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Support Vector Channel
Selection in BCI

Thomas Navin Lal, Michael Schröder,
Thilo Hinterberger, Jason Weston,

Martin Bogdan, Niels Birbaumer, and
Bernhard Scḧolkopf

Abstract. Designing a Brain Computer Interface
(BCI) system one can choose from a variety of fea-
tures that may be useful for classifying brain activity
during a mental task. For the special case of classi-
fying EEG signals we propose the usage of the state
of the art feature selection algorithms Recursive Fea-
ture Elimination [1] and Zero-Norm Optimization [2]
which are based on the training of Support Vector Ma-
chines (SVM) [3]. These algorithms can provide more
accurate solutions than standard filter methods for fea-
ture selection [4].
We adapt the methods for the purpose of selecting EEG
channels. For a motor imagery paradigm we show that
the number of used channels can be reduced signifi-
cantly without increasing the classification error. The
resulting best channels agree well with the expected
underlying cortical activity patterns during the mental
tasks.
Furthermore we show how time dependent task spe-
cific information can be visualized.

1 Introduction

Most Brain Computer Interfaces (BCIs) make use of
mental tasks that lead to distinguishable EEG signals
of two or more classes. For some tasks the relevant
recording positions are known, especially when the
tasks comprise motor imagery, e.g. the imagination of
limb movements, or the overall activity of large parts
of the cortex that occurs during intentions or states of
preparation and relaxation.
For the development of new paradigms whose neural
correlates are not known in such detail, finding opti-
mal recording positions for use in BCIs is challeng-
ing. New paradigms can become necessary when mo-
tor cortex areas show lesions, for the increase of the
information rate of BCI systems or for robust multi-
class BCIs. If good recording positions are not known,
a simple approach is to use data from as many as possi-
ble EEG electrodes for signal classification. The draw-
back of this approach is that the extend to which fea-

ture selection and classification algorithms overfit to
noise increases with the number of task-irrelevant fea-
tures, especially when the ratio of training points and
number of features is small. In addition it is difficult to
understand which part of the brain generates the class
relevant activity.
We show that the selection of recording positions can
be done robustly in the absence of prior knowledge
about the spatial distribution of brain activity of a men-
tal task. Specifically we adapt the state of the art fea-
ture selection methodsZero-Norm Optimization (l0-
Opt) andRecursive Feature Elimination (RFE) to the
problem of channel selection and demonstrate the use-
fulness of these methods on the well known paradigm
of motor imagery.

The paper is structured as follows: section 2 con-
tains the experimental setup, the task, and the basic
data preprocessing. In section 3 the feature selection
methods and the classification algorithm are described.
Results are given in section 4 and the final section con-
cludes.

2 Data acquisition

2.1 Experimental setup and mental task

We recorded EEG signals from eight untrained right
handed male subjects using 39 silver chloride elec-
trodes (see figure 1). The reference electrodes were
positioned at TP9 and TP10. The two electrodes Fp2
and 1cm lateral of the right eye (EOG) were used to
record possible EOG artifacts and eye blinks while two
fronto-temporal and two occipital electrodes were po-
sitioned to detect possible muscle activity during the
experiment. Before sampling the data at 256 Hz an
analog bandpass filter with cutoff frequencies 0.1 Hz
and 40 Hz was applied.

The subjects were seated in an armchair at 1m dis-
tance in front of a computer screen. Following the
experimental setup of [5] the subjects were asked to
imagine left versus right hand movements during each
trial. With every subject, we recorded 400 trials during
one single session. The total length of each trial was 9
seconds. Additional inter-trial intervals for relaxation
varied randomly between 2 and 4 seconds. No outlier
detection was performed and no trials were removed
during the data processing at any stage.

Each trial started with a blank screen. A small fix-
ation cross was displayed in the center of the screen
from second 2 to 9. A cue in the form of a small arrow
pointing to the right or left side was visible for half a
second starting with second 3. In order to avoid event
related signals in later processing stages only data from
seconds 4 to 9 of each trial was considered for further
analysis. Feedback was not provided at any time.
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Figure 1: The position of 39 EEG electrodes used for data
acquisition are marked in solid black circles. The two refer-
encing electrodes are marked in dotted circles.

2.2 Pre analysis

As Pfurtscheller and da Silva have reported [6] that
movement related desynchronization of theµ-rhythm
(8-12 Hz) is not equally strong in subjects and might
even fail for various reasons (e.g. because of too
short inter-trial intervals that prevent a proper re-
synchronization) we performed a pre analysis in order
to identify and exclude subjects that did not show sig-
nificantµ-activity at all.

For seven of the eight subjects theµ-band was only
slightly differing from the 8-12 Hz usually given in
the EEG literature. Only one subject showed scarcely
any activity in this frequency range but instead a rec-
ognizable movement related desynchronization in the
16-20Hz band.

Restricted to only the 17 EEG channels that were
located over or close to the motor cortex we calculated
the maximum energy of theµ-band using the Welch
method [7] for each subject. This feature extraction
resulted in one parameter per trial and channel and ex-
plicitly incorporated prior knowledge about the task.

The eight data sets consisting of the Welch-features
were classified with linear SVMs (see below) includ-
ing individual model selection for each subject. Gen-
eralization errors were estimated by 10-fold cross val-
idation. As for three subjects the pre analysis showed
very poor error rates close to chance level their data
sets were excluded from further analysis.

2.3 Data preprocessing

For the remaining five subjects the recorded 5s win-
dows of each trial resulted in a time series of 1280
sample points per channel. We fitted an autoregres-

Figure 2: Linear SVM. For non separable data sets, slack
variablesξi are introduced. The thick points on the dashed
lines are called support vectors (SVs). The solution for the
hyperplaneH can be written in terms of the SVs. For more
detail see section 3.1.

sive (AR) model of order3 to the time series1 of all
39 channels using forward backward linear prediction
[8]. The three resulting coefficients per channel and
trial formed the new representation of the data.

The extraction of the features did not explicitly
incorporate prior knowledge although autoregressive
models have successfully been used for motor related
tasks (e.g. [5]). However, they are not directly linked
to theµ-rhythm.

2.4 Notation

Let n denote the number of training vectors (trials) of
the data sets (n = 400 for all five data sets) and let
d denote the data dimension (d = 3 · 39 = 117 for
all five data sets). The training data for a classifier is
denoted asX = (x(1), ..., x(n)) ∈ Rn×d with labels
Y = (y1, ..., yn) ∈ {−1, 1}n. For the task used in this
papery = −1 denotes imagined left hand movement,
y = 1 denotes imagined right hand movement. The
termsdimensionand featureare used synonymously.
For l ∈ N, l > 1 the setM−j ⊂ Rl−1 is obtained from
a setM ⊂ Rl by removing the dimensionj from every
pointm ∈ M (canonical projection).

3 Feature selection and classification
methods

Feature selection algorithms can be characterized as
either filter or wrapper methods [9]. They select or
omit dimensions of the data depending on a perfor-
mance measure.

1For this choice we compared different model orders. For
a given order we fitted an AR-model to each EEG sequence.
After proper model selection a Support Vector Machine with
10-fold cross validation (CV) was trained on the coefficients.
Model order 3 resulted in the best mean CV error.
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The problem of how to rate the relevance of a feature
if nonlinear interactions between features are present
is not trivial, especially since the overall accuracy
might not be monotonic in the number of features used.
Some feature selection methods try to overcome this
problem by optimizing the feature selection for sub-
groups of fixed sizes (plus-l take-away-r search) or by
implementing floating strategies (e.g. floating forward
search) [9]. Only few algorithms like e.g. genetic al-
gorithms can choose subgroups of arbitrary size during
the feature selection process. They have successfully
been used for the selection of spatial features [10] in
BCI applications but are computationally demanding.

For the application of EEG channel selection, it is
necessary to treat a certain kind of grouped features
homogenously: numerical values belonging to one and
the same EEG channel have to be dealt with in a con-
generic way so that a spatial interpretation of the so-
lution becomes possible. We adapted the state of the
art feature selection methodsZero-Norm Optimization
and Recursive Feature Elimination (RFE) as well as
the Fisher Correlation to implement these specific re-
quirements. The first two algorithms are closely re-
lated to Support Vector Machines (SVM).

3.1 Support Vector Machines (SVMs)

The Support Vector Machine is a relatively new clas-
sification technique developed by V. Vapnik [3] which
has shown to perform strongly in a number of real-
world problems, including BCI [11]. The central idea
is to separate dataX ⊂ Rd from two classes by find-
ing a weight vectorw ∈ Rd and an offsetb ∈ R of a
hyperplane

H : Rd → {−1, 1}
x 7→ sign(w · x + b)

with the largest possible margin2, which apart from be-
ing an intuitive idea has been shown to provide theo-
retical guaranties in terms of generalization ability [3].
One variant of the algorithm consists of solving the
following optimization problem:

min
w∈Rd

‖w‖2 + C
n∑

i=1

ξ2
i (1)

s.t. yi(w · x(i) + b) ≥ 1− ξi (i = 1, ..., n)

The parametersξi are called slack variables and en-
sure that the problem has a solution in case the data is
not linear separable3 (see figure 2). The margin is de-
fined asγ(X, Y,C) = 1/‖w‖2. In practice one has to

2Is X linear separable the margin of a hyperplane is the
distance of the hyperplane to the closest pointx ∈ X.

3Is the data linear separable the slack variables can im-
prove the generalization ability of the solutions.

trade-off between a low training error, e.g.
∑

ξ2
i , and

a large marginγ. This trade-off is controlled by the
regularization parameterC. Finding a good value for
C is part of the model selection procedure. If no prior
knowledge is availableC has to be estimated from the
training data, e.g. by using cross validation. The value
2/C is also referred to as theridge. For a detailed dis-
cussion please refer to [12].

3.2 Fisher Criterion (FC)

The Fisher Criterion determines how strongly a fea-
ture is correlated with the labels [13]. For a set
T = {t(1), ..., t(|T |)} ⊂ Rd define the mean
µj(T ) = 1

|T |
∑|T |

i=1 t
(i)
j and the varianceVj(T ) =

1
|T |

∑|T |
i=1(t

(i)
j − µj(T ))2 (j = 1, ..., d). The scoreRj

of featurej is then given by:

Rj(X) =
(µj(X+)− µj(X−))2

Vj(X+) + Vj(X−)
, (2)

with X+ := {xi ∈ X | yi = 1} andX− similarly.
The rank of a channel is simply set to the mean score
of the corresponding features.

3.3 Zero-Norm Optimization (l0-Opt)

Westonet. al. [2] recently suggested to minimize the
zero-norm4 ‖w‖0 := cardinality({wj : wj 6= 0}) in-
stead of minimizing thel1-norm orl2-norm as in stan-
dard SVMs (cp. equation (1)):

min
w∈Rd

‖w‖0 + C‖ξ‖0 (3)

s.t. yi(w · x(i) + b) ≥ 1− ξi (i = 1, ..., n).

The solution of this optimization problem is usually
much sparser than the solution of problem (1). Thus
feature selection is done implicitly. Unfortunately the
problem has shown to be NP-hard but the authors de-
veloped an iterative method to approximate the solu-
tion. In case the solutionw∗ has less than the desired
number of zero entries, the remaining features{j} can
be ranked according tow∗

j (as in one iteration step of
RFE).
In the original version of the method the features are
multiplied with a scaling factor during each iteration.
Once a scaling factor is zero, the corresponding fea-
ture is removed. We adapt this method in the following
way: the scaling factors of the features corresponding
to a channel are substituted by their mean. Thus all
features of one channel are either removed completely
(the channel is removed) or all features remain. As in
the case of SVM and RFE, the parameterC has to be
estimated from the training data in case prior knowl-
edge is not available.

4The zero-norm of a vectorv is equal to number of
nonzero entries ofv.
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3.4 Recursive Feature Elimination (RFE)

This feature selection method was prosed by Guyon et
al. [14] and is based on the concept of margin max-
imization. The importance of a dimension is deter-
mined by the influence it has on the margin of a trained
SVM. Let W be the inverse of the margin:

W (X, Y,C) :=
1

γ(X, Y,C)
= ‖w‖2

At each iteration one SVM is trained and the features
ĵ which minimize|W (X, Y,C) − W (X−j , Y −j , C)|
are removed (typically that is one feature only); this
is equivalent to removing the dimensionsĵ that corre-
spond to the smallest|wj |. We adapt this method for
channel selection in the following way:
Let Fk ⊂ {1, ..., d} denote the features from channel
k. Similar to the reformulation of the Fisher Criterion
and the Zero-Norm-Optimization we define for each
channelk the scoresk := 1

|Fk|
∑

l∈Fk
|wl|. At each

iteration step we remove the channel with the lowest
score. The parameterC has to be estimated from the
training data, if no prior knowledge is available.
For the remainder of the paper we refer to the adapted
feature selection methods as channel selection meth-
ods. Furthermore we will also refer to the adapted RFE
asRecursive Channel Elimination.

3.5 Generalization Error Estimation

For model selection purposes we estimated the gener-
alization error of classifiers via 10-fold cross valida-
tion.
If the generalization error of a channel selection
method had to be estimated, a somewhat more elab-
orated procedure was used. An illustration of this pro-
cedure is given in figure 3.
The whole data set is split up into 10 folds (F1 to F10)
as for usual cross validation. In each foldF , the chan-
nel selection (CS in figure 3) is performed based on
the train set ofF only, leading to a specific ranking of
the 39 EEG channels. For each foldF , 39 classifiers
Ch

F , h = 1, ..., 39 are trained as follows:Ch
F is trained

on theh best5 channels, respectively, of the train set of
F and tested on the corresponding channels of the test
set ofF . For each fold, this results in 39 test errors
(E1

F to E39
F ).

During the last step, the corresponding test errors
are averaged over all folds. This leads to an estimate
of the generalization error for every number of selected
channels.

5In this context,bestmeans according to the calculated
ranking of that fold.

Figure 3: Illustration of the procedure for channel selection
and error estimation using cross validation.

4 Results

4.1 Channel Selection

We applied the three channel selection methods Fisher
Criterion, Recursive Feature Elimination and Zero-
Norm Optimization introduced in section 3 to the five
data sets. As the experimental paradigm is well known
we could examine the results concerning their physio-
logical plausibility. Therefore we investigated whether
the best ranked channels are those situated over or
close to motor areas. Furthermore we analyzed if the
number of channels can be reduced without a loss of
accuracy in terms of cross validation error.
Initial to the channel selection and individually for
each subjects, the regularization parameterCs for
later SVM trainings was estimated via 10-fold cross
validation from the training data sets6.

The estimation of the generalization error for all 39
stages of the channel selection process7 was carried
out using linear SVMs as classifiers with parameters
Cs previously determined. Details about the 10-fold

6Estimating the parameter for each number of channels in
the process of channel selection might improve the accuracy.
However the chance of overfitting increases.

7In fact, methods RFE and l0-Opt perform rather a chan-
nel removalthan a channel selection.
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Figure 4: Comparison of the three channel selection meth-
odsFisher Score, RFEandl0-Opt individually for five sub-
jects and averaged over the subjects. Method RFE allows the
strongest reduction of number of channels for all subjects.

cross validation during the estimation procedure are
described in section 3.5 and figure 3.

The estimation results are depicted in figure 4. The
first five plots show the individual generalization error
for the five subjects against the different numbers of
channels chosen by the three channel selection meth-
ods. The sixth plot in the bottom right corner shows
the generalization error of the three methods averaged
over the five subjects.

Recursive Feature Elimination and Zero-Norm Op-
timization proof to be capable of selecting relevant
channels, whereas the Fisher Criterion fails for some
subjects. Especially for small numbers of channels
RFE is slightly superior over the Fisher Criterion and
Zero-Norm Optimization. For larger numbers of chan-
nels the performance of l0-Opt is comparable to RFE.
As can be seen in figure 4 it is possible to reduce the
number of EEG channels significantly using the RFE
method - for the investigated experimental paradigm

Figure 5: Idealized generalization error curve using a chan-
nel selection method in the presence of irrelevant channels.
When removing channels iteratively the classification error
decreases slightly until all irrelevant channels are removed.
Removing more channels results in an increase of error.

this can be done without a loss of classification accu-
racy. E.g. using 8 channels for subjectD yields the
same error as the error obtained using all channels. On
the data set of subjectB the cross validation error of
24.5% can be reduced to 20.75% using 12 channels
only.
It is not tractable to test all (≈ 1011) possible combi-
nations of channels to find the best combination. In
this light the 17 channels located over or close to the
motor cortex can be considered a very good solution
that is close to the optimal one. For rating the overall
accuracy of the RFE method we thus trained a classi-
fier using these 17 channels. The result averaged over
the five subjects is plotted as a baseline in the last fig-
ure. The average error rate (taken over all subjects) of
24% using 12 channels is very close to the error of the
baseline which is 23%.
Table 1 contains channel rankings, which are obtained
by applying Recursive Channel Elimination to the data
set of each subject8. As the RFE method has outper-
formed CF and l0-Opt, the rankings in table 1 were
exclusively calculated by RFE.

To interpret the table it is useful to have a closer
look at figure 5. It shows an idealized curve for an es-
timate of the generalization error when using a channel
or feature selection method. As we have also seen in
the experiments it is possible to reduce the number of
channels without a loss of accuracy. For each subject
we can obtain a heuristic estimate on the number of ir-
relevant channels from the generalization error curves
in figure 4. We underlined oneentry in each column
of table 1. The row number of that entry is an estimate
for the rank position that divides task relevant channels
from task irrelevant ones. E.g. for subjectD figure 4
shows a local minimum of the RFE generalization er-
ror curve at 10 channels. Thus the best 10 selected

8Please note that in this step cross validation was not ap-
plied.
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Table 1: RFE Ranking of 39 EEG Channels
Subjects

Rank A B C D E

1 C4 CP4 CP4 FC4 CP4

2 CP4 C3 CP3 C4 CPz

3 CP2 C4 C4 CP2 C2

4 C2 FC4 C2 CP1 FC3

5 Cz FT9 C1 C3 C4

6 FC4 FT10 CPz FC3 C1

7 FC2 CP1 CP2 C2 FCz

8 C3 C1 C3 C1 FC4

9 CP3 F6 F1 FC2 C3

10 F1 Fp2 FC1 FC1 POz

11 F2 FC1 FC2 FT10 P6

12 C1 AFz C5 FCz O10

13 FC3 C2 FT7 F2 FC1

14 CPz P6 F2 FT9 C6

15 CP1 CP2 FC3 F1 C5

16 FCz P1 C6 C5 Cz

17 P2 EOG P1 F5 CP2

18 P1 FC3 CP1 C6 O1

19 C6 Cz O1 POz O9

20 AFz C6 POz AFz TP8

21 F5 TP8 TP7 FT8 CP1

22 C5 P2 Fp2 Fp2 P1

23 FT9 POz P5 P2 F1

24 FC1 F2 P6 P1 F2

25 FT7 FC2 FC4 O10 FT7

26 POz O10 EOG O9 TP7

27 O2 O1 FCz P6 P2

28 P6 CP3 AFz O1 O2

29 EOG FCz Cz P5 FT8

30 P5 P5 FT10 EOG FT10

31 FT10 TP7 F5 Cz F5

32 Fp2 O9 TP8 CPz EOG

33 FT8 CPz P2 F6 P5

34 O1 O2 O9 O2 CP3

35 TP8 F5 O2 TP7 FC2

36 O9 FT7 O10 CP3 FT9

37 O10 F1 F6 CP4 Fp2

38 F6 FT8 FT8 FT7 AFz

39 TP7 C5 FT9 TP8 F6

The ranking of the 39 EEG channels was calculated
by the RFE method. The 17 channels over or close to
motor areas of the cortex are marked with grey back-
ground for all five subjects. Underlined rank posi-
tions mark the estimated minimum of the RFE error
curve for every subject from which on the error rate
increases prominently (see figure 4 for the individual
error curves).

channels can be used without increasing the error esti-
mate.

The positions of the 17 channels over or close to
the motor cortex were marked with a grey background.
Except for very few of them, these channels have a
high rank. For four of the subjects only few other
(non-motor) channels were ranked above the marked
minimum-error positions (see underlined ranks). For
subjectB channels FT9, FT10, and FP2 are relevant
according to the ranking. To verify this observation
we

• estimated the classification error using the seven-
teen motor channels and compared it to the er-
ror using the the motor channels plus FT9, FT10,
FP2, and EOG. Indeed by adding artefact chan-
nels the error could be reduced from24% to 21%.

• trained an SVM based on these artefact channels
only. The performance was poor: only0.55% ac-
curacy could be reached in a 10-fold CV SVM
training9.

That means that although feedback was not pro-
vided this subject showed task relevant muscle activ-
ity. However his performance was only supported by
this muscle activity. The other four subjects did not ac-
company the left/right tasks with corresponding mus-
cle movements10.
We conclude that the RFE method was capable of esti-
mating physiologically meaningful EEG channels for
the imagined left/right hand paradigm.

4.2 Visualization

The visualization of channel scores can support the
analysis of BCI experiments, reveal activation patterns
or channels carrying misleading artifacts and ease the
choice of channel subgroups.

For visualization purposes we assigned a score cal-
culated by RFE to each channel. The channels below
the underlined entries of table 1 receive a score of0.
The ones above the underlined entries are mapped to
the grey value scale according to their rank. Figures 6
and 7 show the task relevant channels for the five sub-
jects. Black regions in both plots mark channels irrel-
evant for the classification task whereas white regions
mark relevant ones.
For all subjects the informative regions are located
close to the motor cortex. SubjectD shows a clear
and symmetrical concentration of important channels.
The second column of figure 6 also shows, that sub-
ject B has additional important channels outside the

9The ridge was explicitly optimized for this test.
10This observation was supported by visual inspection and

frequency analysis of the raw EEG signal - only very little
muscle activity or other forms of artifacts could be detected.
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Figure 6: Visualization of task relevant regions for sub-
jectsA,B,D andE (one subject per column) during imagined
hand movements. The score for each channel was obtained
by using Recursive Feature Elimination (RFE) method and
is based on the full duration of 5s. The top row depicts the
view from above, the second and third row show the frontal
view and view from the back. Please see also the left column
of figure 7 for the corresponding mapping of subject C.

motor area probably resulting from muscle activity (as
discussed above).
As the generalization error was minimal for the data of
subjectC we performed a closer examination of this
data. Columns 2 to 4 of figure 7 visualize the spatial
distribution of task specific informationover time. We
split the training data into three overlapping windows
each of 2.5 seconds length. For every time window, we
applied channel selection via RFE separately. It can
be observed that the three resulting score patterns vary
from window to window. This could be due to an in-
stable channel selection. Another reason might be that
the task related activation pattern changes over time.
Both issues will be addressed in future experiments.

5 Conclusion

We adapted two state of the art feature selection algo-
rithms Recursive Feature Elimination (RFE) and Zero-
Norm Optimization (l0-Opt) as well as the Fisher Cri-
terion for the special case of EEG channel selection for
BCI applications.
The methods were applied to the paradigm of motor
imagery. We showed that both RFE and l0-Opt are ca-
pable of significantly reducing the number of channels
needed for a robust classification without an increase
of error. In our experiments, the Fisher Criterion failed
to discover satisfying channel rankings.
The reason for the decrease in performance of the
l0-Opt compared to the RFE for smaller numbers of
channels might be that on average the recursive l0-
Opt algorithm could not decrease the number of cho-
sen channels to less than 25 before the recursion con-

Figure 7: Visualization of task relevant regions for subjectC
(top, front and back view). The leftmost column shows the
scores obtained by RFE based on the complete duration of
5s. The remaining three columns show the development of
the scores over time. The rankings were obtained by apply-
ing the RFE method separately on the three shorter, overlap-
ping time windows.

verged. This means that all the remaining channels
were ranked according to the solution of only one
SVM. To overcome this shortcoming of l0-Opt we sug-
gest the following procedure: channels are reduced
with l0-Opt until the minimuml0-norm for w is ob-
tained. In a next step the remaining channels are
ranked using an iterative method like RFE instead of
relying on a single SVM solution. This combination
method was not investigated in this paper but will be
subject to future research.
Although we did not incorporate explicit prior knowl-
edge of the mental task or its underlying neural sub-
strates, channels that are well known to be important
(from a physiological point of view) were consistently
selected by RFE whereas task irrelevant channels were
disregarded. Furthermore the method revealed the use
of muscular activity for one subject.
We introduced a method to visualize the channel rank-
ings. This method can also be used to visualize the
spatial change of task relevant information over time.

The results suggest that the RFE method can be used
for new experimental paradigms in future BCI research
- especially if no a priori knowledge about the location
of important channels is available.
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