Promoting the participation of young researchers in *ICT FET Open*

Lyon, 26 Nov 2008

Patrice Wegener
Intro I: The bottom line of the issue

- Widespread agreement:
 - aim is to **attract, train and keep (win) the best young researchers** for science
 - **early independence** as concept is acquired.

- But: how can this be achieved with ‘FET Open’, and why is it necessary to ‘**open up**’ ‘FET Open’ to this crucial issue?

- How is the European funding architecture organized? How do the programmes view the young scientists? What is **already covered, and what still remains open**? And where precisely is a chance for ‘FET Open’ to join in?

- Which are the “**windows of opportunities**” during the life cycle of young scientists? I.e. at which moment should an adequate offer be extended, and what exactly should it look like? What would be the **expectations of ‘FET Open’ vis-à-vis YR**? And, in turn, which would be the YRs’ **expectations**?
Intro II: Defining the ‘young researcher’ phase

- No age restriction
- Post-Doc years
- PhD phase
 - Post-Doc phase
- Young Post-Doc (0 - ~ 3 y)
- Senior young Post-Doc (< 10 y)
- Marie Curie ‘young researcher’ definition
- International profile building
- Early independence
Intro III: Opportunities and pitfalls

- Avoiding duplication of instruments for YR that are already available in the funding landscape on national and international level.

- Pursuing ‘FET Open’ (purpose driven): “Exploring new horizons”, “ICT relevant, visionary (...), long-term research of fundamental nature”, “bright new ideas of high risk”, “breakthrough”, “paradigm shift”. Or: bringing such ideas to the “maturity level” (ICT WP 2007, p56).

- Aiming at instruments where both quality of research projects and training features go hand in hand (research projects are no training field in the first place).

- Taking into account tight limitation of programme budgets that imply suggestions limited to simple budget reallocation w.r.t. to ICT and People/Marie Curie

- Following set of suggestions aims at different levels of YR involvement and builds on different cost/budget intensities (discussion basis); 2 and 3 are long term oriented (FP8?), 1 and 4 may perhaps be implemented more quickly
0. Overview

I. FET Junior Researcher Grants

II. FET-HFSP Young Investigator

III. Long term Fellowships (1-2 years)

IV. Improving participation in CP & CSA
I. FET Junior Researcher Grants

Basic idea: looking out for a dynamic and light project driven opportunity

- small Collaborative projects (CP)
- 2-3 partners (incl. industry)
- ‘small budget’ projects, low administrative / management efforts
- allowing for highly innovative YR to combine efforts on a European level.
- ‘purpose’ driven, bottom-up
- applications single-stage, max. 15 pages project description
I. FET Junior Researcher Grants

• **Pros:**

Via combining *dynamic* research and training, this instrument offers YR the opportunity to get involved in FET on their *own responsibility* (‘early independence’). This makes the instrument an explicit ‘window of opportunity’ for YR. The grants would support the visibility of YR and **foster early networking with other labs and industry.**

• **Cons:**

YR are already involved in regular CP (but on which level?). In addition, there are similar team and project orientated funding programmes for innovative YR (ERC, HFSP, DFG). This would be a **highly cost-intensive** YR action.
II. FET-HFSP Young Investigator

Basic idea: “EMBO” model - young investigators to collaborate and network

• 5 years’ fixed amount contribution for international networking activities (15,000 € p.a.)
• junior independent group leaders with FET relevant projects
• ‘purpose’ driven, bottom-up
• instrument: CSA (Coordination and Support Action)
• open for participation of ERC Grantees working in ICT FET Open related fields
II. FET-HFSP Young Investigator

• **Pros:**

Dynamic instrument to **cross-link the best YR** that already transit to ‘independence’ and which work in various FET Open relevant fields, interdisciplinary.

• **Cons:**

Avoiding overlaps with existing funding programmes (EMBO YIP).
III. Long term Fellowships (1-2 years)

Basic idea: (re-)introducing the individual component with ‘FET Open’ orientation

• ‘long term vision’ (FP8)
• postdoctoral level (alternatively min. 4 years postgraduate experience)
• ‘purpose’ driven, bottom-up
• co-organised with Marie Curie, joint FET Open Marie Curie label
III. Long term Fellowships (1-2 years)

• **Pros:**

Adding to Marie Curie a scientifically and technically more efficient FET suited feature and would foster a long term involvement of individual YR in the FET-Scheme.

• **Cons:**

Instrument would possibly mean a reduction of the Marie Curie funding for ‘bottom up’ research. Furthermore, it might be seen as a FP5 reminiscence.
IV. Improving programme participation

Basic idea: better usage of existing instruments and lines, introduction of new features

- Part B of **small CP**: include section ‘Integration of young researchers’ (1 page)
- Evaluation criteria: including ‘Quality of involvement of YR’ into implementation section
- **Large scale CP**: strengthen involvement or YR training modules, curriculum co-operation with universities w.r.t. innovative courses or study programmes
- **CSA**: slot for training conferences (with Marie Curie label) or conference modules with training aspects

... and finally, the *Research Training Networks*’ blues.
IV. Improving participation in CP & CSA

• **Pros:**

The implementation of these ideas is easy and mostly cost neutral.

• **Cons:**

Collaborative Research Projects are not ‘training programmes’.
Thank you for your attention!

Patrice Wegener
Max Planck EU Regional Office Baden-Württemberg
c/o MPI Biological Cybernetics
Spemannstr. 41
72076 Tübingen

http://eu.tuebingen.mpg.de