
2007

German e-Science

Available online at http://www.ges2007.de
This document is under the terms of the

CC-BY-NC-ND Creative Commons Attribution

Inspector Computer

M. Sutter1, T. Müller2, R. Stotzka1, T. Jejkal1, M. Holzapfel1 and H. Gemmeke1

1 Institute for Data Processing and Electronics, Forschungszentrum Karlsruhe,
Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany

2 Institute for Nuclear and Energy Technologies, Forschungszentrum Karlsruhe,
Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany

email: michael.sutter@ipe.fzk.de

phone: (+49 7247) 82 5676

Abstract

Inspector Computer is a real world application based on Grid technolo-
gies helping users to find stolen goods in the internet. All the user
has to provide is a reference image and a short, textual description of
the items he is searching for. After initialization Inspector Computer
queries several existing search engines in the Internet to get the nec-
essary data. From the results of the query the images are extracted
and compared to the reference image. The sophisticated comparison
methods score images by their content, i.e. if two images contain the
same object. Even comparison of two images needs a lot of computing
power and in general thousands of comparisons have to be done. So it is
obvious that only a Grid provides the necessary resources for Inspector
Computer. Finally a sorted list of the most likely hits is delivered.

1 Introduction

In Germany approximately 2.8 million thefts occurs every year. Even if
unique copies are stolen the detection rate is less than 30 % [1]. To retrieve his
stolen goods the owner might observe the daily offers in internet auctions. But
this is a very time consuming and frustrating process, especially if the search
has to be done repeatingly for a couple of month until the item is found.

An automatic search based on the content of the images in auctions will
reduce the effort to monitor the internet auctions, but at the moment the existing
search engines support only retrievals based on meta data or keywords. Looking
for a stolen vase might reveal thousands of hits, which have to be evaluated
manually.

Another reason against the manual monitoring is the expanding spread of
auctions and the corresponding probability, that vender of stolen goods use di-
verse auction houses to resell the items.

These are some reasons why the vender’s in auction houses feel save and
anonym. Another reason is the elementary usage of the different auction houses,
making it very easy to sell items. So Inspector Computer was developed to
automate the search process and to assist the user monitoring several auction
houses by querying them automatically and doing an image comparison using

http://www.ges2007.de/
http://creativecommons.org/licenses/by-nc-nd/2.0/de/


2 M. Sutter et al.

a reference image. The user only has to take a look in the presented results to
find out, if his goods are found. So the manually effort is marginal and he could
spent his time for more important things.

2 Fundamentals

Inspector Computer contains several processing steps. These are:
• Submission of the reference image and the description for searching in the

auction houses
• Querying the search engines in the auction houses
• Storing the found images and meta data in a database
• Image comparison of the found images with the reference image
• Presentation of the results ordered by similarity of the images
The searching for the auctions e.g. is a processing step already integrated in

every existing auction house. Otherwise it would be nearly impossible for the
users to find interesting items in the whole content of them.

The really new processing step is the image comparison and the way to find
images by their content. In no existing search engine such a thing is integrated.
They are all indexed by meta data of the images, e.g. the description.

2.1 Image comparison procedures

One common method for image comparison is a model based approach.
Thereby a model of the searched object is created to describe it best as pos-
sible. After that the model is used for searching the object in images. The
disadvantage of this method is that it is only usable when searching always for
the same type of objects. Otherwise a model for every used object must be cre-
ated. A normal use case for this method is face recognition. Usually every face
has some distinctive points like the eyes or the ears. So it is profitable to make
a model of the face of a person once and use it for the recognition afterwards.

If it is not possible to declare a model the only way is to use the content of
the images, possible in two ways – with segmentation and without. The goal
of segmentation is to separate the objects of an image from the background.
For segmentation several different algorithms exist, e.g. Region–Growing and
Histogram based methods [2] and [3].

If segmentation is not used a registration of the images is the other possible
solution. Registration is a process of transforming the image content of two
images into a common coordinate system. This means that the objects of one
image lay on top of the objects of the other image congruently. So it is very easy
to make a decision if both images show the same object.

2.2 Objectives

The objectives of Inspector Computer sound very simple. All it has to do
is finding auctions by comparing the images of them with a provided reference



GES 2007 Inspector Computer 3

image. You could simply say: Putting two images in and getting a measurement
for the similarity out. Therefor several boundary conditions exist:

• Only one object per image
• The object should be central and dominant in the image
• The object should be a unique copy (searching for a standard item is no

good idea, because they are sold everywhere)
• Different illumination in the images is solved by usage of only grey value

images

But the objectives concurrently also the biggest problem of Inspector Com-
puter, because the content of the images should be compared and not the de-
scription. Therefore special algorithms must be used, customized or developed
because the images could not be compared pixel by pixel. It is obvious, that
they are acquired under completely different conditions as you could see in figure
1.

Figure 1: The images illustrate the difficulties of the image comparison and the
need for comparing the objects in the images. All images show the same car, but
from a different viewpoint. For a human it is very easy to state that all images
contain the same car, but for an algorithm this is a very complex problem. For
the car on the left image it is nearly impossible to be detected as the same car
on the other images by algorithms. We focus only on variations shown in the
second and third image to detect the correspondence between both images.

A requirement for the image comparison is that it should be generic regarding
the object types. So that it is possible to detect nearly every imaginable object.
This makes the usage of a model based comparison method impossible – nobody
wants to generate a model for every object.

Because of the expected enormous hit rate (up to several thousand images per
search) when querying auction houses and comparing the found images Inspector
Computer should use different Grid technologies and store the found images with
meta data in a MySQL database [4]. So it is possible to provide on the one hand
the necessary computing power and storage capacities and on the other hand a
demonstrator for testing different Grid technologies and their cooperation in a
real world application is implemented.



4 M. Sutter et al.

3 Workflow

After the necessary input is provided and the application is started Inspector
Computer queries the search engines and stores the found images with additional
meta data in a database. When the search is completed the images are compared
to the provided reference image and a list ordered by similarity of the images is
presented. The first entries in the list show the images which correspond best
to the reference image. The user inspects the list manually in the order of most
likely success to find the searched article if applicable. Figure 2 shows these
processing steps of Inspector Computer in principal schema.

Image search
at the internet

Database

Image
comparison

Ranking

? ?

URL + Info

URL + Info

URL + Info

2.

1.

3.

Image and
Description

Figure 2: The principal processing steps of Inspector Computer. You can see
the providing of the reference image, searching the internet, comparison of the
images and getting the list of results.

This approach is similar to the manual search. But Inspector Computer facil-
itates the manual monitoring drastically, by reason that most of it is automated.
Only the reference image and a short and accurate key word as description are
necessary to start the application. During execution the user only has to wait
until the results are presented.

4 Architecture and Implementation

Inspector Computer is a system using several Grid technologies as well as
common software. It is implemented in the Java [5] programming language
as a Servlet, controlled using a web interface. The web interface asks for the
needed input, start the application and retrieve the results. During runtime
the processing steps of Inspector Computer (figure 2) are executed and status
messages are presented to the user.

For the Grid middleware the Globus Toolkit 4 (GT 4) [6] is chosen. It is
a widely spread and easy to extend software package. GT 4 is based on the
OGSA [7] and WSRF [8] standards and provides a service oriented architecture,
structured in modular components. As middleware the focus of GT 4 lies only
on low–level services for administration and control. The integrated API (Ap-
plication Programming Interface) provides the functionality to extend a GT 4
installation with own services.



GES 2007 Inspector Computer 5

4.1 Webcrawler

One important part of Inspector Computer is the discovery of the images
and meta information from the search engines in the internet and storing of the
data in a MySQL database. For this purpose a webcrawler is used. During its
execution it normally starts with a given URL, follows the links on the starting
page and stores the data in a folder on the local file system. Normally it is
possible to configure the webcrawler how deep it should scan the web sites.

Before the implementation of Inspector Computer was started several ex-
isting webcrawlers were evaluated. These are Heritrix, WebSPHINX, JSpider,
WebEater, Java Web Crawler, WebLech and Arachnid [9]. They are all im-
plemented in Java, making the integration in Inspector Computer very simple.
During the evaluation it was realized, that all these webcrawlers are not appli-
cable because they store the data in the local file system and scan only a special
URL. The query of a search engine and storage of the data in a database needs
to be integrated in all of them. As a result of this it was simpler to develop a
new webcrawler.

The implemented webcrawler simply performs an HTTP (Hypertext Transfer
Protocol) request. The request with the given search term is sent to a search
engine and the content of the search engine is queried. From the retrieved
response the necessary images and meta information are extracted and written
to the database. The used interface to the database is described in the section
below. A closer look on the evaluation and implementation of the webcrawler is
described in [10].

4.2 Database Access

The common way for accessing databases with Java is the usage of JDBC
(Java Database Connectivity) [11]. JDBC is a Java API for interaction with
databases. This technology is thoroughly tested and provides full access to most
database systems. The manufacturer of a database has to provide a device
driver for the communication with the database. After the driver is successfully
initialized it is possible to send SQL (Structured Query Language) commands
for communication with the database over the JDBC connection.

For the communication with databases in Grid environments the OGSA–DAI
(Open Grid Services Architecture – Data Access and Integration) [12] package
has been developed. OGSA–DAI is a toolkit providing GT 4 Grid Services
virtualizing databases and is the de facto standard for accessing databases with
Grid technologies at the moment. At server side the databases are made available
by deploying a data service and exposing a resource (database) to it. At client
side available databases can be identified and accessed using Grid Services over
OGSA–DAI Activities. For the usage of common features of a database, e.g.
storing, update and query of data the Activities are already delivered within the
standard software package. To query a dataset it is only necessary to give the
SQL command to the appropriate Activity and execute it. OGSA–DAI provides
also a flexible client and server API, so it is possible to extend the functionality



6 M. Sutter et al.

at any time.

Inspector
Computer

(Client)

TableOGSA-DAI
Activity Service MySQL

Figure 3: The schema for accessing databases over OGSA–DAI. The client
of Inspector Computer has to execute an Activity of OGSA-DAI. The Activ-
ity calls the appropriate OGSA-DAI service encapsulating the database and
executes the SQL command of the Activity.

After the webcrawler has extracted the necessary data from every visited
auction a SQL command for storing the data is created. The SQL command is
given to the OGSA–DAI Activity responsible for storing data. During execution
of the Activity the dataset is written in the database using the OGSA–DAI
services.

Since OGSA-DAI in the early versions had problems to store big datasets
over its services the images are stored using a JDBC connection. The JDBC
connection is responsible for the storage and reading of the images. All the other
data is only accessible over the OGSA–DAI service by Inspector Computer.

4.3 Parallelization of Image Comparison

As already mentioned the search finds thousands of images and so just as
many comparisons have to be done. This exceeds the resources provided by
a single workstation – the comparisons have to be parallelized. As Inspector
Computer is using GT 4 the WS–GRAM (Web Service Grid Resource Allocation
and Management) [13] service is integrated in it for the utilization of computers
accessible by the GT 4 installation. The WS–GRAM service encapsulates the
access to local schedulers e.g. like PBS (Portable Batch System) [14] or Condor
[15]. Running multiple jobs in parallel decreases the calculation time drastically.

For the usage of WS–GRAM a job description file in XML (Extensible
Markup Language) [16] syntax is needed. In the job description every job with
parameters, the scheduler to use and the URL of the WS–GRAM service is
declared. The job description is sent over a client to the service. The service
creates the necessary input for usage of the specified scheduler. Afterwards the
input is sent to the scheduler, the jobs are executed and the output or maybe
the error messages is sent back over the WS–GRAM service to the client.

For testing purposes two schedulers are used in Inspector Computer. One
version runs with Condor in our workstations. So the speed of the comparison
depends on the usage of the workstations by their original user. For a fast and
highly reliable testbed the CampusGrid [17] is used. CampusGrid consists of 64



GES 2007 Inspector Computer 7

Inspector
Computer

(Client)

Grid Cluster

WS-GRAM Scheduler

LoadLeveler
Condor
...

Jobs

Figure 4: The schema for execution of jobs over the WS–GRAM service. First
the job description is send to the service encapsulating schedulers. The service
creates the input for the scheduler, executes the jobs over the scheduler and
sends the output back to the client.

AMD Opteron nodes running under Linux and as well of 30 nodes running AIX
accessible over an IBM LoadLeveler [18] as scheduler.

After the search is finished and all data is written to the database Inspector
Computer queries the necessary datasets, creates the job description file for the
chosen scheduler and sends it to the WS–GRAM service. For a faster comparison
and decreasing of communication overhead several comparisons are clustered in
one job. They are executed successive on the computation node of the chosen
scheduler. After comparison the results are sorted and displayed in the web
interface.

4.4 Image Comparison

The heart of Inspector Computer is the image comparison. Therefor Auto-
pano–Sift [19] is adopted to the use case and used for the comparisons. Primarily
the Autopano–Sift algorithm is developed to stitch panorama images. For a
panorama image two images are needed, captured from a similar viewpoint. It
is necessary that these images share a part of their view to make one large image
– this is called stitching of the images.

To stitch the images it is important to have control points indicating where
they overlap. The creation of these control points are normally done manually
by the user, which is a very time–consuming process for him. Autopano–Sift is
a program for the automatic creation of the control points, so that the images
could be stitched very easy.

Autopano–Sift is implemented in C# and running under Mono [20] providing
the .NET Framework [21] as runtime environment for several operating systems.
Using the WS–GRAM service it is only possible to run jobs on Linux computers.
Therefore Mono must be installed on every node the image comparison algorithm
should be executed. The usage of Mono is no problem at all since Autopano–Sift



8 M. Sutter et al.

is completely developed under Mono.
The image comparison in Inspector Computer uses a modified version of

Autopano–Sift. The creation of the control points is similar, the really big
difference is, that it is counted how many control points in two images have the
same attributes to detect the similarity. The customization of the Autopano–Sift
algorithm was done and is explained in [22].

5 Results

To test Inspector Computer with the whole functionality several image com-
parisons to measure the quality and speed of them were made. These are twelve
image comparisons with different reference images and search terms. From ev-
ery of the twelve objects an image were captured and the adequate description
specified. With every description Inspector Computer searched in the internet
and made the image comparison with the corresponding reference image. As
scheduler Condor with seven of our workstations was used.

In the mean 320 images for comparing with every of the twelve reference
images were used. One image comparison takes about two minutes in average.
This means about 10 hours computing time on a single workstation. The par-
allelization and execution through the Grid takes about one hour and a half,
speeding up the calculation time drastically.

For every of the twelve image comparisons the position of the first corre-
spondence between reference image and sorted images in the list of results was
measured. From this the mean of the first matching entry in the twelve lists
of results is calculated. In average the user has to look only on the first eight
images to find a correspondence. A more precise explanation, on how the results
are created can be found in [10].

6 Discussion and Future

The biggest disadvantage of Inspector Computer is the usage of the Auto-
pano–Sift algorithm for the image comparison. The results of the algorithm
are very good, but the implementation in C# and the necessary usage of Mono
as runtime environment includes a high administration effort. Mono must be
installed on every computing node in the Grid which is no problem in our com-
puting environment, but may cause problems in other computing sites.

For the future more of the available image comparison algorithms will be
tested to find out if there exists a better one. On the other hand more efficient
algorithms are developed and integrated to speed the image comparison up and
make it more flexible and feasible.

Therefor one example is the development of an image comparison algorithm
based on registration (section 2.1). For the registration we are using the Tur-
boReg algorithm which is optimized for a very fast execution [23]. During the
registration the images are transformed with scaling, rotation and transforma-
tion in several steps done by the registration algorithm to get the best possible



GES 2007 Inspector Computer 9

result. After the registration the quality of the overlap between the target image
and the image created by the registration algorithm is calculated with a quality
function. For the calculation of the quality function three different methods are
implemented at the moment. These are Mean–Square Difference, Squared Cor-
relation Coefficient, Normalized Mutual Information and explained in detail in
[24].

The registration algorithm is implemented as plugin in ImageJ [25]. ImageJ
is a scientific image manipulation software implemented in Java. The quality
functions are implemented by our group and also in Java. So it is very easy
to integrate the algorithm in Inspector Computer, which will be done in near
future.

Another new approach is to use Inspector Computer as image search engine
in the internet. Who does not know the problem: If you have an image and want
to have an image with nearly the same content. At the moment it is only possible
to use the existing search engines in the internet, based on the description of the
images. With this approach it could be that you are searching for an image of a
cat and get an image of a dog. The planed search engine is based on the content
of the images and so only getting images of a cat when searching for it.

7 Conclusion

Inspector Computer is an application used to demonstrate different Grid
technologies and their cooperation in a real world application. The used tech-
nologies are the GT 4 as Grid middleware, OGSA–DAI for communication with
the database and the WS–GRAM for encapsulation of the different schedulers
LoadLeveler and Condor.

The biggest advantage of the described method is the automation of image
comparison. Instead comparing thousands of images manually the user only has
to take a look on the first eight images in the list of results in average to find
a similar object if available. This is a significant advantage compared to the
manual searching for stolen articles. With Inspector Computer it is also possible
to make the search for one article repeatedly until it is found – even if the offer
changes very often within the auction houses and must be restarted e.g. every
day.

References

1. Bundeskriminalamt Wiesbaden. (2007) Polizeiliche Kriminalstatistik 2005.
[Online]. Available: http://www.bka.de/pks/pks2005/index2.html

2. R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice Hall Inter-
national, 2002.

3. B. Jähne, Digital Image Processing. Springer, 2002.
4. MySQL Project. MySQL database engine. [Online]. Available:

http://www.mysql.com/
5. Sun microsystems. Java. [Online]. Available: http://www.java.sun.com/

http://www.bka.de/pks/pks2005/index2.html
http://www.mysql.com/
http://www.java.sun.com/


10 M. Sutter et al.

6. The Globus Alliance. The Globus Toolkit Homepage. [Online]. Available:
http://globus.org/toolkit

7. A. Savva. Open Grid Services Architecture WG (OGSA–WG). [Online]. Available:
http://forge.gridforum.org/sf/sfmain/do/viewProject/projects.ogsa-wg

8. T. Banks, “Web Services Resource Framework (WSRF) – primer v1.2,” OASIS
Open, Tech. Rep., 2006. [Online]. Available: http://www.oasis-open.org

9. Java–Source.net. Open Source Crawlers in Java. [Online]. Available:
http://java-source.net/open-source/crawlers

10. M. Sutter, “Anbindung einer webbasierten Bildsuche an eine Grid–Datenbank für
die digitale Forensik,” Master’s thesis, Forschungszentrum Karlsruhe, 2005.

11. Sun Developer Network. JDBC technology. [Online]. Available:
http://java.sun.com/products/jdbc/

12. OGSA–DAI project. Open Grid Services Architecture – Data Access and
Integration. [Online]. Available: http://www.ogsadai.org.uk/index.php

13. Globus Toolkit Team. GT 4.0 WS–GRAM. [Online]. Available:
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/

14. Altair Grid Technologies. Portable Batch System. [Online]. Available:
http://www.openpbs.org/main.html

15. The Condor Project. Condor High Throughput Computing. [Online]. Available:
http://www.cs.wisc.edu/condor

16. W3C. (2007) Extensible Markup Language (XML) 1.0 (Fourth Edition). [Online].
Available: http://www.w3.org/TR/REC-xml/

17. F. Schmitz. CampusGrid. [Online]. Available: http://www.campusgrid.de
18. IBM. Tivoli Workload Scheduler LoadLeveler. [Online]. Available:

http://www-03.ibm.com/systems/clusters/software/loadleveler.html
19. S. Nowozin. Autopano–Sift, making panoramas fun. [Online]. Available:

http://user.cs.tu-berlin.de/∼nowozin/autopano-sift/
20. (2007) Mono Project Team. Mono Project Homepage. [Online]. Available:

http://www.mono-project.com/Main Page
21. Microsoft. (2007) .NET Framework. [Online]. Available:

http://www.microsoft.com/net/
22. B. Körtner, “Der “Stolen Goods Internet Detector” und sein Bildvergleich für die

digitale Forensik,” Studienarbeit, Forschungszentrum Karlsruhe, 2005.
23. P. Thévenaz, U. Ruttimann, and M. Unser, “A pyramid approach to subpixel

registration based on intensity,” IEEE Transactions on Image Processing, vol. 7,
no. 1, pp. 27–41, 1998.

24. F. Saad, “Software Implementation and Its Evaluation of Different Object Recog-
nition Algorithms for Digital Forensics,”Master’s thesis, Forschungszentrum Karl-
sruhe, 2007.

25. W. Rasband. (1997–2006) ImageJ, U. S. National Institutes of Health, Bethesda,
Maryland, USA. [Online]. Available: http://rsb.info.nih.gov/ij/

http://globus.org/toolkit
http://forge.gridforum.org/sf/sfmain/do/viewProject/projects.ogsa-wg
http://www.oasis-open.org
http://java-source.net/open-source/crawlers
http://java.sun.com/products/jdbc/
http://www.ogsadai.org.uk/index.php
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/
http://www.openpbs.org/main.html
http://www.cs.wisc.edu/condor
http://www.w3.org/TR/REC-xml/
http://www.campusgrid.de
http://www-03.ibm.com/systems/clusters/software/loadleveler.html
http://user.cs.tu-berlin.de/~nowozin/autopano-sift/
http://www.mono-project.com/Main_Page
http://www.microsoft.com/net/
http://rsb.info.nih.gov/ij/

	Introduction
	Fundamentals
	Image comparison procedures
	Objectives

	Workflow
	Architecture and Implementation
	Webcrawler
	Database Access
	Parallelization of Image Comparison
	Image Comparison

	Results
	Discussion and Future
	Conclusion

