] of the oscillation parameters.1

This general framework can be applied to the pseudo-Dirac scenario: if one or more neutrinos
are pseudo-Dirac, the probability matrix in Eq. (A.1) will be modified, leading to different final
flux ratios in each case. The probabilities can be written (to first order in θ13 and ǫ) in terms
of θ12, θ13, and the deviation parameters ǫ, ∆, and Γ, where

Γ ≡ 1

8
θ13 sin 2θ12 cos δ =

1

4
θ13s12c12 cos δ . (A.4)

The parameter Γ is constrained to the range −0.022 ≤ Γ ≤ 0.022. The flavour conversion
probabilities for each case are shown in Table A.1, which have been used to calculate the flavour
ratios displayed in Section 3.5.2. The ratio Pττ is omitted, as it is not needed to calculate flux
ratios.

1“Next-to-next-to-leading order” terms of second order in ǫ and θ13 have been discussed in Refs. [398, 399].
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Appendix A Flavour conversion probabilities

Table A.1: Flavour conversion probabilities P νi

αβ and P
νi,j

αβ for the cases where νi and νi,j are
pseudo-Dirac, where rows denote initial flavour α and columns final flavour β.

H
H

H
H

HH
α

β
e µ τ

P ν1
αβ

e 1
2c

4
12 + s412

3
4(c212s

2
12 + ∆) − Γ 3

4(c212s212 − ∆) + Γ

µ × 1
2 − 1

8s
2
12

(

1 + 3c212 + 4ǫ
)

− 3
4∆ − Γ 1

4 + 1
4c

4
12 + 1

8s
4
12

P
ν2,3

αβ
e c412 + 1

2s
4
12

3
4(c212s

2
12 + ∆) + Γ 3

4(c212s
2
12 − ∆) − Γ

µ × 1
4 + 1

8s
2
12(1 − 3c212 + 4ǫ) − 3

4∆ + Γ 1
8 + 1

8c
4
12 + 1

4s
4
12

P ν2
αβ

e c412 + 1
2s

4
12

3
4(c212s

2
12 + ∆) + Γ 3

4(c212s
2
12 − ∆) − Γ

µ × 1
2 − 1

8c
2
12(1 + 3s212 + 4ǫ) − 3

4∆ + Γ 1
4 + 1

8c
4
12 + 1

4s
4
12

P
ν1,3

αβ
e 1

2c
4
12 + s412

3
4(c212s

2
12 + ∆) − Γ 3

4(c212s
2
12 − ∆) + Γ

µ × 1
4 + 1

8c
2
12(1 − 3s212 + 4ǫ) − 3

4∆ − Γ 1
8 + 1

4c
4
12 + 1

8s
4
12

P ν3
αβ

e c412 + s412 c212s
2
12 + ∆ c212s

2
12 − ∆

µ × 3
8 + 1

2

(

c212s
2
12 + ǫ

)

− ∆ 3
8 − 1

2c
2
12s

2
12

P
ν1,3

αβ
e 1

2(c412 + s412)
1
2(c212s

2
12 + ∆) 1

2 (c212s
2
12 − ∆)

µ × 3
8 − 1

4c
2
12s

2
12 − 1

2ǫ− 1
2∆ 3

8 − 1
4c

2
12s

2
12
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Appendix B

Group theory details

B.1 Group theory of A4

A brief summary of group theory aspects, relevant for the models in Section 4.2, will be pre-
sented here. For a detailed discussion of the A4 group see the reviews in Refs. [22, 313].

A4 is the alternating group of order 4, the group of all even permutations of four objects, and
is isomorphic to the group of rotational symmetries of the regular tetrahedron. It is a finite,
non-Abelian subgroup of SO(3) and SU(3) with 12 elements. There are 4 irreducible represen-
tations, three one-dimensional representations and one three-dimensional representation: 1, 1′,
1′′ and 3.

The symmetry group can be generated by two basic permutations S̃ and T̃ , given by S̃ =
(4321) and T̃ = (2314), where the generic permutation (1, 2, 3, 4) → (n1, n2, n3, n4) is denoted
by (n1n2n3n4). It follows that

S̃2 = T̃ 3 = (S̃T̃ )3 = 1, (B.1)

which defines a “presentation” of the group. The one-dimensional unitary representations are
generated by

1 : S̃ = 1 T̃ = 1 ,

1′ : S̃ = 1 T̃ = ei2π/3 ≡ ω , (B.2)

1′′ : S̃ = 1 T̃ = ei4π/3 ≡ ω2 ,

and the three-dimensional unitary representation is built up from the generators

T̃ =





1 0 0
0 ω 0
0 0 ω2



 , S̃ =
1

3





−1 2 2
2 −1 2
2 2 −1



 , (B.3)

in the basis where T̃ is diagonal, employed in this thesis. ω ≡ ei2π/3 is the cube root of unity.
The basis where S̃ is diagonal, related by a unitary transformation, has also been used in the
literature, see the discussion in Refs. [28, 313].

The relevant multiplication rules are

1′ ⊗ 1′′ = 1 , 1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ , (B.4)

for singlets and

3 ⊗ 3 = 1 + 1′ + 1′′ + 3as + 3s , (B.5)
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Appendix B Group theory details

for triplets, where 3as and 3s are asymmetric and symmetric combinations respectively. The
product of two triplets in Eq. (B.5) can be decomposed as





a1

a2

a3





3

⊗





b1
b2
b3





3

= (a1b1 + a2b3 + a3b2)1 + (a3b3 + a1b2 + a2b1)1′ + (a2b2 + a1b3 + a3b1)1′′

+
1

3





a2b3 − a3b2
a1b2 − a2b1
a1b3 − a3b1





3as

+
1

3





2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1





3s

. (B.6)

The symmetric combination 3s will be used extensively for model building, in particular for
constructing Majorana mass matrices.

Note that the most general mass matrix leading to TBM [cf. Eq. (4.2)],

mTBM
ν =





A B B
· 1

2(A+B +D) 1
2(A+B −D)

· · 1
2(A+B +D)



 , (B.7)

is invariant with respect to S̃, i.e.,

S̃T mTBM
ν S̃ = mTBM

ν , (B.8)

which means that A4 is a suitable candidate to predict TBM in the neutrino sector. However,
the symmetry must be broken in the correct way; see the discussion in Section 4.2.1 and the
models that follow.

B.2 Residual µ-τ symmetries in extended A4 models

In the model with one additional sterile neutrino described in Section (4.2.2), the 4×4 neutrino
mass matrix has an eigenvector proportional to (0,−1, 1, 0)T , see Eq. (4.22). This arises due to
a generalised µ-τ symmetry, related to the properties of A4. An arbitrary 4×4 Majorana mass
matrix M4×4

ν will be invariant under µ-τ symmetry if the defining matrix P̃µτ fulfils P̃ 2
µτ = 1

and the invariance condition P̃µτM
4×4
ν P̃µτ = M4×4

ν , so that P̃µτ and the resulting mass matrix
are given by

P̃µτ =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









and M4×4
ν =









ã b̃ b̃ d̃

· ẽ f̃ g̃
· · ẽ g̃
· · · m̃









. (B.9)

The eigenvalue ẽ−f̃ of this mass matrix corresponds to an eigenvector proportional to (0,−1, 1, 0)T .
This Z2 invariance, usually present in A4 models [313], arises by spontaneous A4 breaking, i.e.,
from the vacuum 〈ϕ′〉 = (v′, v′, v′). There is also a second Z2 under which M4×4

ν is invariant,
defined by the generator

P̃sol =
1

3









−1 2 2 0
2 −1 2 0
2 2 −1 0
0 0 0 3









. (B.10)

Additional invariance under this Z2 (note that P̃µτ and P̃sol commute) requires f̃ = ã − ẽ + b̃
and d̃ = g̃, so that the eigenvalue 2ẽ − b̃ − ã has an eigenvector proportional to (−2, 1, 1, 0)T .
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B.2 Residual µ-τ symmetries in extended A4 models

Furthermore, it holds that Ues = Uµs = Uτs. The main features of Eq. (4.17) are therefore
explained by the two Z2 symmetries. In addition, the simplicity of the A4 model leads to
ẽ = −2b̃, but does not modify the mixing properties that arise from the two Z2 symmetries.

Indeed, the upper left 3 × 3 part of P̃sol corresponds to the generator S̃ shown in Eq. (B.3),
which together with T̃ fulfils the condition in Eq. (B.1). The vacuum 〈ϕ〉 = (v, 0, 0) means

that the charged lepton mass matrix MℓM
†
ℓ remains invariant under T̃ . In other words, the

well-known features [313] of A4 models are not altered by adding a sterile neutrino. Similar
statements about the Z2 invariance of properly extended P̃µτ and P̃sol symmetries can be made
in the case with two sterile neutrinos [see the 5 × 5 mass matrix in Eq. (4.30)].
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Appendix C

NLO corrections in the A4 seesaw model

The presence of higher-order operators in the A4 seesaw model in Section 4.2.3 leads to modifi-
cations to the mass matrices Mℓ, MD and MR, so that there are corrections to the leading order
lepton mixing matrix. Details of the calculation are presented here, where only corrections of
relative order r1 ≃ 0.1 [cf. Eq. (4.63)] have been taken into account. Explicit expressions for
the corrected neutrino mass eigenvalues are also reported. This appendix was also published
in Ref. [29].

C.1 Charged lepton sector

The corrections to Mℓ from dimension-six operators come from coupling a second A4 triplet
or an A4 singlet to each mass term. The addition of the flavon ϕ replicates the leading order
pattern, since the triplet from the product (ϕϕ)3 has a VEV in the same direction as ϕ [331].
Terms with the additional singlet ξ′′ also leave the structure of the mass matrix unchanged,
but the additional terms

y′e
Λ2
λ3ξ(ϕ′Lhd)e

c ,
y′′e
Λ2
λ3ξ′(ϕ′′Lhd)

′′ec and
y′′′e

Λ2
λ3(ϕ′ϕ′′Lhd)e

c (C.1)

are also present, for all three flavours. The first term gives the largest NLO contribution, viz.

δM
(1)
ℓ =

vduv
′

Λ2





y′eλ
3 y′µλ y′τ

y′eλ
3 y′µλ y′τ

y′eλ
3 y′µλ y′τ



 , (C.2)

of relative order r1 ≃ 0.1. The matrix diagonalising (Mℓ + δM
(1)
ℓ )(Mℓ + δM

(1)
ℓ )† can be ap-

proximated by

V ℓ
L ≃











1
y′

µ

yµ
r1

y′
τ

yτ
r1

−y′
µ

yµ
r1 1 y′

τ

yτ
r1

−y′
τ

yτ
r1 −y′

τ

yτ
r1 1











+ O(r21 , λ
2) , (C.3)

and the charged lepton masses become

m′
ℓ = (yℓ + y′ℓr1)

vdv

Λ
λFℓ , (ℓ = e, µ, τ), (C.4)

which amounts to a rescaling of Yukawa couplings.
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Appendix C NLO corrections in the A4 seesaw model

C.2 Neutrino sector

Similarly to Mℓ, corrections to MD from adding the singlet ξ′′ retain the leading order form, but
there are also several terms with two triplet flavons. The latter are all suppressed by r2 ≃ 0.01
and can be safely neglected. Of the nine different invariant dimension-six operators with one
triplet and one singlet flavon, there are three of relative order r1 ≃ 0.1, namely

y′1
Λ2
λF1ξ(ϕ′Lhu)νc

1 +
y′2
Λ2
λF2ξ(ϕ′′Lhu)′′νc

2 +
y′3
Λ2
λF3ξ(ϕLhu)νc

3 , (C.5)

leading to the corrections

δM
(1N)
D =

vuu

Λ2





y′1v
′ −y′2v′′ y′3v

y′1v
′ y′2v

′′ 0
y′1v

′ 0 0



F and δM
(1I)
D =

vuu

Λ2





y′1v
′ −y′2v′′ y′3v

y′1v
′ −y′2v′′ 0

y′1v
′ 2y′2v

′′ 0



F , (C.6)

in the normal and inverted ordering, respectively. Here the matrix of FN charges is

F = diag(λF1 , λF2 , λF3) . (C.7)

The corrections to MR come from terms with two singlets and those with two triplets, e.g.,

w′
1

Λ
λF1+F3ξξνc

1ν
c
3 + . . . and

w′′
1

Λ
λF1+F3(ϕϕ′)νc

1ν
c
3 + . . . ; (C.8)

the singlet terms give the contribution

δM
(1)
R ∝ 1

Λ





uu′′λ2F1 0 uuλF1+F3

· u′u′′λ2F2 u′u′λF2+F3

· · u′′u′′λ2F3



 , (C.9)

whereas the triplet terms are all suppressed by r2 ≃ 0.01. Comparison of the leading order

and NLO terms shows that the large ratio r1 ≃ 0.1 only occurs in the (1, 3) element of δM
(1)
R ,

whereas the diagonal and (2, 3) elements receive small corrections of order r2 ≃ 0.01. Ignoring
the latter, the new mass matrix is

M ′
R = MR + δM

(1)
R = F





w1u 0 w′
1ur1

· w2u
′ 0

· · w3u
′′



F . (C.10)

It is convenient to factor out the FN charges here, since they do not appear in the leading order
seesaw formula. However, as emphasised before, they will play a role when considering NLO
seesaw terms. Expanding in the small ratios r1 ≃ w3u′′

w1u ≃ 0.1, the matrix diagonalising M ′
R can

be approximated as

VR ≃ F−1







1 0 −w′
1

w1
r1

0 1 0
w′

1
w1
r1 0 1






F + O

(

w3u
′′

w1u
r1, r

2
1

)

, (C.11)

with the mass eigenvalues

M ′
1 = w1uλ

2F1

(

1 +
w′

1
2

w2
1

r21

)

,

M ′
2 = w2u

′λ2F2 , (C.12)

M ′
3 = w3u

′′λ2F3

(

1 − w′
1
2

w2
1

r21

)

.
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C.2 Neutrino sector

This shows that corrections to the masses M1,3 are suppressed by r21, and the WDM candidate
νc
1 remains in the keV range.

The diagonalisation matrix in Eq. (C.11) can be absorbed into MD, so that the leading order
neutrino mass matrix is

M ′
ν = −M ′

Ddiag(M ′
1
−1
,M ′

2
−1
,M ′

3
−1

)M ′
D

T
, (C.13)

where M ′
D =

(

MD + δM
(1)
D

)

V ∗
R and the FN charges have cancelled. The Dirac mass matrices

in Eqs. (4.49) and (4.56) plus the corrections terms in Eq. (C.6) lead to

M ′
D

(NO)
=
vu

Λ













y1v + y′1v
′r1 y2v

′ − y′2v
′′r1

(

y′3v − y1v
w′

1
w1

)

r1
(

y′1v
′ − y3v

′′ w′
1

w1

)

r1 y2v
′ + y′2v

′′r1 −y3v
′′

(

y′1v
′ + y3v

′′ w′
1

w1

)

r1 y2v
′ y3v

′′













F , (C.14)

in the NO and

M ′
D

(IO)
=
vu

Λ













y1v +
(

y′1v
′ + 2y3v

′′ w′
1

w1

)

r1 y2v
′ − y′2v

′′r1 2y3v
′′ +

(

y′3v − y1v
w′

1
w1

)

r1
(

y′1v
′ − y3v

′′ w′
1

w1

)

r1 y2v
′ − y′2v

′′r1 −y3v
′′

(

y′1v
′ − y3v

′′ w′
1

w1

)

r1 y2v
′ + 2y′2v

′′r1 −y3v
′′













F ,

(C.15)

in the IO, respectively, to first order in r1. As shown explicitly in the main text, the dynamics
of the right-handed sector are relatively unaffected: the new entries in the first column of the
Dirac mass matrices in Eqs. (C.14) and (C.15) will induce mixing between the sterile neutrino
νc
1 and the µ and τ flavours, but of the same magnitude as the original θe1, so that θ2

1 will
not increase by that much [cf. Eqs. (4.64) and (4.65)]. Thus the entire first column of M ′

D,
suppressed by the mass M ′

1 = O(keV), can be decoupled from the seesaw (assuming that
|w′

1| <∼ |w1|). In addition, corrections to Ue5 in Eqs. (4.51) and (4.57) will also be small (see
Sects. 4.2.3 and 4.2.3 for a discussion of those effects).

The full 5 × 5 NLO neutrino mass matrix M ′
ν
5×5 can now be constructed from the second

and third columns of M ′
D and diag(M ′

2,M
′
3), as in Eq. (4.48). Since NLO seesaw terms are im-

portant in the scenarios considered, the full 5×5 diagonalisation must once again be performed
[cf. Eqs. (4.51) and (4.57)], including the new terms from higher-order operators in Eqs. (C.14)
and (C.15). The matrix diagonalising M ′

ν
5×5 is explicitly given by

U =

(

UTBM 03×2

02×3 12×2

)

+ δU (C.16)
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where, to first order in r1 and second order in ǫi,

δU (NO) ≃































ρ2√
6

− ρ2√
3

− 1√
2

(

χ− ρ3 + σN
+

R
3

)

(1 − ρ2)ǫ1 (ρ3 − χ)ǫ2

−σN

−√
6

− 1
2
√

3

(

σN
− + σN

+R
)

− σN

+

3
√

2
R (1 + ρ2)ǫ1 −ǫ2

σN

+√
6

σN

+

2
√

3
(1 + R) − σN

+

3
√

2
R ǫ1 ǫ2

0 −
√

3ǫ1
σN

+√
2
(1 + R)ǫ1 0 0

0 −σN

+√
3
Rǫ2 −

√
2ǫ2 0 0































+



























0 −
√

3
2 (1 − ρ2)ǫ

2
1

1
2
√

2

[

2(χ− ρ3)ǫ
2
2 + σN

+ (1 + R) ǫ21
]

0 0

0 − 1
2
√

3

[

3(1 + ρ2)ǫ
2
1 − σN

+ Rǫ22
]

1
2
√

2

[

2ǫ22 + σN
+ (1 + R) ǫ21

]

0 0

0 − 1
2
√

3

[

3ǫ21 + σN
+Rǫ22

]

− 1
2
√

2

[

2ǫ22 − σN
+ (1 + R) ǫ21

]

0 0

0 0 0 − 3
2ǫ

2
1

1
2σ

N
+ ǫ1ǫ2

0 0 0 1
2σ

N
+ ǫ1ǫ2 −ǫ22



























,

(C.17)

in the normal ordering, where only first order terms in R ≃ O(10−1) are kept [see Eq. (4.70)],
and σN

± = χ± ρ2 − ρ3. The new mass eigenvalues are

m′
1
(NO)

= 0 ,

m′
2
(NO) ≃ m

(0)
2

{

1 − 3ǫ21 −
ρ2

3
σI
− − 1

2

[

9ρ2
2 − 4ρ2(χ− ρ3) − (χ− ρ3)

2
]

ǫ21

− σN
+

3
R
[

ρ2(1 − 3ǫ21) − σN
+ ǫ

2
2

]

}

,

m′
3
(NO) ≃ m

(0)
3

{

1 − 2ǫ22 + (χ− ρ3)
2(1 − 3ǫ22) −

(σN
+ )2

2
(1 + 2R)ǫ21

+
1

6

[

ρ2
2 + 4ρ2(χ− ρ3) + 3(χ− ρ3)

2
]

R(1 − 2ǫ22)

}

m′
4
(NO) ≃ w2u

′λ2F2 −m
(0)
2

{

1 − 3ǫ21 +
2ρ2

2

3
(1 − 6ǫ21) −

3(σN
+ )2

8

m
(0)
3

m
(0)
2

ǫ21

}

,

m′
5
(NO) ≃ w3u

′′λ2F3 −m
(0)
3

{

1 − 2ǫ22 +
1

2
(χ− ρ3)

2 − 1

4

[

8(χ− ρ3)
2 + (σN

+ )2R
]

ǫ22

}

,

(C.18)

which corresponds to Eq. (4.53) in the limit (χ, ρ2, ρ3) → 0. Here one can explicitly see that
NLO seesaw corrections are controlled by ǫi, whereas corrections from higher-order operators
are controlled by χ, ρ2 and ρ3. In those scenarios where the ǫi are negligible, i.e., scenario III,
one could still have corrections from the latter, and those turn out to be small in the normal
ordering.
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C.2 Neutrino sector

In the inverted ordering, the full mixing matrix is

δU (IO) ≃





























1
3
√

6
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)

− 1
3
√

3
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)

− ρ2√
2

(1 − ρ2)ǫ1 (2 − χ+ ρ3)ǫ2

1
3
√

6

(
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− 1
6
√

3

(
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1

3
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6

(

3ρ2 + σI
+G
)

1
6
√

3

(

12ρ2 + σI
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− ρ2√
2

(1 + 2ρ2)ǫ1 −ǫ2

−σI

+√
6
G ǫ1 −

√
3 ǫ1 0 0 0

−
√

2
3 (3 − χ+ ρ3) ǫ2

σI

+√
3

(1 + G) ǫ2 0 0 0





























(C.19)

+














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
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
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3(1 − ρ2)ǫ
2
1 + σI

+(1 + G)ǫ22
]

0 0 0

1
2
√

6

[

2(3 − χ+ ρ3)ǫ
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1
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2

0 0 0
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

























,

to first order in χ and second order in ǫi, where σI
+ and G = O(102) are defined in Eq. (4.70).

In this case one cannot expand in G, in contrast to the NO case, where a first order expansion
in R was performed. The new mass eigenvalues are

m′
1
(IO) ≃ m

(0)
1

{

1 − 6ǫ22 −
1

9
(χ− ρ3)

(

6 − σI
−
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+
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2
]

ǫ22

+
1

18

[

9ρ2
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2
]
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3ρ2
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2
]

Gǫ22 +
(σI

+)2

18
G2
(

1 − 3ǫ21
)

}

,

m′
2
(IO) ≃ m

(0)
2

{

1 − 3(1 + 6ρ2
2)ǫ

2
1 + 4ρ2

2 +
1

18

[

27ρ2
2 + 12ρ2(χ− ρ3) + (χ− ρ3)

2
]

G(1 − 3ǫ21)

−(σI
+)2

18

[

6(1 + 2G)ǫ22 − G2(1 − 6ǫ22)
]

}

,

m′
3
(IO)

= 0 , (C.20)

m′
4
(IO) ≃ w2u

′λ2F2 −m
(0)
2

{

1 + 2ρ2
2 − 3(1 + 4ρ2

2)ǫ
2
1 −

(σI
+)2

8

m
(0)
1

m
(0)
2

ǫ21

}

,

m′
5
(IO) ≃ w3u

′′λ2F3 −m
(0)
1

{

1 − 6ǫ22 −
1

6

[

4(χ− ρ3) − (χ− ρ3)
2
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+

[

8(χ− ρ3) −
14

3
(χ− ρ3)

2

]

ǫ22 −
(σI

+)2

4

3m
(0)
2

2m
(0)
1

ǫ22

}

.

In this case the corrections very much depend on the scenario concerned, since the value of
the ǫi terms can give cancellations. However, the correction to |Ue2|2 constrains the parameters
χ, ρ2 and ρ3 to be small (see discussion in the main text), and since G always occurs together
with one of the three parameters the effect of G = O(102) will always be suppressed. In the
end there are enough parameters to fit the mass eigenvalues to the data.
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Appendix D

Form factors and loop functions for LFV
processes

Details of the different contributions to lepton flavour violating processes in the LRSM, used
in the parameter scans in Chapter 5, are presented here.

D.1 Relevant Lagrangian terms

LFV decays proceed via the charged current in Eq. (2.61), repeated here for convenience, as well
as the couplings of the charged components of Higgs triplets to lepton doublets in Eq. (2.47);
the relevant terms are (with hL = hR = h)

Llep
CC =

g√
2

[

ℓ′γµPLν
′W−

Lµ + ℓ′γµPRν
′W−

Rµ

]

+ h.c.,

Lδ±L
=
δ+L√

2

[

ν ′L
chℓ′L + ℓ′L

chν ′L
]

+ h.c. , (D.1)

Lδ±±

L,R
= δ++

L,Rℓ
′chPL,Rℓ

′ + δ−−
L,Rℓ

′h†PR,Lℓ
′c .

Rotating the fields to the physical basis gives

Llep
CC =

g√
2

[

ℓLγ
µKLnL(W−

1µ + ξeiαW−
2µ) + ℓRγ

µKRn
c
L(−ξe−iαW−

1µ +W−
2µ)
]

+ h.c.,

LH1 =
g√
2

[

H+
1 n

c
L

(

KT
L h̃L

)

ℓL +H−
1 ℓL

(

h̃†LK
∗
L

)

nc
L

]

, (D.2)

Lδ±±

L,R
=
g

2

[

δ++
L,Rℓ

ch̃L,RPL,Rℓ+ δ−−
L,Rℓh̃

†
L,RPR,Lℓ

c
]

,

which follows from Eqs. (2.51), (2.54), (2.57) and (2.59), with

h̃L,R ≡ (V ℓ
L,R)TV ν

R

M̃ν

mWR

V ν
R

TV ℓ
L,R = (V ℓ

L,R)T
MR

mWR

V ℓ
L,R , (D.3)

and M̃ν = diag(m1,m2,m3,M1,M2,M3). The LFV parameter is

gL,R
lfv ≡

[

h̃†L,Rh̃L,R

]

eµ
=



V ℓ†
L,RV

ν
R
∗
(

M̃ν

mWR

)2

V ν
R

TV ℓ
L,R





eµ

=

[

V ℓ†
L,R

M∗
RMR

m2
WR

V ℓ
L,R

]

eµ

. (D.4)

In the manifest left-right symmetry case (discrete parity symmetry), V ℓ
L = V ℓ

R, so that these
expressions become [375]

h̃ ≡ h̃L = h̃R = K∗
R

M̃ν

mWR

K†
R , and glfv ≡ gL

lfv = gR
lfv =



KR

(

M̃ν

mWR

)2

K†
R





eµ

. (D.5)
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In the present analysis the charged lepton mixing matrices are taken to be diagonal so that all
processes depend on a combination of the mixing matrices S and V [see Eq. (5.34)], depending
on the helicity of the different particles.

D.2 Decay widths and branching ratios

The effective Lagrangian for µ to e conversion can be written as

Lµ→e = − eg2

4(4π)2m2
WL

mµeσµν(Gγ
LPL +Gγ

RPR)µFµν

− α2
W

2m2
WL

∑

q

{

eγµ

[

W q
LPL +W q

RPR

]

µ qγµq
}

+ h.c.,

(D.6)

with σµν ≡ i
2 [γµ, γν ] and the form factors Gγ

L,R and W u,d
L,R. The full matrix element for µ→ eγ

is given by

iM(µ → eγ) =
eαW

8πm2
WL

ǫµγe
[(

q2γµ − qµ/q
) (

F γ
LPL + F γ

RPR

)

− imµσµνq
ν
(

Gγ
LPL +Gγ

RPR

)]

µ,

(D.7)

with the anapole and dipole form factors F γ
L,R and Gγ

L,R defined in Eqs. (D.14) and (D.9).

The on-shell decay µ → eγ only receives contributions from the Gγ
L,R terms, the branching

ratio turns out to be

BRµ→eγ =
α3

W s2Wm5
µ

256π2m4
WL

Γν

(

|Gγ
L|2 + |Gγ

R|2
)

=
3αem

2π

(

|Gγ
L|2 + |Gγ

R|2
)

, (D.8)

where

Gγ
L =

3
∑

i=1

{

VµiV
∗
ei|ξ|2Gγ

1(xi) − S∗
µiV

∗
eiξe

−iαGγ
2(xi)

Mi

mµ

+ VµiV
∗
ei





m2
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m2
WR
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2yi

3

m2
WL

m2
δ++
R











,

Gγ
R =

3
∑

i=1

{

S∗
µiSeiG

γ
1(xi) − VµiSeiξe

iαGγ
2(xi)

Mi

mµ

+ VµiV
∗
ei yi





2

3

m2
WL
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δ++
L

+
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12

m2
WL

m2
H+

1











,

(D.9)

with xi ≡ (Mi/mWL
)2, yi ≡ (Mi/mWR

)2 and the loop functions Gγ
1,2(x) defined in Eq. (D.26).

In addition, the electric dipole moment of charged lepton ℓα (α = e, µ, τ) is given by [94, 385,
400]

dα =
eαW

8πm2
WL

Im

[

3
∑

i=1

SαiVαiξe
iαGγ

2(xi)Mi

]

, (D.10)

which is similar to the mixed diagram contribution in µ→ eγ.
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D.2 Decay widths and branching ratios

The tree level contribution to µ→ 3e in Eq. (5.31) can be rewritten as

BRtriplet
µ→3e =

α4
Wm5

µ

24576π3m4
WL

Γµ

(4π)2

2α2
W

∣

∣

∣
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∣

∣

∣

2





m4
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m4
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R



 , (D.11)

to be compared with the loop-suppressed type I seesaw contribution given by [380, 401]

BRtype I
µ→3e =

α4
Wm5

µ

24576π3m4
WL
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{
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∣

∣

∣
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∣

∣

∣
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∣

∣

∣
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∣

∣
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+
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∣

∣

∣

2
+
∣

∣

∣2s2W (FZ1
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RL )
∣

∣
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(
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[
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(
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∣

2
+
∣

∣Gγ
R

∣

∣

2
)

[

ln
m2

µ

m2
e

− 11

4

]}

.

(D.12)

The interference terms between triplet exchange and gauge boson mediated loop and box dia-
grams are

BRtriplet+type I
µ→3e =

α4
Wm5

µ

24576π3m4
WL

Γµ

2(4π)

αW
×







m2
WL
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L

Re
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2s2WT ∗F γ
L + 4s2WT ∗Gγ

R + T ∗Bµeee
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L (1 − 2s2W )
]

+
m2

WL

m2
δ++
R

Re
[

2s2WT ∗F γ
R + 4s2WT ∗Gγ

L + T ∗Bµeee
RR − 2s2WT ∗FZ1

R

]







,

(D.13)

where T ≡ h̃µeh̃
∗
ee and h̃αβ is defined in Eq. (5.34). Note that the triplet term effectively has

the same structure as the box contribution (after Fierz transformations, see Ref. [402]), so one
expects it to interfere with the other amplitudes in the same way.

The form factors for off-shell photon exchange are

F γ
L =

3
∑

i=1







S∗
µiSeiFγ(xi) − VµiV
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ei yi




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









,
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VµiV
∗
ei



|ξ|2Fγ(xi) +
m2

WL

m2
WR

Fγ(yi) − yi
2

3

m2
WL

m2
δ++
R

ln
m2

µ

m2
δ++
R



 ,

(D.14)

where the logarithmic term is a simplified version of the usual triplet loop function [403], since
the doubly charged scalar mass is taken to be much larger than the charged lepton masses
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(mδL,R
≫ me,µ,τ ). The Z1-boson exchange terms1 can be expressed as

FZ1
L =

3
∑

i,j=1

S∗
µiSej {δij (FZ(xi) + 2GZ(0, xi))
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DZ(yi, zi)

]
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(D.15)

where zi = (Mi/mH2)
2; the box diagram form factors are2

Bµeee
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3
∑

i=1

{

S∗
µiSei [FXbox(0, xi) − FXbox(0, 0)]

}

+

3
∑
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S∗
µiSej

{

−2S∗
ejSei [FXbox(xi, xj) − FXbox(0, xj) − FXbox(0, xi) + FXbox(0, 0)]

+ S∗
eiSejGbox(xi, xj , 1)

}

,

(D.16)

Bµeee
RR = −2

m2
WL

m2
WR

3
∑

i=1

{

VµiV
∗
ei [FXbox(0, yi) − FXbox(0, 0)]

}

+

3
∑

i,j=1

VµiV
∗
ej

{

−2VejV
∗
ei [FXbox(yi, yj) − FXbox(0, yj) − FXbox(0, yi) + FXbox(0, 0)]

+ VeiV
∗
ejGbox(yi, yj, 1)

}

,

(D.17)

for purely left- and right-handed contributions and

Bµeee
LR =

1

2

m2
WL

m2
WR

3
∑

i,j=1

S∗
µiSejVeiV

∗
ejGbox

(

xi, xj ,
m2

WL

m2
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, (D.18)

Bµeee
RL =

1

2

m2
WL

m2
WR

3
∑

i,j=1

VµiV
∗
ejS

∗
eiSejGbox

(

xi, xj ,
m2

WL

m2
WR

)

, (D.19)

for diagrams with mixed helicity. The loop-suppressed amplitudes with right-handed currents
contain the O(1) mixing matrix V as well as the additional suppression factor of (mWL

/mWR
)2;

without the enhancement from large left-right mixing (in S) those contributions will be much
smaller than the tree level one in Eq. (5.31). The mixed left-right box contributions come from
an effective four fermion operator, as is the case in kaon mixing [88, 89, 354], with a factor of
1/2 coming from the Fierz transformation of a scalar to vector contribution (see Ref. [401]).

1Terms from the exchange of the heavier Z2 boson are neglected.
2Terms proportional to |ξ|2 are neglected.
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D.2 Decay widths and branching ratios

µ → e conversion in nuclei is similar to µ → 3e and receives contributions from the same
loop and box diagrams.3 The µ→ e conversion rate is given by [375, 383, 384, 401]

RA(N,Z)
µ→e =

α3
emα

4
Wm5

µ

16π2m4
WL

Γcapt

Z4
eff

Z

∣

∣F (−m2
µ)
∣

∣

2 (|QW
L |2 + |QW

R |2
)

, (D.20)

where

QW
L,R = (2Z +N)

[

W u
L,R − 2

3
s2WGγ
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]

+ (Z + 2N)
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W d
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1

3
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, (D.21)

and

W u
L,R =

2

3
s2WF γ

L,R +
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4
+

2

3
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FZ1
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1
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Bµedd
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LR,RL

)

,

(D.22)

are composite form factors. Note that the expression in Eq. (D.20) is derived by approximating
all interactions to be point-like and taking the proton and neutron densities to be equal. In that
case the wavefunction overlap integrals D and V (p,n) calculated in Ref. [404] can be replaced
by the quantities Zeff and the form factor F (−m2

µ), where

V (p)

√
Z

=
Z2

effF (−m2
µ)α

3
2
em

4π
, (D.23)

and V (p)/Z ≃ V (n)/N . The relevant box diagram form factors are

Bµeuu
LL =

3
∑

i=1

S∗
µiSei [Fbox(0, xi) − Fbox(0, 0)] ,

Bµedd
LL ≃

3
∑

i=1

S∗
µiSei {FXbox(0, xi) − FXbox(0, 0)

+ |[VCKM]td|2 [FXbox(xt, xi) − FXbox(0, xi) − FXbox(0, xt) + FXbox(0, 0)]
}

,

Bµeqq
RR =

m2
WL

m2
WR

Bµeqq
LL (S ↔ V ∗ ; xi ↔ yi ; xt ↔ yt) ,

(D.24)

where xt = m2
t/m

2
WL

and yt = m2
t/m

2
WR

.
Finally, the presence of non-unitary mixing in the light neutrino sector (due to the matrix

S ≃MDM
−1
R ) also affects the standard muon decay width, Γµ (and thus the determination of

GF ), as well as the capture rate for muons on the nucleus, Γcapt. Explicitly, one has

Γµ ≃ Γ(0)
µ

(

1− [SS†]ee − [SS†]µµ

)

and Γcapt ≃ Γ
(0)
capt

(

1− [SS†]µµ

)

, (D.25)

where Γ
(0)
µ and Γ

(0)
capt are the SM values and terms of order S4 have been omitted. Those

expressions occur in the denominators of the branching ratio formulae in Eq. (3.80), and since
the numerators are in general proportional to O(S4) the effect will be negligible; in the numerical
analysis the standard value Γµ = G2

Fm
5
µ/(192π

3) is used.

3Although the process can also be mediated at tree-level by neutral Higgs bosons, those particles have to be

very heavy due to constraints from K0-K
0

mixing.
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D.3 Loop functions

The relevant loop functions are

Fγ(x) =
7x3 − x2 − 12x

12(1 − x)3
− x4 − 10x3 + 12x2

6(1 − x)4
lnx ,

Gγ
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lnx ,
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]

,
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I2(x, y, 1) − 2xyI1(x, y, 1) ,

Gbox(x, y, η) = −√
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(D.26)

where

I1(x, y, η) =

[

x lnx

(1 − x)(1 − ηx)(x− y)
+ (x↔ y)

]

− η ln η

(1 − η)(1 − ηx)(1 − ηy)
,

I2(x, y, η) =

[

x2 lnx

(1 − x)(1 − ηx)(x− y)
+ (x↔ y)

]

− ln η

(1 − η)(1 − ηx)(1 − ηy)
,
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Ii(x, y, η) ,

(D.27)

and the limiting values are

GZ(0, x) = − x lnx

2(1 − x)
,
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lnx ,
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Appendix E

Helicity amplitudes for e−e− → W −
L W −

R

It is an illustrative exercise to study the helicity amplitudes of the inverse double beta decay
process studied in Section 5.6. An explicit evaluation for the process e−e− →W−

L W
−
R has been

performed, with the helicity of the electrons and the polarisation of the W bosons fixed. This
appendix was also published in Ref. [32].

Denoting electron (W boson) momenta with pi (ki), (i = 1, 2), the process is

e−(p1, λ1) e
−(p2, λ2) →W−

L (k1, τ1)W
−
R (k2, τ2) , (E.1)

where λ1,2 = ±1
2 and τ1,2 = 0,±1. Without loss of generality, one can choose p1 and p2 to be

in the ±z-directions, and assume that the final state particles propagate in the x–z plane. The
momenta are then given by

pµ
1,2 = (E, 0, 0,±E) , kµ

1,2 = (E1,2,±|k|~n) , (E.2)

where ~n = (sin θ, 0, cos θ) and

E =

√
s

2
, E1,2 =

s±m2
WL

∓m2
WR

2
√
s

, |k| =

√

λ(s,m2
WL
,m2

WR
)

2
√
s

. (E.3)

The gauge boson polarisation vectors can be defined by

ǫτ1,2=0(k1, k2) = ± 1

mWL,R

(±|k|, E1,2 sin θ, 0, E1,2 cos θ) , (E.4)

ǫτ1,2=±1(k1, k2) =
1√
2
(0,∓τ1,2 cos θ,−i,±τ1,2 sin θ) . (E.5)

The helicity amplitudes are calculated from

Mλ1λ2τ1τ2 =
g2

2(t−m2
i )
ū(p1, λ1)γµ/qγνPLv(p2, λ2)ǫ

µ∗(k1, τ1)ǫ
ν∗(k2, τ2)

+
g2

2(u−m2
i )
ū(p1, λ1)γµ/̃qγνPRv(p2, λ2)ǫ

µ∗(k2, τ2)ǫ
ν∗(k1, τ1) , (E.6)
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Appendix E Helicity amplitudes for e−e− → W
−

L
W

−

R

resulting in

Mλλ00 = −λg2 sin θ

×

{

√

λ(s,m2
WL
,m2

WR
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(
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+m2
WR
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− 2λ cos θ
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(
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−m2
WR
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− s2

]}

4mWL
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(

q2 −m2
i

) ,
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(1 + 2λτ) cos2 θ

2
+ (1 − 2λτ) sin2 θ

2

]
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cos θ

(

s+m2
WL

−m2
WR

)

− 4λτm2
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2
+ (1 + 2λτ) sin2 θ

2
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(E.7)

×
cos θ

(

s−m2
WL

+m2
WR

)

+ 4λτm2
WL

+ 2λ

√

λ
(

s,m2
WL
,m2

WR

)

2
√

2mWL

(

q2 −m2
i

) ,

Mλλττ = g2

sin θ

[

2λ

√

λ
(

s,m2
WL
,m2

WR

)

− 2λτ
(

m2
WL

−m2
WR

)

+ s cos θ

]

4
(

q2 −m2
i

) ,

Mλλτ−τ = −g
2s sin θ(cos θ − 2λτ)

4
(

q2 −m2
i

) ,

Mλ−λ00 = Mλ−λ0τ = Mλ−λτ0 = Mλ−λττ = Mλ−λτ−τ = 0 ,

where λ = ±1
2 and τ = ±1, and q2 = t(u) when λ = −1

2

(

+1
2

)

. The amplitude vanishes
whenever λ1 = −λ2, or in other words, when the two electrons have the same spin (note that
one electron is described by a v spinor in Eq. (E.6), which means that its actual helicity is
the opposite of the spinor’s helicity). The amplitude is only non-zero when the electrons have
opposite spin (λ1 = λ2); squaring and summing over boson polarisations gives the polarised
cross sections σLR and σRL in Eq. (5.68), which correspond to the t- and u-channels respectively.

It is interesting to study the high energy behaviour of these helicity amplitudes. Explicitly,
in the limit

√
s→ ∞ and neglecting neutrino mass one gets

Mλλ00

√
s→∞−−−−→ −λ g2 sin θ s

2mWL
mWR

,

Mλλ0τ

√
s→∞−−−−→ −g

2√s
[

(1 + 2λτ) cos2 θ
2 + (1 − 2λτ) sin2 θ

2

]

2
√

2mWL

,

Mλλτ0

√
s→∞−−−−→ g2√s

[

(1 − 2λτ) cos2 θ
2 + (1 + 2λτ) sin2 θ

2

]

2
√

2mWL

, (E.8)

Mλλττ

√
s→∞−−−−→ −λg2 sin θ ,

Mλλτ−τ

√
s→∞−−−−→ −λτ g

2 sin θ(1 − 2λτ cos θ)

1 + 2λ cos θ
.
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The amplitudes that contain at least one longitudinally polarised W boson (τ1,2 = 0) are
divergent, whereas those with only transverse polarisations (τ1,2 = ±1) are finite. Summing over
fermion spins and boson polarisations gives the result in Eq. (5.63), and proper consideration
of the full theory will lead to a well-behaved total amplitude, as discussed in the main text.
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