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Abstract

This thesis develops two Bayesian learning methods relying on Gaussian processes and a
rigorous statistical approach for evaluating such methods. In these experimental designs
the sources of uncertainty in the estimated generalisation performances due to both vari-
ation in training and test sets are accounted for. The framework allows for estimation of
generalisation performance as well as statistical tests of significance for pairwise compar-
isons. Two experimental designs are recommended and supported by the DELVE software

environment.

Two new non-parametric Bayesian learning methods relying on Gaussian process priors
over functions are developed. These priors are controlled by hyperparameters which set
the characteristic length scale for each input dimension. In the simplest method, these
parameters are fit from the data using optimization. In the second, fully Bayesian method,
a Markov chain Monte Carlo technique is used to integrate over the hyperparameters. One
advantage of these Gaussian process methods is that the priors and hyperparameters of the

trained models are easy to interpret.

The Gaussian process methods are benchmarked against several other methods, on regres-
sion tasks using both real data and data generated from realistic simulations. The ex-
periments show that small datasets are unsuitable for benchmarking purposes because the
uncertainties in performance measurements are large. A second set of experiments provide
strong evidence that the bagging procedure is advantageous for the Multivariate Adaptive
Regression Splines (MARS) method.

The simulated datasets have controlled characteristics which make them useful for under-
standing the relationship between properties of the dataset and the performance of different
methods. The dependency of the performance on available computation time is also inves-
tigated. It is shown that a Bayesian approach to learning in multi-layer perceptron neural
networks achieves better performance than the commonly used early stopping procedure,
even for reasonably short amounts of computation time. The Gaussian process methods

are shown to consistently outperform the more conventional methods.
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Chapter 1

Introduction

The ability to learn relationships from examples is compelling and has attracted interest in
many parts of science. Biologists and psychologists study learning in the context of animals
interacting with their environment; mathematicians, statisticians and computer scientists
often take a more theoretical approach, studying learning in more artificial contexts; people
in artificial intelligence and engineering are often driven by the requirements of technolog-
ical applications. The aim of this thesis is to contribute to the principles of measuring
performance of learning methods and to demonstrate the effectiveness of a particular class
of methods.

Traditionally, methods that learn from examples have been studied in the statistics commu-
nity under the names of model fitting and parameter estimation. Recently there has been
a huge interest in neural networks. The approaches taken in these two communities have
differed substantially, as have the models that are studied. Statisticians are usually con-
cerned primarily with interpretability of the models. This emphasis has led to a diminished
interest in very complicated models. On the other hand, workers in the neural network field
have embraced ever more complicated models and it is not unusual to find applications with
very computation intensive models containing hundreds or thousands of parameters. These

complex models are often designed entirely with predictive performance in mind.

Recently, these two approaches to learning have begun to converge. Workers in neural
networks have “rediscovered” statistical principles and interest in non-parametric modeling
has risen in the statistics community. This intensified focus on statistical aspects of non-

parametric modeling has brought an explosive growth of available algorithms. Many of
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these new flexible models are not designed with particular learning tasks in mind, which
introduces the problem of how to choose the best method for a particular task. All of these
general purpose methods rely on various assumptions and approximations, and in many
cases it is hard to know how well these are met in particular applications and how severe
the consequences of breaking them are. There is an urgent need to provide an evaluation
of these methods, both from a practical applicational point of view and in order to guide

further research.

An interesting example of this kind of question is the long-standing debate as to whether
Bayesian or frequentist methods are most desirable. Frequentists are often unhappy about
the setting of priors, which is sometimes claimed to be “arbitrary”. Even if the Bayesian
theory is accepted, it may be considered computationally impractical for real learning prob-
lems. On the other hand, Bayesians claim that their models may be superior and may avoid
the computational burden involved in the use of cross-validation to set model complexity.

It seems doubtful that these disputes will be settled by continued theoretical debate.

Empirical assessment of learning methods seems to be the most appealing way of choosing
between them. If one method has been shown to outperform another on a series of learning
problems that are judged to be representative, in some sense, of the applications that we
are interested in, then this should be sufficient to settle the matter. However, measuring
predictive performance in a realistic context is not a trivial task. Surprisingly, this is a
tremendously neglected field. Only very seldom are conclusions from experimental work

backed up by statistically compelling evidence from performance measurements.

This thesis is concerned with measuring and comparing the predictive performance of learn-
ing methods, and contains three main contributions: a theoretical discussion of how to
perform statistically meaningful comparisons of learning methods in a practical way, the
introduction of two novel methods relying on Gaussian processes, and a demonstration of
the assessment framework through empirical comparison of the performance of Gaussian
process methods with other methods. An elaboration of each of these topics will follow

here.

I give a detailed theoretical discussion of issues involved in practical measurement of pre-
dictive performance. For example, many statisticians have been uneasy about the fact that
many neural network methods involve random initializations, such that the result of learn-
ing is not a unique set of parameter values. However, once these issues are faced it is not
difficult to give them a proper treatment. The discussion involves assessing the statistical

significance of comparisons, developing a practical framework for doing comparisons and



measures ensuring that results are reproducible. The focus of Chapter 2 is to make the goal
of comparisons precise and to understand the uncertainties involved in empirical evalua-
tions. The objective is to obtain a good tradeoff between the conflicting aims of statistical
reliability and practical applicability of the framework to computationally intensive learning

algorithms. These considerations lead to some guidelines for how to measure performance.

A software environment which implements these guidelines called DELVE — Data for Eval-
uating Learning in Valid Experiments — has been written by our research group headed
by Geoffrey Hinton. DELVE is freely available on the world wide web!. DELVE contains
the software necessary to perform statistical tests, datasets for evaluations, results of ap-
plying methods to these datasets, and precise descriptions of methods. Using DELVE one
can make statistically well founded simulation experiments comparing the performance of
learning methods. Chapter 2 contains a discussion of the design of DELVE, but implemen-

tational details are provided elsewhere [Rasmussen et al. 1996].

DELVE provides an environment within which methods can be compared. DELVE in-
cludes a number of standardisations that allow for easier comparisons with earlier work
and attempts to provide a realistic setting for the methods. Most other attempts at mak-
ing benchmark collections provide the data in an already preprocessed format in order to
heighten reproducibility. However, this approach seems misguided, if one is attempting to
measure the performance that could be achieved in a realistic setting, where the prepro-
cessing could be tailored to the particular method. To allow for this, definitions of methods
in DELVE must include descriptions of preprocessing. DELVE provides facilities for some
common types of preprocessing, and also a “default” attribute encoding to be used by

researchers who are not primarily interested in such issues.

In Chapter 3 detailed descriptions of several learning methods that emphasize reproducibil-
ity are given. The implementations of many of the more complicated methods involve
choices that may not be easily justifiable from a theoretical point of view. For example,
many neural networks are trained using iterative methods, which raises the question of how
many iterations one should apply. Sometimes convergence cannot be reached within rea-
sonable amount of computational effort, for example, and sometimes it may be preferable
to stop training before convergence. Often these issues are not discussed very thoroughly
in the articles describing new methods. Furthermore authors may have used preliminary
simulations to set such parameters, thereby inadvertently opening up the possibility of bias

in simulation results.

!The DELVE web address is: http://www.cs.utoronto.ca/~delve
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In order to avoid these problems, the learning methods must be specified precisely. Methods
that contain many parameters that are difficult to set should be recognized as having this
handicap, and heuristic rules for setting their parameters must be developed. If these rules
don’t work well in practice, this may show up in the comparative studies, indicating that
this learning method would not be expected to do well in an actual application. Naturally,
some parameters may be set by some initial trials on the training data, in which case this
would be considered a part of the training procedure. This precise level of specification is
most easily met for “automatic” algorithms, which do not require human intervention in

their application. In this thesis only such automatic methods will be considered.

The methods described in Chapter 3 include methods originating in the statistics com-
munity as well as neural network methods. Ideally, I had hoped to find descriptions and
implementations of these methods in the literature, so that I could concentrate on testing
and comparing them. Unfortunately, the descriptions found in the literature were rarely
detailed enough to allow direct application. Most frequently details of the implementations
are not mentioned, and in the rare cases where they are given they are often of an un-
satisfactory nature. As an example, it may be mentioned that networks were trained for
100 epochs, but this hardly seems like a principle that should be applied universally. On
the other hand it has proven extremely difficult to design heuristic rules that incorporate a
researcher’s “common sense”. The methods described in Chapter 3 have been selected par-
tially from considerations of how difficult it may be to invent such rules. The descriptions

contain precise specifications as well as a commentary.

In Chapter 4 I develop a novel Bayesian method for learning relying on Gaussian processes.
This model is especially suitable for learning on small data sets, since the computational
requirements grow rapidly with the amount of available training data. The Gaussian process
model is inspired by Neal’s work [1996] on priors for infinite neural networks and provides
a unifying framework for many models. The actual model is quite like a weighted nearest

neighbor model with an adaptive distance metric.

A large body of experimental results has been generated using DELVE. Several neural net-
work techniques and some statistical methods are evaluated and compared using several
sources of data. In particular, it is shown that it is difficult to get statistically significant
comparisons on datasets containing only a few hundred cases. This finding suggests that
many previously published comparisons may not be statistically well-founded. Unfortu-
nately, it seems hard to find suitable real datasets containing several thousand cases that

could be used for assessments.



In an attempt to overcome this difficulty in DELVE we have generated large datasets from
simulators of realistic phenomena. The large size of these simulated datasets provides a high
degree of statistical significance. We hope that they are realistic enough that researchers will
find performance on these data interesting. The simulators allow for generation of datasets
with controlled attributes such as degree of non-linearity, input dimensionality and noise-
level, which may help in determining which aspects of the datasets are important to various
algorithms. In Chapter 5 I perform extensive simulations on large simulated datasets in
DELVE. These simulations show that the Gaussian process methods consistently outperform
the other methods.



Introduction




Chapter 2

Evaluation and Comparison

In this chapter I discuss the design of experiments that test the predictive performance of
learning methods. A large number of such learning methods have been proposed in the
literature, but in practice the choice of method is often governed by tradition, familiarity
and personal preference rather than comparative studies of performance. Naturally, pre-
dictive performance is only one aspect of a learning method; other characteristics such as
interpretability and ease of use are also of concern. However, for predictive performance a
well developed set of directly applicable statistical techniques exist that enable comparisons.
Despite this, it is very rare to find any compelling empirical performance comparisons in
the literature on learning methods [Prechelt 1996]. I will begin this chapter by defining
generalisation, which is the measure of predictive performance, then discuss possible exper-
imental designs, and finally give details of the two most promising designs for comparing

learning methods, both of which have been implemented in the DELVE environment.

2.1 Generalisation

Usually, learning methods are trained with one of two goals: either to identify an inter-
pretation of the data, or to make predictions about some unmeasured events. The present
study is concerned only with accuracy of this latter use. In statistical terminology, this is
sometimes called the expected out-of-sample predictive loss; in the neural network literature
it is referred to as generalisation error. Informally, we can define this as the expected loss

for a particular method trained on data from some particular distribution on a novel (test)
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case from that same distribution.

In the formalism alluded to above and used throughout this thesis the objective of learning
will be to minimize this expected loss. Some commonly used loss functions are squared
error loss for regression problems and 0/1-loss for classification; others will be considered
as well. It should be noted that this formalism is not fully general, since it requires that
losses can be evaluated on a case by case basis. We will also disallow methods that use the
inputs of multiple test cases to make predictions. This confinement to fixed training sets
and single test cases rules out scenarios which involve active data selection, incremental
learning where the distribution of data drifts, and situations where more than one test case
is needed to evaluate losses. However, a very broad class of learning problems can naturally

be cast in the present framework.

In order to give a formal definition of generalisation we need to consider the sources of
variation in the basic experimental unit, which consists of training a method on a particular

set of training cases and measuring the loss on a test case. These sources of variation are

1. Random selection of test case.
2. Random selection of training set.

3. Random initialisation of learning method; e.g. random initial weights in neural net-

works.

4. Stochastic elements in the training algorithm used in the method; e.g. stochastic hill-

climbing.

5. Stochastic elements in the predictions from a trained method; e.g. Monte Carlo esti-

mates from the posterior predictive distribution.

Some of these sources are inherent to the experiments while others are specific to certain
methods such as neural networks. Our definition of generalisation error involves the expec-

tation over all these effects
Gr(n) = /L[Fri,rt,rp(Dn,x)at]p(xat)p(Dn)p(Ti)p(rt)p(Tp) dzx dt dDy, dridrydry.  (2.1)

This is the generalisation error for a method that implements the function F', when trained
on training sets of size n. The loss function L measures the loss of making the prediction

Frirerp (D,,, x) using training set D,, of size n and test input = when the true target is t. The
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loss is averaged over the distribution of training sets p(D,,), test points p(z,t) and random

effects of initialisation p(r;), training p(r;) and prediction p(t,).

Here it has been assumed that the training examples and the test examples are drawn
independently from the same (unknown) distribution. This is a simplifying assumption
that holds well for many prediction tasks; one important exception is time series prediction,
where the training cases are usually not drawn independently. Without this assumption,

empirical evaluation of generalisation error becomes problematic.

The definition of generalisation error given here involves averaging over training sets of a
particular size. It may be argued that this is unnecessary in applications where we have
a particular training set at our disposal. However, in the current study, we do empirical
evaluations in order to get an idea of how well methods will perform on other data sets with
similar characteristics. It seems unreasonable to assume that these new tasks will contain
the same peculiarities as particular training sets from the empirical study. Therefore, it
seems essential to take the effects of this variation into account, especially when estimating

confidence intervals for G.

Evaluation of G is difficult for several reasons. The function to be integrated is typically
too complicated to allow analytical treatment, even if the data distribution were known.
For real applications the distribution of the data is unknown and we only have a sample
from the distribution available. Sometimes this sample is large compared to the n for which
we wish to estimate G(n), but for real datasets we often find ourselves in the more difficult
situation of trying to estimate G(n) for values of n not too far from the available sample

size.

The goal of the discussion in the following sections is the design of experiments which allow
the generalisation error to be estimated together with the uncertainties of this estimate,
and which allow the performance of methods to be compared. The ability to estimate un-
certainties is crucial in a comparative study, since it allows quantification of the probability
that the observed differences in performance can be attributed to chance, and may thus not

reflect any real difference in performance.

In addition to estimating the overall uncertainty associated with the estimated generalisa-
tion error it may sometimes be of interest to know the sizes of the individual effects giving
rise to this uncertainty. As an example, it may be of interest to know how much variability
there is in performance due to random initialisation of weights in a neural network method.

However, there are potentially a large number of effects which could be estimated — and
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to estimate them all would be rather a lot of work. In the present study I will focus on one
or two types of effects that are directly related to the sensitivity of the experiments. These
effects will in general be combinations of the basic effects from eq. (2.1). The same general
principles can be used in slightly modified experimental designs if one attempts to isolate

other effects.

2.2 Previous approaches to experimental design

This section briefly describes some previous approaches to empirical evaluation in the neural
network community. These have severe shortcomings, which the methodologies discussed

in the remainder of this chapter will attempt to address.

Perhaps the most common approach is to use a single training set D,,, where n is chosen
to be some fraction of the total number of cases available. The remaining fraction of the
cases are devoted to a test set. In some cases an additional validation set is also provided;
this set is also used for fitting model parameters (such as weight-decay constants) and is
therefore in the present discussion considered to be part of the training set. The empirical
mean loss on the test set is reported, which is an unbiased and consistent estimate of the
generalisation loss. It is possible (but not common practice) to estimate the uncertainty
introduced by the finite test set. In particular, the standard error due to this uncertainty
on the generalisation estimate falls with the number of test cases as nt_e;t/ 2, Unfortunately
the uncertainty associated with variability in the training set cannot be estimated — a fact

which is usually silently ignored.

The above simple approach is often extended using n-way cross-testing. Here the data is
divided into n equally sized subsets, and the method is trained on n—1 of these and tested on
the cases in the last subset. The procedure is repeated n times with each subset left out for
testing. This procedure is frequently employed with n = 10 [Quinlan 1993]. The advantage
that is won at the expense of having to train 10 methods is primarily that the number of
test cases is now increased to be the size of the entire data set. We may also suspect that
since we have now trained on 10 (slightly) differing training sets, we may be able to estimate
the uncertainty in the estimated Gr(n). However, this kind of analysis is complicated by
the fact that the training sets are dependent (since several training sets include the same
training examples). In particular, one would need to model how the overlapping training

sets introduce correlations in the performance estimates, which seems very difficult.
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Recently, a book on the StatLog project appeared [Michie et al. 1994]. This is a large
study using many sources of data and evaluating 20 methods for classification. In this
study, either single training and test sets or n-way cross-testing was used. The authors also
discuss the possible use of bootstrapping for estimating performance. However, they do not
attempt to evaluate uncertainties in their performance estimates, and ignore the statistical

difficulties which their proposals entail.

In the ELENA project [Guérin-Dugué et al. 1995] simple (non-paired) analysis of categor-
ical losses is considered. Although a scheme resembling 5-way cross-testing was used, the
subsequent analysis failed to take the dependence between the training sets into account.

In the conclusions it is remarked: “

...[W]e evaluated this robustness by using a Holdout
method on five trials and we considered the minimum and maximum error by comput-
ing confidence intervals on these extrema. We obtained large confidence intervals and this

measure hasn’t been so helpful for the comparisons.”

In conclusion, these approaches do not seem applicable to addressing fundamental questions
such as whether one method generalises better that another on data from a particular task,
since they do not provide ways of estimating the relevant uncertainties. Occasionally, a
t-test for significance of difference has been used [Larsen and Hansen 1995; Prechelt 1995],
again using a particular training set and using pairing of losses of different methods on test

examples.

2.3 General experimental design considerations

The essence of a good experimental design is finding a suitable tradeoff between practicality
and statistical power. By practicality of the approach I am referring to the number of
experiments required and the complexity of these in terms of both computation time and
memory. By statistical power, I mean the ability of the tests to (correctly) identify trends
of small magnitude in the experiments. It should be obvious that these two effects can be
traded off against each other, since in general we may gain more confidence in conclusions

with more repetitions, but this becomes progressively less practical.

The practicality of an approach can be subdivided into three issues: computational time
complexity of the experiments, memory and data requirements, and computational require-
ments for the statistical test. Many learning algorithms require a large amount of compu-

tation time for training. In many cases there is a fairly strong (super-linear) dependency
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between the available number of training cases and the required amount of computation
time. However, we are not free to determine the number of training cases in the experi-
mental design, since this is regarded as being externally fixed according to our particular
interests. Thus, the main objective is to keep the number of training sessions as low as
possible. The time needed for making predictions from the method for test cases may occa-
sionally be of concern, however this requirement will scale linearly with the number of test

cases.

The data and memory considerations have different causes but give rise to similar restric-
tions in the tests. The data requirement is the total number of cases available for construct-
ing training and test sets. For real datasets this will always be a limited number, and in
many cases this limitation is of major concern. In cases where artificial data is generated
from a simulator, one may be able to generate as many test cases as desired, but for very
large sets it may become impractical to store all the individual losses from these tests (which

will be necessary when performing paired tests, discussed later in this chapter).

Finally we may wish to limit ourselves to tests whose results are easily computed from the
outcomes of the learning experiments. The analysis of some otherwise interesting experi-
mental designs cannot be treated analytically, and approximate or stochastic computation
may be needed in order to draw the desired conclusions. Such situations are probably
undesirable for the present applications, since it is often difficult to ensure accuracy or
convergence with such methods. In such cases people may find the required computational

mechanics suspect, and the conclusions will not in general be convincing.

The statistical power of the tests depends on the details of the experimental design. In
general, the more training sets and test cases, the smaller the effects that can be detected
reliably. But also the distributional assumptions about the losses are of importance. These
issues are most easily clarified through some examples. From a purely statistical point of
view, the situation is simplest when one can assume independence between experimental
observations. As an extreme case, we may consider an experimental design where a method
is trained several times using disjoint training sets, and single independently drawn test
cases. The analysis of the losses in this case is simple because the observed losses are
independent and the Central Limit theorem guarantees that the empirical mean will follow
an unbiased Gaussian distribution with a standard deviation scaling as n~'/2. However, for
most learning methods that we may wish to consider this approach will be computationally
prohibitively expensive, and for real problems where the total amount of data is limited,
such an approach is much too wasteful of data: the amount of information extracted from

each case is far too small.
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In order to attempt to overcome the impracticality of this previous design example, we may
use the same training set for multiple test cases, thereby bringing down the total number of
required training sessions. This corresponds to using (disjoint) test sets instead of individual
test cases. Computationally, this is a lot more attractive, since many fewer training sessions
are required. We extract more information per training run about the performance of the
method by using several test cases. However, the losses are no longer independent, since
the common training sets introduce dependencies, which must be accounted for in the
analysis of the design. A persistent concern with this design is that it requires several
disjoint training and test sets, which may be a problem when dealing with real data sets
of limited size. For artificially generated (and very large real) datasets, this design may be
the most attractive and its properties are discussed in the following section under the name
“hierarchical ANOVA design”.

To further increase the effectiveness of the use of data for real learning tasks, we can test
all the trained methods on all the available testing data, instead of carving up the test data
into several disjoint sets. By doing more testing, we are able to extract more information
about the performance of the method. Again, this comes at an expense of having to deal
with a more complicated analysis. Now the losses are not only dependent through common
training sets but also through common test cases. This design will be discussed in a later
section under the title “2-way ANOVA design”. This will be the preferred design for real

data sets.

The different requirement for disk-storage for the hierarchical and 2-way designs may also be
of importance. When methods have been tested, we need to store all the individual losses in
order to perform paired comparisons (discussed in detail in the next section). Although disk
storage is cheap, this requirement does become a concern when testing numerous methods
on large test sets. In this respect the hierarchical design is superior, since losses for more

test cases can be stored with the same disk requirements.

Attempts can be made to further increase the effectiveness (in terms of data) of the tests.
Instead of using disjoint training sets, one may reuse cases in several training and test sets.
The widely used n-way cross-testing mentioned in the previous section is an example of
such a design. There are no longer any independencies in these designs, and it becomes
hard to find reasonable and justifiable assumptions about how the performance depends
on the composition of the training sets. In traditional n-way cross-testing the data is split
into n subsets, and one could attempt to model the effects of the subsets individually and
neglecting their interactions, but this may not be a good approximation, since one may

expect the training cases to interact quite strongly. These difficulties deterred us from
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Overall mean y

Means g; for I training sets

Individual losses y;;

Figure 2.1: Schematic diagram of the hierarchical design. In this case there are I = 4 disjoint
training sets and I = 4 disjoint test sets each containing J = 3 cases. Since both training and test
sets are disjoint, the average losses for each training set ; are independent estimates of the expected
loss p.

using these designs. It is possible that there is some way of overcoming the difficulties
and this would certainly be of importance if one hopes to be able to use small datasets
for benchmarking. It should be noted that when n-way cross-testing is usually used in the
literature, one does not attempt to estimate uncertainties associated with the performance

estimates. In such cases it is not easy to justify the conclusions of the experiments.

2.4 Hierarchical ANOVA design

The simplest loss model that we will consider is the analysis of variance (ANOVA) in the
hierarchical design. In this loss model, the learning algorithm is trained on I different
training sets. These training sets are disjoint, i.e., a specific training case appears only in a
single training set. Associated with each of the training sets there is a test set with J cases.

These test sets are also disjoint from one another and disjoint from the training sets.

We train the method on each of the [ training sets and for each training set we evaluate the
loss on each case in the corresponding test set. A particular training set and the associated
test cases will be referred to as an instance of the task in the following. We assume that
the losses can be modeled by

Yij = 1+ a; + &5 (2.2)

Here y;; is the loss on test case j from test set ¢ when the method was trained on training
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set 7. The a; and ¢;; are assumed Normally and independently distributed with
a; NN(O,O‘%) €ij N./\/'(O,Ug). (2.3)

The p parameter models the mean loss which we are interested in estimating. The a; vari-
ables are called the effects due to training set, and can model the variability in the losses
that is caused by varying the training set. Note, that the training set effects include all
sources of variability between the different training sessions: the different training examples
and stochastic effects in training, e.g., random initialisations. The ¢;; variables model the
residuals; these include the effects of the test cases, interactions between training and test
cases and stochastic elements in the prediction procedure. For some loss functions, these
Normality assumptions may not seem appropriate; refer to section 2.6 for a further discus-
sion. In the following analysis, we will not attempt to evaluate the individual contributions

to the a; and ¢;; effects.

Using eq. (2.2) and (2.3) we can obtain the estimated expected loss and one standard
deviation error bars on this estimate

2 2
o o;

1/2
i =g SDA:(—“ —) 9.4
where a hat indicates an estimated value, and a bar indicates an average. This estimated
standard error is for fixed values of the ¢’s, which we can estimate from the losses. We

introduce the following means
= = (25)
J - 1J ral

and the “mean squared error” for a and ¢ and their expectations

J
MS, = === > (@i —9)° EMS,] = Jog + 02

1 (2.6)
MSe = ——— ZZ(%’]’ —i)° E[MS,] = o?.

I(J-1) el
In ANOVA models it is common to use the following minimum variance unbiased estimators

for the o2 values which follow directly from eq. (2.6)

MS, — MS,

~2 ~2
oz = MS, o, = 7

2.7)

Unfortunately the estimate 2 may sometimes be negative. This behaviour can be explained
by referring to fig. 2.1. There are two sources of variation in g;; firstly the variation due

to the differences in the training sets used and secondly the uncertainty due to the finitely
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many test cases evaluated for that training set. This second contribution may be much
greater than the former, and empirically eq. (2.7) may produce negative estimates if the
variation in g; values is less than expected from the variation over test cases. It is customary

to truncate negative estimates at zero (although this introduces bias).

In order to compare two learning algorithms the same model can be applied to the differences

between the losses from two learning methods k& and &’
Yij = Yijk — Yijkr = B+ a; + Eij, (2.8)

with similar Normal and independence assumptions as before, given in eq. (2.3). In this
case u is the expected difference in performance and a; is the training set effect on the
difference. Similarly, €;; are residuals for the difference loss model. It should be noted that
the tests derived from this model are known as paired tests, since the losses have been paired
according to training sets and test cases. Generally paired tests are more powerful than
non-paired tests, since random variation which is irrelevant to the difference in performance
is filtered out. Pairing requires that the same training and test sets are used for every

method. Pairing is readily achieved in DELVE, since losses for methods are kept on disk.

A central objective in a comparative loss study is to get a measure of how confident we
can be that the observed difference between the two methods reflects a real difference in
performance rather than a random fluctuation. Two different approaches will be outlined

to this problem: the standard t-test and a Bayesian analysis.

The idea underlying the t-test is to assume a null hypothesis, and compute how probable the
observed data or more extreme data is under the sampling distribution given the hypothesis.
In the current application, the null hypothesis is Hy: p = 0, that the two models have
identical average performances. It may seem odd to focus on this null hypothesis, when
it would seem more natural to draw our conclusions based on p(u < 0/{y;;}) and p(p >
0[{yij}). The reasoning underlying the frequentist test of Hy is the following: if we can
show that we are unlikely to get the observed losses given the null hypothesis, then we
can presumably have confidence in the sign of the difference. Technically, the treatment of
composite hypothesis, such as H{: ;<0 is much more complicated than a simple hypothesis.
Thus, since Hy can be treated as a simple hypothesis (through exact analytical treatment
of the unknown o2 and ¢2), this is often preferred although it may at first sight seem less

appropriate.

Under the null hypothesis, Hy: u = 0, the distribution of the differences in losses and their
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partial means can be obtained from eq. (2.8), giving
yij ~ N (0,00 +02), gi ~ N (0,00 +02/J) (29)

for which the variances are unknown in a practical application. The different partial means
7; are independent observations from the above Gaussian distribution. A standard result
(dating back to Student and Fisher) from the theory of sampling distributions states if y;
is independently and Normally distributed with unknown variance, then the t-statistic
1 —-1/2
t=( 5 >~ 9)°) 2.10
J I(I—l);(yl 7) (2.10)

has a sampling distribution given by the t-distribution with /—1 degrees of freedom

2 N\ -I/2
=)

To perform a t-test, we compute the t-statistic, and measure how unlikely it would be

p(t) o <1 + (2.11)

(under the null hypothesis) to obtain the observed t-value or something more extreme.
More precisely, the p-value is
t
p=1- / p(t)dt', (2.12)
—t
for which there does not exist a closed form expression; numerically it is easily evaluated
via the incomplete beta distribution for which rapidly converging continued fractions are
known, [Abramowitz and Stegun 1964]. Notice, that the t-test is two-sided, i.e., that the
limits of the integral are +t¢, reflecting our prior uncertainty as to which method is actually
the better. If in contrast it was apriori inconceivable that the true value of u was negative
we could use a one-sided test, extending the integral to —oo and getting a p-value which

was only half as large.

Very low p-values thus indicate that we can have confidence that the observed difference is
not due to chance. Notice that failure to obtain small p-values does not necessarily imply
that the performance of the methods are equal, but merely that the observed data does not
rule out this possibility, or the possibility that the sign of the actual difference differs from
that of the observed difference.

Fig. 2.2 shows an example of the output from DELVE when comparing two methods. Here
the estimates of performances 7 and g, their estimated difference i and the standard
error on this estimate SD(ji) are given and below the two effects ¢, and d.. Finally, the

p-value for a t-test is given for the significance of the observed difference.

At this point it may be useful to note that the standard error for the difference estimate

SD(f1) is computed using fixed estimates for the standard deviations, given by eq. (2.7),
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Estimated expected loss for knn-cv-1: 357.909

Estimated expected loss for /lin-1: 397.82

Estimated expected difference: -39.9114

Standard error for difference estimate: 11.4546

SD from training sets and stochastic training: 15.3883

SD from test cases & stoch. pred. & interactions: 271.541

Significance of difference (T-test), p = 0.0399302

Based on 4 disjoint training sets, each containing 256 cases and
4 disjoint test sets, each containing 256 cases.

Figure 2.2: An example of applying this analysis to comparison of the two methods 1in-1 and
knn-cv-1 using the squared error loss function on the task demo/age/std.256 in DELVE.

where the distribution of 4 is Gaussian. However, there is also uncertainty associated
with the estimates for these standard deviations. This could potentially be used to obtain
better estimates of the standard error for the difference (interpreted as a 68% confidence
interval); computationally this may be cumbersome, since it requires evaluations of ¢ from p
in eq. (2.12) which is a little less convenient. For reasonably large values of I the differences
will be small, and our primary interest is not in these intervals but rather in the p-values

(which are computed correctly).

As an alternative to the frequentist hypothesis test, one can adopt a Bayesian viewpoint
and attempt to compute the posterior distribution of p from the observed data and a prior
distribution. In the Bayesian setting the unknown parameters are the mean difference p

and the two variances o2 and o2. Following Box and Tiao [1992] the likelihood is given by

p({yij}“‘a 0-2’ O-g) X

I3 — )? _ 2 Zj(yij - ﬂz‘)2>. (2.13)

WN—I(J—1)/2( -2 2\—1/2 .
(o2) L) oXp < 2(c2 + Jo2) 202
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We obtain the posterior distribution by multiplying the likelihood by a prior. It may not in
general be easy to specify suitable priors for the three parameters. In such circumstances
it is sometimes possible to dodge the need to specify subjective priors by using improper
non-informative priors. The simplest choices for improper priors are the standard non-

informative

p(p) o< 1 p(og) < oy p(o?) x o2, (2.14)

since the variances are positive scale parameters. In many cases the resulting posterior is
still proper, despite the use of these priors. However, in the present setting these priors do
not lead to proper posteriors, since there is a singularity at o2 = 0; the data can be explained

(i.e., acquire non-vanishing likelihood) by the o2 effect alone and the prior density for o2
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will approach infinity as o2 goes to zero. This inability to use a non-informative improper
prior reflects a real uncertainty in the analysis of the design. For small values of o2 the
likelihood is almost independent of this parameter and the amount of mass placed in this
region of the posterior is largely determined by the prior. In other words, the likelihood
does not provide much information about o2 in this region. An alternative prior is proposed
in Box and Tiao [1992], setting

p(p) 1 p(o7) x o p(o? + Jog) o< (oF + Jog) ™. (2.15)

This prior has the somewhat unsatisfactory property that the effective prior distribution
depends on J, the number of test cases per training set, which is an unrelated arbitrary
choice by the experimenter. On the positive side, the simple form of the posterior allows us

to express the marginal posterior for u in closed form

Pl i) = /0 /0 P11, 02, 02)p({yi s 02, 02) do? do?

o ay " betaig, /(a; +as) (P2, P1);

(2.16)

where betai is the incomplete beta distribution and

ap = %ZZ(%] —5)° ag= %Z(@i —p)? p= LJ; D p2 = g (2.17)
i

In fig. 2.3 the posterior distribution of x is shown for a comparison between two learning
methods. The p-value from the frequentist test in fig. 2.2 is p = 0.040 which is reasonably
close to the posterior probability that u has the opposite sign of the observed difference,
which was calculated by numerical integration to be 2.3%. These two styles of analysis
are making statements of a different nature, and there is no reason to suspect that they
should produce identical values. Whereas the frequentist test assumes that 4 = 0 and
makes a statement about the probability of the observed data or something more extreme,
the Bayesian analysis treats p as a random variable. However, it is reassuring that they do

not differ to a great extent.

There are several reasons that I have not pursued the Bayesian analysis further. The most
important reason is that my primary concern was to find a methodology which could be
adopted in DELVE, for which the Bayesian method does not seem appropriate. Firstly,
because the Bayesian viewpoint is often met with scepticism, and secondly because of
analytical problems when attempting to use priors other than eq. (2.15). Perhaps the most
promising approach would be to use proper priors and numerical integration to evaluate
eq. (2.16) and then investigate how sensitive the conclusions are to a widening of the priors.

Sampling approaches to the problem of estimating the posterior may be viable, and open
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Posterior density, p(u| {yw})

0.00 ‘ ‘
-100 -50 0 50

Performance difference, u

Figure 2.3: Posterior distribution of y when comparing the 1in-1 and knn-cv-1 methods on the
demo/age/std. 256 data for squared error loss, using eq. (2.16). By numerical integration it is found
that 2.3% of the mass lies at positive values for p (indicated by hatched area).

up interesting possibilities of being able to relax some of the distributional assumptions
underlying the frequentist t-test. However, extreme care must be taken when attempting
to use sampling methods (such as simple Gibbs sampling) where it may be hard to ensure

convergence, since this may leave the conclusions from experiments open to criticism.

2.5 The 2-way ANOVA design

The experimental setup for a 2-way design differs from the hierarchical design in that we
use all the test cases for every training session thereby gaining more information about the
performances, fig. 2.4. This is more efficient (in terms of data) which may be important
if the number of available cases is small. However, the analysis of this model is more

complicated. The loss model is:
Yij = 1+ a; + bj + €ij, (2.18)

with a; being the effects for the training sets, b; the effects for the test cases, and ¢;; their
interactions and noise. As was the case for the hierarchical design, these effects may have

several different components, but no attempt will be made to estimate these individually.
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J = 4 test cases
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Figure 2.4: Schematic diagram of the 2-way design. There are I = 3 disjoint training sets and a
common test set containing J = 4 cases giving a total of 12 losses. The partial average performances
are not independent.

We make the same assumptions of independence and normality as previously
a; N./\/'(O,O'g) b; N./\/'(O,O'g) E€ij NN(O,O’?). (2.19)

In analogy with the hierarchical design, these assumptions give rise to the following expec-
tation and standard error
. o? > 1/2

2
A~ O-a
=7 SD(M):<—I+—;+—

7 (2.20)

We introduce the following partial mean losses
1 _ 1 _ 1
y:ﬁzzyzj yi:jzyzj yj:fzyij’ (2.21)

and the “mean squared error” for a, b and € and their expectations:

MS, :I—il - (7 — 9)* E[MS,] =Jo?2 + o2
MS, :% > -9 EMSy] =107 + o

J
MS. :Wl(af—l) Z EJ: (i —9)— @i —9) — (3 —9)°  EMS.] =02 (2.22)

Now we can use the empirical values of MS,, MS, and MS; to estimate values for the o’s:

o MS,—MS. ., MS,—MS,

7.2 =MS. G = - Ca - (2.23)
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These estimators are uniform minimum variance unbiased estimators. As before, the esti-
mates for o2 and ag are not guaranteed to be positive, so we set them to zero if they are
negative. We can then substitute these variance estimates into eq. (2.20) to get an estimate

for the standard error for the estimated mean performance.

Note that the estimated standard error ¢ diverges if we only have a single training set (as is
common practice!). This effect is caused by the hopeless task of estimating an uncertainty
from a single observation. At least two training sets must be used and probably more if

accurate estimates of uncertainty are to be achieved.

Another important question is whether the observed difference between two learning pro-
cedures can be shown to be significantly different from each other. To settle this question
we again use the model from eq. (2.18), only this time we model the difference between the

losses of the two models, k and &'
Yijk — Yijk = K+ a; + bj + €5, (2.24)

under the same assumptions as above. The question now is whether the estimated overall
mean difference [ is significantly different from zero. We can test this hypothesis using a

quasi-F test [Lindman 1992], which uses the F statistic with degrees of freedom:

Fyivy = (SSy +MS.)/(MS, +MSy), where SS,, =IJ3°
v = (SSm +MS.)?/(SS?, + MS2/((I —1)(J —1))) (2.25)
vy = (MSq+MS)?/(MS;/(I — 1)+ MS;/(J — 1)).

The result of the F-test is a p-value, which is the probability given the null-hypothesis
(w = 0) is true, that we would get the observed data or something more extreme. In
general, low p-values indicates a high confidence in the difference between the performance

of the learning procedures.

Unfortunately this quasi-F test is only approximate even if the assumptions of independence
and Normality are met. I have conducted a set of experiments to clarify how accurate the
test may be. For our purposes, the most serious mistake that can be made is what is nor-
mally termed a type I error: concluding that the performances of two methods are different
when in reality they are not. In our experiments, we would not normally anticipate that
the performance of two different methods would be exactly the same, but if we ensure that
the test only rarely strongly rejects the null hypothesis if it is really true, then presumably
it will be even rarer for it to declare the observed difference significant if its sign is opposite
to that of the true difference.
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Figure 2.5: Experiments using 2 training instances, showing the empirical distribution of 1000
p-values in 100 bins obtained from fake observations from under the null hypothesis. Here a and b
give the standard deviations for the training set effect and test case effect respectively.
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Figure 2.6: Experiments using 4 training instances, showing the empirical distribution of p-values
obtained from fake observations from under the null hypothesis. Here a and b give the standard
deviations for the training set effect and test case effect respectively.
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I generated mock random losses under the null hypothesis, from eq. (2.18) and (2.19) with
u =0 and 0. = 1.0 for various values of o, and ;. The unit o, simply sets the overall scale
without loss of generality. I then computed the p-value for the F-test for repeated trials.
In fig. 2.5 and 2.6 are histograms of the resulting p-values. Ideally these histograms ought
to show a uniform distribution — the reason why these do not (apart from finite sample
effects) is due to the approximation in the F-test. The most prominent effects are the spikes
in the histograms around p = 0 and p = 1. The spikes at p = 1 are not of great concern
since the test here is strongly in favor of the (true) null hypothesis. This may lead to a
reduced power of the test, but not to type I errors. The spikes that occur around p = 0
are directly of concern. Here the test is strongly rejecting the null hypothesis, leading us to
infer that the methods have differing performance when in fact they do not. This effect is
only strong in the case where there are only 2 instances and where the training set effect is
large. With 4 instances (and 8, not shown) these problems have more or less vanished. To
avoid interpretative mistakes whenever there are fewer than 4 instances and the computed
p-value is less than 0.05, the result is reported by DELVE as p < 0.05.

2.6 Discussion

One may wonder what happens to the tests described in earlier sections when the assump-
tions upon which they rely are violated. The independence assumptions should be fairly
safe, since we are carefully designing the training and test sets with independence in mind.
The Normality assumptions however, may not be met very well. For example, it is well
known that when using squared error loss, one often sees a few outliers accounting for a
large fraction of the total loss over the test set. In such cases one may wonder whether
squared error loss is really the most interesting loss measure. Given that we insist on

pursuing this loss function, we need to consider violations of Normality.

The Normality assumptions of the experimental designs are obviously violated in the case
of loss estimation for squared error loss functions, which are guaranteed positive. This ob-
jection disappears for the comparative designs where only the loss differences are assumed
Normal. However, it is well known that extreme losses may occour — so Gaussian assump-
tions may be inappropriate. As a solution to this problem, Prechelt [1994] suggests using
the log of the losses in t-tests after removing up to 10% “outliers”. I do not advocate this
approach. The loss function should reflect the function that one is interested in minimising.
If one isn’t concerned by outliers then one should choose a loss function that reflects this.

Removing outlying losses does not appear defensible in a general application. Also, method
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A having a smaller expected log loss than method B does not imply anything about the

relation of their expected losses.

Generally, both the t-test and F-test are said to be fairly robust to small deviations from
Normality. Large deviations in the form of huge losses from occasional outliers turn out to
have interesting effects. For the comparative loss models described in the previous sections,
the central figure determining the significance of an observed difference is the ratio of the
mean difference to the uncertainty in this estimate 3/, as in eq. (2.10). If this ratio is
large, we can be confident that the observed difference in not due to chance. Now, imagine
a situation where /6 is fairly large; we select a loss difference ¢y’ at random and perturb it

by an amount £, and observe the behaviour of the ratio as we increase &

2yit& U when & — oo. (2.26)
S+ €4y - (Sy+e?  Vrol

Q|

Thus, for large values of n the tests will tend to become less significant, as the magnitude of
the outliers increase. Here we seem to be lucky that outliers will not tend to produce results
that appear significant but merely reduce the power of the test. However, this tendency
may in some cases have worrying proportions. In fact, let’s say we are testing two methods
against each other, and one seems to be doing significantly better than the other. Then
the losing method can avoid losing face in terms of significance by increasing its loss on a
single test case drastically. Because the impact on the mean is smaller than the impact on
¢ for such behaviour, the end result for large £ is a slightly worse performance for the bad
method, but insignificant test results. This scenario is not contrived; I have seen its effects

on many occasions and we shall see it in Chapter 5.

This somewhat unsatisfactory behaviour arises from the symmetry assumptions in the loss
model. If the losses for one model can have occasional huge values, and the distribution
of loss differences is assumed symmetric, it could also happen (although it didn’t) that
the other model would have a huge loss, hence the insignificant result. Clearly, this is not
exactly what we had in mind. There may be cases where these assumptions are reasonable,
but there are situations where some methods may tend to make wild predictions while

others are more conservative.

It is possible that these deficiencies could be overcome in a Bayesian setting that allowed for
non-Gaussian and skew distributional assumptions. It seems obvious that great care must
be taken when designing such a scheme, both with respect to its theoretical properties as

well as provisions for a satisfactory implementation of the required computations.
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Another idea as to how this situation could be remedied is to allow the “winning” method
to perturb the losses of the “losing” method, subject to the constraint that losses of the
losing method may only be lowered. This may in many cases alleviate the problems of
insignificance in situations plagued by extreme losses in a competing method. Several
questions remain open in respect to this approach. What is the sampling distribution for
the obtained p-values under the null hypothesis? Is there a unique (and simple) way of
figuring out which losses to perturb and by how much? I have not pursued these ideas
further, but this may well be worthwhile. For the time being, it underlines that one should
always consider both the mean difference in performance as well as the p-value for the test.
This will also help reduce the importance of very small p-values when they are associated

with negligible reductions in loss.

The loss models considered in this chapter have mainly been developed with continuous loss
functions in mind. Continuous loss functions are used when the outputs are continuous,
and tasks of classification can similarly be handled if one has access to the output class
probabilities (which are continuous). However, it is also quite common to use the binary
0/1-loss function for classification. It is not quite obvious how well the present loss models
will work for binary losses. Clearly, the assumptions about Normality are not appropriate —
but they will probably not lead to ridiculous conclusions. It does not seem straightforward to
design more appropriate models for discrete losses that allow for the necessary components
of variability. An empirical study of tests of difference in performance of learning methods

for binary classification has appeared in [Dietterich 1996].
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Chapter 3

Learning Methods

3.1 Algorithms, heuristics and methods

A prerequisite of measuring the performance of a learning method is defining exactly what
the method is. This may seem like a trivial statement, but a detailed investigation reveals
that it is uncommon in the neural network literature to find a description of an algorithm
that is detailed enough to allow replication of the experiments — see [Quinlan 1993; Thod-
berg 1996] for examples of unusually detailed descriptions. For example, an article may
propose to use part of the training data for a neural network as a validation set to mon-
itor performance while training and to stop training when a minimum in validation error
is encountered (this is known as early stopping). I will refer to such a description as an
algorithm. This algorithm must be accompanied by details of the implementation, which
I will call heuristics in order to produce a method which is applicable to practical learn-
ing problems. In this example, the heuristics would include details such as the network
architecture, the minimization procedure, the size of the validation set, rules for how to

determine whether a minimum in validation error was reached, etc.

It is often appealing to think of performance comparisons in terms of algorithms and not
heuristics. For example, one may wish to make statements like: “Linear models are su-
perior to neural networks on data from this domain”. In this case we are clearly talking
about algorithms, but as I have argued above, the empirical assessments supporting such
statements necessarily involve the methods — including heuristics. We hope that in most

cases the exact details of the heuristics are not crucial to the performance of the method, so

29
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that it will be reasonable to generalise the results of the methods to the algorithm itself. It
should be stressed that the experimental results involving methods are the objective basis of
the more subjective (but more useful) generalisations about algorithms. A more principled
approach of investigating several sets of heuristics for each algorithm would be extremely
arduous and would still not address the central issue of attempting to project experimental

results to novel applications.

I focus my attention on automatic methods, i.e., methods that can be applied without
human intervention. The reason for this choice is primarily a concern about reproducibility.
It may be argued that for practical problems one should allow a human expert to design
special models that take the particular characteristics of the learning problem into account.
This does not rule out the usefulness of automatic procedures as aids to an expert. Also, it
may be possible to invent heuristics which embody some of the “common sense” of the expert
— however, it turns out that this can be an extremely difficult endeavor. My approach is
to try to develop methods with sufficiently elaborate heuristics that the method cannot be
improved upon by a simple (well documented) modification. I require the methods to be
automatic, but I monitor the progress of the algorithm and take note of the cases where
the heuristics seem to break down, in order to be able to identify the reasons for poor

performance.

The primary target of comparisons is the predictive performance of the methods. However,
it does not seem reasonable to completely ignore computational issues, such as cpu time and
memory requirements. For many algorithms one may expect there to be a tradeoff between
predictive accuracy and cpu time — for example when training an ensemble of networks,
we may expect the performance to improve as the ensemble gets larger. 1 wish to study
algorithms that have a reasonably large amount of cpu time at their disposal. For many
practical learning problems a few days of cpu time on a fast computer would typically not
seem excessive. However, for practical reasons I will limit the computational resources to a

few hours per task.

It turns out that it is convenient from a practical point of view to develop heuristics for a
particular amount of cpu time, so that the algorithm itself can make choices based on the
amount of time spent so far, etc. As an example, consider the case of training an ensemble
of 10 networks. In general, reasonable heuristics for this problem are difficult to devise
because it may be very hard to determine how long it is necessary to train the individual
nets for. If we have a fixed time to run the algorithm, we may circumvent this problem by
simply training all nets for an equal amount of time. Naturally, it may turn out that none

of the nets were trained well in this time; indeed, it may turn out to have been better to
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train a single net for the entire allowed period of time, instead of trying an ensemble of 10
nets. I have used this convenient notion of a cpu time constraint for many of the methods,
although this may not correspond well to realistic applications. In the experiments, the
algorithms will be tested for different amounts of allowed time, and from these performance
measures it is usually possible to judge whether the algorithm could perform better given

more time.

3.2 The choice of methods

In this thesis, experiments are carried out using eight different methods. Six of these
methods will be described in the remainder of this chapter and the two methods relying on

Gaussian processes will be developed in the following chapter.

Two of the methods, a linear method called 1in-1 and a nearest neighbor method using
cross-validation to choose the neighborhood size called knn-cv-1, rely on simple ideas that
are often used for data modeling. These methods are included as a “base-line” of per-
formance, to give a feel for how well simple methods can be expected to perform on the

tasks.

Two versions of the MARS (Multivariate Regression Splines) method have been included.
This method was developed by Friedman [1991], who has also supplied the software. This
method is not described in detail in this thesis, since it has been published by Friedman.
The primary goal of including these methods is to provide some insight into how neural
network methods compare to methods developed in the statistics community with similar

aims.

The mlp-ese-1 method relies on ensembles of neural networks trained with early stopping.
This method is included as an attempt at a thorough implementation of the commonly used
early stopping paradigm. The intention of including this method is to get an impression of

the accuracy that can be expected from this widely-used technique.

The mlp-mc-1 method implements Bayesian learning in neural networks. The software for
this method was developed by Neal [1996]. This method uses Monte Carlo techniques to fit
the model and may be fairly computer intensive. Given enough time, one may expect this

method to have very good predictive performance. It should thus be a strong competitor.
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It would be of obvious interest to include many other promising methods in this study.
Algorithms which seem of particular interest include the “Evidence” framework developed
by MacKay [1992a] and methods relying on weight-decay and pruning following the ideas of
[Le Cun et al. 1990]. However, it has turned out to be very difficult to design appropriate
automating heuristics for these algorithms. The Evidence methods seem quite sensitive to
initial values of the regularising constants and may not work well for large networks. For all
the algorithms it is difficult to automatically select network sizes and reasonable numbers

of training iterations.

One of the motivations behind the DELVE project was to enable the advocates of various
algorithms themselves to present heuristics for their algorithms which could then be tested
in the DELVE environment. This avoids the common problem of people comparing their
highly tuned methods to “crummy versions” of competing methods. These considerations
have motivated my decision not to implement a large number of methods. Instead I present

results that constitute a challenge to the designers of those methods.

The following sections contain descriptions and discussions of the methods that were studied,
except for the Gaussian process methods which are discussed in the next chapter. First a
few general comments: None of the methods include detailed specifications of any kind
of preprocessing. It is assumed that the default preprocessing in DELVE is applied. For
the datasets considered in this thesis, binary values are encoded using the values 0 and
1 and real inputs are rescaled by a linear transformation such that that the training set
has zero median and unit average absolute deviation from the median. This is intended
as a robust way of centering and scaling attributes. For some problems, this scaling might
be inappropriate, e.g., if the relative scales of inputs convey important information; such
special cases are not considered further here. The performance measurements will focus on
three loss functions: squared error loss, absolute error loss and negative log predictive loss.
Evaluation of this last loss type requires that the method produces a predictive distribution,
and the loss is the negative log density of the test targets under the predictive distribution.
An interesting aspect of this loss type is that the method is forced to know about the size of
uncertainties in its predictions in order to be able to do well — in contrast to the situation

with the two other more commonly used loss functions.
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3.3 The linear model: 1in-1

The linear model is one of the most popular models used in data analysis. The reason for its
popularity is that it is both conceptually and computationally simple to fit a linear model,
and the resulting model is easily given an intuitive representation. The most prominent
deficiency of the linear model is its strong assumption about the true relationship in the
data; for data which do not conform well to a linear model, predictions may be inaccurate

and over-confident.

My implementation of the linear model is called 1in-1. Details of the implementation are
given in appendix A. The algorithm for fitting a linear model is well known and the only
heuristic necessary is a principled way of handling the situation where the linear system

used to determine the parameters of the model is close to singular.

For simplicity, I will initially assume that the targets are scalar; a simple extension to handle

multiple outputs will be given later. The linear model is defined as

m+1

fula) =Y ww;, (3.1)
=1

where w;, ¢ = 1,...,m+1 are the m+ 1 model parameters, w,,+1 being the bias and
xi, © =1,...,m are the inputs, augmented by x,,+1 = 1 to take care of the bias. The model
is fit to the training data D = {z® t@|i = 1...n} by maximum likelihood, assuming zero

mean Gaussian noise with variance o2. The likelihood is

n n . fw(x(c)) _t(C) ’
p(t(l),...,t( )‘m(l),...,x( ),w,02) occl_IleXp <— ( 902 ) > (3.2)

The maximum likelihood estimate for the weights wy, is independent of o2 and is found
by minimizing the cost function

n

Ew) =" (ful@®) —t)?, (3.3)

c=1
with respect to the model parameters. Notice that the Gaussian noise assumption gives
rise to a squared error cost function; this cost function will always be used regardless

of whatever loss function we choose to evaluate the linear model. The solution to this
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optimization problem is well known from linear algebra; if the solution is unique, then

OB (w) RN @ oy
=0 = Z(Zwlazl —t )Cﬂj =0 = wur,=A"'b
Ow; e=1 i=1 (3.4)

where A,y = sz(c)xg,c), b; = Zt(c)xgc), ii'=1,...,m+ 1.
c=1 c=1

If A is ill-conditioned, numerical evaluation of eq. (3.4) may be troublesome, and even if
fairly accurate solutions could be obtained, these would not necessarily lead to good model
predictions. In an attempt to define a method which has a high degree of reproducibility
(i.e., that would produce the same results on another machine) I propose choosing w such
that directions in input space with insufficient variation in the training set are ignored by
the model. This can conveniently be computed using singular value decomposition (SVD),
see for example [Press et al. 1992]. The decomposition is A = U diag(\;)VT, where U and
V are orthonormal matrices and ) is a vector of length m + 1 containing the singular values
of A. A regularised A~! can be computed by setting 1/X; = 0 for those i whose \; are too
small in

A~ =V diag(1/)\)UT. (3.5)

The exact criterion for regularisation is: set 1/A; = 0 whenever \; < 1075 max;(};), i.e.,
whenever A is close to singular. The constant of 107° is chosen as a rather conservative
estimate of machine precision which will not interfere when A is well-conditioned. The
condition number of A depends on the scale of the inputs, so the procedure should always be
used in conjunction with the standard normalisations provided by DELVE. The (modified)

maximum likelihood weights can then be computed as

v, = A b, (3.6)
We now derive the predictive distribution for the model. For simplicity we will derive the
predictive distribution for a fixed estimate of the noise, and only account for uncertainty in
the predictions arising from the estimated noise inherent in the data and from uncertainty

in the estimate for the weights. The noise is estimated by the standard unbiased estimator

. 1 < c N 2
6% = n_k;(fi)ML(x( ))_t()) (3'7)

where k is the number of parameters in wy, which were fit by the data; this is m + 1
minus 1 for every singular value whose reciprocal was set to zero in eq. (3.5). This estimate
may break down if there are too few training cases (if n < m + 1), in which case we can’t

compute a predictive distribution. Assuming an improper uniform prior on the weights, the
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posterior for the weights is proportional to the likelihood. Thus, the predictive distribution

for a test case with input z("+1) is
p(t(n+1) |D, x(n-{-l), 6'2)
~ /p(t(n+1)‘D’$(n+1)’ 62)p(w|D, 62)dm+1w

3.8
OC/p(t(nﬂ)‘x(nﬂ)’w,&Q)p(t(l),-..,t(")‘m(l),...7x("),w7(}2)dm+1w (3.8)
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This Gaussian integral can be solved exactly; we get a Gaussian predictive distribution with

mean and variance

f= leML (x(n-i-l))

n+1 n+1) 22 A A2
p(t" D, 2" 52) ~ N(j1,é%),  where 62 = 62 4 (@Y T A-140

The optimal point prediction for any symmetric loss function is given by fg,, (). Con-
sequently, these predictions can be used for both absolute error and squared error loss
functions. For the negative log density loss function, we compute the log of the density of

the targets under the predictive Gaussian distribution

P
logp(t("+1)|D,x(”+1), &2) = —% log(2mé?) — (,1127;) (3.10)
é

For tasks that have multiple outputs, we can re-use the decomposition of A from eq. (3.5)
for every set of weights. The maximum likelihood weights and inherent noise estimates can
be found by using eq. (3.6) and (3.7) for each target attribute, and point predictions can be
obtained from the maximum likelihood weights as before. For the log density predictions we
assume that the joint density for the targets is Gaussian with a diagonal covariance matrix,
such that the density of the targets can be obtained by summing (in the log domain)
contributions of the form in eq. (3.10). This is equivalent to assuming that the residual

errors in the outputs are independent.

This completes the definition of the linear model; following this recipe the model will always
be uniquely defined by the data. Many elaborations to this basic linear model exist, but

they will not be pursued further here.

The computational complexity involved in fitting 1in-1 is O(nm? + m3), for computing
and decomposing the A matrix respectively. Even for fairly large tasks this can usually be

considered trivial, since it scales only linearly with n.
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3.4 Nearest neighbor models: knn-cv-1

Nearest neighbor models are popular non-parametric memory-based models. I will consider
a simple k nearest neighbor model, which in the context of DELVE will be called knn-cv-1.
I will attempt to define a nearest neighbor method that has reproducible results, that does
not depend heavily on details of implementation, that has few “free” parameters, and that
behaves reasonably under a broad variety of conditions. Also, I wish the method to be
applicable to our three standard loss functions (absolute error, squared error and negative

log density loss).

Simple nearest neighbor models do not require any training. The algorithm for making
predictions involves searching through the training cases to find those whose inputs are
closest to the inputs of the test case, and then using some kind of weighted average of the
targets of these neighbors as a prediction. Neighborhoods can either be defined in terms
of a kernel (e.g. Gaussian) which supplies weighting factors, or in terms of the number
of neighbors, k, to use (or hybrids of these). Although methods using kernels have the
intuitively appealing ability to weight neighbors according to distance, they will not be used
here. Firstly, they involve the somewhat arbitrary choice of kernel shape, and secondly, the
choice of width for the kernel (a continuous equivalent of the discrete choice of k) may
be plagued by local minima, unless the width itself is expressed in terms of distances to
neighbors. This makes the procedure unsuitable as a reproducible base-line nearest neighbor
approach. Instead, I will use the k nearest neighbor approach with uniform weighting of
neighbors for predictions. More sophisticated methods are certainly possible; for regression
tasks it is common to fit local linear models to the neighbors as in LOESS [Cleveland 1979],

but these will not be pursued further here.

We also need to define the metric in which to measure closeness; I will use the simple and
common choice of Euclidean distance. Many extensions of nearest neighbor algorithms exist
which attempt to adapt the distance metric [Lowe 1995; Hastie and Tibshirani 1996], but

these more complicated algorithms will not be pursued here.

We need to resolve what to do if two or more cases have the same distance as the k’th
nearest neighbor. In an attempt to make the algorithm less sensitive to round off effects on
different floating point arithmetic implementations, I will further set some small distance
tolerance, below which cases are deemed to have tied distances. Two cases are defined to
be ties if their squared distances to the test point differ by less than 1075, I propose the

following scheme for making a prediction for a test case:
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1. Sort the cases by distances, placing ties in arbitrary order.

2. Find all the neighbors which have the same distance as the k’th case in the ordering

(including both cases earlier and later in the list) and average their targets.

3. Include this average of ties in the final prediction with a weight equal to the number

of ties that were at or earlier than k in the list.

This procedure together with the small tolerance on deciding whether cases are ties, should

help in avoiding differences due to finite precision arithmetic.

We need to find an appropriate neighborhood size, k. In general, we expect the optimal
choice of k to depend on the particular dataset and on the number of available training
points. As the number of training cases increases, the nearest neighbor method will be
consistent (a consistent estimator gets the right answer in the limit of an infinitely large
sample size) only if k grows. An appealing idea is to find the best k by leave one out
cross validation. Using this procedure, we leave out each of the training cases in turn, find
its k¥’ nearest neighbors (handling ties appropriately) and compute the loss associated with
predictions using this neighborhood. This is repeated for all k¥ = 1...n—1, and k is selected
to be the k' with the smallest average loss. The leave-one-out procedure gives an unbiased
estimate for the situation where we had n—1 training cases, which in the case of fairly large

n should be close to optimal for the current training set size.

The neighborhood size k is estimated using the desired loss function. For the squared error
loss function, the average of the targets of the nearest neighbors are used as predictions.
If the outputs are multidimensional, then averages are computed for each dimension. For

absolute error loss we use the median along each dimension as a prediction.

Some special problems present themselves for negative log density loss. We have to form
a predictive distribution based on the k nearest neighbors. The simplest idea is to fit a
Gaussian to the targets of the k& neighbors, again weighting the neighbors uniformly. The
mean for the Gaussian is chosen simply to be the empirical mean of the k nearest neighbors.
Two special cases arise when estimating the variance. Firstly, if the leave one out procedure
estimates k = 1, then we cannot estimate both the mean and variance for the predictive
distribution based on the single nearest neighbor. Secondly, if all k£ neighbors have exactly
the same targets (or targets that differ only very slightly), the naive empirical variance

estimate is undesirable since it leads to unbounded losses. Both of these problems can be
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addressed by regularising the variance estimate

k

(D™ -9+, (3.11)

k'=1

v =

el

where ¢2 is the regulariser, y*") is the targets of the k’’th nearest neighbor and 7 is the
average of the targets for the k nearest neighbors. A convenient value to choose for ¢? is
the average squared difference between targets corresponding to first nearest neighbors, the
average extending over all training cases. This can be interpreted as a global estimate of the
variance which, whenever available, is modified by local information. Thus the regulariser
will act much like a conjugate prior. In the case of k = 1, no local information about
variance is available, and the sum over k¥’ will vanish from eq. (3.11) leaving just the global
term. As k grows, the amount of local information increases and the importance of the
regulariser decreases. The problem of vanishing variance estimates is also addressed by this
approach, since normalisation of the targets before learning guarantees that ¢2 > 0 (except

for the pathological case where all available training cases have identical targets).

The computational demands of the leave-one-out procedure for training the knn-cv-1 model
depend on how it is implemented. We need to leave out each of the n cases in turn; for
each of these we compute the distance to all other neighbors, which takes a total time
of O(n?m). Then we need to sort these distances, requiring O(nlogn). Now for each of
the n—1 possible values of k we need to compute the mean, variance and median of the
neighbors. For simple implementations, computation of these values take O(n) for each of
these estimates. However, it should be noted that it is possible to re-use partial results
obtained with other values of k; means and variances can be updated in constant time
and the median can (through use of a heap data structure) be updated in O(logn). The
total computational effort involved in finding & is thus O(nQ(m—l—n—l—log n)) for a simple
implementation or O(n*(m+logn)) for a more elaborate implementation. The current

version of knn-cv-1 uses the simple implementation.

Once the appropriate value of & is found, we can make predictions in time O (mn—i—k—|—n log n)
for each test case, if the prediction algorithm sorts all training cases according to distance
(the current implementation of knn-cv-1 uses this approach). If instead of sorting we
attempt to locate the k closest neighbors, we can replace logn in the previous expression
by k, but it is not clear which is best in general, since we expect the optimal k to grow (at

a sub-linear rate) as n grows.
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3.5 MARS with and without Bagging

The Multivariate Adaptive Regression Splines (MARS) method of Friedman [1991] has also
been tested. This is a fairly well known method for non-linear regression for high dimensional
data from the statistics community. A detailed description of MARS will not be given here,
see [Friedman 1991]. The following is a simplistic account of MARS which gives a flavor of
the method. The input space is carved up into several (overlapping) regions in which splines
are fit. The fit is built using first a constructive phase, which introduces input regions and
splines, followed by a pruning phase. The final model has the form of a sum of products of
univariate splines; it is a continuous function (with continuous derivatives) and is additive

in the sets of variables allowed to interact.

Friedman has supplied his FORTRAN implementation of MARS (version 3.6). Two ver-
sions of the method have been tested. The original implementation is given the DELVE
name mars3.6-1. Since MARS is not very computationally demanding, it can be used in
conjunction with the Bagging procedure of Breiman [1994]. Using this method, one trains
MARS on a number of bootstrap samples of the training set and averages the resulting pre-
dictions. The bootstrap samples are generated by sampling the original training set with
replacement; samples of the same size as the original training set are used. Only one set
of predictions is generated regardless of the loss function — the same predictions are used
for the absolute error loss function and the squared error loss function. The negative log
density loss function is not applicable to the current version of MARS. The bagged version
of MARS is referred to as mars3.6-bag-1.

The following parameter settings have been used for MARS: 50 bootstrap repetitions were
used in the bagging procedure, the maximum number of basis functions was 15, the maxi-
mum number of variables allowed to interact was 8. The computational cost of applying this
method is fairly modest. Using a training set with 32 inputs and 1024 training cases, the
50 bootstrap replications take a total of 5 minutes on a 200MHz R4400/R4010 processor.

3.6 Neural networks trained with early stopping: mlp-ese-1

In this method, the predictions are the average of the outputs of between 3 and 50 multi-layer
perceptron neural networks each trained on 2/3 of the training data for a time determined by

validation on the remaining 1/3. All the networks have identical architectures with a single
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hidden layer of hyperbolic tangent units. Early stopping is a technique for avoiding over-
fitting in models that use iterative learning procedures. One uses a model that is expected
to have too large capacity and through early stopping one ensures that the model does
not over-fit. Consequently this approach should be helpful in overcoming the bias/variance
dilemma of frequentist methods [Geman et al. 1992]. Since early stopping will help to avoid
overfitting, we do not necessarily need an accurate estimate of the required model capacity,

but can use a network with a large number of hidden units.

A fraction of the training cases are held out for validation, and performance on this set is
monitored while the iterative learning procedure is applied. Typically, the validation error
will initially decrease as the model fits the data better and better, but later on, when the
model begins to over-fit, the validation error starts rising. The idea is to stop learning as
soon as this minimum in validation error is achieved. For neural networks, one of the great
advantages of early stopping is that it simplifies the otherwise difficult question of how long

to train the model.

A number of details have to be specified to make the method practically applicable. This
section contains a discussion of the issues involved and the decisions that I have made for
how to implement the method. I should stress that I am not claiming my choices to be
optimal in any sense, rather I have tried to define an automatic method which cannot in

any obvious (and well documented) way be improved upon.

I use a multi-layer perceptron neural network with a single hidden layer of hyperbolic tangent
units and a linear output unit. All units have biases. The network is fully connected
(including direct connections from inputs to outputs). A network with I inputs and H

hidden units implements the function

H

I I
f(z) = Z gn(z)vp, + Z xiw; + by gn(z) = tanh (Z Tiwin + ap), (3.12)
h=1 i=1 i=1
where v, are the hidden-output weights, by the output-bias, w; the direct input-output
weights, aj, the hidden-biases, and u;;, the input-hidden weights.

The number of hidden units is chosen to be the smallest such that the number of weights
is at least as large as the total number of training cases (after removal of the validation
cases). There is experimental evidence that the number of hidden units is not important as
long as it is large enough [Tetko et al. 1995]. We need to decide how large a fraction of the
training cases to use for validation. There are two obvious conflicting interests; we want a

large validation set to achieve a good estimate of performance and we want a large training
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set to be able to train a complex model, namely as complex a model as could be supported
by the entire training data set. For non-linear models trained with finite amounts of data,
there seem to be no helpful theoretical results about this trade-off. I chose to use one third

of the training cases (rounded down if necessary) for validation and the rest for training.

Another question is the exact criterion for when the training should stop, since we do not
want to stop merely when small fluctuations in the validation error occur. A number of
more or less complicated stopping criteria have been proposed in the literature, but none
has convincingly been shown to outperform others. Here I use the simple scheme of training
until the iteration with smallest validation error lies 33% backwards in the run. In this way
I will have trained for 50% more epochs than “necessary” and can thus be fairly confident
that I have found a good minimum. I will do a validation after every line-search in the
training run (training with conjugate gradients). Since the validation set is only half the
size of the training set and validation only requires a forward pass, validation will typically
slow down training by about 20% (since typically the line search involved in each iteration
requires on average about 1.3 forward and backward passes), which is not alarming. More
compute efficient strategies could be employed by validating only at longer intervals, at the
risk of finding worse stopping times. If a simpler method of steepest descent with a fixed
step-size was used as an optimization technique, it would probably be sufficient to validate
at longer intervals, but the conjugate gradient technique I use involves line-searches and

can potentially take very large steps.

The idea of including the validation data in the training set and continuing training is
appealing, since it is expected that better performance can be achieved with larger training
sets. However, the problem of when to stop this additional training presents itself. One
suggestion could be to continue training on the combined set until the same training error
per case as was found by early stopping is achieved. From a theoretical point of view,
this idea seems reasonable in an average case analysis, since it is expected that validation
cases will have a slightly larger error initially than the training cases. However, there are
practical problems; what if the validation error is already lower (per case) than the training
error? And what if it is impossible to achieve the same training error using all the training
data? Even if scenarios as bad as these do not occur frequently, it is still possible that the

generalisation performance will often be decreased by using this procedure.

Instead of including all the training data and retraining, I will effectively use all the data
by training an ensemble of networks, each of which is trained using a different validation
set (chosen at random). This is a convenient way of combining the benefits of averaging

over ensembles with the ability to use all cases for training. When using different validation
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sets for each net, one cannot choose between networks and only include the ones with
best validation error, since the variation in validation error might be due to the differing
validation sets. Consequently I will include all trained nets in the final ensemble. A more
complicated hybrid scheme with a few networks trained for each validation set could be

contemplated, but for simplicity this will not be pursued further.

Additionally, we must take care of the cases where early stopping seems to stop too early or
too late. In the initial phases of training it is conceivable that the validation error fluctuates
quite wildly and this may cause the stopping criteria to be fulfilled (since the extra 50%
epochs may be very few and thus not be a reliable indicator of local minima). To rule out
this scenario, I require that each training run uses at least 2% of the total available training
time and that at least 250 iterations have been done (unless the minimization algorithm
converges). This will limit the number of possible members of the final ensemble to 50,
which is probably adequate for getting most of the benefit from averaging. On the other
hand, it may be that the validation error keeps decreasing and the stopping criterion is
never satisfied. Recall that the expected behaviour of the validation error is that it should
increase when over-fitting sets in, but there is no guarantee that this will happen in any
particular run. On the other hand, it may be that it simply takes a large number of epochs
to train the network. To resolve this dilemma, I will terminate a training if it uses more
than 33% of the total computational resources available, such that the final ensemble will
contain at least 3 networks. Technically, some of the above criteria can be conflicting; in the
actual implementation the conditions for deciding to stop the training of a particular net in
order of precedence are: if the network has converged; OR if more than 33% of the allowed
cpu time has been used on training this net; OR if more than 250 iterations of training has
been completed AND the minimum validation error was achieved at least 33% backwards

in the run AND we’ve used at least 2% of the total available cpu time on this net.

This method can now be run automatically without any further specifications, except that
a limit on the allowed amount of cpu time has to be specified. As a default I have chosen
to let the allowed cpu time scale linearly with the number of training cases. The default
allows 1.875 seconds per training case; this means that a net with 1024 training cases will

be allowed to train for 32 minutes.
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3.7 Bayesian neural network using Monte Carlo: mlp-mc-1

A Bayesian implementation of learning in neural networks using Monte Carlo sampling has
been developed by Neal [1996]. This computation intensive method has shown encouraging

performance in [Neal 1996] and in a study using several datasets in [Rasmussen 1996].

For a full description of the method the reader is referred to [Neal 1996]. Here a brief
description of the algorithm will be given, along with the heuristics employed. A feed
forward multi-layer perceptron neural network with a single hidden layer of hyperbolic
tangent units is used; the network is fully connected, including direct connections from the
input to the output layer. The output units are linear. All units have biases. The network is
identical to the one used by the mlp-ese-1 method, eq. (3.12). All the network parameters
are given prior distributions specified in terms of hyperparameters. Predictions are made

using Monte Carlo samples of the posterior distribution of weights.

The network weights, w, together with the hyperparameters are collectively termed 6. The

posterior distribution of 6 is given by Bayes’ rule
p(0D) x p(@)p(tM, ...tV M) g, (3.13)

where p(6) is the prior and p(t™M, ..., t™[zM . 2 ) is the likelihood. We assume that
the noise is independent Gaussian with variance o2. We don’t know the magnitude of the
noise, so we will attempt to infer it from the data. We put a Gamma prior on the inverse

variance 7 = o2, known as the precision. The gamma density is given by

p(7) ~ Gamma(p, o) o< 72 L exp(—Ta/2p), (3.14)

where p is the mean and « is known as the shape parameter. We use . = 400 (corresponding
to 0 = 0.05) and o = 0.5, which is intended as a vague prior, allowing noise variances down

to 107* and up past unity. The density for the resulting prior is depicted in fig. 3.1.

The network weights are assigned to groups according to the identity of the units that they
connect. There are 5 groups of weights: output-biases b,, hidden-biases by, input-hidden
weights wy,, hidden-output weights w, and direct input-output weights wy. The priors
for the network weights are different for each group of weights. They are given in terms
of hierarchically specified distributions in which higher level hyperparameters are shared

between all the weights in the group, thereby introducing dependencies between weights.

The output-biases are given zero-mean Gaussian priors b, ~ N(0,02) with a standard
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Figure 3.1: Non-normalised prior on the noise level o. The function op(o) has been plotted against
o on a log scale to allow the usual interpretation of probabilities as being proportional to areas under
the curve.

deviation of o = 1. Since the targets in the training set will have been normalised by DELVE

to have roughly zero mean and unit variance, this prior should accommodate typical values.

The group of hidden-unit biases is given a hierarchical prior consisting of two layers:
b, ~ N(0,0?); the distribution of o is specified in terms of a precision 7 = ¢~2 and
given a Gamma form as eq. (3.14) with parameters: p = 100 and o = 0.5. I have not
attempted to plot the resulting prior on the weights (obtained by integrating out 7) since
the dependencies between weights through the common value of 7 makes it difficult to give

a faithful representation of the distribution.

The hidden-output weights are given a similar two layer prior, with parameters a = 0.5
and p = 100H !, where H is the number of hidden units. This prior is scaled according
to the number of hidden units with the variance for the weights inversely proportional
to the number of hidden units. The scaling accomplishes an invariance of the prior on
the magnitude of the output signal with respect to the number of hidden units. Such a
decoupling of signal magnitude and model complexity is useful in setting priors and when

considering networks with numbers of hidden units tending to infinity (see section 4.1).

The input-to-hidden weights are given a three layer prior: again each weight is given a
zero-mean Gaussian prior w ~ AN(0,02); the corresponding precision for the weights out
of input unit 4 is given a Gamma prior with a mean y and a shape parameter ay = 1:

7; ~ Gamma(u, o). The mean p is determined on the top level by a Gamma distribution
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with mean po = 25712, where I is the number of inputs, and shape parameter oy = 0.5 :
wi ~ Gamma(2512, o). The prior variance for the weights scales proportional to I~2. This
is done in accordance with the (subjective) expectation, that the more inputs there are,
the more unlikely it is for any single one of them to be very important for the predictions.
Under the scaled prior, a constant number of inputs will be “important” (i.e., have a large
value of 0;) as the number of inputs increase. The direct input-to-output connections are

also given this prior.

The above-mentioned three layer prior incorporates the idea of Automatic Relevance De-
termination (ARD), due to MacKay and Neal, and discussed in [Neal 1996]. The hyperpa-
rameters, 7;, associated with individual inputs can adapt according to the relevance of the
input; for an unimportant input, 7; can grow very large (governed by the top level prior),

thus forcing o; and the associated weights to vanish.

Given the likelihood and the prior we can compute the posterior distribution for the network
weights. In order to make predictions, we integrate over the posterior. The predictive

n+1)

distribution for the target t(*1) corresponding to a novel input is given by

T
1
p(t(nJrl)‘x(nJrl),D) — /p(t(”“)‘:c(”“),H)p(HID)dH ~ = ;p(t(nﬂ){x(nﬂ)’g(ﬂ), (3.15)

where 0() are samples drawn from the posterior distribution. For neural network models
this integral cannot be handled analytically. Instead, we employ the Hybrid Monte Carlo
algorithm [Duane et al. 1987] to obtain samples from the posterior with which we can
approximate the predictive distribution. This method combines the Metropolis algorithm
with dynamical simulation which helps to avoid the random walk behavior of simple forms
of Metropolis; this is essential if we wish to explore weight space efficiently. The hyperpa-

rameters are updated using Gibbs sampling.

Sampling from the posterior weight distribution is performed by iteratively updating the
values of the network weights and hyperparameters. Each iteration involves two compo-
nents: weight updates and hyperparameter updates. A cursory description of these steps

follows.

Weight updates are done using the Hybrid Monte Carlo algorithm. This algorithm is also
used for the gp-mc-1 method in section 4.6, where a more extensive explanation is given.
A fictitious dynamical system is generated by interpreting weights as positions, and aug-
menting the weights w with momentum variables p. The purpose of the dynamical system

is to give the weights “inertia” so that random walk behaviour can be avoided during ex-
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ploration of weight space. The total energy, H, of the system is the sum of the kinetic
energy, KC, (a function of the momenta) and the potential energy, £. The potential energy
is defined such that p(w) o exp(—&). We sample from the joint distribution for w and p
given by p(w,p) x exp(—& — K), under which the marginal distribution for w is given by
the posterior. A sample of weights from the posterior can therefore be obtained by simply

ignoring the momenta.

Sampling from the joint distribution is achieved by two steps: 1) finding new points in phase
space with near-identical energies H by simulating the dynamical system using a discretised
approximation to Hamiltonian dynamics, and 2) changing the energy H by doing Gibbs

sampling for the momentum variables.

Hamilton’s first order differential equations for H are approximated by a series of discrete
first order steps (specifically by the leapfrog method). The first derivatives of the network
error function enter through the derivative of the potential energy, and are computed us-
ing back-propagation. In the original version of the hybrid Monte Carlo method, the final
position is then accepted or rejected depending on the final energy H* (which is not neces-
sarily equal to the initial energy H because of the discretisation). Here we use a modified
version that uses an average (in the probability domain) over a window of states instead
[Neal 1994]. The step size of the discrete dynamics should be as large as possible while
keeping the rejection rate low. The step sizes are set individually using several heuristic
approximations, and scaled by an overall parameter €. We use L = 100 iterations, a window

size of 10 and a step size of ¢ = 0.15 for all simulations.

The momentum variables are updated using a modified version of Gibbs sampling, allowing
the energy H to change. A “persistence” of 0.95 is used; the new value of the momentum is a
weighted sum of the previous value (weight 0.95) and the value obtained by Gibbs sampling
(weight (1 —0.95%)1/2) [Horowitz 1991]. With this form of persistence, the momenta change
approximately 20 times more slowly, thus increasing the “inertia” of the weights, so as to
further help in avoiding random walks. Larger values of the persistence will further increase
the weight inertia, but reduce the rate of exploration of H. The advantage of increasing
the weight inertia in this way rather than by increasing L is that the hyperparameters are

updated at shorter intervals, allowing them to adapt to the rapidly changing weights.

The hyperparameters are updated using Gibbs sampling. The conditional distributions for
the hyperparameters given the weights are of the Gamma form, for which efficient generators
exist, except for the top-level hyperparameter in the case of the 3 layer priors used for the

weights from the inputs; in this case the conditional distribution is more complicated and
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the method of Adaptive Rejection Sampling [Gilks and Wild 1992] is employed.

The network training consists of two levels of initialisation before sampling for network
weights which are used for prediction. At the first level of initialisation the hyperparame-
ters (standard deviations for the Gaussians) are kept constant at 0.5 for hyperparameters
controlling output weights and to 0.1 for all other hyperparameters, while the weights them-
selves are set to zero. Then the weights are allowed to grow during 1000 leapfrog iterations
(with the hyperparameters remaining fixed). Neglecting this phase can cause the network
to get caught for a long time in a state where weights and hyperparameters are both very

small.

The Markov chain described above is then invoked and run for as long as desired, eventu-
ally producing networks from the posterior distribution. The initial 1/3 of these nets are
discarded, since the algorithm may need time to reach regions of high posterior probabil-
ity. Networks sampled during the remainder of the run are saved for making predictions
according to eq. (3.15). I use 100 samples from the posterior to approximate the integral.
Probably the predictions would not get vastly different if more samples were used in the
approximation and this has been avoided because the disk requirements for storing these

network samples become prohibitive.

Since the output unit is linear, the final prediction can be seen as coming from a huge
(fully connected) ensemble net with appropriately scaled output weights. The size of the
individual nets is given by the rule that we want at least as many network parameters as we
have training cases (with a lower limit of 6 hidden units and an upper limit of 25). We hope
thereby to be well out of the under-fitting region. Using even larger nets would probably
not gain us much (in the face of the limited training data) and is avoided for computational

reasons.

All runs used the parameter values given above. The only check that is necessary is that
the rejection rate stays low, say below 5%; if not, the step size should be lowered. In all
runs reported here, ¢ = 0.15 was adequate. The parameters concerning the Monte Carlo
method and the network priors were all selected based on intuition and on experience with
toy problems. Thus no parameters need to be set by the user, save the specification of the

allowable cpu time.
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Chapter 4

Regression with Gaussian

Processes

This chapter presents a new method for regression which was inspired by Neal’s work
[Neal 1996] on priors for infinite networks and pursued in [Williams 1996; Williams and
Rasmussen 1996]. Gaussian Process (GP) models are equivalent to a Bayesian treatment of
a certain class of multi-layer perceptron networks in the limit of infinitely large networks.
In the Gaussian process model, these large numbers of network weights are not represented
explicitly and the difficult task of setting priors on network weights is replaced by a simpler
task of setting priors for the GP’s.

Close relatives to the GP model presented here have appeared in various guises in the liter-
ature. An essentially similar approach to the present was taken in [O’Hagan 1978; O’Hagan
1994], but surprisingly it has not spurred much general interest. This thesis extends the
work of O’Hagan by adapting model parameters using their associated likelihood. Gaussian
Process models are being used for analysis of computer experiements [Koehler and Owen
1996], presumably because they are applicable to modelling noise-free data. This seems to
be an undue restriction however, and it is shown in the following chapters that GP models

are also very attractive for modelling noisy data.

The approach of variational analysis to regularised function approximation has been taken
in [Poggio and Girosi 1990; Girosi et al. 1995] and the related spline models have been
studied by Wahba [1990]. In these approaches, cross validation or generalised cross vali-

dation (GCV) are used to estimate regularisation parameters. These approaches may not
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be viable with large numbers of regularisation constants, as required for Automatic Rel-
evance Determination (ARD) based regularisation schemes. The GP models also have a

close correspondence with variable metric kernel methods [Lowe 1995].

In the present exposition, the two versions of GP models are formulated in terms of a prob-
abilistic model in a Bayesian setting. In the simplest approach, the parameters controlling
the model are optimized in a maximum aposteriori (MAP) approach. In the second version,

the Bayesian formalism is taken further, to allow integration over parameters.

4.1 Neighbors, large neural nets and covariance functions

The methods relying on Gaussian processes described in this chapter differ in several re-
spects from other methods commonly used for data modeling and consequently it may not
be easy to get an intuitive feel for how the model works. In order to help readers who are
familiar with more conventional methods, I will start the discussion of the GP model via
an analogy to kernel smoother models. This should help to make the subsequent formal
account more digestible. Next, a simple calculation will show how neural networks with

Gaussian priors on their weights imply Gaussian process priors over functions.

A kernel smoother consists of a kernel function and a local model. The kernel function
defines a neighborhood by giving weights to training examples and the local model is fit to
these weighted examples for predictions. The Gaussian and tri-cubic functions are common
choices of kernel functions. The kernel function is a function of the model inputs and returns
a weighting for each training example to be used when fitting the local model. Often kernel
functions which depend only on (Euclidean) distance are used, e.g., the Gaussian kernel
K o exp(—d?/20?), where d is the distance between the kernel center and the input of a
training case. The properties of the smoother are controlled by the width of the kernel, often
expressed in terms of numbers of neighbors and selected by cross-validation. More advanced
methods with more flexible kernels, sometimes referred to as wvariable metric models, have
also been explored [Lowe 1995]. Often computational arguments are used to favour kernels
which put a non-zero weight on only a small fraction of the training cases. When predicting
the output for a novel test input, the kernel is centered on the test input and weightings
for the training cases are determined. A common choice of local model is the linear model
fit by (weighted) least squares [Cleveland 1979].

In the GP methods, the role of the kernel function and local model are both integrated in
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the covariance function. Like the kernel function, the covariance function is a function of the
model inputs, but rather than returning a weighting for a training case given a test input,
it returns the covariance between the outputs corresponding to two inputs. As with the
kernel method, the Gaussian, C(z,2') o exp(—d?/20%) where d is the Euclidean distance
between x and 2/, would be a reasonable choice for a covariance function (note however,
that the the name “Gaussian process” does not refer to the form of the covariance function).
Assuming that the mean output is zero, the covariance between the outputs corresponding
to inputs x and 2’ is defined as E[y(z)y(«’)]. Thus, inputs that are judged to be close by
the covariance function will have outputs that are highly correlated and thus are likely to
be quite similar. In the Gaussian process model we assume that the outputs of any finite
set of cases have a joint multivariate Gaussian distribution with covariances given by the
covariance function. Predictions will be made by considering the covariances between the
test case and all the training cases, which will enable us to compute the most likely output
for the test case. In fact we can obtain the entire predictive distribution for the test output,

which given the assumptions is also Gaussian.

The idea of using Gaussian processes directly was inspired by investigations by Neal [1996]
into priors over weights for neural networks. Consider a neural network with I inputs, a
single output unit and a single layer of H tanh hidden units. The hidden and output units

have biases and the network is fully connected between consecutive layers

H I
f(z) = Z gn(x)vp, + bo gn(z) = tanh (Z Tilih + ap). (4.1)

h=1 i=1
The weights are all given zero mean Gaussian priors; the standard deviations for the input-
to-hidden weights, u;;, and hidden-biases, ay, are o, and o, respectively, for the hidden-
to-output weights, vy, and the output-bias, b, the standard deviations are o, and 0. This

sort of prior was suggested by MacKay [1992b].

Consider the distribution of a network output under the prior distribution of weights, given a
specific input z(*). The contribution of each hidden unit has a mean of zero: E[vj,gp,(z")] =
E[vp) Elgn(z¥)] = 0, since v, and gj, () are independent. The variance of the contribution
from each hidden unit is finite E[(vpgs(2%))?] = 02 E[(hy(x™))?], since hy(z™) is bounded.
Setting V(2()) = E[(hy(2))?], we can conclude by the Central Limit Theorem that as
the number of hidden units H tends to infinity, the prior distribution of f (Cﬂ(i)) converges
to a zero mean Gaussian with variance o7 + H o2V (™). By selecting a value for o, which
scales inversely with H we obtain a well defined prior in the limit of infinite numbers of
hidden units.
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Following a similar argument, the joint distribution for several inputs converges in the limit

of infinite H to a multivariate Gaussian with means of zero and covariance of

H H
Elf @)1 @] = B[(3 on(a®)en +bo) (3 gn()en + bo)]
h=1 h=1

(4.2)
= of + Ho2E[g (™) gy, (z))),

which defines a Gaussian process; the crucial property being that the joint distribution of
any finite set of function values is Gaussian. I will not attempt to further characterize the

covariance functions implied by weight priors for neural networks, see [Neal 1996].

The preceding paragraphs are meant to motivate investigation of models relying on Gaus-
sian processes. The correspondences to these other models will not play a crucial role in
the following — rather, it will be shown how to model data purely in terms of Gaussian
processes. This will require that the reader becomes accustomed to thinking about distribu-
tions over functions in terms of their covariances; this will hopefully be aided by illustrations

of functions drawn from various Gaussian process priors.

4.2 Predicting with a Gaussian Process

Formally, a Gaussian process is a collection of random variables {Y,} indexed by a set
x € X, where any finite subset of Y’s has a joint multivariate Gaussian distribution. A
typical application of Gaussian processes is in the field of signal analysis, where the random
variables are indexed by time. In contrast, in our case we index the random variables by
X, the input space of dimensionality m. A Gaussian process is fully specified by its mean
and its covariance function, C(z, z’). In the following I will consider only GP’s with a mean
of zero. The random variable Y, will model the output of the GP model when the input
is #. The covariance is a function of the inputs C(z, ) = E[(Y; — p(z)) (Yo — ()],
where p = 0. Here, C(z,2’) is called the covariance function and the matrix of covariances
between pairs of examples is referred to as the covariance matriz. In section 4.3 it will
be shown how to parameterise the covariance function; for now, we consider the form of
C(z,2') as given. For presentational convenience, in the following I will index training and

test cases by superscripts in brackets, such that y is the output associated with input z®.

Our goal is, as usual, to compute the distribution p(y™+t1|D, (1) of scalar output y+1

(n+1)

given a test input x and a set of n training points D = {(z®,t®)}i = 1...n}. Note

that we distinguish between the model outputs ¥, and the training set targets t(9; they
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are both random variables but differ in that the targets are noise corrupted versions of
the outputs. We introduce n + 1 stochastic variables YV, ... y(®) y(+l) modeling the
function at the corresponding inputs z™), ..., ("1, Note that this formulation is different
from the common frequentist model where a single random variable is used to model the
conditional distribution p(t|z) of the targets given the inputs. An example will help to
clarify the difference: consider the linear model with coefficients given by the vector 3; the

linear model and noise contributions are
_ QT _
y =0z, t=y+e, (4.3)

where ¢ is the noise. In the frequentist framework the use of a single random variable ¢ is
possible because the model output y is a deterministic function of the inputs x, once the
parameters (3 have been estimated (using for example maximum likelihood). In a Bayesian
approach, on the contrary, the model parameters are treated as random variables and
the model outputs are obtained through integration over model parameters, introducing
stochasticity and dependencies between outputs, thus requiring separate random variables.
In fact, in the GP model the only quantities being modeled are the covariances between

outputs.

We proceed by assigning a multivariate Gaussian prior distribution to these variables

p(y(l), Ly gyt ‘x(l)’ . ’x(nﬂ)) o
1 where X = C(x(p),x(q)). (4.4)
Ty—1
exp -5y X7,

Note that this prior specifies the joint distribution of the function values (not the noisy
targets) given the inputs. It is a prior in so far as the targets for the training cases
have not yet been considered. A reasonable prior would specify that we expect a larger
covariance between function values corresponding to nearby inputs than for function values
corresponding to inputs that are further apart. Covariance functions are discussed in the

next section.

It will often be convenient to partition the prior covariance matrix in the following manner

E:[K a], (4.5)

al b

where K contains the covariances between pairs of training cases and a is a vector of
covariances between the test case and the training cases and b is the prior covariance between

the test case and itself.
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The likelihood relates the underlying function which is modeled by the y variables to the
observed noisy targets t(), i = 1...n. The noise is assumed to be independent Gaussian

with some (unknown) variance 12

p(t(l), e ,t(")‘y(l), e ,y("),y("Jrl)) x 27 0

where Q7! =
[ o’ 0

1 N ] . (4.6)
exp—o(y —t) Q7 (y — t),

Here I is an n x n identity matrix. To gain some notational convenience in the following,
I have written this joint distribution conditioning also on y("t1) although the distribution
does not depend on this variable. Formally the vector t in this equation has n+1 elements,
whereas there are only n observed targets — the vector is simply augmented by an element

(its value is inconsequential).

Using Bayes’ rule, we combine the prior and the likelihood to obtain the posterior distribu-
tion
p(y™, ...y D, (D)
o p(y(l), Lyt ‘x(l), .. ,x("Jrl))p(t(l), ot |y(1), .. ,y(”H)) (4.7)
= p(t(l), ot () () ‘x(l), . x("+1))

The constant of proportionality in this equation is p(D), a normalisation constant which is
independent of the y(? variables. Note, that in general it is not necessary to compute the
normalisation terms in any of the previous equations. The posterior is

1 1
p(y?, . y™, y D 2 )) o exp <— Y YTy —Sy-0Te(y - t))

= exp <— %(y —ym) [ET Q7 (y - Ym)>’

where y,, is a vector of posterior means. The posterior distribution is again Gaussian

(4.8)

with an inverse covariance given by the sum of the inverse covariances of the prior and the
likelihood. The posterior mean is where the product takes on its maximum value, and can
consequently be found by differentiation
0 _

— logp(y(l), . ,y("),y("ﬂ)‘D,x("H)) =0 = y,= [2_1 + Q_l] 01t (4.9)

8y(1)
However, we are mostly interested in the distribution for "+ and do not necessarily
wish to attempt to evaluate this expression. Notice that the posterior means y,, do not
necessarily coincide with the corresponding target values. To compute the distribution for
y™*t1) we need to marginalise over y™), ... y™ from eq. (4.8) which yields a Gaussian

distribution with mean and variance
T -1
Pyt =a Q@ °t

(n+1) (n+1)y 2
p(y ‘D7 x ) N(lu’y("Jfl) ) O-y("-H) )? 0_2(n+1) —bh— aTQ—la
Y
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Y+ D) y(n+D)

+@) p(y“**”)

Figure 4.1: The left panel shows the one standard deviation contour of the joint Gaussian distri-
bution of a single training case t(!) and the test point y("*1) in the situation where we have a single
training point, n = 1. When the target value for the training point is observed, we condition on
this value indicated by the dotted vertical line. This gives rise the the predictive distribution on the
right. The vertical axes of the two plots are to scale.

where Q = K + r2I. This completes the analysis of the model, since we now have access
to the desired predictive distribution. Depending on the loss function of a particular ap-
plication, we can make optimal predictions by making point predictions that minimize the
expected loss. Notice, that in order to use this result we must invert the ¢ matrix which

has size n x n.

A slightly different view of the same formalism as above, may lead to a better intuitive
understanding of what is going on. Starting from the middle line of eq. (4.7) we can

directly marginalise over the y(, i = 1...n, which we are not interested in and obtain

/.../p(t@),._.,t<n>,y<1>,...,y<n+1>\x<1>,._.,x<n+1>)dy<1>..-dy<"> _

(4.11)
1
p(t(l), )yt ‘x(l), . ,x("+1)) X exp —§t5(2_1 + 0,

where t, indicates the vector of targets augmented by y™*t1D_ We can then condition on the
observed values of the targets in the training set, and using the standard rule for conditioning

Gaussians we recover the result from eq. (4.10). This conditioning is illustrated in fig. 4.1.
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4.3 Parameterising the covariance function

In the previous section we have seen how to derive the predictive distribution for test cases
when the covariance function was given. This section discusses various choices for covariance

functions.

There are many possible choices of prior covariance functions. Formally, we are required to
specify a function which will generate a non-negative definite covariance matrix for any set
of input points. From a modeling point of view, we wish to specify prior covariances which

contain our prior beliefs about the structure of the function we are modeling.

As is often the case in Bayesian modeling, it turns out that it is convenient to specify priors
in terms of hyperparameters, whose values (or distributions) are not specified a priori, but
will be adapted as the model is fit to the training data. An example will clarify this idea;
the covariance function used extensively in this thesis sets the covariance between the points

z® and 29, p.g=1...n to be

_ 0 (@ LN (o) (@2
C(x(p),m(q)) =ap+ a1§ "2 ¥ + vy exp <— 3 lei (27 — ;") >, (4.12)
where 6 = log(vg, 72, w1, ..., Wn,ap,a1) is a vector of parameters playing the role of hy-

perparameters (the log is applied elementwise). Note that the noise level 72 is included in
the hyperparameters although it doesn’t appear in the covariance function, since it will be

treated in the same way as the hyperparameters in the following analysis.

The covariance is conceptually made up of two components. The first part involving the ag
and a; parameters controls the scale of the bias and linear contributions to the covariance.

To understand the form of these contributions consider a linear function

m
y(@) = a0+ Y ailw; — ), (4.13)
i=1
where the coefficients «;, i = 0,...,m are considered random variables and Z; is the mean

of x;. Giving the « variables independent zero-mean distributions with finite variance we

can compute the covariances

Oe,o!) = E[y(e)y(@)] = E {a% £ 0 - m)( - )
. =1 (4.14)
=ap+ a1 Z(&L’Z — @)(x; — i’i),
=1
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where qg is the variance of ag and we have assumed that all the remaining coefficients have
a common variance aj. The pre-processing of the data used for tests normalises the inputs
to have a mean (or median) of zero, so we can (approximately) drop the Z; term and recover
the form for linear contribution to the covariance in eq. (4.12). One may worry that the
use of a common variance a; for all inputs may be dimensionally inconsistent if inputs are
measured in different units. Naturally, we may group the variables of common variance
differently; in particular, one choice would be to allow a separate hyperparameter for each

input dimension.

The contributions from the linear terms in the covariance functions may become large for
inputs which are quite distant from the bulk of the training examples. This is probably a
useful mechanism for extrapolating to data points which are at the boundary of the training
examples; without this term the covariance from the local interactions alone would become

close to zero, and the prediction at large distances would be close to zero.

The last part of the covariance function in eq. (4.12) expresses the idea that cases with
nearby inputs should have highly correlated outputs. The w; parameters are multiplied by
the coordinate-wise distances in input space and thus allow for different distance measures
for each input dimension. For irrelevant inputs, the corresponding w; should be small in
order for the model to ignore these inputs. The “characteristic lengths” for input directions
—-1/2

are given by w;, When a w; parameter gets large, the resulting function will have
a short characteristic length and the function will vary rapidly along the corresponding
axis, indicating that this input is of high “importance”. This idea is closely related the
Automatic Relevance Determination (ARD) idea of MacKay and Neal. The associated vy
variable gives the overall scale of the local correlations. In the following discussion, this

term will be referred to as the ARD-term.

The covariance in eq. (4.12) will be used extensively for the experiments in this thesis.
Many other choices may also be reasonable. Some other choices will be discussed briefly at
the end of this chapter. As an example, two functions drawn at random from the ARD-
part of the prior covariance function are plotted in fig. 4.2. Each of the two 50 x 50 mesh
plots represent a single sample drawn at random from the 2500 dimensional joint Gaussian
distribution. These random samples were obtained by multiplying a vector of zero-mean
unit-variance Gaussian random numbers by the Cholesky factor of the covariance matrix,

requiring 48Mb of memory and 8 minutes of cpu time.
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Figure 4.2: Functions drawn at random from ARD prior covariance functions. There are two input
dimensions z; and z3. Only the ARD-part of the covariance in eq. (4.12) was considered. In the left
plot, the ARD hyperparameters were w; = 10 and we = 0.5, corresponding to characteristic lengths
of 0.32 and 1.41 respectively. In the plot on the right, both ARD hyperparameters were set to 10.
As expected the functions generated from this prior are smooth. In both plots vy = 1.

4.4 Adapting the covariance function

So far, we have only considered the properties of the model for fixed values of the hyperpa-
rameters. In the following I will discuss how to adapt the hyperparameters in the light of

training data. The log likelihood of the hyperparameters at this higher level is given by

logp(D|6) = logp(t(l), AL ‘x(l), o a™, 6?)
1 1 (4.15)
==3 log det QQ — §tTQ_1t — glog 2.

It is possible to express analytically the partial derivatives of the log likelihood, which can
form the basis of an efficient learning scheme. These derivatives are

0 1 ~19Q 0Q
ne ) (n)).,.(1) (n) - = tTo-! 1
20, logp( N A P A ,9) 2trace(Q 60) tQ ZQ t. (4.16)

In order to compute the parameters of the predictive distribution in eq. (4.10) it was neces-
sary to invert the matrix ); we also need it for the partial derivatives of the likelihood. Since
the covariance matrix is guaranteed to be positive definite we can invert it using Cholesky
2n3 multiply and accumulate

operations. Cholesky decomposition also produces the determinant of the matrix which is

decomposition [Golub and van Loan 1989] which requires

needed to evaluate the likelihood. The remaining computations involved in evaluating the
likelihood and its partial derivatives (vector by matrix multiply and evaluation of the trace
of a product) are of order O(n?). Thus, the main computational obstacle is computation

of Q™! which is certainly feasible on workstation computers with n of several hundred. For
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larger values of n the computations can be demanding; as an example, the inversion for
n = 1024 takes about 5 minutes of CPU time on our 200MHz R4400/R4010 processor.

Several learning schemes are possible given the availability of partial derivatives of the
likelihood. Maximum likelihood can be implemented by employing gradient descent. One
may also specify a prior on the hyperparameters, a hyperprior and compute the posterior for
the hyperparameters. Two possible implementations are covered in the following sections:
a conjugate gradient approach to maximum aposteriori (MAP) estimation and a Monte

Carlo method for integrating over hyperparameters. First I will discuss the hyperprior.

The same priors are used for the MAP method and the Monte Carlo approach. The prior
assumes that the training data has been normalised to roughly zero mean and unit variance.
The priors on the log of ag, a; and r? are all Gaussian with mean —3 and standard deviation
3, corresponding to fairly vague priors. The prior on log vg is Gaussian with mean —1 and
standard deviation 1. This prior seems reasonable, since vy gives the variance of the signal
predicted by the ARD-term of the covariance function; since the targets are assumed to
be normalized to roughly unit variance, we expect the hyperparameter (which is in the log
domain) to be in the vicinity of 0 for tasks with low noise and lower for tasks with very

high noise.

The priors for the ARD hyperparameters are more complicated. I wish to introduce a scaling
of this prior with the number of inputs m. If m is small e.g. 8, then it seems reasonable that
say 4 of these parameters are highly relevant; however if m is larger e.g. 32, then probably
somewhat less than 16 inputs are highly relevant. Consequently, we expect the prior on the
importance of the ARD hyperparameters to be lower with increasing numbers of inputs.
Following the derivations in [Neal 1996] we employ a gamma prior whose mean scales with

the number of inputs m; the inverse hyperparameters are given gamma priors

2.,)¢/2
p(w™) = %(wl)o‘/21 exp(—w ™ a/2u), with g = pom?. (4.17)
Here p~! is the mean of w™'. I chose o = 1 and pug = 1 from looking a plots of the

distributions, see fig 4.3. It may be difficult to decide how many inputs should be thought
relevant, so one might attempt to make g a top-level hyperparameter, and set some vague
prior on this. This has not been attempted in the current implementation. The resulting
prior for the 6 parameters, which are given by 6 = log(w) is

0 exp(—0)

p(0) = mt(2m) % exp (— 3 W) (4.18)

Naturally, this prior may not be appropriate for all tasks — indeed there may be some tasks

where a large number of inputs are all relevant. However, the prior is still vague enough
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Figure 4.3: The scaling gamma prior used for the ARD hyperparameters. Here m X p(#) is plotted
against 0 = log(w) for m = 8 and m = 32 from eq. (4.18). Note, that the expected number of
hyperparameters corresponding to important inputs is the same in the two cases; for larger values
of m the mass of the prior moves toward lower values indicating that we expect a larger proportion
of the inputs to be less relevant.

that many hyperparameters may grow to large values if the likelihood strongly suggests this.
Another benefit of putting pressure on the hyperparameters to remain small is that this
may help the learning procedures in locating areas of high posterior probability. Consider
the situation early in learning before the hyperparameters have had time to adapt; the
hyperparameters will be more or less random and if any irrelevant ones take on large values
then the exponential of eq. (4.12) may take on very small values. This will tend to attenuate
the partial derivatives of the likelihood which in turn may make learning slow. Another
way of saying this is that the initial search for regions of high posterior probability may be

slow if the prior and the likelihood are very different.

4.5 Maximum aposteriori estimates

The maximum aposteriori (MAP) estimates are found using a conjugate gradient optimiza-
tion technique (discussed in detail in Appendix B) to locate a (local) maximum of the
posterior. This approach has the advantage that a reasonable approximation to a (local)
maximum can be found with relatively few function and gradient evaluations. Hence, this

would be the preferred approach when there is a large number of training cases, when in-
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tegration via Monte Carlo is computationally infeasible. When there is a large number of
training cases we would generally expect the posterior to be fairly narrow, such that the
predictions for a MAP method may not differ much from the results of integrating over

hyperparameters if it were feasible.

The risk using a conjugate gradient optimization technique is that one may get stuck in
bad local maxima. Since the algorithm is “greedy” it can get stuck in even very shallow
local maxima. It is difficult to say whether this is a big problem in the current context.
One could attempt to clarify this by trying multiple random restarts for the optimization,
but I have not pursued this. Rather, I just do a single run allowing about 150 function and
gradient evaluations, by which time the likelihood is changing very slowly in cases with, for

example, 36 hyperparameters.

It should be noted that the resulting MAP estimates for the hyperparameters may be very
useful for interpretation of the data. The linear and non-linear parts of the function are sep-
arated out in the different sets of hyperparameters (although small ARD hyperparameters
may also carry linear contributions) and the magnitude of the different ARD hyperparam-
eters may convey the relative importance of the input attributes through their relation to

the characteristic lengths.

The initialisation of the hyperparameters is fairly important, since it may be that very
inappropriate initial values will make the partial derivatives of the likelihood very small,
thus creating problems for the optimization algorithm. I found that it works well to set

w=1/m, vo = 1 and all of ag, a; and r? to exp(—2).

4.6 Hybrid Monte Carlo

According to Bayesian formalism we should multiply the prior p(6) by the likelihood p(D|6)
from eq. (4.15) and integrate over the resulting posterior. Unfortunately, the likelihood has
a complex form, so analytical integration is infeasible. Instead we approximate the integral

using a Markov chain to sample from the posterior

p(y(n-l-l)‘rD’x(n—i—l)) _ /p(y("+1)|D,x("+1),0)p(9!D)d0 (4.19)
1 T
> Zp(y(""'l) {D, () G(t)), (4.20)

t=1
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where () are samples from the posterior distribution for . Note that the terms in the
sum are Gaussian distributions which means that the approximate predictive distribution
is a mixture of Gaussians with identical mixing proportions. As the number of samples T
grows, the approximate predictive distribution will tend to the true predictive distribution.

Note, that the predictive distribution may have a complex form, e.g. multi-modal.

The Hybrid Monte Carlo (HMC) method [Duane et al. 1987] seems promising for this
application. When attempting to sample from complicated multidimensional distributions
it is often advantageous to use gradient information to seek regions of high probability
in cases where these gradients can be computed. One can then use a Markov chain that
takes a series of small steps while exploring the probability distribution (while ensuring
that regions are visited according to their probability). One of the problems with simple
implementations of this idea is that the distributions are explored using random walks,

which have poor exploratory properties.

The Hybrid Monte Carlo method avoids this random walk behaviour by creating a fictitious
dynamical system where 6 plays the role of position variables, which are augmented by a
set of momentum variables ¢. The combined system tends to avoid random walks since the
momentum will introduce “inertia” in the hyperparameters and tend to keep the system

moving in the same direction on successive steps.

Formally, the total energy H of the system is the sum of the kinetic energy K and the
potential energy £. There are a total of m + 4 hyperparameters, and the kinetic energy is
a function of the associated momenta IC(¢) = % ?:{4 @7/, where X is the particle mass.
The potential energy £ is defined in such a way that p(8|D) x exp(—E&). We sample from
the joint distribution for # and ¢ given by p(6, ¢|D) x exp(—E — K); the marginal of this
distribution for 6 is the required posterior. A sample of the hyperparameters from the
posterior can therefore be obtained by simply ignoring the momenta. Sampling from the
joint distribution is achieved in two steps: (i) finding new points in phase space with near
identical energies H by simulating the dynamical system using a discretised approximation
to Hamiltonian dynamics, and (ii) changing the energy H by doing Gibbs sampling for the

momentum variables.

I will use a variation of HMC due to Horowitz [1991]. In this approach, having defined the
parameters L, € and «, transitions of the Markov chain take place according to the following

scheme

1. Starting from the current state (6, ¢), perform L leapfrog steps with step size €, re-
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sulting in the state (6%, ¢*).

2. With probability min(1, exp[H (6, ¢) — H(0*, ¢*)]), accept the new state, (0,¢) =
(0%, ¢*); otherwise reject the new state, and retain the old state with negated mo-

menta7 (07¢) = (07 _(b)

3. Update the total energy of the system by perturbing the momenta according to ¢; :=
ag;+v;V/1 — o2 for all 4, where v; are drawn at random from a zero-mean unit-variance

Gaussian.

Hamilton’s differential equations govern the evolution of the dynamical system through

fictitious time 7

d9; _OH _ ¢ dgi  OH _ 0&
dr 0d; D) dr 06; N 00;

In practice we cannot simulate these equations exactly, since the partial derivative of £ with

(4.21)

respect to 6 is a complicated function. The leapfrog iterations are used to approximate the

dynamics
Gilr+5) = i) — 552 (00)
0;(1+€) = 0;(1) +edi(T+ 5)/A (4.22)
Blr+e) = 6T+~ 5o (0 +)

The formal proof of the correctness of this approach to sampling from the posterior in
the context of neural networks can be found in [Neal 1996; Neal 1993]. In the current
implementation I use L = 1, a single leapfrog iteration to find proposal states. It is not
entirely clear whether longer trajectories with the standard algorithm would be better than

the use of “persistence”, see discussion in [Neal 1993].

The step sizes € are set to the same value for all hyperparameters. This may work fairly well,
since the hyperparameters are given in the log domain, such that the step sizes implicitly
scale with the magnitude of the underlying parameter. The step size is chosen to scale as

1/2

€ < n~ /% since the magnitude of the gradients at a “typical” point under the posterior

are expected to be scale roughly as n'/2

when the prior is vague. The particle mass A is
arbitrarily set to 1 and the constant of proportionality for the step sizes is chosen to give a

low rejection rate; I have found that e = 0.5n~Y/2 typically gives rejection rates of around

1%.

The momenta are updated with a “persistence”, a = 0.95. This will make the total energy

change approximately 20 times more slowly than without persistence. The advantage of
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persistence is that consecutive steps in hyperparameter space will tend to be in the same
direction (because of the momenta) thus avoiding random walks. This is particularly impor-
tant if the posterior distribution is highly correlated in which case exploration by random
walks can be extremely slow. Whether or not the posterior distributions for hyperparam-
eters in the current context are generally highly correlated is an open question. However,
it seems reasonable in such cases to introduce a little bit of persistence, since this will help
when the distributions are correlated and slow down progress only if the distributions are

fairly spherical — situations where sampling is a fairly easy task.

To make predictions, we let the Markov chain run for as long as desired and save the states
at regular intervals for predictions. I discard the initial 1/3 of the run, since the chain has
to converge on the posterior distribution. I then use 26 samples' evenly distributed in the
remainder of the run for predictions. It is probably reasonable to expect that fewer samples
will suffice for predictions with gp-mc-1 than are needed for mlp-mc-1, since the former
model effectively has an implicit integration over “weights”. The predictions are made by
averaging the predictive distributions for each of the samples of the posterior. Thus, the
predictive distribution is a mixture of Gaussians. It should be noted that making predictions
may itself be computationally intensive. As well as finding the inverse covariance matrix
(for each of the 26 posterior samples) one has to evaluate eq. (4.10) taking O(n?) for each

test point. If there are many test points this may be a considerable effort.

4.7 Future directions

We have seen that the priors implied by large neural networks with Gaussian weight priors
can be used directly for modeling without implementing the neural network. It is dubious
whether it is useful to attempt to approximate Gaussian processes via Bayesian neural
networks with large numbers of hidden units. However, there may be situations where the
neural network parameterisation can provide some insight. Finally, it should be noted that
neural networks with non-Gaussian priors do not necessarily define Gaussian processes, and

useful models may be found in this class of networks.

Commonly, neural networks with fairly small numbers of hidden units are used for modeling

purposes. In the case of Bayesian learning, small numbers of hidden units are usually

'T originally intended to use 52 of samples for predictions, but due to a misunderstanding of my own
program interface I only got 26. Because of the long run-times for the programs, I redefined the method

instead of re-running it.
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chosen for computational reasons, and in non-Bayesian settings sometimes for fear of over-
fitting. It is conceivable that for some modeling problems a network with 3 hidden units
can approximate the true function very well, but I do not suspect this to be the general
case. The form of the covariance for the neural network is determined by the shape of
the activation function of the hidden units. However, there do not seem to be any reasons
why tanh units should be particularly advantageous. Therefore, from a statistical point
of view there is no clear reason why one should expect Gaussian processes or Bayesian
neural networks to perform very differently. This issue may be clarified though empirical
tests in Chapter 5. However, very different implementations of these two schemes have
been suggested, and it may be that whichever model has the most effective implementation

should be preferred.

A number of possible extensions to the basic ideas may be of interest. These include the
use of more complicated covariance functions to implement additive models, extensions
of computational nature to allow Gaussian processes to be applied to large datasets and

extensions to classification tasks. These possibilities are discussed briefly below.

One possibility is to attempt to model additive functions with Gaussian processes. Additive
functions involve multiple components that each depend only on a subset of the inputs.
These components interact only additively. Such additive models are popular in statistics
[Hastie and Tibshirani 1990] both for reasons of computational convenience and to enable
discovery of interpretable structure in the data. Additive functions in the GP-framework
can be attained by simply adding in several ARD-terms of the form of the exponential
in eq. (4.12), each governed by a separate set of hyperparameters but otherwise identical.
These multiple sets of ARD hyperparameters may be able to discover additive structure
in the data, such that only a certain number of inputs are considered relevant in each of
the covariance contributions. See [Neal 1996] for a discussion of additive models in the
context of neural networks. The computational overhead for these additive models is fairly
modest; at each iteration one needs to calculate the partial derivatives of the likelihood,
and perhaps the search for good hyperparameter values may be more demanding, since the

space is larger.

As an example, two functions drawn at random from additive covariance functions are
shown in fig. 4.4. Each of the two additive components only depends on one of the inputs.

The ARD hyperparameters (for the active inputs) have the same values as in fig. 4.2.

One of the severe limitations of Gaussian processes is the computational requirements when

the training sets get large. I have been able to handle up to about 1000 training cases,
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Figure 4.4: Functions drawn at random from additive ARD prior covariance functions. There are
two input dimensions x; and xs. There were two ARD-terms in the covariance function each of
which depends only on a single input variable. In the left-hand plot the ARD parameters for the
“active” inputs were wy = 10 and wy = 0.5; in the right-hand plot w; = 10 and ws = 10. In both
plots vg = 1.

requiring 24Mb memory (my implementation stores 3 n x n matrices for time efficiency)
and 8 hours of training time; since these requirements scale quadratically and cubically
with the number of training cases it becomes difficult to handle significantly larger training
sets. It should be noted that algorithms exist for matrix inversion in less than O(n?) time;
these algorithms are not easily implemented, and for modest values of n (such as a few

thousands), the computational benefits are not overwhelming.

Another possibility is to consider approximate techniques for matrix inversion. Two ap-
proaches seem promising here. One could attempt to make the covariance sparse by zeroing
terms of small magnitude; this might work best in conjunction with the removal of the lin-
ear term from the covariance matrix (one might fit a standard linear model and apply the
GP to the residuals from a linear fit). The use of a sparse covariance matrix corresponds
to only considering points that actually have high covariance, and would probably yield
good approximations, say considering the 20 points with highest covariance to each of the
training points. However, it may be difficult to find algorithms that can take advantage of
the form of the covariance matrix. This approximate scheme could either be employed for
long trajectories of leapfrog steps, with a final acceptance or rejection based on an exact
calculation; or one could simply use the approximate computations in the current scheme

(thus abandoning the guarantee of eventual convergence to the exact posterior).

Secondly, it should be noted that we do not need the entire inverse covariance matrix in our
computations, but the three quantities 2Q !, det(Q) and trace(Q~'X), when z is a vector

and X a matrix. Such terms can be approximated efficiently using conjugate gradient and
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Monte Carlo methods [Skilling 1989; Skilling 1993], and this approximation has recently
been implemented for Gaussian processes [Gibbs and MacKay 1996].

Gaussian processes for classification have recently been explored by Barber and Williams
[1996].
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Chapter 5

Experimental Results

This chapter contains the results and discussions of empirical tests of learning methods.
The tests are focused on measuring and comparing predictive performance for several real
and simulated datasets under varying computational constraints. All the experiments are
carried out using the DELVE environment; in particular the statistical framework developed
in Chapter 2 will be used extensively. The methods which are tested are all described in
detail in Chapters 3 and 4.

Three sets of experiments are presented. The first experiment addresses the question
whether application of bagging to the MARS procedure is advantageous. Such studies
comparing two variants of the same method are a common and important tool for model

development.

The second set of experiments attempts to rigorously compare seven different methods on a
real dataset, from the well known “Boston Housing” study. This data has been widely used
for benchmarking purposes and has also been incorporated in DELVE. These experiments
are aimed at clarifying how large the uncertainties in the performance measurements may

be when using real datasets of limited size.

Finally, a number of simulated datasets will be used in an extensive comparison of the
seven methods. The aim is to test whether the complicated Bayesian neural networks and
Gaussian Processes are able to outperform the simpler and more traditional methods. In
particular, attention will be paid to computational considerations, and we will attempt to

clarify how much computation time is needed to gain possible advantages of the complicated

69
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methods.

5.1 The datasets in DELVE

The experiments in this chapter will use data from two different sources. The “Boston
Housing” dataset is a well known real dataset that has previously been used for bench-
marking purposes. The other data source is the kin and pumadyn data families, which have

been generated from a realistic robot arm simulator specifically for benchmarking purposes.

In the DELVE environment the learning problems are specified using a hierarchical scheme,
whose naming convention will be used in the following. The datasets are at the top level,
these contain a list of cases (sometimes called examples) with their attribute values as well
as some rudimentary information about the ranges of possible values. At the top level there
is no mention of what should be learnt. At the next level, called the prototask level, a list
of attributes to be used as inputs and outputs (in the case of supervised learning) are given
and the cases to be used are specified. At the task level, the sizes of training and test sets are
given and the desired loss function is specified. At the task level, enough information about
the problem has been specified such that the expected loss for a method is well defined. At
the bottom of the hierarchy are the task-instances, containing the actual training and test
sets on which the methods can be run. Prototasks with similar characteristics are loosely

categorised into families.

The “Boston Housing” data was collected in connection with a study of how air quality
affects housing prices [Harrison and Rubenfeld 1978|. This data set is publicly available at
the UCI database [Murphy and Aha 1994] and in DELVE. The dataset has been used in
several benchmarking studies, e.g. [Neal 1996; Quinlan 1993]. The dataset has a total of

506 cases, containing values for 14 attributes (see fig. 5.1).

The object is to predict the median house value (MEDV) from the other 13 attributes. In
DELVE;, this dataset is called boston and the associated prototask is called boston/price;
the data is randomly divided into 256 cases for training and a single common test set of
250 cases according to the 2-way ANOVA model discussed in section 2.5. The 2-way model
for the analysis of losses was chosen since the total number of cases is fairly limited. Three
sizes of tasks are generated containing 8 instances of 32 training cases, 4 instances of 64

training cases and 2 instances of 128 training cases.
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CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 sq. ft.
NDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

B 1000(Bk — 0.63)? where Bk is the proportion of blacks by town

LSTAT lower status of the population
MEDV Median value of owner-occupied homes in $1000’s

Figure 5.1: The attributes of the boston dataset

The kin/dist and pumadyn/accel families each contain 8 datasets that are synthetically
generated from realistic simulations of a robot arm. Both families were generated by Zoubin
Ghahramani using a simulator developed by Corke [1996]. Below are short descriptions of
these datasets — for more details refer to the DELVE web-site.

The static state of the robot arm is defined in terms of the lengths, a;, the twists, «;, offset
distances, d;, and joint angles, 0; for each of the links in the arm. The dynamic state of the
arm can be described by including forces and the first and second order time derivatives of

the variables, here denoted by the “dot” notation, e.g. 6; for the angular velocity at joint i.

The tasks in the kin/dist family is to predict the distance of the end-point of an 8-link
robot arm from a fixed point as a function of various state parameters. Thus, these tasks
are static and of a geometric nature. The tasks in this family have either 8 or 32 inputs.
For the tasks with 8 inputs, the inputs are the joint angles, #;, and all other parameters
are set to fixed values. Uniform noise was added to the inputs, so the noise modeled at
the outputs is not expected to be Gaussian. For the kin/dist tasks with 32 inputs, the
inputs were a;, «;, d; and 6;. The joint angles, 0;, were corrupted by additive uniform noise,
and o4, a;, d; and target distance were corrupted by multiplicative uniform noise, meant to

emulate noisy measurements.
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The pumadyn/accel family contains 8 datasets synthetically generated from a realistic
simulation of the dynamics of a “Puma 560” robot arm. The tasks associated with these
datasets consist of predicting the angular acceleration of the end-link of the robot arm,
given six joint angles, 6;, six joint velocities, 6%, five joint torques, 7;, five multiplicative mass
changes, Am;, five multiplicative length changes, Al; and five multiplicative perturbations
in viscous friction of joints, Ab;. Gaussian noise was added to 6;, 92 and 7;. For the 8-
dimensional tasks, the inputs were the joint angles and velocities of links 1, 2 and 3 and
the torques at joint 1 and 2 — all other joint angles, velocities and torques were set to zero
and there were no fluctuations in masses, lengths or viscosities. For tasks with 32 inputs,
all parameters were allowed to vary. The flavour of these task is to learn the dynamical

properties of the arm.

Both data-families give rise to 8 different tasks of various characteristics. The tasks have
names (e.g. pumadyn-32fh) which encode some aspects of the tasks. The number in the
name of the prototask (8 or 32) denotes the input dimensionality. The following ‘f’ or ‘n’
denotes “fairly linear” tasks, and “non-linear” tasks. The trailing ‘m’ or ‘h’ denotes medium
or high levels of unpredictability (noise). The definitions of these features are given in terms
of indexes. The index of non-linearity is

Er

I =
nl EC )

(5.1)

where Ep, is the squared error loss of the best linear fit on noise-free data and E¢ is the
squared error loss for the corresponding constant fit. Note that F¢ is the variance of the
target, and therefore I,,; is one minus the proportion of the variance explained by a linear
model. Datasets with I,;; < 0.05 were classified as being fairly linear, and I,,; > 0.2 were
classified as being non-linear. The index of unpredictability is defined by

I, = 5.2
"= (5.2)

where F is the expected squared error loss on noisy data of the best non-linear fit, i.e., the
expected value of the function. In practice, E'y was estimated as follows: for each case in
the dataset, several targets were generated for fixed inputs and the average variance (over
cases) of these targets was taken as a measure of Fy. Data with 0.01 > I, > 0.05 are

classified as having medium noise, and tasks where I, > 0.2 as high noise.

Fach dataset contains 8192 cases which are divided evenly between training and test set.
Since there are a large number of cases, the tasks are set up according to the hierarchical
model described in section 2.4. Tasks of 5 different sizes are created, with training sets

containing 64, 128, 256, 512 and 1024 cases respectively. For each of the four smallest tasks
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there are 8 instances and the 8 corresponding test sets contain 512 cases each; for the largest

task there are only 4 instances and the corresponding test sets comprise 1024 cases.

The advantages of the data in these two families are their large test sets as well as the various
controlled attributes: input size, degree of non-linearity and degree of non-predictability.
This may enable us to pinpoint the characteristics for which certain learning methods excel

or perform poorly.

All the experiments are conducted using the DELVE environment. Three different loss
functions will be used: squared error loss, absolute error loss and negative log density loss.
The last of these is evaluated by measuring the negative log of the density of the targets
in the test set, under the predictive distribution from the model. The mars3.6-bag-1 and
mlp-ese-1 methods do not produce predictive distributions and will therefore not be eval-
uated with this error measure. The losses reported here have been standardized by DELVE,
such that we can make intuitive sense of the losses without knowing the domain of the data.
For squared error loss, standardization is obtained by dividing the loss by the variance of the
targets of the test cases; this causes the trivial method that guesses the mean of the data to
have a loss of approximately one. For absolute error loss, standardization is done by division
by the absolute deviation from the median. For negative log probability, standardization
is done by subtracting the loss that would be obtained if one used a Gaussian predictive
distribution with mean and standard deviation from the test set. Thus, standardized losses
for the negative log density loss function are approximately zero for simple methods and

negative for better methods.

5.2 Applying bagging to MARS

The DELVE framework can be used both to compare methods which differ in fundamental
principles as well as testing small refinements of methods. As an example of this latter sort,
I will attempt to clarify whether bagging [Breiman 1994] improves the performance of the
MARS method [Friedman 1991] by comparing the methods mars3.6-1 and mars3.6-bag-1.
Since MARS is not very computationally demanding, it may often be possible to use bagging.
One possible disadvantage of using bagging may be increased difficulty associated with

interpretation of the composite model.

The two methods mars3.6-1 and mars3.6-bag-1 as described in section 3.5 are tested

on the kin and pumadyn data families. The results for the squared error loss function
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training set sizes 64 128 256 512 1024

r p r p r p r p r p
kin-32fh 36.4 1 27.2 2 8.9 16 3.7 13 | -3.8 22
kin-32fm 26.3 4 24.1 2 10.8 30 -8.1 28 -5.7 47
kin-32nh 40.1 1 28.7 1 23.6 1 12.3 1 6.8 1
kin-32nm 25.8 1 28.8 1 21.7 1 13.0 1 6.1 1
kin-8fh 37.3 1 16.0 4 16.8 1 13.2 2 3.8 4
kin-8fm 37.0 7 17.0 5 13.6 20 13.0 2 9.8 7
kin-8nh 20.7 5 17.6 1 11.6 1 8.3 1 9.4 4
kin-8nm 31.3 2 19.2 1 16.0 1 11.5 1 7.7 1
pumadyn-32fh 21.3 2 32.7 13 114 1 9.0 1 2.6 4
pumadyn-32fm 4.3 52 24.2 2 224 1 3.8 1 3.8 3
pumadyn-32nh 25.0 21 22.2 24 9.3 2 10.4 1 3.3 17
pumadyn-32nm 28.3 43 -23.9 44 22.5 1 16.8 1 5.3 7
pumadyn-8fh 12.9 11 3.6 59 4.5 16 5.5 1 3.6 7
pumadyn-8£fm 20.2 2 15.1 2 8.4 3 4.4 2 5.9 4
pumadyn-8nh 12.1 41 19.0 2 10.5 1 10.1 1 4.0 7
pumadyn-8nm 22.7 8 30.3 1 17.0 3 13.0 3 7.5 25
averages 25.1 18.9 14.3 8.7 4.3

Figure 5.2: Comparison of plain mars3.6-1 and bagged mars3.6-bag-1 on the kin and pumadyn
data families. For each task, the expected decrease in squared error introduced by bagging is given
in percent r = 100% x (L, — Ly)/L,, where L, is the expected squared error loss for plain mars and
Ly is the expected squared error loss for bagged mars. The columns marked p give the p-values in
percent rounded up to the nearest integer for a pairwise comparison between the two methods.

are tabulated in fig. 5.2. The table shows that bagging leads to an improved expected
performance on all except 4 tasks out of a total of 80. Further, for the tasks where a
decrease was seen in performance, the difference was not statistically significant — the
lowest p-value being 0.22. For tasks with small training sets the relative improvement is
substantial — on average 25% for training sets containing 64 cases. For larger training sets
the benefits of bagging decline. This is not surprising, since given enough training examples
plain MARS can probably get a performance close to the theoretical limit (the inherent
noise-level in the data) which does not leave much scope for improvement by bagging. It is

conceivable however, that bagging may degrade performance for very large training sets.

In conclusion, the experiments strongly favour bagging MARS. No example was found of
statistically significant decrease in performance by using bagging, for any size or dataset,
although this does not rule out the possibility of the existence of such tasks. It should be
noted that it would not be easy to show theoretically that bagging always improves certain
methods, such as is possible for example for ensembles [Hansen and Salamon 1990]. This
is because the individual members in the bag do not have the same expected performance
as a model trained with plain MARS. The empirical evidence suggests that the benefits of

averaging outweigh the expected decline in performance of the individual models.
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Similar experiments could provide insights into the possible utility of more elaborate versions
of the other methods under investigation. For example, weight-decay selected by leave-one-
out cross-validation can be implemented efficiently for the linear model, and may under
broad conditions be helpful. Another possibility is the extension of knn-cv-1 to incorporate

a running line smoother, [Cleveland 1979).

5.3 Experiments on the boston/price prototask

The performance of seven different learning methods was evaluated using three different loss
functions on boston/price. In all cases, the analysis of losses was done using the 2-way
ANOVA model described in section 2.5.

The results are displayed using a special plot, which conveys information about average
losses with standard errors as well as p-values for pairwise comparisons, fig. 5.3. In the
upper half of the plots the estimated expected losses are indicated by small horizontal lines
intersected by vertical lines indicating the standard error. The y-axis gives the standardized
losses. The losses for different task-sizes are grouped together in rectangles with the training
set sizes indicated above the rectangle. Inside the rectangles, losses for several methods are
given; the horizontal ordering of the methods is the same as the vertical ordering given
below the y-axis. The @ symbol indicates that the method has not been run. An upward

arrow indicates that the loss is off the graph.

Below the x-axis is a matrix of p-values for pairwise comparisons, obtained from paired
t-tests or F-tests. The p-values have been rounded up to the nearest whole number in
percent, and are reported in one digit in percent. Thus the strongest p-value is 1% and
the weakest reported value is 9%. If the value was larger than 9% it is not considered
significant and is not reported. The p-values are reported in the column of the winning
method. Thus, looking column-wise at the matrix tells you which methods the current
method significantly out-performs. Looking row-wise, you see which methods significantly
out-performed the method of that row. The dots in the matrix are simply included to
help guide the eye. These matrices are most easily read row-wise. Note that there are two
possible causes of the absence of an entry in the row: either the row method performed
worse, or it did not perform statistically significantly better. However, the presence of an

entry in a row always means that the row method was significantly outperformed.

The results of tests for the boston/price data is given in fig. 5.3 — 5.5, for squared error



76 Experimental Results

bost on/ price

32 64 128
0. 75-

0. 50

I} "
%H% T

0. 254

0. 00L
lin-1 - - 6
knn-cv-1 | - 6 3
mars3.6-b |- - :
m p- ese-1 |- . . . . . . . . . .
m p-nc-1

© =B
w o1

- 00
o
w

\I

(6]

Figure 5.3: Performances on the boston/price data using squared error loss. The horizontal
ordering of the methods is the same as the vertical ordering. The numerical values in the matrices
under the x-axis are (rounded up) p-values for pairwise comparisons given in percent. The p-values
appear in the column of the winning method. See section 5.3 for further details.

loss, absolute error loss and negative log density loss respectively. The most striking feature

of these plots is the large error bars and consequently small number of significant results.

Several aspects are important when interpreting the plots. Recall, that the error bars are
computed separately for each method and therefore do not reflect the effects of pairing. In
fig. 5.3 for squared error loss and 64 training cases, the gp-map-1 and gp-mc-1 methods have
significantly overlapping error-bars; nevertheless, the p-value for the pairwise comparison is
p < 1% in favour of gp-mc-1. Here the pairing of the two methods leads to a cancellation of
noise, thus enabling a stronger statement about the difference in performance than would

be anticipated from the error-bars alone.

A different effect works in the opposite direction. The error-bars are computed from single
estimates of the variability due to training sets and test-cases, which are themselves prone
to uncertainty which is not accounted for in the plots, but which the F-tests producing the

p-values do take into account. As an example, compare knn-cv-1 and mars3.6-bag-1 for
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Figure 5.4: Performances on the boston/price data using absolute error loss.

128 training cases in fig. 5.3. Here the error-bars are clearly separated on the graph, but
the pairwise test comes out insignificant. This is due to the uncertainty in the estimated
effects of training sets; this uncertainty is large because only 2 instances were available for
this size of training set. Surprisingly, the difference between gp-map-1 and knn-cv-1 is
(marginally) significant in this example, although gp-map-1 has larger error-bars and worse
expected performance than mars3.6-bag-1 — again this different outcome is due to the
effects of pairing. Remember that the strongest possible p-value for tests with the 2-way

ANOVA and only two instances is p = 5% (as discussed in section 2.5).

All in all, the test results are not very strong. The 1in-1 and knn-cv-1 never have lower
expected loss than the other methods, except for gp-map-1 for the two smallest tasks
for negative log density loss in which case the differences are not significant. In general,
the differences between 1in-1, knn-cv-1 and the remaining methods are only sometimes
considered significant. Comparisons within the better methods remain inconclusive, except
that mlp-ese-1 and gp-map-1 never win significantly over the others. We also note that

the results for different loss functions show similar tendencies.

It is clear that the usefulness of the boston/price data is severely limited by the large
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Figure 5.5: Performances on the boston/price data using negative log density loss; note that the
mars3.6-bag-1 and mlp-ese-1 methods do not produce a predictive distribution and this loss type
cannot be applied to them.

uncertainties associated with the loss estimates. Differences in expected losses as large as
10 — 20% are often not declared significant. However, differences of this magnitude would

often be important for practical purposes.

It may be argued that the failure to obtain statistically significant results is caused by a
sub-optimal split of data into training and test sets. Since the cases were split roughly
half/half into training and test partitions, it is not possible to increase these sets by more
than a factor of two; leading to an expected reduction in error-bars of the order v/2. In
conclusion it seems unlikely that experiments with a much larger sensitivity can be designed
using the boston data if one insists on using disjoint training sets. As discussed in section
2.3, the analysis of experiments with overlapping training sets would require assumptions
to be made about the dependencies introduced by overlapping training sets, which seems
difficult. However, this route could be pursued in future, to enable meaningful assessment

to be made with real datasets not exceeding 500 cases.

In the literature on learning methods, it is not rare that results on even smaller datasets
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than boston (with 506 cases) are reported — and sometimes losses differing by only a few
percent are reported. The present results suggest that it may be wise to exercise caution
when evaluating results of tests on such small datasets. In general, one should be wary of

results that do not consider the uncertainties in the observed performances.

5.4 Results on the kin and pumadyn datasets

Extensive tests have been carried out on the kin and pumadyn families. These datasets are
much larger than the boston set, allowing reliable detection of much smaller differences in
performance. The same seven methods are tested as in the experiments on the boston data.
Results on each of the 16 prototasks on the 5 different task sizes are given in the plots in
fig. 5.6 — 5.13 on the following pages. For reasons of brevity only results for squared error

loss function are given.

The error-bars in these plots are mostly quite small, although there is a tendency for the
tasks with small training sets to have slightly larger error-bars than the tasks with large
training sets. This tendency probably reflects a larger training set effect — for such small
training sets, the performance of the methods is sensitive to the details of the training sets.

However, in general the error-bars are small and a large number of differences are significant.

Notice that the mlp-mc-1 method has larger error-bars than the other methods for tasks
with small training sets for the kin-8nm, pumadyn-32nm and pumadyn-32nh datasets. This
may be caused by convergence problems for that method. Sometimes it can be hard for this
method to find areas of high posterior probability if the posterior is very peaked; the Markov
chain responsible for the integration over the posterior may take a long time to “discover”
a posterior peak and spend much time sampling from big volumes under the prior. This
effect can often be seen if the estimated noise level is plotted as a function of the iteration
number. At first this noise estimate is relatively high and then suddenly jumps to a much
lower value, and seldom returns to the high values. I have tried to reduce this effect by
initially training the network with fixed values for the hyperparameters (as described in
section 3.7) in the hope that regions of high posterior probability could be located rapidly

under these conditions. Perhaps a more elaborate initialisation scheme would be advisable.

The different tasks exhibit very different behaviours. The performance on the kin-8nm task
improves strongly as the number of training cases increases. In contrast, the training set

size seems of much less importance for kin-8fh, except for the knn-cv-1 method which is
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Figure 5.6: Experimental performance comparisons using squared error loss function for the kin
tasks with 8 inputs, fairly linear relationships, and medium and high noise levels.
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Figure 5.8: Experimental performance comparisons using squared error loss function for the kin

tasks with 32 inputs, fairly linear relationships, and medium and high noise-levels.
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Figure 5.10: Experimental performance comparisons using squared error loss function for the
pumadyn tasks with 8 inputs, fairly linear relationships, and medium and high noise-levels.
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Figure 5.11: Experimental performance comparisons using squared error loss function for the
pumadyn tasks with 8 inputs, non-linear relationships, and medium and high noise-levels.
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Figure 5.12: Experimental performance comparisons using squared error loss function for the
pumadyn tasks with 32 inputs, fairly linear relationships, and medium and high noise-levels.
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Figure 5.13: Experimental performance comparisons using squared error loss function for the
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doing rather poorly. The non-linear high-dimensional version of kin seems very hard to
learn and the errors remain high until the very largest training sets, where the gp-map-1

and mlp-mc-1 methods are making some improvements.

The linear method usually does very well on the “fairly linear” tasks, although it only
beats the sophisticated methods gp-map-1, gp-mc-1 and mlp-mc-1 on a single occasion
(the kin-32fh task). Also, 1in-1 has pronounced difficulties for the smallest instances of
the fairly linear high dimensional tasks. I suspect we are seeing effects of over-fitting —
this might be alleviated by introducing regularisation in the linear method. As expected,
lin-1 also does badly on the non-linear tasks, often having a performance close to that of

knn-cv-1.

The knn-cv-1 mostly does a very poor job. This is most noticeable for the fairly linear tasks
where the other methods perform well. This may well be the reason why nearest neighbor
methods are rarely used for regression (they are almost exclusively used for classification
tasks). However, a simple extension to the method by using local linear models in the
neighborhood, such as LOESS [Cleveland 1979] may help.

A spectacular difference in performances is seen for pumadyn-32nm (and to a lesser degree
in pumadyn-32nh), where the good methods perform very well with only small amounts
of training data, whereas 1in-1 and knn-cv-1 never seem to catch on. The mlp-ese-1
method seems to be somewhat intermediate, improving when given 1024 training cases,
although still short of the performance of the GP methods given only 1/16 of the training
data. This enormous difference in performance coincides with which methods do some
kind of variable selection. The Automatic Relevance Determination (ARD) scheme of the
gp-map-1, gp—mc-1 and mlp-mc-1 is helping to focus on the relevant subset of the large
number of inputs. Examination of the hyperparameters for the GP methods reveal that
only 3-4 inputs are considered significant. The mlp-ese-1 method does not have any form
of variable selection, the result being that large amounts of training data are needed for
this method. MARS is also capable of ignoring inputs and this method does very well on

these two tasks.

In order to get a clear overview of the performance tendencies as a function of the charac-
teristics of the datasets, I have produced plots of average performances in fig. 5.14 — 5.17.
The data from the two families can be characterised by four binary characteristics: domain,
input-dimensionality, linearity and noise-level. In these figures, I separate tasks according
to one characteristic and average together performances over the other three characteristics.

Thus, each figure has two graphs displaying averages over eight tasks for the two values of
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Figure 5.14: Geometric average performances conditional on number of inputs. Approximate one
standard error error-bars are indicated by vertical line segments. The methods are grouped horizon-
tally according to training set size. Within a group, the order is: 1in-1, knn-cv-1, mars3.6-bag-1,
mlp-ese-1, gp—map-1, gp—mc-1 and mlp-mc-1.

the chosen characteristic. The methods are grouped into five groups, one for each train-
ing set size. Within the groups, the ordering of the methods is the same as in the earlier
performance plots: 1lin-1, knn-cv-1, mars3.6-bag-1 and in the middle mlp-ese-1; then

follows gp-map-1, gp-mc-1 and mlp-mc-1.

In these plots, the geometric average was thought more sensible than the usual mean, since
the performances on different tasks differ substantially. The geometric average focuses
attention on relative differences rather than absolute ones. When looking at these plots,
one should not pay attention to the values of the performances, but rather focus on how the
performance of a particular method compares to “the field” in the two plots. The plots also
show approximate one standard error error-bars. The geometric average can be expressed
as a usual average in the log domain, exp(% > logy;). Assuming the performance estimates

for individual tasks, y;, to be Gaussian, and that their standard deviations are much smaller
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Figure 5.15: Geometric average performances conditional on degree of linearity.

than their means, then the distribution of logy; is also approximately Gaussian. We can
thus use standard tools for averaging the independent performance measures in the log

domain and use the same approximations to transform back to the original domain.

In fig 5.14 we note that mlp-ese-1 has difficulties for tasks with high-dimensional input.
It also appears that mlp-mc-1 has some difficulty for high dimensional inputs and small
training sets. In fig. 5.15 we similarly see that mlp-ese-1 does poorly on non-linear tasks.

This figure also confirms our expectations that 1in-1 does not do well on non-linear tasks.

The plot in fig. 5.16 is interesting, because it may give an indication of how different the two
data families are. Results seem fairly similar, with two exceptions: mars3.6-bag-1 does
badly on the kin data and mlp-ese-1 does badly on pumadyn. Naturally, the extension of
DELVE to incorporate more data families is essential, such that these tendencies which will

bias our conclusions with respect to other effects can be reduced.

Finally, fig. 5.17 shows the difference between tasks with medium and high noise. The
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Figure 5.16: Geometric average performances conditional on data family.

strongest effect here is that knn-cv-1 seems to do much worse in cases where there is
smaller noise — I expect however, that in fact we are seeing the other methods doing

comparatively better in the case of less noise.

It is a fairly surprising finding in fig. 5.14 and 5.15 that the conventional neural network
method mlp-ese-1 seems less desirable for non-linear tasks and for high-dimensional tasks
than e.g. mars3.6-bag-1. The prevailing folklore about neural networks has for a long time
been that neural networks are especially suitable for high-dimensional tasks and non-linear
tasks. My experiments do not support this view. However, it should be noted that the
performance difference between mlp-ese-1 and mars3.6-bag-1 also correlates highly with
the identity of the data-family in fig. 5.16. This forces us to interpret the results with

caution — tests on more data-families are needed in order to enable more firm conclusions.

The cpu time consumed by the different methods are given in the table in fig. 5.18. The time

needed for the 1in-1, knn-cv-1 and mars3.6-bag-1 methods is mainly determined by the
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Figure 5.17: Geometric average performances conditional on noise level.

size of training sets and depends only slightly on the input dimensionality. The remaining
four methods all have an iterative nature, and a limit on computation time must be given.
For the m1p-ese-1 method I used a linear scaling of time with the number of training cases
— allowing 1.875 seconds per training case. This linear scaling is chosen as a compromise
between the assumed requirements and practical limitations on compute time. Probably
the computational requirements grow roughly quadratically for mlp-ese-1; the time per
iteration scales quadratically, since the number of training cases and the number of network
weights grow. It is more difficult to guess the scaling behaviour of the required number
of iterations until early stopping sets in — possibly an increasing number of iterations is
required for larger training sets. For the times given here, the method always had enough
time (even for the largest tasks) to train at least 25 members for the predictive ensemble.
Consequently, it seems reasonable to suppose that we have reached the point of diminishing
returns in terms of ensemble size. For the smaller tasks, the linear scaling ensures that the

method has even more plentiful time.
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64 128 256 512 | 1024
lin-1 <0.01 | <0.01 | <0.010.01 | 0.02
knn-cv-1 <0.01| 0.04 0.15 1 6
mars3.6-bag-1 0.2 0.3 0.7 2 4
mlp-ese-1 2 4 8 16 32
gp-map-1 0.25 2 16 128 | 512
gp-mc-1 32 64 128 256 -
mlp-mc-1 32 64 128 256 | 512

Figure 5.18: Approximate total (training and prediction) cpu time in minutes for combinations of
learning methods and training set sizes that were used for the experiments on the kin and pumadyn
data families.

For the methods which require large amounts of computation time, it is of interest to
investigate how the trade-off between time and accuracy behaves for the different methods
as a function of training set sizes. These results are presented in fig. 5.19 for the four most
computationally demanding methods. The approximate error-bars are computed using the

same approximation as in fig. 5.14 — 5.17.

For any particular method, performance gets better with more training time. However,
for a fixed time (proportional to the number of training cases) it is occasionally better to
use fewer training cases; for example the gp-mc-1 method for short run-times does worse
with 512 cases than with 256 cases. This is due to the super-linear time requirement of the
method, and the resulting lack of convergence for the large instances. For the longer runs,
the larger training sets again become advantageous. However, gp-mc-1 was not applied to
the largest instances, since it was fairly obvious that it would fail given the time constraints

considered here.

Note that the results for the mlp-mc-1 and gp-mc-1 methods reported earlier in this section
were all for 30 seconds per training case. For mlp-ese-1 only 1.875 seconds per training
case were allowed, but this is probably adequate to get most of the benefit from this method.
The time for the gp-map-1 method is dictated by the cubic time dependency of the training

set size, and is very limited for small training sets.

It is interesting to compare the times used by mlp-mc-1 with the times used for this method
by its inventor [Neal 1996]. In that study the run-times were selected on the basis of plots
of various quantities showing the possibility of equilibrium. The main simulations involved

a 10-way cross-test using the “Boston Housing” data, and used about 210 seconds per
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Figure 5.19: The geometric average squared test errors over the 16 prototasks in the kin and
pumadyn data families for different training set sizes as a function of the training time for four
computation intensive methods. The vertical line segments indicate approximate one standard error
error-bars. The mlp-ese-1 and gp-map-1 methods have only been run for a single amount of time;
for the mlp-mc-1 and gp-mc-1 methods predictions were made after several intervals. The gp-mc-1
method has not been run for the largest training set size. All the plots are to the same scale. Note
the log time-scale.
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training case for training sets of about 456 cases (on a marginally slower machine). The
current results use one or two orders of magnitude less computation time, but still show
that mlp-mc-1 is better than mlp-ese-1 even for very short times. This is a strong result;
if you have time enough to train mlp-ese-1, you would be better off using mlp-mc-1 even
though this method would not yet have converged. Obviously, if even shorter times are

required, other methods are more appropriate.

For mlp-mc-1 there seems to be a tendency for the smaller instances to benefit more from
longer runs than the larger instances, which may appear surprising, since one may reason-
ably assume that more than linear time is required for good results. There may be a variety
of reasons for this behaviour. Firstly, this observation may be an artifact of the limited
time scale, and the performance for the larger instances may improve for longer runs than
were allowed in the present study. Secondly, the bad results for the short runs for the small
datasets may be caused by failure to reach areas of high posterior probability; for small
training sets the likelihood is fairly weak, and the Markov chain may spend a lot of time
sampling from the vast areas under the vague prior before discovering the peaks in the
posterior. An indication of this behaviour can be found in fig. 5.13 where poor performance
and large error bars for all but the largest instances probably indicate a failure on single
instances. For large training sets the likelihood becomes strong enough to avoid this prob-
lem. A third reason may be that the posterior for the hyperparameters becomes broad or
multi-modal for small amounts of data, which can severely affect the time required to get a

good sample from the posterior.

The runs of gp-mc-1 and mlp-mc-1 for the smallest training set sizes were extended a
factor of 4 further than for the other sizes. Interestingly, the gp-mc-1 method seems to
have converged at about 30 seconds per training case whereas mlp-mc-1 improves further
given more time. One may wonder if it is possible to achieve convergence in gp-mc-1 for
even shorter times. At 30 seconds per training case, the Markov chain can perform roughly
20000 iterations for the smallest training sets. Given this large number of iterations, one
may suspect the “persistence” of 20 iterations to be much too low. Perhaps a scheme of
gradually increasing the persistence throughout the run may further decrease the required
run-time. If the long convergence times are due to high correlations in the posterior an
increase in the persistence should certainly help; if on the other hand the problems are
caused by the Markov chain only infrequently switching between multiple modes in the

posterior, such simple measures may not help.

From a theoretical point of view, one may conjecture that gp-mc-1 and mlp-mc-1 would

perform nearly equally well in the limit of large amounts of computation time, since they



96 Experimental Results

both use (at least approximately) Gaussian process priors and integrate out all the nui-
sance parameters. There are of course differences in the form of the covariance matrix and
the exact shape of the hyper-priors, but these differences may not be of great practical
importance. This conjecture cannot be proven by the present result, since it is not clear
that we have reached convergence in most cases. However, all the experimental evidence is
consistent with the conjecture. If we agree with this conjecture, then choosing between the
gp—mc-1 and mlp-mc-1 methods can be done solely on the basis of which method has the
most efficient implementation. For small datasets, the gp-mc-1 implementation seems more
efficient; above roughly 500 training examples, the standard implementation of gp-mc-1 be-

comes hard to manage.

The simple gp-map-1 method seems to have very desirable properties. For the large in-
stances it performs very well using reasonable amounts of computation time. For the small-
est instances it is very fast, but can be beaten by sampling methods that are given 2 or 3

orders of magnitude more computation time.

What are the overall conclusions from this performance study? Naturally, the trade-off
between accuracy and computational requirements depends on details of the individual
application. However, the current experiments allow for very strong conclusions. Within the
characteristics of data explored in these experiments, the methods implementing Gaussian
processes do very well regardless of the characteristics of the data; the choice of method
is determined primarily by the training set size. If the training set is very small it may
be worthwhile trying gp-mc-1 otherwise gp-map-1 is nearly as good and much faster. If
your dataset is large (around 1000 cases or more) you may be better off using mlp-mc-1,

although more efficient implementations of GP methods may become available.



Chapter 6

Conclusions

This thesis has provided a rigorous statistical framework for analysis of empirical perfor-
mance evaluations. In the neural network and statistics communities, empirical evaluations
of methods play a key role. It is therefore essential to base these experiments on solid statis-
tical theory. Hitherto, the field has been swamped by proposals for novel learning methods
without convincing empirical evidence. The future success of the field depends heavily on

improving the standards of empirical tests.

Two experimental designs were developed. The “2-way” design is suitable for datasets with
a limited number of cases, since only a single test set is needed. The “hierarchical” design
is simpler and enables the use of exact tests for method comparisons. This design requires
multiple test sets, and is therefore most suitable for simulated data where large numbers of

test cases may be generated.

Unfortunately, it is fairly cumbersome to make good comparisons. The development of
the publicly available DELVE software environment should ease this burden. DELVE in-
cludes results for previously tested methods and should provide a good basis for testing new
methods. The performance tests using DELVE are still somewhat laborious, since several
training instances must be tried before firm conclusions can be drawn. This is an inherent
property of the task. It does pose problems for testing compute-intensive methods. In
this thesis I have allowed a maximum of 8 hours of computation time per task instance,
which by many standards would be regarded as fairly modest. The total run-time for the

experiments presented in this thesis is however fairly large at about 6 months.
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Two methods relying on direct manipulation of Gaussian process priors over functions have
been defined. Although several authors have previously touched upon such ideas, they
have remained largely unknown. This is puzzling given their highly desirable properties.
The gp-map-1 method relies on simple optimisation and is very fast for small datasets.
Methods for small datasets have numerous applications in statistics. The direct applicability
of Automatic Relevance Determination (ARD) allows for easy interpretation of the trained
models. The more complicated gp-mc-1 implementation is very attractive from the Bayesian
point of view, since we are able to integrate out all the parameters of the model. For small

datasets this can be achieved in reasonable amounts of time.

Perhaps the reason for the neglect of these methods is that people have failed to notice that
modern computers can easily invert large matrices. Or maybe inherent skepticism towards
Bayesian methodology has played a role. I hope that thorough experimental evidence will

succeed in bringing these methods into wide use.

The experimental results on the boston dataset show very large error-bars on the per-
formance estimates. It is argued that it may be very difficult to design more sensitive
experiments on datasets of moderate size. If this trend carries to other datasets, this im-
plies that great caution should be exercised when interpreting much of the experimental
evidence given in the literature. It also presents us with the problem that many real datasets

that have been used for benchmarking may not really be suitable.

The solution to this problem may be to use data from realistic simulators for benchmark-
ing purposes. These datasets can be made adequately large, and as a further benefit,
datasets with controlled characteristics may be produced, enabling determination of how
the strengths and weaknesses of methods depend on the characteristics of the data. Such
experiments have failed to confirm the widely held beliefs in the community that traditional
neural network methods such as mlp-ese-1 are especially well-suited for tasks with a high
degree of non-linearity and tasks with high input dimensionality. Additional experiments

on other data-families would be helpful to corroborate these findings.

I also found that although a Bayesian treatment of neural networks mlp-mc-1 may take a
long time to converge, they perform better than the conventional method mlp-ese-1 even
when allowed fairly short times, i.e., run-time comparable to that of m1p-ese-1 correspond-
ing to 2 orders of magnitude less time than in the first published results for this method.
Again, this contrasts with the commonly held belief that Bayesian methods are “too slow”
to be of any practical importance. For many applications involving small amounts of data,

such methods are definitely tractable.
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It may be argued that my use of the single m1p-ese-1 method as representing “conventional
neural network methods” is too limited. It is certainly true that many other variants
are in common use including training with weight-decay, networks with multiple hidden
layers, networks with radial basis functions, networks trained using constructive or pruning-
based approaches, etc. Evaluation of methods relying on these principles would obviously
be of interest. Because of the existence of such a large number of algorithms and the
lack of specification of heuristics, it is impossible to make a benchmarking study that can
fend off attacks regarding the choice of methods and details of heuristics. Therefore it is
essential that authors of methods themselves precisely define their methods and test them
against other methods on publicly available datasets. DELVE has been designed to meet
these requirements. In conclusion, researchers should not be required to test everybody
else’s methods. Researchers whose methods have been rigorously tested will be making

constructive and convincing contributions.

From a theoretical point of view there may be reasons to expect the three methods gp-map-1,
gp-mc-1 and mlp-mc-1 to perform fairly similarly, since they all (at least approximately)
implement modeling with Gaussian process priors over functions. And indeed the perfor-
mance of these three methods is often quite close, and consistently better than the other
methods. The strength of these conclusions is somewhat limited by the use of only two
data-families. However, it should be noted that the methods implementing GP’s do well
regardless of the input dimensionality, the degree of non-linearity, the noise-level and the
identity of the data-family. Which method to choose depends mostly on the efficiency of
the methods for that particular training set size. For small datasets gp-mc-1 performs best,
for intermediate sizes gp-map-1 becomes more desirable because it is faster, and for large

sets mlp-mc-1 performs best.

The experimental results presented in this thesis allow for very strong conclusions about
which methods are preferable. This is not typical for earlier benchmarking studies [Prechelt
1995; Michie et al. 1994; Guérin-Dugué et al. 1995]. For example, Prechelt [1995] is not
able to draw general conclusions about the 6 methods he tried on 14 different problems.
There may be several reasons for this. Probably two of the most important reasons is that

I have tested 7 quite different methods, and that I have used large datasets.

The biggest weakness in the experimental study is the small number of data families. In
the near future, DELVE will be extended with many more datasets, thereby allowing more

confidence in the experimental conclusions.

The results of the empirical tests performed in this thesis are available through DELVE.
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These methods and results represent an important source for people interested in the per-
formance of learning methods. Hopefully, people will report their experimental results
to DELVE, forming a valuable source of experimental evidence. Time will show whether

Gaussian processes will be able to stand up to the competition.



Appendix A

Implementations

This appendix contains source listings of important parts of the implementations of each
of the methods described in the thesis, except the MARS and mlp-mc-1 methods. For the
sake of brevity, less interesting details, such as reading example files etc., are not included
but may be found at the DELVE web-site.

The source (in C) for the mlp-mc-1 has been made available by Radford Neal and can be
retrieved through his homepage at http://www.cs.toronto.edu/~radford.

A.1 The linear model 1in-1

The source for a straight forward implementation of the 1in-1 method is given on the

following pages. The usage of the program is

lin-1 instance-number

The program reads training examples from the file train. n, test inputs from test.n and
test targets from targets.n, where n is the instance number. Point predictions are written
to cguess.n files. If there are an adequate number of training cases (if the number of
training cases exceeds the input dimension) then losses according to the negative log density

loss function are written to cldens.L.n.
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A.1 The linear model 1in-1
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A.2 k nearest neighbors for regression knn-cv-1

The source for the knn-cv-1 method is included in the following pages. The usage is

knn-cv-1 instance—number

The program reads training examples from the file train. n, test inputs from test.n and
test targets from targets.n, where n is the instance number. The outer loop of the program
does the “leave one out” for each training cases in turn. Inside the loop the remaining cases
are sorted according to distance from the input of the left out case, and the losses for the
three standard loss functions (squared error loss, absolute error loss and negative log density

loss) are accumulated for each value of k (the neighborhood size).

The optimal value of k for each loss is echoed to stderr and predictions are made using these
neighborhood sizes. The predictions are written to files named cguess.A.n, cguess.S.n

and cldens.L.n according to the loss type.
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A.3 Neural networks trained with early stopping mlp-ese-1

The main portions of the source for the mlp-ese-1 appears on the following pages. The

usage of the program has the form

mlp-ese-1 instance-number [[-] cpu-time] [seed]]

The program will read training and test sets from the files train.n and test.n and write
predictions to cpred.n where n is the instance-number. The allowed cpu-time may op-
tionally be specified (in seconds); negative values are interpreted as times per training case.
The default value is —1.875, i.e., 1.875 seconds per training case. A seed for the random

number generator may be specified — by default it is chosen according to time and date.

Each member of the ensemble is training using a different random partition into training
and validation sets. As the members of the ensemble are trained, their weights are dumped
to a file called wgts.n. When training terminates all the networks in this file are re-read in

order to produce the ensemble predictions. Running diagnostics is printed to stderr.

The main program uses the conjugate gradient minimization procedure described in ap-
pendix B. Functions implementing the neural network function and a function computing
partial derivatives of the cost function with respect to the weights of the network are also

given.

Finally, the randomizeNet function randomly initialises the network weights. The random
weights are drawn from a Gaussian distribution of zero mean and a standard deviation of
0.1/ fin, where fi, is the fan-in of the unit which the weight projects to.
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A.4 Bayesian neural networks mlp-mc-1

The source for this method was written by Radford Neal and is publicly available on the Web
through http://www.cs.toronto.edu/~radford. The software used for the experiments
in this thesis is the release dated 26 August 1996. Since it is quite long I will not reproduce
it here. Instead I will supply the script (written for the csh shell) which I used to run the
simulations for this method. For a more detailed description of the options available refer
to the documentation of the software.

net-spec log.$1 8 6 1 / - x0.2:0.5:1 0.1:0.5 - x0.05:0.5 x0.2:0.5:1 1

model-spec log.$1 real 0.05:0.5
data-spec log.$1 8 1 / train.$1

rand-seed log.$1 $1

net-gen log.$1 fix 0.1 0.5

mc-spec log.$1 repeat 10 sample-noise heatbath hybrid 100:10 0.15
net-mc log.$1 1

mc-spec log.$1l sample-sigmas heatbath 0.95 hybrid 100:10 0.15 negate
net-mc log.$1 @32 58

net-pred bn log.$1 ©10.7:32+100 / test.$1 > cguess.S.$1
net-pred bd log.$1 ©10.7:32+100 / test.$1 > cguess.A.$1
net-pred bp log.$1 ©10.7:32+100 / test.$1 targets.$1 > clptarg.L.$1

The argument to the script $1 contains the instance number. In this example a network
with 8 inputs and a single layer of 6 hidden units is trained for 32 minutes of cpu-time. The
number of hidden units should be selected according to the heuristic rules given in section
3.7. The net-spec command specifies the architecture of the network and the weight priors
as discussed in section 3.7. The following lines specify the noise model and tells the program
where to get the data files. After setting the seed for the random number generator the
hyperparameters are initialized. Then the Markov chain is set up to perform 10 iterations
each of 100 leapfrog steps with a step size of 0.15 for fixed values of the hyperparameters.
These iterations are performed in the following call to net-mc and should allow the weights

to attain somewhat reasonable values.

In the following line the Markov chain is set up for the remainder of the run. The
sample-sigmas command updates the hyperparameters and the heatbath 0.95 command
updates momenta with a persistance of 0.95; the remainder of the line specifies Hybrid
Monte Carlo for the weights with leaprog trajectories of length 100, window size 10 and
step size 0.15. The call to net-mc allows for 32 minutes of cpu time and saves every 58th
iteration to the log file — an interval which by experimentation was determined appropriate
for the desired number of samples in 32 minutes. The last three lines of the script generate

predictions from 100 samples from the last 2/3 of the run for the three standard loss types.
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A.5 Gaussian Processes

This section contains the source code of the porgrams used for the Gaussian Process methods
in the thesis. However, I am currently rewriting the software to be more portable and more
flexible by allowing specification of the desired covariance function and noise models via the

command line. This new software will be made available to the public domain via DELVE.

The source for the two methods gp-map-1 and gp-mc-1 is given in the following. The code
that is specific to the covariance function is located in the cov-1.c file. Then follows the
generic programs for the two methods in gp-map.c and gp-mc.c. The optimization for
the MAP method is done using the conjugate gradient method described in appendix B.
The leapfrog method for the Hybrid Monte Carlo algorithm follows in the leapfrog.c file.
Lastly the generic prediction program gp-pred.c is listed followed by the matrix inversion

code in invspd.c and a routine to find medians in median.c.

The programs gp-map-1 and gp-mc-1 store the values of the hyperparameters (and mo-
mentum variables) at regular intervals in so-called log files. The gp-pred-1 program makes
predictions for test cases based on the information in the log files. For problems containing
many training cases, this design is wasteful, since the prediction program has to invert the

same matrices as have already been inverted by the training program.

The script (using the csh shell) used to run the gp-map-1 method on the instance given by
$1 using log files named log for a total cpu time of 120 seconds consists of the two following

lines:
gp-map-1 log $1 @120
gp-pred-1 log $1 ‘grep -c ~ log.$1°¢
Here the grep command simply returns the number of records written to the log file, causing

only the last record to be used for the predictions.

Similarly, the script used for the gp-mc-1 method on instance number $1 for 32 minutes of
cpu time (1920 seconds), saving 39 log records and using the 26 records of the last 2/3 of
the run for predictions is:

gp—mc-1 log $1 @1920+39

gp-pred-1 log $1 ©640:1920+26
Note that the implementation supports continuation of a run on a specific log file by simply
re-calling gp-mc-1 with a longer time specification; this feature was used when generating
data for fig. 5.19.
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Appendix B

Conjugate gradients

This appendix describes the utility function conj which optimizes network weights using a

conjugate gradient method. The function has a private function 1ns for doing line-searches.

The conjugate gradient method for minimizing a function of many variables works by it-
eratively computing search directions, along which a line search procedure minimizes the

function, producing a new approximation to the (local) minimum of the objective function.

An iteration is defined as a computation of a search direction and the following line search.
An epoch is defined as the computation of the function value and gradient, f(x) and g(x) =
Vf(x). The function and gradients are always computed as a pair. An iteration might
involve many epochs (because of the line search). The number of epochs is thus indicative

of the computational effort.

B.1 Conjugate Gradients

At iteration number ¢ the position in weight space is x;, the value of the objective function
is f(x;) and the gradient (vector of partial derivatives) is g; = V f(x;). I use what is known
as the Polack-Ribiere version of conjugate gradients [Fletcher 1987], which computes the
new search direction s; from the old direction s;_; and the current and old gradients g; and
gi—1:

(gi—gi1)"gi

Si—1, i:1,2,3,... with SQZgOZO. B.1
(gi-1)Tgi1 (B1)

S; = —8gi +

121



122 Conjugate gradients

The slope of f(x) in the search direction is denoted by f’(z). It may happen that the
function has a positive slope (i.e. there is no guarantee that the slope is negative), in which
case I use the direction of steepest descent (i.e. s; = —g;) for that single iteration. The

gradient of the cost function is computed using the back-propagation rule.

The conjugate gradient method can be shown to have quadratic convergence properties,
which is much better than the originally proposed method of steepest descent. Also, a
quadratic optimisation problem can be solved in n (the dimensionality of the problem)
iterations if the line searches are exact. However, the cost function of a neural network is
typically not quadratic in the weights, so the procedure will not converge in n steps. Rather,
it will be used in an iterative manner. Sometimes, the algorithm is used with restarts
(i.e. starting again with steepest descent) every n iterations, however this is not done in
the present implementation, since typically n is very large and the Polack-Ribiere version
which is used here, has a natural tendency to automatically restart whenever progress is

slow, since in that case g;_1 ~ g; and consequently s; ~ —g; in eq. (B.1).

B.2 Line search

The object of the line search is to minimize the objective function along the direction s. One
dimensional minimization problems are more tractable than multidimensional ones, but it is
still not in general possible to find the global minimum and many epochs may be necessary
to achieve close approximations to the minimum. Since in our case the optimisation problem
is usually non-quadratic, it is not sensible to expend huge computational resources in doing
very accurate line searches (remember that one function evaluation requires a full sweep
through the entire training set). Consequently, the goal of the line search will merely be:

to get significantly closer to a local minimum.

I use the two sided Wolfe-Powell conditions [Fletcher 1987] to determine whether a new
point is significantly better than the current point. The Wolfe-Powell conditions consists
of 2 inequalities. The first inequality requires that the absolute slope at the new point is
smaller (in a absolute sense) than some fraction of the magnitude of the slope at the current
point. This will in general guarantee that we have moved closer to a local extremum by
a non-vanishing amount. The condition is |f/(x;)| < o|f'(xi—1)|, where I use ¢ = 0.5. In
fig. B.1 this condition implies that acceptable points must lie between the intersections of
lines al and a2 with f. The second inequality requires that a substantial fraction of the

decrease expected from the current slope is being achieved, thus guaranteeing a decrease in
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cost function, f(z)
=
= 8}

o
&)

0 0.5 1 15 2

distance in search direction, x

Figure B.1: Tlustration of the Wolfe-Powell conditions. The current point is marked by ’+’ at
x = 0.25. The cost function is f and a tangent ¢ is drawn at the current point. The intersections of
the lines al, a2 and b with the function f defines the region r of acceptable points.

the function value and avoiding huge steps with negligible function decrease. The condition
is f(x;) < f(xi—1) + p(x; — x;-1) f'(x4—1), where I use p = 0.25. In fig. B.1, only smaller
values of x than where the line labeled b intersects with f are acceptable. In the figure, the
final region of acceptable points is marked by r. It can be shown that acceptable points

always exist for a continuous f, which is bounded from below, when 0 < p < o < 1.

The line search iteratively improves on the guesses for the minimum until an acceptable
point is found. The pre-conditions (which are guaranteed to be satisfied by the conjugate
gradient routine) are: the current point is x0, £(x0) and g(x0) are computed, £'(x0) < 0 is

guaranteed, and max is undefined. Fig. B.2 represents this algorithm in pseudo-code.

An additional constraint is added to the code in fig. B.2, that a maximum of 20 epochs
are allowed, to avoid infinite loops because of numerical inaccuracies; in this case the line
search fails and the best approximation so far is returned. The notation a2(x2), refers
to the condition implied by the line a2 in fig. B.1, at the point x2, and it returns either
violated or satisfied. The solution is always bracketed between x1 and max (whenever

max is defined).

The initial step-size guess for the current iteration is computed in the step size from the
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x1 := x0 and x2 := initial guess
compute f(x2) and g(x2)
loop {
while { a2(x2) or b(x2) are violated } do {
max := X2
x2 := interpolate(x1,x2)
compute f(x2) and g(x2)
}
if { a1(x2) is satisfied } do { return x2 } [SUCCESS!]
x3 := extrapolate(xl, x2, max)

x1l := x2 and x2 := x3
compute f(x2) and g(x2)

Figure B.2: Pseudo-code for line search algorithm

previous iteration using the slope ratio method. The length of the previous step, §;_1, is

multiplied by the ratio of previous and current slopes (but a maximum of 100):

f'(@i1)
f(xi)

The limit of a factor of 100 for the relative step size is introduced to avoid errors when

0; = min( , 100)52_1 x2=x0+46; with J§y = 1/(1 + ‘f/(l'o)’) (BQ)

f'(x;) is numerically close to zero. This simple heuristic slope ratio method seems to work
very well in practice. Typically only about 1.3 epochs per iteration are needed, indicating

that the initial guess often lies in the region of acceptable points.

Interpolation between x1 and x2 is done by finding the minimum of a quadratic or cubic
polynomial, fit at £(x1), £(x2), £/(x1) and £'(x2). A cubic is used unless f(x2) > £(x0),
in which case £'(x2) is ignored and a quadratic is used, since in this case x2 can be very
far from the minimizer, and it is feared that the derivative out there may be misleading. If
the interpolating polynomial does not have a (local) minimum inside the interval, bisection
is used. In addition, if the point is within 10% of the interval length from an interval
endpoint, then the new guess is moved to this distance in order to ensure exploration and

avoid stagnation by repeated evaluation at essentially identical points.

Extrapolation from the x1 to x2 interval is done using a cubic, fit at £(x1), £(x2), £'(x1)
and £'(x2). If the cubic does not have a minimum, if the minimum does not correspond to
an extrapolation or if the extrapolation is further than 3 times the interval length, then this
point at 3 times the interval length is used is order to prevent uncontrolled extrapolation.
If the new point is too close to the current point (within 10% of the interval length), this

10% length is used, to ensure exploration.

The conjugate gradient algorithm calls the above line search procedure for each of the
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directions that are computed. The entire minimization procedure terminates when a pre-
specified number of function evaluations have been performed, or when two subsequent line
searches have failed (this will usually happen for reasons of numerical inaccuracies when
we are very close to a local minimum). All computations are done using double precision

arithmetic.

B.3 Discussion

Other implementations of conjugate gradient methods have been proposed. Unfortunately
it is quite rare that implementational details are given or discussed. It is also extremely

rare to see good empirical evidence of the performance of optimisation procedures.

One paper which does address some of these issues is [Mgller 1990]. He presents an imple-
mentation called Scaled Conjugate Gradients (SCG), which avoids the line search by using
a finite differences approximation to the Hessian and computing a step size with a Newton
like method. The SCG always uses 2 epochs per iteration, since the function and gradients
are needed at the current point, and the gradient (which cannot be computed without first
computing the function value) somewhere in the vicinity of the current point is needed for
the finite differences approximation to the Hessian. The SCG method is thus very like a
version of the present method modified to require at least one interpolation. The advantages

of the present method are:

e a good guess (by the slope ratio algorithm) is used for the extra point needing evalu-
ation, instead of a very local point for the finite differences method, thus giving more

relevant information about the function.

e the SCG method ignores half of the function values which are computed, thus dis-

carding useful information.

e the initial guess may be accepted, thus avoiding extra epochs (although it is conceiv-
able that SCG might benefit from perhaps more accurate new points). Typically only
1.3 epochs per iteration are needed as opposed to CGS’s 2.0.

e interpolation is (typically) done using a cubic (rather than SCG’s quadratic) polyno-

mial.

e rigorous criteria are used to ensure progress at each iteration.
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For these reasons I prefer the present implementation, but it is conceivable that there are

no significant differences between the methods in practice.
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