








somehow predictable since regulatory factors control entire
carbon and nitrogen metabolic networks. In the same way,
transport effectors re-distribute products of those metabolic
pathways. Within carbon and nitrogen metabolism, 23%
corresponds to genes involved in amino acid metabolism
and 24% to those implicated on central carbon metabolism.
Only three candidates are genes related to nitrogen

metabolism and the rest, 49%, distributed along different
secondary pathways.

Candidate gene cloning and allele mining

Even though the candidature of some of the 127 identified
genes is questionable in terms of the control they exert on
the selected QML, given that metabolic variation within

Fig. 3. Metabolic role of candidate genes in BINs 4I, 5D/E/F, 7B, and 7F. BINs are identified by colours. Candidate genes are identified by numbers
and both metabolites and genes are highlighted in the corresponding BIN colour. The KEGG Accession Map Code and the results of the
amplification, cloning, and allele mining are also indicated. NA, No amplification product; SA, spurious amplification product; R, sequence
rearrangements; AC, alleles comparison (Table 1).

Fig. 4. Metabolic role of candidate genes in BINs 7H and 9B/D/E. BINs are identified by colours. Candidate genes are identified by numbers and
both metabolites and genes are highlighted in the corresponding BIN colour. The KEGG Accession Map Code and the results of the amplification,
cloning, and allele mining are also indicated. NA, No amplification product; SA, spurious amplification product; AC, alleles comparison (Table 1).
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the ILs is likely to arise from the S. pennellii introgressed
genomic fragments, the comparative analysis of both
alleles adds valuable information about polymorphisms
between S. lycopersicum and S. pennellii. For this reason,
a pair of primers was designed for each of the 127
candidate genes to amplify the alleles from the M82
variety and the corresponding IL (Table S2 in Supple-
mentary data available at JXB online). PCR products were
obtained for 116 pairs of alleles, with the remaining 11
genes being recalcitrant for amplification (Fig. 1). It is
conceivable that the absence of amplification products of
these alleles might be indicative of allele polymorphism,
resulting in dominant molecular markers; however, this
conclusion cannot be drawn from the present study alone.
Larger genomic rearrangements also need to be consid-
ered in the chromosomal region encompassing the allele
position.

The cloning and end-sequencing of three independent
clones of each allele, enabled the confirmation of the
identities of 93 pairs, while for 23 either one or both
alleles did not present detectable homology to the
sequence used for primer design and were considered as
spurious amplification. Out of these 93 pairs, eight pairs
were considered as possible rearrangements because, even
when both alleles presented homology to the correspond-
ing reference sequence, they did not overlap each other.
After quality trimming, 85 pairs of genes were in silico
spliced and translated, and the nucleotide and amino acid
sequences of both alleles were compared (Table 1).

In order to provide the full information of these
sequences together with the derived analyses, a database
was created that can be accessed via a web interface
(http://gracilaria.ib.usp.br/services/tomato/ILs.html). This
resource allows both sequences and raw chromatograms,
as well as the analyses of the results discussed in this
paper, to be downloaded.

A total of 17 857 intron and 27 959 exon bases from
S. lycopersicum and 17 974 intron and 27 813 exon bases
from S. pennellii were sequenced. In silico translation of
these sequences resulted in 9229 and 8994 protein amino
acids from S. lycopersicum and S. pennellii, respectively.
Out of those numbers, 15 261 intron bases, 23 716 exon
bases, and 8007 protein amino acids overlap between both
genotypes. The comparison between these overlapping
regions revealed some interesting observations. The over-
all nucleotide polymorphism frequency was 4%, with an
expected statistically significant greater variation in
introns (7%) than in exons (1%) (Fisher’s exact test
P < 0.05). Most of the detected modifications corre-
sponded to single nucleotide polymorphisms. INDELs
(insertion/deletion) were found in 27 of the genes frag-
ments analysed and almost all were located within intron
regions (25 out of 27). Exon fragments were obtained and
analysed for 81 out of the 85 genes amplified. From those,
56 contained nucleotide polymorphisms and 37 of these
resulted in an amino acid change. Within each pair of
alleles, a comparison between the ratio of non-synony-
mous (Ka) and synonymous (Ks) substitutions showed

Fig. 5. Metabolic role of candidate genes in BINs 9J, 10B, and 11C. BINs are identified by colours. Candidate genes are identified by numbers and
both metabolites and genes are highlighted in the corresponding BIN colour. The KEGG Accession Map Code and the results of the amplification,
cloning and allele mining are also indicated. NA, No amplification product; SA, spurious amplification product; R, sequence rearrangements; AC,
alleles comparison (Table 1).
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Table 1. Allele analysis of candidate genes from S. lycopersicum (Lyc) and S. pennellii (Pen)

Marker
(unigene)a

Size (b)
exon/intronb

Nucleotide
polymorphism
(exon)c

Nucleotide
polymorphism
(intron)d

Amino
acid
coveragee

Analysed
fragment f

Amino
acid
polymorphismg

(1) T0646
(U316058)

Lyc: 356/– 4/313 – 118/123 5–122 T17/I
Pen: 356/– T29/P

K70/R
(3) T1006
(U317524)

Lyc: 626/– 5/605 – 208/584 376–583 E531/G
Pen: 734/– V569/I

(4) C2_At4g34190
(U216629)

Lyc: 136/172 1/93 6/128 31/141 16–46 T32/P
Pen: 93/467

(5) CLET-1-A11
(U324336)

Lyc: 512/– 1/469 – 170/186 12–181 I24/M
Pen: 512/–

(6) T1782
(U319301)

Lyc: 714/47 9/585 2/47 194/405 16–209 L92/H
Pen: 585/68 S133/N

E151/G
Q157/R
A161/E
N185/D

(7) C2_At4g34700
(U216646)

Lyc: 196/355 1/196 20/320 58/119 1–58 –
Pen: 264/315

(8) T1749
(U326864)

Lyc: 72/448 0/49 0/278 24/180 3–26
Pen:72/278

(9) T1368
(U312881)

Lyc:459/– 5/437 – 153/707 1–153 –
Pen:742/–

(11) T1306
(U319133)

Lyc: 749/– 3/609 – 202/448 36–237 F186/L
Pen: 614/– D204/H

(12) T0869
(AY508112h)

Lyc: 335/300 8/311 27/294 111/540 429–539 P483/S
Pen: 335/293

(13) T1768
(U321585)

Lyc: 291/234 0/267 7/234 96/189 93–188 –
Pen: 291/352

(14) T1698
(U315881)

Lyc: 560/173 4/504 7/173 174/367 32–217 A50/S
Pen: 523/173 V107/I

T118/M
(15) C2_At2g34470
(U219076)

Lyc: 190/– 1/179 – 59/277 25–83 –
Pen: 179/–

(16) T1516
(U317147)

Lyc:149/581 0/149 19/550 49/252 20–68 –
Pen:150/549

(17) cTOB-9-H18U315474 Lyc:349/276 0/349 0/137 116/469 36–151 –
Pen:441/137

(18) TC128325U326680 Lyc:459/– 0/459 – 153/350 35–187 –
Pen: 534/39

(19) T0891
(U320717)

Lyc:290/35 0/278 1/35 95/679 585–679 –
Pen:303/267

(22) T0635
(U313864)

Lyc: 618/– 4/532 – 177/722 31–207 –
Pen: 746/–

(23) T1054
(U319327)

Lyc: 512/75 1/409 0/75 135/222 41–175 H85/Y
Pen: 409/109

(25) T1317
(AK247081h)

Lyc:465/131 5/445 2/131 149/478 1–149 H27/Q
Pen: 465/131 F30/Y

(27) C2_At1g35720
(U314161)

Lyc:465/142 5/465 143/248 154/316 148–301 K256/
h

Pen: 505/248 N288/S
(28) T1719A
(L1365h)

Lyc: 567/152 24/537 47/169 187/329 5–191 C14/Y
Pen: 561/158 V17/L

A20/V
I51/V
N53/K
A59/P
S85/R
V113/L

(31) T0883
(U313818)

Lyc: 540/70 31/540 0/27 179/413 228–406 S249/P

Pen: 556/27 G251/D
V252/I
R257/K
S258/T
L263/H
A272/T
L292/I
T333/S
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Table 1. Continued

Marker
(unigene)a

Size (b)
exon/intronb

Nucleotide
polymorphism
(exon)c

Nucleotide
polymorphism
(intron)d

Amino
acid
coveragee

Analysed
fragment f

Amino
acid
polymorphismg

R346/H
I361/V
N382/K
Y383/–
K384/R
Y386/F
D388/Y
V389/G
A391/T
L392/Q

(33) T0739
(U321142)

Lyc: 140/393 1/118 27/403 44/146 4–47 K11/R
Pen:140/424

(35) cLEW-8-J19
(U324703)

Lyc: 431/170 4/412 13/151 121/285 165–285 V241/I
Pen: 431/140

(36) cLET-5-D13
(U312690)

Lyc:427/– 3/379 – 124/170 35–158 –
Pen: 379/–

(40) LED50
(LED50h)

Lyc: 728/– 0/611 – 210/704 485–694 –
Pen: 632/–

(41) T0778
(U317221)

Lyc: 411/209 0/383 0/54 127/488 33–159 –
Pen: 467/54

(42) T1174
(U321882)

Lyc: 536/18 0/208 – 69/234 12–80 –
Pen: 208/–

(43) T0328
(U315874)

Lyc: 118/6 0/93 0/6 39/407 2–40 –
Pen: 241/157

(44) T1601
(U333333)

Lyc: 473/25 4/451 0/25 157/191 17–173 S50/G
Pen: 473/41 T96/A

R108/G
(47) cTOS-7-03
(U314198)

Lyc: 175/446 3/148 90/354 58/145 85–142 V124/D
Pen: 175/300

(48) cLEX-13-G5
(U315595)

Lyc: 588/– 1/316 – 105/314 104–208 M194/V
Pen: 710/–

(50) T0837
(U312572)

Lyc: 404/134 0/124 0/39 41/258 37–77 –
Pen: 124/39

(53) C2_At3g17210
(U214933)

Lyc:142/294 6/122 18/302 47/106 2–48 E18/K
Pen:142/410

(54) cLES-1-A11
(U312789)

Lyc: 459/350 4/432 13/352 141/579 438–578 V503/M
Pen: 432/352

(55) T1355
(U323609)

Lyc: 300/239 0/272 0/131 73/312 28–100 –
Pen: 272/131

(56) C2_At4g30580
(U229764)

Lyc: 25/514 – 68/514 –/284 – –
Pen: –/557

(57) cLER–17P11
(U313426)

Lyc: 390/383 5/390 10/239 129/765 83–211 –
Pen: 467/239

(59) C2_At4g03210
(DQ098654h)

Lyc: 169/228 1/102 4/162 34/266 24–57 –
Pen: 102/316

(61) C2_At1g53670
(U216219)

Lyc: 169/231 1/75 6/231 24/189 33–56 S34/R
Pen: 75/317

(62) T1624
(T1624h)

Lyc: 285/136 2/262 4/138 94/398 3–96 –
Pen: 285/274

(63) C2_At3g14770
(U231080)

Lyc: 363/222 9/217 5/209 37/235 199–235 –
Pen:240/209

(64) T1171
(U313128)

Lyc: 247/338 1/226 13/338 82/345 5–86 –
Pen:247/345

(66) cLET-14-A10
(U313308)

Lyc: 148/419 0/127 0/306 39/282 244–282 –
Pen: 148/306

(68) T0966
(U313029)

Lyc: 249/437 0/191 1/411 63/192 25–87 –
Pen: 191/411

(69) T1255
(U315727)

Lyc: 427/– 1/415 – 138/327 60–201 –
Pen: 726/–

(70) cLEX-13-I15
(U316193)

Lyc:597/– 0/528 – 175/224 41–215 –
Pen:543/–

(71) C2_At1g50575
(U222777)

Lyc:218/220 1/218 8/220 62/202 115–176 –
Pen:241/473
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Table 1. Continued

Marker
(unigene)a

Size (b)
exon/intronb

Nucleotide
polymorphism
(exon)c

Nucleotide
polymorphism
(intron)d

Amino
acid
coveragee

Analysed
fragment f

Amino
acid
polymorphismg

(72) C2_At1g55870
(U228097)

Lyc: 481/– 23/291 – 104/355 255–354 H267/Y
Pen: 312/– R309/G

–315/V
–315/C
–315/V
–315/E
R320/S
N323/D
I330/M

(73) CT223 Lyc:100/326 1/100 44/311 32/138 20–51 –
(U143214) Pen:153/340
(74) cLEB-3-N22 Lyc:415/45 3/394 0/45 138/482 2–140 T47/A
(U313176) Pen:415/160 V64/L
(75) cLEX-3-N24
(U3208109)

Lyc: 660/– 11/415 – 138/251 11–148 K20/N
Pen: 415/– C74/F

L83/F
V100/L
D115/E
N120/Y

(77) C2_At2g41680
(U221908)

Lyc: 248/362 0/248 0/362 82/256 12–93 –
Pen: 248/362

(78) C2_At2g32600
(U218453)

Lyc: 266/207 3/245 15/214 87/252 155–241 T217/I
Pen: 332/371

(80) T1673
(U327399)

Lyc: 109/319 0/82 25/84 27/173 27–53 –
Pen: 82/60

(81) T0532
(U312379)

Lyc: 255/289 1/232 14/290 82/444 353–434 –
Pen: 254/287

(83) cLET-3-C15
(U315877)

Lyc: 299/182 1/299 2/81 99/433 328–426 P416/A
Pen: 299/80

(84) C2_At2g37500
(U231168)

Lyc: 134/363 0/112 1/361 44/234 217–233 –
Pen: 134/454

(87) T1617
(U321884)

Lyc: 334/358 6/328 14/345 110/388 273–382 V309/I
Pen: 348/340 P366/L

S377/L
(89) T1212
(U316424)

Lyc: 282/295 0/282 0/231 93/403 45–137 –
Pen: 380/232

(90) cLET-2-D4
(U315727)

Lyc: 556/– 2/322 – 106/327 96–201 A101/T
Pen: 442/–

(91) cLET-7-N21
(U312661)

Lyc: 241/– 2/241 – 80/285 38–117 –
Pen: 384/144

(92) T0443
(U315467)

Lyc:105/9 1/105 0/9 34/421 76–109 –
Pen: 229/339

(95) T1785
(U318473)

Lyc: 199/328 29/179 186/328 59/137 49–107 D76/E
Pen: 180/303 A80/S

K85/S
T86/V
Q95/H
S102/T
V105/I
V106/I

(96) cLEX-13-I3
(U324385)

Lyc: 318/246 0/236 0/243 65/229 42–106 –
Pen: 322/243

(97) cTOA-30-C21
(U327971)

Lyc: 22/425 – 109/374 – – –
Pen: 22/374

(100) T0556
(U314531)

Lyc: 269/496 1/246 1/381 89/132 32–120 R51/K
Pen: 269/381

(101) cLET-7-D17
(U316001)

Lyc: 312/284 0/291 1/284 102/198 89–191 –
Pen: 312/351

(103) cLET-42–02
(U313367)

Lyc: 263/240 1/160 17/240 59/200 142–200 –
Pen: 182/239

(105) T1190
(U312385)

Lyc: 192/602 0/97 21/448 32/583 271–302 –
Pen: 190/463

(106) T1519
(U332457)

Lyc: 455/131 5/230 – 76/219 50–125 G79/V
Pen: 505/–
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values lower than 1 for 51 out of the 56 polymorphic
genes. For only the eight following genes, out of the 51,
the ratio was statistically significant (P < 0.05): arginine
decarboxylase (gene 9) on BIN 1J; cystathionine-c-
synthase (gene 12) on BIN 2F; Mg-protophorphyrin IX
chelatase (gene 22) and peroxidase (gene 28) both located
on BIN 4E; pyrophosphatase (Ppv) (gene 57) on BIN 7B;
poly(A)-specific ribonuclease (gene 72) on BIN 7H;
cytochrome b5 (gene 95) on BINs 9B/D/E; and lectin
protein kinase family protein (gene 122) on BIN 11C.
Although caution should be taken in order not to over-
interpret these results, it is tempting to speculate the
occurrence of purifying selection against non-synonymous
substitutions in these genes indicative of a functional
requirement for their products.

The analysis of the sequence divergence between
S. pennellii and S. lycopersicum alleles across different

candidate categories (Table 2) showed that the largest
number of genes with polymorphisms resulting in changes
at amino acid level were those belonging to signalling and
regulation (seven out of nine), DNA/RNA–protein metab-
olism (three out of three), and transport (three out of five)
categories. By contrast, those related to central carbon
metabolism (3 out of 14), protein processing and
degradation (one out of four), and photosynthesis and
oxidative phosphorylation (3 out of 10) displayed only a
few genes with amino acid changes. The rest of the
categories presented intermediate numbers of polymor-
phism at the level of a protein amino acid sequence.
Whilst it is important to point out that amino acid
position, which is an important component, was not
considered here. The observed trends are largely in
accordance with results reported by Schauer et al. (2006).
In this study, it had been noted that a large proportion

Table 1. Continued

Marker
(unigene)a

Size (b)
exon/intronb

Nucleotide
polymorphism
(exon)c

Nucleotide
polymorphism
(intron)d

Amino
acid
coveragee

Analysed
fragment f

Amino
acid
polymorphismg

(107) cTOF-18-B12
(BG128005h)

Lyc: 262/439 1/254 9/316 84/219 54–137 V77/A
Pen: 254/315

(110) cLES-2-K4
(U312319)

Lyc: 312/16 0/258 – 85/760 77–161 –
Pen: 258/–

(113) T1164
(U320574)

Lyc: 397/344 1/222 13/344 73/340 237–309 Y284/F
Pen: 223/344

(114) T0308
(U316154)

Lyc: 230/138 1/218 0/138 76/373 257–332 –
Pen: 350/138

(115) cLEY-13-H6
(U315415)

Lyc: 585/150 4/565 4/150 200/300 21–220 N164/D
Pen: 603/150

(117) C2_At5g16710
(U214041)

Lyc: 89/452 1/68 20/267 28/268 241–268 E246/D
Pen: 89/263

(120) C2_At1g44446
(U220686)

Lyc: 29/560 – 32/562 9/461 8–16 –
Pen: 29/562

(122) cLEX-4-G10
(U346954)

Lyc: 681/– 11/634 – 219/233 14–233 A75/V
Pen: 658/– N82/D

P87/Q
Y119/C

(123) cTOE-7-B4
(U315480)

Lyc: 171/488 0/151 13/354 54/367 313–366 –
Pen: 171/354

(124) C2_At2g14260
(U220663)

Lyc: 24/613 – 0/613 7/380 1–7 –
Pen: 24/634

(125) CT55
(U143394)

Lyc: 561/110 1/303 – 101/386 36–136 H55/Q
Pen: 303/–

(126) cLED-7-H11
(U315661)

Lyc: 147/252 1/126 42/269 48/511 455–502 –
Pen: 147/381

(127) cLEC-68-J21
(BI421979h)

Lyc: 182/185
Pen: 209/204

0/182 0/185 60/241 171–230 –

a Marker and unigene according to the Sol Genomics Network (www.sgn.cornell.edu). Genes are numbered according to Figs 2–5 and Table S1
(in Supplementary data available at JXB online).

b Total number of trimmed bases for each genotype, exon/intron.
c Number of nucleotides along the exon showing polymorphisms between genotypes/total of exon bases compared (primer sequences were not

considered, a dash means no exon fragment sequenced).
d Number of nucleotides along the intron showing polymorphisms between genotypes/total of intron bases compared (a dash means no intron

fragment compared).
e Number of compared amino acids between alleles/total number of amino acids of the corresponding unigene translated protein.
f Analysed amino acid interval of the corresponding translated unigene.
g Polymorphic amino acids between amplified alleles. The numbers indicate the position of changes corresponding to the translated unigene. When

there is no number it means that there is a frame shift between the predicted proteins for Lyc and Pen and the unigene protein. A dash means insertion
or deletion.

h When there was no unigene, or the unigene was uncompleted, the sequence used for the analysis was taken from the GenBank (NCBI accession
number) or the marker sequence according to Sol Genomic Network (www.sgn.cornell.edu).
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of the fruit QML were strongly associated with variation
in yield-associated traits (Table S1in Supplementary data
available at JXB online), in particular with the harvest
index which is obviously closely related to assimilate
partitioning. Thus, one could rationalize that allelic
variations on genes of the first groups (signalling and
regulation, DNA/RNA–protein metabolism, and transport)
may well play a more major role affecting the final fruit
metabolite content than those of the second group (central
carbon metabolism, protein processing and degradation,
photosynthesis, and oxidative phosphorylation). It should
be borne in mind, however, that the failure in the present
study to detect polymorphism between S. pennellii and S.
lycopersicum alleles does not preclude the candidacy of the
genes for two reasons: (i) since only partial sequences were
analysed it cannot be excluded that the alleles were
polymorphic in the non-sequenced regions of their reading

frames; and (ii) because regulatory sequences, upstream of
the amplified coding region, could be responsible for
differential expression levels or pattern of the alleles.

Co-response and integrative analyses

The evaluation of the co-response pattern of transcription
in relation to the variations in metabolite contents of
interest supports the candidacy of the selected genes and
may provide hints about epistatic interactions of the
candidates identified with QML localized in other BINs.
Then, a correlation analysis was performed between the
expression profile of the candidates and the metabolite
variations along fruit development and ripening in S.
lycopersicum. Expression data of 56 of the selected
candidate genes that were present on the TOM1 micro-
array were correlated against the content variation of 66
metabolites quantified across a fruit development and

Table 2. Distribution of candidate genes between metabolic categories

n, Total number of genes in each category according to the 127 candidates identified.
p/np, Number of genes that presented amino acid polymorphisms on the analysed fragment sequence/number of genes that did not present amino acid
polymorphisms on the fragment sequence analysed. In this case, the total is the 81 genes for which amino acid sequences were analysed.

BIN
(total
candidates)

Carbon and nitrogen metabolism Transport Photosynthesis
and oxidative
phosphorylation

Protein
processing and
degradation

DNA/RNA/
protein
metabolism

Signalling
and
regulation

Total

n
p/np

n (%)
p/np

n (%)
p/np

n (%)
p/np

n (%)
p/np

n (%)
p/np

n
p/np

Amino
acids

Central
carbon

Nitrogen Others
(secondary
metabolism)

Total
(%)

1J (11) 3 – 1 3 7 (64) – 2 (18) – – 2 (18) 11
1/1 1/– 2/1 4/2 1/1 1/– 6/3

2F (7) 2 1 – 4 7 (100) – – – – – 7
1/1 –/1 1/3 2/5 2/5

4E(13) 2 – – 5 7 (54) 1 (8) 1 (8) 2 (15) – 2 (15) 13
1/– ½ 2/2 1/– 1/– 1/– 5/2

4I (9) 1 1 – 2 4 (44) – 1 (11) 2 (22) 1 (11) 1 (11) 9
–/1 –/1 –/1 1/– 1/– 2/2

5D/5E/5F (14) – 3 – 3 6 (43) 1 (7) 1 (7) 3 (21) 1 (7) 2 (14) 14
2/1 –/1 2/2 –/1 –/1 1/– 2/– 5/4

7B (3) – – – 1 1 (33) – 1 (33) – – 1 (33) 3
–/1 –/1 –/2

7F (10) 1 3 1 4 9 (90) – – – – 1 (10) 10
1/– –/2 –/1 –/2 1/5 1/5

7H (7) 1 1 – 1 3 (43) – 2 (29) 1 (14) 1 (14) – 7
–/1 1/– –/1 1/2 –/2 –/1 1/– 2/5

9B/9D/9E (26) 2 5 1 7 15 (58) 1 (4) 4 (15) – 4 (15) 2 (8) 26
–/1 –/3 3/2 3/6 1/– 1/1 1/– 1/1 7/8

9J (7) 2 1 – 1 4 (57) – – 1 (14) – 2 (29) 7
1/1 –/1 1/– 2/2 –/1 2/3

10B (9) 1 2 – 4 7 (78) 1 (11) – 1 (11) – – 9
–/2 1/1 1/3 1/3

11C (11) 2 1 – 2 5 (45) 2 (18) 1 (9) 1 (9) – 2 (18) 11
–/1 1/– 1/1 1/1 –/1 1/– 3/3

Total 17 18 3 37 75 6 12 12 7 15 127
n 5/6 3/11 1/1 10/13 19/31 3/2 3/7 1/3 3/– 7/2 81
p/np
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ripening time course (Carrari et al., 2006). Out of the
3696 pairs analysed, 724 positive (blue) and 307 negative
(red) significant correlations were observed (Fig. 6). This
number of correlations is well above of that expected
merely by chance (185 at P <0.05).

In the following section, only those candidate genes,
which it was possible to provide supporting evidence from
metabolic mapping, sequence analysis, and their correla-
tive behaviour from the developmental time series
experiment, will be dealt with in detail.

The gene encoding cystathionine-c-synthase (gene 12),
localized on BIN 2F, correlated with the contents of many
metabolites including several for which QML mapped to
this BIN (correlating positively with malate, quinate, and
inositol-P; and negatively with galacturonate and dehy-

droascobate). Allelic variation, at amino acid level,
between S. lycopersicum and the corresponding S.
pennellii introgressed line was also found (Table 1). This
enzyme participates in the conversion of homo-Ser to Met
(Fig. 2) and could be involved in the variation of S-Me-
Cys found in this BIN. A role for this pathway during
tomato fruit ripening has been assessed recently by Katz et al.
(2006). The massive production of ethylene during ripening
requires an increase in the de novo Met synthesis through
up-regulation of this enzyme. In the present correlation
analysis, mRNA levels of this gene correlate negatively with
Cys, a precursor in the biosynthesis of S-Me-Cys (Fig. 6). In
addition, a glutathione S-transferase encoding gene (gene 14)
was found co-locating with variations in Glu and 5-OxoPro
QML onto this BIN (Fig. 2). Together with the amino acid

Fig. 6. Correlations between candidate gene transcription profile and metabolite contents through S. lycopersicum fruit development. Correlation
coefficients (two tailed) and significances (P < 0.05) were calculated by applying Spearman algorithm using SSPS software. Each dot indicates
a given r-value, resulting from a Spearman correlation analysis, in a false colour scale. Blue and red represent significant positive and negative
correlations, respectively; white indicates a lack of significant correlation. The genes are indicated with the same number order as in Figs 2–5. Dots
demarcated by a bold border indicate those that exhibit significant correlations between a given gene and the metabolite corresponding to the QML to
which it co-localizes.
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changes found in the coding region of this gene (Table 2),
results mentioned above make it a good candidate to test
using functional approaches.

The most supported candidate gene mapped on BIN 4E
is GAUT4 galacturonosyltransferase (gene 19, Fig. 2),
which co-localized with galacturonate QML, since this
enzyme participates in pectin biosynthesis from galactur-
onate (Sterling et al., 2006). However, no polymorphisms
at the amino acid level were detected on the protein
fragment analysed.

The introgressed region delineated as BIN 4I harbours
QML for elevated sugars, as well as elevations in the
metabolites belonging to the pathway linking citrate to
glutamate, and was, therefore, defined as a pathway QTL
(Schauer and Fernie, 2006). Moreover, about 60% of all
QML mapped onto this BIN have been defined as
morphology-dependent QML as they could be associated
with phenotypic traits by correlation analyses (Table S1 in
Supplementary data available at JXB online). In fact, this
pathway QTL showed significant association with plant
weight, Brix levels, fruit width, and harvest index.

Genes mapped onto this BIN for which it would be
possible to evaluate transcriptional behaviour (gene 32,
pre-pro-cysteine proteinase; gene 33, chaperone protein DnaJ-
related; gene 36, plastocyanin chloroplast precursor; gene
38, pyrophosphate-fructose 6-phosphate 1-phosphotransferase
a-subunit; and gene 39, pectinesterase) displayed a wide
range of significant correlations with most of the co-
localizing QML including sugars, phosphates, and amino
acids. Their co-localization, together with the similar
patterns of correlation they showed, might be indicative
of a coordinated mechanism of regulation operating at
this same position on the genome. Phenylalanine ammo-
nia lyase (gene 40) is involved in a wide range of
metabolic pathways (Fig. 3) including nitrogen releases of
NH4

+ for Gln and Glu biosynthesis. Thus, this enzyme,
previously mapped by Causse et al. (2004) onto the same
BIN, may be involved in the variations of these two
amino acids observed in S. pennellii IL. However, no
amino acid polymorphisms were detected in the gene
fragment analysed here (Table 1) and further investiga-
tions are needed to evaluate the candidature of this gene.
When looking for the genetic determinants for these
pathway QTL there are two alternatives: either (i) is not
controlled by variation at a single genetic locus or (ii),
more likely, the gene responsible for the entire pathway
variation encodes not an enzyme activity protein but
a regulatory one. In this direction, a chaperone protein
DnaJ-related (gene 33) mapped onto this BIN and
classified within regulatory categories emerged as an
interesting candidate. DnaJ-chaperone proteins constitute
a wide family both in prokaryote and eukaryote organisms
and participate in protein folding, assembly, disassembly,
and translocation into organelles through a mechanism
involving interaction with Hsp70 chaperones (Qiu et al.,

2006). It has been demonstrated recently that a mutation
on a cauliflower locus encoding a member of this family
(Or locus) leads to chromoplast differentiation and conse-
quently a deposit of b-carotene in the affected tissues (Lu
et al., 2006). Moreover, transgenic potato plants over-
expressing this allele in a tuber-specific manner result in the
production of orange-yellow tubers associated with high
levels of carotenoids (Lu et al., 2006). The chaperone
protein DnaJ-related described here also possesses the Cys-
rich zinc finger domains characteristics of DnaJ chaperones
(not shown) and an amino acid polymorphism in the coding
region (K11/R). Additionally, the levels of b-carotene in
the fruit correlated positively (r¼0.76; P <0.0001) with the
expression of this gene during the developmental time-series
experiment. These results, when taken together, make this
gene a good candidate to be tested functionally for its
putative role in the control of fruit metabolism.

The other BINs exhibiting patterns of metabolite and
whole-plant phenotypic variations similar to those de-
scribed for 4I are 5D, E, and F (Fig. 3). For reasons
explained above, these last three BINs are here considered
as a single entity. Except for the case of the peroxidase
(gene 49), the other five candidates mapped on BIN 5D/E/
F for which a transcriptional pattern was analysed,
correlate with three to seven QML localized onto these
BINs. b-Ketoacyl reductase (gene 42) plays a key role in
fatty acid biosynthesis and positively correlates with
glycerol-P, rendering it indirectly linked to stearate and
palmitate QML. Phosphoglucomutase (gene 44) has long
been considered a key enzyme in starch biosynthesis of
potato tubers. Although the role of this enzyme has not
been directly assessed in tomato fruits, it has been
demonstrated that its activity declines during early de-
velopmental stages in accordance with the expression level
of its cytosolic isoform (Kortstee et al., 2007). The co-
localization of this gene with a YAL for Brix variation, and
QML for maltose and galactose, renders it a good candidate
to follow-up. Whilst, starch in its own right is not a highly
important quality trait in tomato, its accumulation is only
transient and there is increasing evidence that the bio-
synthesis and degradation of starch plays an important role
in determining Brix at harvest time (Baxter et al., 2005).

Sphingosine-1-phosphate lyase (gene 45) catalyses one
of the first steps of sphingolipid biosynthesis. Interestingly,
this enzyme co-maps with one of the precursors, Ser, and
the metabolically related Gly and Thr QML (Fig. 3).

On BIN 7B, the phospholipid/glycerol acyltransferase
gene (gene 56, Fig. 3) could be related to the decrease in
glycerol-P levels, a QML localized into this BIN. Glycerol-
P is an important intermediate metabolite in the fatty acids
biosynthesis pathway in which this enzyme is involved.

The QML mapped onto BIN 7F was a variation in
S-methyl-Cys content; since this metabolite was not
measured through a developmental time-series experi-
ment, it was not possible to analyse any correlation
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between candidate gene expression and the QML (Fig. 6).
However, three candidates deserve to be highlighted in
view of their positions within the metabolic pathways
(Fig. 3). First, a methionine sulphoxide reductase (gene
61), thought to participate in the protection of chloroplasts
against oxidative damage (Vieira Dos Santos et al., 2005),
may be involved in the alterations found in the levels of
S-methyl-Cys increasing the free Met pool by reducing
Met-S-oxide in the reverse reaction. The amino acid
variation found at residue 34 (Slyc/Rpen) of the sequence
analysed lies within the signal peptide that directs this
protein into the chloroplast (Vieira Dos Santos et al.,
2005). Secondly, a mitochondrial malate dehydrogenase
(mMDH) also mapped onto this BIN (gene 64). This
protein has been implicated in modifying photosynthetic
activity and aerial growth in tomato under ambient growth
conditions (Nunes-Nesi et al., 2005). mMDH-silenced
tomato plants were characterized by a decreased partition-
ing into organic and amino acids, an altered redox state
and dramatic alterations in foliar ascorbic acid levels
(Nunes-Nesi et al., 2005). No allelic variations were ob-
served between S. lycopersicum and S. pennellii. Thirdly,
phosphoenolpyruvate carboxylase (gene 67), which also
mapped to this BIN, is involved in malate assimilation
and at post-transcriptional level it is regulated by this
compound which could eventually lead to the modifica-
tion of the fluxes from the TCA cycle (through oxalace-
tate) to amino acid biosynthesis.

The expression of a constitutive plastid lipid-associated
protein (gene 68), a polygalacturonase inhibitor gene
(gene 69), and a photosystem II 10 kDa protein (gene
73), all mapped on BIN 7H presented a co-response with
3, 4, and 2 of the co-located QML observed in S. pennellii
ILs, respectively (Fig. 6). Interestingly, the polygalactur-
onase inhibitor expression displays a positive correlation
with the QML for glucose-6-P, mapped onto this region,
as well as with the sucrose content; and a negative
correlation with fructose and glucose contents. A gene
encoding a lysine decarboxylase protein (gene 71) could
possibly be involved in the variation in b-Ala, Met, H-Ser,
and Thr co-localizing to this BIN. Another gene with the
potential to be directly involved with variations of Thr,
Gly, Ser, and glucose-6-P is the phosphoglycerate kinase
(gene 74), linked to these QML, which showed two amino
acid polymorphisms in the fragment analysed (Table 1).
This observation is in line with the finding of two other
linked genes related with photosynthesis: a chloroplast-
associated (gene 68) and the photosystem II 10 kDa proteins
(gene 73) that could play in the mentioned variations. A
poly(A)-specific ribonuclease (gene 72) also mapped onto
this region showed a high level of amino acid poly-
morphisms (Table 1). As an alternative to the involvement
of the other candidates mentioned above, it is conceivable
that this gene has a regulatory role that contributes to, or
indeed even causes, the observed metabolic variations.

Out of the 15 genes profiled from BIN 9B/D/E only five
(gene 76, peroxidase; gene 79, 1-phosphatidylinositol-4-
phosphate 5-kinase; gene 81, enolase; gene 91, chloroplast
pigment-binding protein; and gene 100, photosystem II
reaction centreW protein) displayed a co-response with
dehydroascorbate and phosphate, both co-located QML
(Fig. 6). An obvious candidate associated with the
increment observed in the levels of dehydroascorbate was
the gene encoding monodehydroascorbate reductase (gene
83; Fig. 4), wherein three single nucleotide polymor-
phisms were found; two in an intron and one that resulted
in an amino acid change in the coding region analysed.

On BIN 9J, an acireductone dioxygenase (gene 103),
involved in Met metabolism, and a malate dehydrogenase
(gene 105; Fig. 5), positively correlated with a co-located
QML observed for Ala (Fig. 6). Another gene that could
putatively be involved in the variation of this amino acid
was a glutamyl-tRNA aminotransferase (gene 106). De-
spite the fact that the correlative behaviour of this gene
could not be assessed, an amino acid polymorphism was
found in its coding region (Table 1), so its candidature
cannot be discarded. Similarly, variation in threonate
levels mapped on this BIN could be linked to the presence
of a GDP-mannose-3,5-epimerase gene (107), where
polymorphisms between the two alleles were observed.

In BIN 10B, a CXE carboxylesterase (gene 112)
presents a positive correlation with a GABA-co-localized
QML, while an NAD-dependent isocitrate dehydrogenase
(gene 114) negatively correlates with both GABA and Ile
QML. It is conceivable that an increment in NAD-
dependent isocitrate dehydrogenase mRNA levels nega-
tively affects the GABA and T-4-OH-Pro contents by
diverting the flux of 2-oxoglutarate towards Glu metabo-
lism. In addition, b-cyanoalanine synthase (gene 109), a key
enzyme involved in the detoxification of HCN, co-localizes
with QML for Ala and Gly. This enzyme has previously been
characterized as playing an important role in the detoxifica-
tion of HCN, a side product of ethylene biosynthesis during
climateric fruit ripening (Han et al., 2007).

Four genes which mapped to BIN 11C (gene 119,
plastid quinol oxidase; gene 123, JAB; gene 124, proline
iminopeptidase; and gene 125, ADP/ATP translocator),
displayed correlation with several of the metabolites
whose QTL co-localized to glucose, dehydroascorbate,
fumarate, GABA, and Asp. Intriguingly, the dehydroas-
corbate QML co-localizes to a dehydroascorbate reductase
(gene 117). Whilst no expression data are available for
this gene from the previous developmental series experi-
ment, allelic variation was found at the amino acid level,
highlighting this as an interesting candidate for further
study. Since ascorbic acid-associated genes have been
deeply surveyed in tomato, it is unlikely that the gene
identified in this work localized into BIN 11C is different
from that previously mapped by Zou et al. (2006) onto
BIN 11D, being an inaccurate localization. Another
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obvious candidate for the dehydroascorbate QML mapped
into this BIN is the phosphomannose mutase (gene 127)
that was also mapped by Zou et al. (2006). Finally, the
co-localization of the sucrose transporter SUT1 gene with
glucose QML is highly interesting, particularly in light of
the fact that antisense inhibition of this gene resulted in
modification of this metabolite content, as well as
dramatic morphological changes (Hackel et al., 2006).

Conclusions

In this article, a combination of molecular marker sequence
analysis, PCR amplification and sequencing, analysis of
allelic variation, and evaluation of co-responses between gene
expression and metabolite composition traits was used in
order to identify candidate genes responsible for a sub-set of
the previously reported metabolic QTL (Schauer et al.,
2006). Using this combined strategy, 127 candidate genes
located in 16 regions of the tomato genome were identified,
85 genes were cloned and partially sequenced from both S.
lycopersicum and S. pennellii, and allelic variation at the
amino acid level was confirmed in 37 of these candidates.
Furthermore, of the 127 gene-metabolite co-locations, some
56 were recovered following correlation of parallel transcript
and metabolite profiling. It is likely that the combined
approaches taken here would allow the detection of both
expression QTL (wherein the mechanism underlying the
metabolic change is an alteration in transcript and by
implication in protein amount), as well as change in function
mutations in which the level of expression is unaltered (for
example, the modified enzymatic activity of the S. pennellii
LIN5 isoform invertase; Fridman et al., 2004). The
candidate genes discussed here fit into both categories.

The work presented here represents the initial steps in the
integration of genetic, genomic, and expressional patterns of
genes co-localizing with chemical compositional traits of the
fruit. Whilst, in the present study were mapped a similar
number of genes as by Causse et al. (2004), due to the
nature of the present approach it was possible to map
a higher density of candidate genes. Depending on the gene
nature, different strategies are being used for functional
analyses in order to gather information about the role of
these candidates. Moreover, a physical map of some of the
genomic regions studied is under construction using S.
pennellii BAC and COS libraries in order to facilitate
future sequencing initiatives. Once complete it is likely that
this work will allow the identification of novel candidate
genes but will also be useful for BAC sorting and sequence
assembly in the nascent tomato genome sequencing
programme (Mueller et al., 2005b).

Supplementary data

The complete candidate genes information is detailed in
Table S1. The primer sequences used to amplify all

selected candidate genes are provided in Table S2.
Supplementary data may be found at JXB online.
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