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The circular statistics toolbox for Matlab

Philipp Berens1 and Marc J. Velasco2

Abstract. Directional data is ubiquitious in science and medicine. Due to its circular nature such data cannot
be analyzed with commonly used statistical techniques. Despite the rapid development of specialized methods
for directional statistics over the last thirty years, there is not a lot of software available that makes such methods
easy to use for users. Most importantly, one of the most commonly used programming languages in biosciences,
Matlab, is currently not supporting directional statistics. To remedy this situation, we have implemented a toolbox
in Matlab, which covers diverse aspects of the statistical analysis of directional data.

1 Introduction
Directional data is ubiquitious in various fields of science, as diverse as ocean research [4], agricultural science
[1], psychology [13], medical research [10, 14], neuroscience [17] or zoology [3, 7, 15, 5], to name just a few.
Consider as an example the study of Le et al., who analyzed the influence of the day of birth yi on the development
of recurrent middle ear infection in children [14]1. The scale “day of the year” is periodic in nature: It is of no
concern whether a child is born on January 15th of 1989 or 1990 — for the purpose of the analysis pooled over
years these two dates are the same. We can make this structure explicit by converting data of this type such as day
of the year, time of the day or month of the year to angular directions as a common scale by

x =
2πy
k
,

where y is the representation of the data in the original scale, x is its angular direction and k is the total number of
steps on the scale that y is measured in. In the example, we have y representing day of the year and thus k = 365,
not considering leapyears for simplicity. In addition to data that needs to be converted to angular directions,
measurements such as wind [4] or heading direction [7] measured using a compass come naturally in angular
units. Instead of multiplying by 2π we can equvivalently multiply by 360◦ to obtain degrees instead of radians:

xdegree = 360◦ · xradians
2π

(1)

Circular data measured only between 0 and 180 degrees may be converted to span the full directional scale by
similar means. The analysis of directional data represents a particular challenge: There is no reason to designate
any particular point on the circle as zero, just as it is somewhat arbitrary which day we consider the first in a new
year. In addition, there is no inherent sense of high or low values. Therefore, ordinary statistics may generally not
be used to draw conclusions from circular data. Consider for example calculating the mean of a set of three angles,
10◦, 30◦and 350◦. The arithmetic mean of the angles is clearly 130◦, pointing southeast, while all data samples
point in northernly directions.

Circular or directional statistics is a subfield of statistics, which is devoted to the development of statistical
methods suited for the analysis of directional data. While the field has been steadily developing since the early
1950es [9, 18], there are only few software packages available that offer a comprehensive repertoire of circular
statistics methods to researchers. The circular package [16] for the R programming language as well as the
circstats package [6] for Stata are both available as open-source and offer a variety of functions to users of these
programming languages. In addition, the commerically available Oriana software [12], provides basic analysis
functionality for Windows users. In biomedical reserach, however, the Matlab programming language is most
widely used for data analysis. Yet at the same time, statistical packages or methods for the analysis of circular data
are missing. To remedy this short-coming, we have developed the CircStat2009 toolbox for circular statistics for

1For the curious reader it is mentioned that Le et al. indeed find an effect of day of birth on the development of middle ear
infection: Children born during late winter or early spring are less likely to develop recurrent middle ear infection.
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the use with Matlab, providing a comprehensive set of functions for the most common problems in descriptive and
inferential statistics.

The aim of this report is not to provide a comprehensive review of circular statistics, but to describe the func-
tionality of the presented toolbox. Thus, we will focus on the key elements of circular statistics neccessary to
understand and use the toolbox, while frequently referring to the existing literature for a more detailed discussion
and examples.

2 Description of CircStat2009 functions

The CircStat2009 toolbox offers a variety of functions for performing descriptive and inferential statistics on
directional datasets. All functions take data in radians as arguments. If no special reference is given, the described
computations are more or less standard in directional statistics and can be found in any of the textbooks [11, 19, 8].

2.1 Descriptive statistics

circ mean computes the mean direction of a sample α = (α1, . . . , αN ) consisting of N directional observations
αi . To this end, directions are first transformed to unit vectors in the two-dimensional plane by

ri =
(

cosαi
sinαi

)
.

After this transformation, the vectors ri are vector averaged by

r̄ =
1
N

∑
i

ri.

The vector r̄ is called mean resultant vector. To yield the mean angular direction ᾱ, r̄ is transformed using
the four quadrant inverse tangent function. For ease of implementation in Matlab, the first transformation is
implemented exploiting the identity

cosα+ i sinα = exp(iα)

and the second transformation uses the Matlab function angle.
If supplied with a second optional input argument w of the same length as α, circ mean assumes that the data

has been binned with bin center i equal to αi and wi equal to the number or fraction of samples falling into bin
i. If a second and third output argument are requested, circ mean computes the 95% confidence intervals on the
estimation of ᾱ using circ meanconf.

circ median computes the median direction α̂ of a sample α. To compute the median, the diameter of the circle
that devides the data into two equal sized groups is found. The median is the endpoint of the diameter closer to the
center of mass of the data. If n is even, it lies half-way between the two closest datapoints. If n is odd, it falls on
one of the data points. This function does not take binned data for obvious reasons.

circ r computes the length of the mean resultant vector r̄ as described above by

R = ‖r̄‖.

Again, a second optional argument w allows for the treatment of binned data. However, the estimation of R is
biased when binned data is used. This bias can be corrected for by supplying the bin spacing d as a third optional
argument and computing a correction factor [19, equ. 26.16]

c =
d

2 sin(d/2)
,

setting Rc = cR.
The length of the mean resultant vector is a crucial quantity for the measurement of circular spread or hypothesis

testing in directional statistics.
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circ var computes the circular variance defined as

S = 1−R.

Note that the circular variance s lies in the interval [0, 1]. If all samples point into the same direction, the
resultant vector will have length close to 1 and the circular variance will correspondingly be small. If the samples
are spread out evenly around the circle, the resultant vector will have length close to 0 and the circular variance
will be close to maximal. On the other hand, a circular variance of 1 does not imply a uniform distribution around
the circle. Optionally, circ var can be used with binned data (see discussion for circ r).

circ std computes the angular deviation defined as

s =
√

2(1−R).

Note that the angular deviation lies in the interval [0,
√

2]. Alternatively, the function computes the circular
standard deviation

s0 =
√
−2 lnR

ranging from 0 to∞. Generally, the first measure is preferred, as it is bounded, but the two measures deviate
little [19]. Optionally, circ std can be used with binned data (see discussion for circ r).

circ axialmean computes both the direction and the length of the of the mean resultant vector r̄ for axial (or
multi-modal) data, using the form

r̄m =
1
N

∑
k

exp (imαk) .

In this case, the mean direction ᾱm = 1
mangle(r̄m) and the length rm = ‖r̄m‖.

This method is the same as computing the resultant vector, except that angles are multiplied by the number of
modesm (for axial datam = 2). The effect of the multiplication is to rotate vector components that would normally
cancel out so that they instead overlap. For example, consider a sample with two modes, one at 0, and the other
near π. Normally, the mean resultant would have zero length and arbitrary direction. After multiplying by m = 2,
the components near 0 are still there, and the components at π have been rotated over to 2π (which modulo 2π is
0). The components overlap and the statistics of the resultant vector more adequately captures the structure of the
data. See also: [2, equations 1.6.1, 2.3.5, 17.2.7].

circ moment computes the p-th trigonometric moment of a sample. The mean direction and the mean resultant
length (described above) are the angular and amplitude component of the first trigonometric moment. Higher
trigonometric moments are useful in calculations of skewness and kurtosis. In general, the p-th moment can be
defined as [8, equation 2.20]

mp = C̄p + iS̄p = Rpe
ir̄p

where

C̄p =
1
n

n∑
i=1

cos pαi, S̄p =
1
n

n∑
i=1

sin pαi.

circ corrcc computes a correlation coefficient ρcc between two directional random variables α and β [11, p.
176] by

ρcc =
∑
i sin(αi − ᾱ) sin(βi − β̄)√∑
i sin2(αi − ᾱ) sin2(βi − β̄)

,

where ᾱ denotes the mean direction computed by circ mean. A p-value for ρcc is computed by considering the
test statistic

t =
√
f · ρcc,

which is distributed as standard normal under the null hypothesis of zero correlation. The term f is given by

f = N

∑
i sin2(αi − ᾱ)

∑
i sin(βi − β̄)∑

i sin2(αi − ᾱ) sin2(βi − β̄)
.
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circ corrcl computes a correlation coefficient ρcl between a directional random variable αand a linear variable
x, by correlating x with cosα and sinα individually . To this end, we define the correlation coefficients rsx =
c(sinα, x),rcx = c(cosα, x) and rcs = c(sinα, cosα), where c(x, y) is the Pearson correlation coefficient. Then
the circular-linear correlation is given by [19, equ. 27.47]

ρcl =

√
r2
cx + r2

sx − 2rcxrsxrcs
1− rcs2

.

A p-value for ρcl is computed by considering the test statistic Nρ2, which χ2-distributed with 2 degrees of
freedom.

circ confmean compute the (1− δ)%-confidence intervals for the population mean [19, equations 26.23-26.26].

For R ≤ 0.9 and R >
√
χ2
δ,1/2N , we compute

d = arccos


√

2N(2R2
n−Nχ2

δ,1)

4N−χ2
δ,1

Rn

 ,
where Rn = R ·N . For R > 0.9, we compute

d = arccos


√
N − (N2 −R2

n) exp(χ2
δ,1/N)

Rn

 .
In both cases, the lower confidence limit of the mean is found by L1 = ᾱ− d and the upper confidence limit by

L2 = ᾱ+ d.

2.2 Inferential statistics
circ rtest performs the Rayleigh test for circular uniformity. It asks how large the resultant vector length R must
be to indicate a non-uniform distribution. Under the null hypothesis H0 the population is uniformly distributed
around the circle. Under the alternative hypothesis HA the population is not distributed uniformly around the
circle. Importantly, the Rayleigh test assumes that the sample is generated from a von Mises distribution (see
below). The approximate p-value under H0 is computed as [19, equation 27.4]

P = exp
[√

(1 + 4N + 4(N2 −R2
n)− (1 + 2N)

]
,

where again Rn = R ·N .

circ otest performs the “omnibus test” or Hodges-Ajne test for circular uniformity as an alternative to the
Rayleigh test [19, equation 27.7-27.9]. It works well for unimodal, biomodal and multimodal distributions and
detects therefore general deviations from uniformity. The null and alternative hypothesis are the same as for the
Rayleigh test. If the conditions of the Rayleigh test are met, it is more powerful than the Hodges-Ajne test.

To conduct the test, the smallest number m that occur within a range of 180 degree is computed. Under the null
hypothesis, the probability of observing an m this small or smaller is

P =
1

2N−1
(N − 2m)

(
N
m

)
,

which can for N > 50 be approximated by

P '
√

2π
A

exp
(
−π2/(8A2)

)
,

where A = π
√
N

2(N−2m) .
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circ raotest performs Rao’s spacing test for circular uniformity as an additional alternative to the Rayleigh test
[2]. The null and alternative hypothesis are the same as for the Rayleigh test. It is more powerful than alternatives
when the data are neither unimodal nor axially bimodal. It is based on the idea that in an ordered sample α =
(α1, . . . , αN ) with αi+1 > αi sampled from a uniform distribution the differences between successive samples
should be approximately 360◦

N . Its test statistic is defined as

U =
1
2

N∑
i=1

|di − λ|,

with di = αi+1−αi, dN = 360◦− (αN −α1) and λ = 360◦

N [2, equations 4.6.1-4]. The distribution of U is fairly
complex, and we use tabled values instead of the full distribution.

circ vtest performs the V test for circular uniformity which is similar to the Rayleigh test but where under the
alternative hypothesis HA the data is not uniformly distributed around the circle, but has a mean direction ᾱA. The
test statistic is computed as [19, equation 27.5]

V = Rn cos(ᾱ− ᾱA),

where Rn as above. Approximate critical values for the quanitity

V

√
2
N

can be obtained from the one tailed normal deviate Zα(1). Note that not rejecting the null hypothesis in this case
leaves it open whether the cause for that failure was insufficient evidence for non-uniformity or a different mean
direction than ᾱA.

circ mtest performs a one sample test asking whether the population mean is angle equal to a specified value.
The null hypothesis H0 is that the mean angle is equal to some value ᾱ0 and the alternative hypothesis HA is that
this is not the case, i.e. ᾱ 6= ᾱ0. The test at significance level δ is performed by checking whether ᾱ0 ∈ [L1, L2],
where L1is the lower 1− δ confidence limit on the population mean and L2 the upper confidence limit.

circ medtest performs a nonparametric test of the hypothesis H0 that the median direction α̂ = α̂0 [19, section
27.3]. To this end, the number n of samples falling on either side of a diameter through α̂0 are counted. The
p-value for observing this sample under the null hypothesis is found by computing the probability of observing n
or more out of N samples falling on one side of the diameter under a binomial distribution B(N, p) with p = 0.5.

circ wwtest performs the Watson-Williams two- or multi-sample test of the null hypothesis H0 that any of s
samples share a common mean direction, i.e. ᾱ1 = · · · = ᾱs. The test statistic is calculated via [19, equation
27.14]

F = K
(N − s)

(∑s
j=1Rj −R

)
(s− 1)

(
N −

∑s
j=1Rj

) ,
where R is the mean resultant vector length across all data and Rj the mean resultant vector length computes on

the jth samples alone. The correction factor K is computed from

K = 1 +
3

8κ
,

where κ is the maximum likelihood estimate of the concentration parameter of a von Mises distribution with
resultant vector length rw, which is the mean resultant vector length of the s resultant vectors rj . The obtained
value of the test statistic is the compared to a critical value at the δ level obtained from Fδ(1),1,N−2.

The Watson-Williams test assumes underlying von Mises distributions with equal concentration parameter, but
has proven to be fairly robust against deviations from these assumptions. The sample size for applying the test
should be at least 5 for each individual sample. If binned data is used, bin widths should be no larger than 10
degree. Note that rejecting the null hypothesis only provides evidence that not all of the s samples come from a
population with equal mean direction, not if all samples have pairwise differing mean directions or evidence of
which of the samples differs.
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circ symtest performs a simple test of symmetry of the sample around the median. Under the null hypothesis
H0 the underlying distribution is symmetrical around the median, while under the alternative hypothesis HA it is
not symmetrical around the median. To test this hypothesis, the circular distance di of each point from the median
is computed. The di are then subjected to a Wilcoxon signed-rank test.

2.3 the von Mises distribution
circ vmpdf The von Mises distribution is a probability density defined as

f(φ) =
1

2πI0(κ)
eκcos(φ−θ).

The two parameters κ and θ refer to the concentration and to the mean direction, respectively. I0 is a Bessel
function. The distribution is symmetric and unimodal. As κ approaches 0, the distribution approaches a uniform
distribution on the circle. On the circle, the von Mises distribution is roughly analogous to the normal distribution.
(See also: [2, equation 15.3.1])

circ randvm Generates random angles drawn from a von Mises distribution. Parameters θ and κ define the mean
direction and concentration of the von Mises distribution to be sampled. If κ is 0, then samples are effectively
drawn from a uniform distribution.

circ vmpar Given sample angles, this will find the maximum likelihood estimates of κ̂ and θ̂ for the underlying
population distribution. For von Mises distributions, the maximum likelihood estimate of the population direction
equals the sample mean direction. Likewise, the maximum likelihood estimate of the concentration parameter
equals the concentration parameter calculated from the sample mean vector length r.

circ r2kappa / circ kappa2r Convert between resultant length r and the corresponding best fit concentration
parameter for a von Mises distribution κ̂. The relation is given by

A(κ̂) = I1(κ̂)/I0(κ̂) = r

where I1 and I0 are Bessel functions.

2.4 Miscellaneous
circ plot is a visualization tool for circular data. Supports three plotting styles: pretty, hist and regular. For a
detailed documentation, see documentation in the file.

circ dist computes a vector of length N with the distances di between the paired samples α = (α1, . . . , αN )
and β = (β1, . . . , βN ), where di = d(αi, βi).

circ dist2 computes a N ×M matrix with all pairwise distances dij of the two samples α = (α1, . . . , αN ) and
β = (β1, . . . , βM ), where dij = d(αi, βj)

ang2rad / rad2ang transform data from angular representation to radians and radians to angular representation,
respectively, by using equation 1.

circ clust Performs a simple k-means clustering on the circle. First, cluster assignments are calculated based on
the minimal distance from a cluster center. Next the two clusters with minimal distance between their centers are
merged. This process is continued until the desired number of clusters is reached. Optionally displays its progress.

3 Summary
In this report, we described the CircStat2009 toolbox for performing statistical analysis of circular and directional
data in Matlab. The functions cover a wide range of applications from descriptive statistics and inferential statistics.
We supply the reader with parametric and nonparametric methods for testing a variety of hypothesis about circular
data including ANOVA-like multisample testing. The goal of this toolbox is to make circular statistics methods
available to a wider range of researchers, especially in applied fields of biomedical research.

While the most common applications and problems in directional statistics have been thoroughly covered, two
extensions seem desirable: better support for ANOVA-like testing of multisample hypothesis in particular with
regard to the common two-factor design and density estimation techniques on the for circular data. We will include
these in future releases. The toolbox described in this document can be downloaded from
http://www.mathworks.com/matlabcentral/fileexchange/10676.
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