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Spatial Cognition: Behavioral Competences,
Neural Mechanisms and Evolutionary

Scaling

Hanspeter A. Mallot

Abstract. Spatial cognition is a cognitive ability that arose relatively early in animal evolution. It is

therefore very well suited for studying the evolution from stereotyped to cognitive behavior and the general

mechanisms underlying cognitive abilities. In this paper, I will present a de�nition of cognition in terms

of the complexity of behavior it subserves. This approach allows to ask for the mechanisms of cognition,

just as the mechanisms of simpler behavior have been addressed in neuroethology. As an example for

this mechanistic view of cognitive abilities, I will discuss the view{graph theory of cognitive maps. I will

argue that spatial cognitive abilities can be explained by scaling up simple, stereotyped mechanisms of

spatial behavior. This evolutionary view of cognition is supported by two types of empirical evidence:

Robot experiments show that the simple mechanisms are in fact su�cient to produce cognitive behavior

while behavioral experiments with subjects exploring a computer graphics environment indicate that

stereotyped and cognitive mechanisms co{exist in human spatial behavior.

1 Introduction: Cognition and

Neurobiology

In the theory of brain function and behavior, two

major traditions can be distinguished. The �rst

one, which may be called the computational ap-

proach, attempts to describe mental processes as

judgements, symbols or logical inference. The sec-

ond one focusses on issues such as control, sig-

nal ow in networks or feedback; I will call it

the systems approach here. In the �eld of per-

ception, this distinction is rather old, dating back

at least to Hermann von Helmholtz' \unconscious

inferences" (Helmholtz 1896) on the one side, and

to the Gestaltists on the other. Both approaches

have di�erent merits. Computational approaches

lend themselves easily for modelling behavioural

competences including psychophysical data (Marr

1982, Mallot 1998), without considering the bio-

physical processes in the brain that underly these

competences. Systems explanations, on the other

hand, are closer to the neurophysiological corre-

lates of mental processes and are therefore useful

in modelling neural activities. Bridging the gap

between signal ow in the brain and behavioural

competences is not easy, however.

Both approaches can be applied to all aspects

of brain function. This is quite clear for per-

ception, and the respective approaches have been

mentioned above. It is much less clear for higher

competences such as cognition; indeed, cognition

is often seen as being accessible only with the com-

putational approach. The assumed relation of cog-

nition and computation is two{fold: �rst, cogni-

tion is often de�ned introspectively as inference

and problem solving, i.e. by notions taken from

the computational approach. Second, the explana-

tions o�ered by the computational approach even

for simple processes such as early vision are often

formulated in cognitive terms. In fact, Helmholtz'

notion of \unconscious inferences" is a clear exam-

ple of this. For these reasons, researchers who are

not interested in the computational approach tend

to ignore cognition, whereas others, focussing on

computation, might think that all central process-

ing is somehow cognitive.

There is good reason to believe that this con-

fusion can be avoided if cognition is de�ned as an

observable behavioral phenomenon, not as a mech-

anism of mental processing (Mallot 1997). In the

following sections of this paper, I shall argue that

cognition can be de�ned by the complexity of the

behavioral competences it supports (Section 2),

that mechanisms for non{cognitive behavior can

be scaled up to bring about cognitive competences

(Section 3), and that in human spatial cognition,

cognitive and non{cognitive levels of competence

coexist simultaneously (Section 4). I hope that

the results and ideas reviewed in this paper make
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a contribution to an evolutionary theory of higher{

level behavior.

2 Complexity of Behavior

2.1 Four levels

Behavior of animals (or robots) may be divided

into a number of levels of complexity four of which

are illustrated in Fig. 1. In the simplest stimulus{

reaction situations found already in individual

cells, sensor and e�ector cannot be distinguished

or are so close together that no neural transmis-

sion is necessary. This level is not illustrated in

Figure 1. By the separation of sensor and e�ec-

tor, reex{like behaviors arise (level 1 in Fig. 1).

Clear illustrations of the surprisingly rich behav-

ioral abilities of systems endowed with such simple

machinery are given in the thought experiments of

Braitenberg (1984). The most commonly known

example is probably his \vehicle 3b", a platform

with two sensors in front and two drives in the rear

receiving inhibitory input from the sensor located

on the opposite (\contralateral") side of the vehi-

cle. If the sensors respond to stimuli originating

from certain sources (e.g., light bulbs), this sys-

tem will avoid the sources since the sensor closer

to the source will receive stronger input; in turn,

the motor on the side of the source will turn faster,

resulting in a turn away from the source. In a cor-

ridor, the same mechanism will result in centering

behavior. Other behaviors that can be realized by

this simple stimulus{response wiring are \attack-

ing" of sources, or approach and \docking".

The second level is reached when sensory infor-

mation from various sensors is integrated by in-

terneurons or interneuron networks. New sensory

input interacts with the activity pattern in the in-

terneurons which forms a kind of working mem-

ory. An instructive example of spatio{temporal

integration without longterm memory is naviga-

tion by path integration. This type of navigation

behavior can be implemented already on level 2,

by continuously updating a representation of the

starting point of a path with the instantaneous

motion of the agent (see also below).

Learning can be de�ned as the change of behav-

ior due to prior experience. On level three, this

is achieved by plastic modi�cations of the spatio{

temporal processing. Examples include the �ne{

tuning of motor programs in skill learning, the

association of landmarks (snapshots) and move-

ments in route navigation, or the learning of trig-

ger stimuli. Memory is long{term, but the result-

ing changes of behavior are still stereotyped in the

sense that one stimulus{response pair is simply re-

placed by another.

Cognitive behavior (level 4 in Figure 1) is char-

acterized by goal{dependent exibility. The be-

havior of the agent does no longer depend exclu-

sively on the sensory stimulus and whatever prior

experience it might have, but also on the goal

which is currently pursued. In the case of navi-

gation, the crucial situation is the behavior at a

bifurcation where one of two motion decisions can

be chosen. If the agent is able to do this correctly

with respect to a distant, not currently visible

goal, we will call its behavior cognitive. The dif-

ference between route memory and cognitive maps

has been lucidly elaborated by O'Keefe & Nadel

(1987).

There are also higher levels of complexity in be-

havior which are not included in Fig. 1. As an

example, consider the behavioral de�nition of con-

sciousness used in the work of Povinelli & Preuss

(1995): in their view, consciousness is involved if

behavioral decisions are based on assumptions of

what some other individual might know or plan to

do.

2.2 Application to spatial behavior

Spatial behaviour includes a wide variety of com-

petences that can be classi�ed based on the type

and extend of memory they require; for reviews

see O'Keefe & Nadel (1978), Collett (1992), Trul-

lier et al. (1997) and Franz & Mallot (1998). With

respect to the four levels of complexity given in

Fig. 1, the following classi�cation can be given:

Without memory (no remembered goal).

Simple tasks like course stabilization, e�cient

grazing and foraging, or obstacle avoidance can

be performed without memory. Traditionally,

memory{free orientation movements are called

\taxes" (K�uhn 1919; see also Tinbergen 1951,

Merkel 1980). An example is illustrated in Fig. 2a:

an observer with two laterally displaced sensors

can travel a straight line between two sources by

balancing the sensory input in both detectors. A

possible mechanism for this behavior is of course

Braitenberg's (1984) \vehicle 3b" discussed al-

ready in Section 2.1. While detailed classi�cations

of various types of taxis (see Merkel 1980 for re-

view) have not proved very useful in experimental

research, the general concept is central to the un-

derstanding of the mechanisms of behavior.

Working memory of a home position is re-

quired for path integration (Fig. 2b). Current ego-

motion estimates are vectorially added to an ego-
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Figure 1: Four levels of complexity of behavior. Level 1 allows reex{like behavior based on the wiring and the
current sensory input. Level 2 includes spatio{temporal processing of inputs arriving at di�erent sensors and at
di�erent times. Learning is introduced at Level 3, by allowing for plasticity of the spatio{temporal processing.
Except for this plasticity, behavior is still determined completely by the sensory input. At level 4, one sensory
input may elicit di�erent behaviors depending on the current goal of the agent. For further explanations see text.

centric representation of the start position thus

that the current distance and direction of the start

point are always available. This memory is of the

working memory type since the places visited or

the path travelled are not stored (see Maurer &

S�eguinot, 1995, for review).

Long{term memory is involved in landmark{

based mechanisms, which use a memory of sensory

information characteristic of a given place (\local

position information"). In guidance, motions are

performed such as to achieve or maintain some re-

lation to the landmarks. In the example depicted

in Fig. 2c, a so{called snapshot taken at the right

position is stored in memory. By comparing the

current view (visible from position A in Fig. 2c)

to the stored reference view (position B), a move-

ment direction can be calculated that leads to an

increased similarity of current and stored snapshot

(Cartwright & Collett, 1982; Franz et al. 1998b).

A second type of landmark based navigation

uses a slightly richer memory. In addition to the

snapshot characterizing a place, an action is re-

membered that the observer performes when rec-

ognizing the respective snapshot. In the sim-

plest case, these actions are movements into spe-

ci�c directions (Fig. 2c), but more complicated

behaviours such as wall following could also be

attached to snapshot recognition (e.g., Kuipers

& Byun, 1991). We will refer to this mecha-

nism as \recognition{triggered response" (Trullier

et al. 1997). Chains of recognition{triggered re-

sponses allow the agent to repeat routes through

a cluttered environment. Note that recognition{

triggered responses act much like the socalled sign

or trigger stimuli (in German: Schl�usselreize) for

innate behavior studied in classical ethology (Tin-

bergen 1951, Lorenz 1978).

Declarative memory is required to plan and

travel di�erent routes composed of pieces and

steps stored in the memory. At each step, the

movement decision will depend not only on the

current landmark information, but also on the goal
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Figure 2: Basic mechanisms of spa-
tial behavior. a. Tropotaxis. s1
and s2 denote sources that can be
sensed by the agent. b. Path inte-
gration. S start position; (r; ') cur-
rent position of start point in ego-
centric coordinates. c. Guidance.
The circles surrounding the vehicles
symbolize the visual array of the re-
spective position; l1; :::; l4 are land-
marks. The \snapshot" visible at
position B has been stored. At a
location A, movement is such that
the currently visible snapshot will
become more similar to the stored
one. d. In recognition{triggered

response memory contains both a
snapshot and an action associated
with it. When the snapshot is rec-
ognized in A, an action such as a
turn by some remembered angle is
executed.

the navigator is pursuing. Following O'Keefe &

Nadel (1978), we use the term cognitive map for

a declarative memory of space; a cognitive map in

this sense does not necessarily contain metric in-

formation nor does it have to be two{dimensional

or \map{like" in a naive sense.

3 The view{graph approach to

cognitive maps

In this section, we present a minimalistic theory

of a cognitive map in terms of a graph of rec-

ognized views and movements leading the agent

from one view to another. For a full account of

this theory, see Sch�olkopf & Mallot (1995). The

view{graph generalizes the route memory given as

a chain of recognition{triggered responses to a cog-

nitive map. A further generalization to open en-

vironments using also a guidance mechanism has

been presented by Franz et al. (1998a).

3.1 Places, views, and movements

Consider a simple maze composed of places

p1; :::; pn and corridors c1; :::; cm (Fig. 3a). One

way to think of this maze is a graph where the

places are the nodes and the corridors are the

edges. We consider all corridors to be direc-

tional but allow for the existence of two corridors

with opposite directions between any two nodes.

When exploring this maze, the observer generates

a sequence of movement decisions de�ning a path

through the maze. In doing so, he encounters a se-

quence of views from which he wants to construct

a spatial memory. In order to study the relation

of views, places and movements, we make the fol-

lowing simplifying assumptions. First, we assume

that there is a one{to{one correspondence between

directed corridors and views. All views are distin-

guishable and there are no \inner views" in a place

that do not correspond to a corridor. Second, one

movement is selected from a �nite (usually small)

set at each time step.

With these assumptions, we can construct the

view{graph that an observer will experience when

exploring a maze (Fig. 3b,c). Its elements are:

� The nodes of the view{graphs are the views

vp, which, from the above assumption, are

simply identical to the corridors in the place{

graph.

� The edges of the view{graph indicate tem-

poral coherence: two views are connected, if

they can be experienced in immediate tem-

poral sequence. The edges are labelled with

the movements resulting in the corresponding

view sequence.

The resulting adjacency matrix with movement la-

bels is depicted in Fig. 3c. Note that all edges

starting from the same node will have di�erent

movement labels. The unlabelled version of the
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Figure 3: a. Simple maze shown as a directed graph with places pi and corridors cj . b. Associated view{graph
where each node vi corresponds to one view, i.e. one directed connection in the place graph. Only the edges
corresponding to locomotions (\go{labels") are shown. Simpler plots of b. are possible but not required for our
argument. c. Adjacency matrix of the view{graph with labels indicating the movement leading from one view
to another. Go{labels (involving a locomotion from one place to another): gl (go left), gr (go right), gb (go
backward). Turn{labels (e.g., probing of corridors): tl (turn left), tr (turn right), to (stay).
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Figure 4: Wiring diagram of the neural network.
(f1; :::; fJ): feature vector corresponding to current
view. m1; :::; mK : motion input. v1; :::; vN : view
cells. The dots in the view cell distal parts (\den-
drites") symbolize synapitc wieights. a. Input weights
�nj : fj ! vn subserve view recognition. b. Map layer
weights �ni : vi ! vn represent connections between
views. They can be modi�ed by facilitating weights
�k;ni (c.), indicating that view vn can be reached from
vi by performing movement mk.

view{graph de�ned here is the interchange graph

(e.g., Wagner 1970) of the place{graph.

The view{graph contains the same information

as the place{graph. In fact, the place{graph can

be recovered from the view{graph since each place

corresponds to a complete bipartite subgraph of

the view{graph (for a proof, see Sch�olkopf & Mal-

lot 1995). Using the view{graph as a spatial mem-

ory, however, is a more parsimonious solution.

Computation is simpli�ed in two points: First,

in order to construct a view{graph memory, it is

not necessary to decide which views belong to the

same place. Second, when reading out the labelled

view{graph, the labels can be used directly as mo-

tion commands. This is due to the fact that in the

view{graphs, labels are speci�ed in an ego{centric

way (e.g., \left", \right", etc.). In contrast, in

a place{graph memory, labels have to be world

centered (\north", \south", etc.). In order to de-

rive movement decisions from world{centered la-

bels, an additional reference direction or compass

would be required.

3.2 Learning mazes from view sequences

A neural network for the learning of view{graphs

from sequences of views and movements is shown

in Fig. 4; for details see Sch�olkopf & Mallot (1995).

The network consists of one layer of \view{cells"

(vn in Fig. 4) and a mixed auto{ and heteroas-

sociative connectivity. View input enters the net-

work as a feature vector (fj in Fig. 4). For each

view{cell vn, a set of input weights �nj subserves

view recognition. The input weights � are learned

during exploration of the maze by a competitive

learning rule: if unit vi is the most active unit at

time t (the \winner" neuron), its input weights will

be changed in a way such that next time the same

stimulus occurs, the unit will react even stronger.

This learning rule is similar to the one introduced

by Kohonen (1982) for the self{organization of fea-

ture maps. Unlike the self{organizing feature map,

learning does not spread to neighboring neurons in

our network. Thus, adjacency in our network will

not reect view similarity.

View{recognition is facilitated by neighborhood
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information or expectations implemented by the

feedback connections shown in Fig. 4b. If view cell

vi is active at a time t, it will activate other view

cells by means of the \map{weights" �ni. These

map weights thus increase the probablity that a

unit connected to the previous winner unit will be

the most active one in the next time step. Map

weights reect the adjacency in the view{graph.

Map weights are learned by the simple rule that

the weight connecting the past and the present

winner unit will be increased in each time step.

The labels of the view{graph are implemented

in the network by a set of \facilitating weights"

�k;ni shown in Fig. 4c. They receive input from

a set of movement units mk whose activity rep-

resents the movement decisions (\left", \right" or

some �ner sampling) of the agent. If a movement

is performed, the according movement cell (mk,

say) will be active. If a positive weight �k;ni has

been learned, the map weight �ni will be facili-

tated. By this mechanism, the activity bias dis-

tributed to all neighbors of unit vi by the map

weights will be focussed to the one neighbor that

can in fact be reached by the present movement.

During learning, the faciliating weight �k;ni is set

to some constant value if movement mk coincided

with the last increase of �ni; otherwise, �k;ni is

zero.

Some simulation results obtained with this neu-

ral network include the following:

Convergence. For the toy{maze of Fig. 3a, a

network with 8 input lines and 20 view cells

(no movement input) converges in 60 presentation

steps. By this time, view speci�cities together

with the approriate map{layer connections have

evolved.

View Recognition. The fead{back connections

in the network (Fig. 4b) help recognize the views.

If noise is added to the views, the map layer

weights reduce the signal{to{noise ratio required

for recognition by a factor of about 2 (3 dB). This

indicates that the topological structure stored in

the map layer weights is used to distinguish simi-

lar, but distant views.

Maze Reconstruction. From the weight ma-

trix, we derive an estimate of the adjacency ma-

trix A of the view graph by deleting the all{

zero rows and columns, thresholding the remain-

ing entries, and suitable reordering of the rows

and columns. Using the reconstruction method

described in Sch�olkopf & Mallot (1995), the under-

lying place{graph could be recovered after about

20 learning steps. This is due to a redundancy

of the view{graph: each place corresponds to an

complete bipartite subgraph consisting of the en-

tries and exits of the place. Thus, if view a is con-

nected to views b and c and view d is connected to

view b, a connection from view d to view c can be

predicted. From this property of the view-graph,

optimal strategies for further exploration of the

maze can be derived.

Robot Navigation. A modi�ed Khepera robot

was used to explore a hexagonal maze by Mallot

et al. (1995). The robot was equipped with \two{

pixel{vision". i.e. two infra{red sensors looking

downward to the textured oor. The sequence of

black and white signals obtained when approach-

ing a junction was used as view input to the net-

work. The robot was able to explore a maze of

12 places and 24 \views" in about an hour. After-

wards, shortest paths to all views could be planned

and travelled.

3.3 View{graphs in open environments

The theory presented so far applies to mazes, i.e.

environments with discrete decision points and

strong movement restrictions. In oder to apply

the view{graph approach to open environments,

two problems have to be addressed: First, dis-

crete points or centers have to be de�ned based

on sensory saliency and strategic importance (e.g.,

gateways). Second, a homing mechanism has to be

implemented that allows the agent to approach the

centers from a certain neighborhood or catchment

area.

View{based solutions to both problems have

been presented by Franz et al. (1998a,b). An agent

starts the exploration of a maze by recording the

view visible from its initial position. During explo-

ration, the agent continuously monitors the di�er-

ence between the current view of the environment

and the views already stored in memory. If the dif-

ference exceeds a threshold, a new view is stored;

in the view{graph, this new view is connected to

the previously visited one. The second problem,

approaching a familiar view, is solved by scene{

based homing (see Fig. 2c): From a comparison

of current and stored view, the agent calculates a

movement direction in which to move in order to

increase the similarity between stored and current

view. During exploration, this second mechanism

is also used for \link veri�cation": if the agent en-

counters a view similar to one stored in its mem-

ory, it tries to home to this view. If homing is

successful, i.e. if stored and curred view get su�-

ciently similar, a link is added to the view{graph.

The mechanism has been tested with a robot us-
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Figure 5: Aerial view of Hexatown.
The white rectangle in the left fore-
ground is view 15, used as \home"{
position in our experiments. The
aerial view was not available to the
subjects.

ing a panoramic vision device navigating an arena

with model houses.

At �rst glance, the view{graph approach might

not seem natural for open environments. However,

in a view{based scheme, the manifold of all pic-

tures obtainable from all individual positions and

viewing directions in the arena (the \view mani-

fold") cannot be stored completely. The sketched

exploration scheme is an e�cient way to sample

the view{manifold and represent it by a graph

whose mesh size is adapted to the local rate of im-

age change, i.e. to the information content of the

view{manifold. The threshold for taking a new

snapshot has to be set in a way to make sure that

the catchment areas of adjacent nodes have su�-

cient overlap.

4 Mechanisms of human spatial

behavior

We have tested the view{based approach to cogni-

tive maps in a series of behavioral experiments us-

ing the technology of virtual reality (B�ultho� et al.

1997, van Veen et al. 1998). The basic structure of

the experimental environment, called Hexatown, is

depicted in Fig. 5 (Gillner 1997, Gillner & Mallot

1998). It consists of a hexagonal raster of streets

where all decision points are three{way junctions.

Three buildings providing landmark information

are located around each junction. Subjects can

move through the environment by selecting \bal-

listic" movement sequences (60 degree turns or

translations of one street segment) by clicking the

buttons of a computer mouse (see Gillner & Mal-

lot, 1998, for details). Areal views are not avail-

able to the subjects. In the version appearing in

Fig. 5, the information given to the subjects is

strictly view{based, i.e. at any one time, no more

than one of the landmark objects is visible.

The most important results obtained with the

Hexatown environment are the following:

Map knowledge. Subjects can acquire map

knowledge in a virtual maze. In a series of search

tasks where subjects were released at some posi-

tion and had to �nd a landmark shown to them

as a print{out on a sheet of paper, subjects were

able to infer the shortest ways to the goal in the

later search tasks (Gillner & Mallot, 1998). Each

individual search corresponded to a route learning

task; the advantage for later search tasks indicates

that some goal{independent knowledge was trans-

ferred from the known routes to the novel tasks,

which is an indication of map knowledge in the

sense of O'Keefe & Nadel (1978). Other indica-

tions of map knowledge were the subjects' ability

to estimate distances in the maze and the sketch

maps drawn as the last part of the experiment.

Stereotyped behavior. In addition to map

knowledge, subjects have also a more stereo-

typed form of knowledge, i.e. associations between

views and movements, or recognition{triggered re-

sponses (Gillner & Mallot 1998). By evaluating

the sequences of views and movement decisions

generated by the subjects when navigating the

maze, we found a clear tendency to simply repeat

the previous movement decision when returning to

an already known view. This implies that subjects

use the strategy of recognition{triggered response,

which is a stereotyped strategy useful in route nav-

igation.

Place vs. view. In systematic experiments with

landmark transpositions, we could show that

recognition{triggered response is triggered by the

recognition of individual objects, not of the con-

�gurations of objects making up a place (Mallot

& Gillner 1998). After learning a route, each ob-

7



ject together with its retinal position when viewed

from the decision point (left peripheral, central,

right peripheral) is associated with a movement

triggered by the recognition of this object. When

objects from di�erent places are recombined in

a way that their associated movement votes are

consistent, no e�ect in subjects' performance was

found. If however, objects are combined in incon-

sistent ways (i.e. if their movement votes di�er),

subjects get confused and the number of erroneous

motion decisions increases. It is interesting to note

that this result is di�erent from �ndings in guid-

ance tasks (Poucet 1993, Jacobs et al. 1998), where

the con�guration of all landmarks at a place seems

to be stored in memory.

Interaction of cues. In order to study di�erent

types of landmark information, we added distal

landmarks to the environment, placed on a moun-

tain ridge surrounding Hexatown (Steck & Mallot

1998). In this situation, various strategies can be

used to �nd a goal: subject could ignore the dis-

tant landmarks alltogether, they could rely on the

distant ones exclusively, or they could use both

types in combination. We tried to identify these

strategies by replacing the distant landmarks after

learning, so that di�erent patterns of movement

decisions can be expected for each of the above

strategies. We found that di�erent strategies are

used by di�erent subjects and by the same sub-

ject at di�erent decision points. When removing

one landmark type from the maze after learning,

subjects who had relied on this landmark type ear-

lier were still able to use the previously neglected

type. This indicates that both types of informa-

tion were present in memory but one was ignored

in the cue{conict situation.

5 Discussion: Evolutionary scaling

of spatial behavior

The theoretical and experimental work gathered

in this paper is motivated by the following ideas:

1. Spatial behavior includes a fair number of dif-

ferent competences, ranging from stereotyped

orientation behavior to way{�nding and path

planning, and on to communication about

space.

2. These competences and their underlying

mechanisms form a hierarchy not only in the

sense of increasing complexity but also in

the sense of the evolution of behavior. Sim-

ple mechanisms can be scaled{up to realize

more complex competences (see also Mallot

et al., 1992, for a discussion of \preadapta-

tions" in the evolution of intelligent systems).

We have shown that recognition{triggered re-

sponse can be used as a buidling block for a

cognitive map and we would like to suggest

as a working hypothesis that this relation re-

ects the course of evolution.

3. In this mechanistic/evolutionary view, the

distinction between stereotyped and cognitive

behavior, clear{cut as it may seem when look-

ing af Figure 1, looses much of its strength.

If there are evolutionary connections between

recognition{triggered response and cognitive

maps, why shouldn't they coexist in the same

navigating system? Our data from the Hexa-

town experiment show that this is in fact the

case.
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