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Abstract

We report on the use of the generic programming paradigm in the com-
putational geometry algorithms library CGAL. The parameterization of the
geometric algorithms in CGAL enhances flexibility and adaptability and opens
an easy way for abolishing precision and robustness problems by exact but
nevertheless efficient computation. Furthermore we discuss circulators, which
are an extension of the iterator concept to circular structures. Such structures
arise frequently in geometric computing.
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1 Introduction

CGAL is a C++ library of geometric algorithms and data structures. It is developed by several
sites in Europe and Israel. The goal is to enhance the technology transfer of the algorithmic
knowledge developed in the field of computational geometry to applications in industry and
academia.

Computational geometry is the sub-area of algorithm design that deals with the design and
analysis of algorithms for geometric problems involving objects like points, lines, polygons, and
polyhedra. Over the past twenty years, the field has developed a rich collection of solutions
to a huge variety of geometric problemsincluding intersection problems, visibility problems,
and proximity problems. See the textbooks [15, 23, 18, 21, 6, 1] and the handbook [10] for
an overview. The standard approach taken in computational geometry is the development of
provably good and efficient solutions to problems. However, implementing these algorithms
is not easy. The most common problems are the dissimilarity between fast floating-point
arithmetic normally used in practice and exact arithmetic over the real numbers assumed in
theoretical papers, the lack of explicit handling of degenerate cases in these papers, and the
inherent complexity of many efficient solutions. As a result, many useful geometric algorithms
have not found their way into the many application domains of computational geometry yet.
Therefore, a number of institutions from the computational geometry community itself has
started to develop CGAL [22]. The availability of a software—library can make a tremendous
difference. If there is no need anymore to implement the geometric algorithms from scratch,
the effort of experimenting with the solutions developed in computational geometry is lowered.

The major design goals for CGAL include correctness, robustness, flexibility, efficiency and
ease of use [7]. One aspect of flexibility is that CGAL algorithms can be easily adapted to
work on data types in applications that already exist. The design goals, especially flexibility
and efficient robust computation, led us to opt for the generic programming paradigm using
templates in C++ [19], and to reject the object-oriented paradigm in C++ (as well as Java).
In several appropriate places, however, we make use of object—oriented solutions and design
patterns. Generic programming with templates in C++ provides us with the help of strong
type checking at compile time, and also has the advantage that it doesn’t cause runtime
overhead. In the sequel we give examples of the use of the generic programming paradigm in
CGAL.

2 Generic Programming in Geometric Computing

One of the hallmarks of geometry is the use of transformations. Indeed, geometric transfor-
mations link several geometric structures together [6, 1]. For example, duality relates the
problem of computing the intersection of halfplanes containing the origin to that of com-
puting the convex hull of their dual points. The Voronoi diagram of a set of points is also
dually related to its Delaunay triangulation, and this triangulation can be computed as a
lower convex hull of the points lifted onto a paraboloid in one dimension higher.

For this kind of problem, the relevance of generic programming is obvious. Much like the



problem of finding a minimum element in a sequence, the use of a geometric algorithm such
as computing the convex hull can have many applications via geometric transformations. In
this setting, the algorithm does not operate on the original objects but on their transformed
version, and the primitives used by the algorithm must also be applied through the same
transformation. This is achieved in CGAL through the use of traits classes.1

Another hallmark of geometric programming is the multiple choice of representations of a
geometric object. Naturally, some representations are more suited to a particular problem.
In computing Delaunay triangulations or minimum enclosing circles, for example, a circle
will likely be represented implicitly as the circumcircle of three points. Other representa-
tions would include a pair of center and squared radius (this is the default representation in
CGAL). In most problems, a point would be represented by its coordinates, either Cartesian
or homogeneous. Another choice, more suited to boolean operations on polygons for instance,
might be as an intersection of two lines: such a representation is stable when performing an
arbitrary number of boolean operations.

Finally, geometric computing has been successful in abstracting several paradigms of its own.
For example, the sweep paradigm is used to compute arrangements of lines of segments,
triangulations of polygons, and Voronoi diagrams. Randomized incremental algorithms have
been abstracted in a framework [5, 1] that uses few primitives. Geometric optimization
problems have brought forth the generalized LP-type problems that have been so hugely
successful in computing minimum enclosing circles and ellipses, distances between polytopes,
linear programs, etc. In all three cases, one can write the skeleton of an algorithm that will
work, given the appropriate primitives. The user then has to supply only those primitives via
a traits class.

Algorithms in CGAL are generic, they work with a variety of implementations of predicates
and representations of geometric objects. In the following sections, we argue that generic
programming is especially relevant to geometric computing.

3 Traits Classes and the CGAL Kernel

We briefly recall the main elements of the design [7] of the CGAL kernel [3]. The two ba-
sic representation classes in the CGAL kernel are CGAL_Cartesian and CGAL_Homogeneous.
They provide basic geometric types like Point_2 and Segment_2. Instead of a dense class
hierarchy, these types are organized as a loosely coupled collection. For example, PointC2
is a model for the abstract concept of a point (with internal representation as Cartesian c0-
ordinates). A model of a concept is an implementation that fulfills the requirements of this
concept. A typedef declaration in the corresponding representation class Cartesian links
Cartesian: :Point_2 with Point-.02.

Genericity is extended by templating all these classes by the number type used to store the
coordinates. This allows to tailor the kernel to the application, especially regarding robustness

1In CGAL, the term ‘traits class7 is used in a more general setting than associating related type information
to built-in types, which is the original usage [20].



and precision concerns as described below in Section 6. The concept of a geometric kernel is
currently extended to contain the predicates and constructions on the basic kernel objects.
A kernel is a model of the concept of a geometric kernel as defined by the CGAL Reference
Manual [3] With this design, a model of a geometric kernel can be passed as a traits parameter
to the algorithms of the CGAL basic library, as described in section 5. This does not exclude
users to provide an interface to their own library as a model of a CGAL kernel. For example,
there are adaptations of the floating-point and the rational geometry kernel of LEDA [16].

4 Data Passing by Iterators and Circulators

A prominent example of the generic programming paradigm is the Standard Template Library
(STL) accompanying the C++ standard. Algorithms interact with container classes through
the concept of iterators, which are defined through a set of requirements. Each container
class is supposed to provide a model for an iterator. The algorithms are parameterized with
iterators, and can be instantiated with any model that fulfills the iterator requirements. So,
containers and algorithms are kept independent from each other. New algorithms can be
developed without knowing any container class, and vice versa.

For example, a range of points can be fed into an algorithm by providing two forward iterators
first and beyond. They define a range [first,beyond), if applying a finite number of
times the operator ++ to first makes that first == beyond. The range refers to the points
starting with *first up to but not including *beyond. The iterator beyond is said to point
“past the end’ of the range. An application programmer need not copy the data from a favorite
container into another container in order to feed it to the algorithm, as long as the container
provides iterators. Inside the algorithm the points are addressed by advancing the iterator,
independent of the particular container type.

In the following example, min_encl_circle is template-parameterized with a forward itera-
tor:

template <class ForwardIterator>
Circle
min_encl_circle(ForwardIterator first, ForwardIterator beyond)
{...}

The concept of iterators in STL is tailored for linear sequences. In contrast, circular sequences
evolve naturally in many combinatorial and geometric structures. Examples are polyhedral
surfaces and planar maps, where the edges emanating from a vertex or the edges around a
facet form a circular sequence.

Since circular sequences cannot provide efficient iterators, we have introduced the new concept
of Circulators in CGAL. They share most of the requirements with iterators, while the main
difference is the lack of a past-the—end position in the sequence. Appropriate adaptors are
provided between iterators and Circulators to seat Circulators smoothly into the framework of



STL. We give a short introduction to circulators and discuss advantages and disadvantages
thereafter.

The following example illustrates the use of a circulator in a generic function contains that
tests whether a certain value exists in a circular sequence. As usual for circular structures,
we use a do-while loop to reach all elements in the specific case c ==

template <class Circulator, class T>
bool contains( Circulator c, Circulator d, const T& value) {

if ( c != NULL) { ‘
do {

if ( * == value)
return true;

} while (++C != d);
}
return false;

Three circulator categories are defined: forward, bidirectional and random-access circulators.
Given a circulator c, the operation *c denotes the item the circulator refers to. The oper-
ation ++c advances the circulator by one item and --c steps a bidirectional circulator one
item backwards. For random-access circulators c+n advances the circulator n times. Two
circulators can be compared for equality.

Circulators have a different notion of reachability and ranges than iterators. A circulator d is
called reachable from a circulator c if c can be made equal to d with finitely many applications
of the operator ++. Due to the circularity of the data structure this is always true if both
circulators refer to items of the same data structure. In particular, c is always reachable from
c. Given two circulators c and d, the range [c ,d) denotes all circulators obtained by starting
with c and advancing c until d is reached, but does not include d for d 75 c. So far it is the
same range definition as for iterators. The difference lies in the use of [c,c) to denote all
items in the circular data structure, whereas for an iterator i the range [i,i) denotes the
empty range. As long as c != d the range [c,d) behaves like an iterator range and could
be used in STL algorithms. For circulators however, an additional test c == NULL is required
that returns true if and only if the data structure is empty. In this case the circulator c is
said to have a singular value.

Supporting both iterators and circulators within the same generic algorithm is just as simple
as supporting iterators only. This and the requirements for circulators are described in the
CGAL Reference Manual [13].

The main reason for inventing a new concept with the same goals as iterators is efficiency.
An iterator is supposed to be a light-weight object — merely a pointer and a single indirection
to advance the iterator. Although iterators could be written for circular sequences, we do not
know of an efficient solution. The missing past—the-end situation in circular sequences can
be solved with an arbitrary sentinel in the cyclic order, but this would destroy the natural
symmetry in the structure (which is in itself a bad idea) and additional bookkeeping in



the items and checking in the iterator advance method reduces efficiency. Another solution
may use more bookkeeping in the iterator, e.g. with a start item, a current item, and a
kind of winding-number that is zero for the beginO-iterator and one for the past-the-end
situation. Though the concept of circulators allows light-weight implementations, the CGAL
support library provides adaptor classes that convert between iterators and circulators (with
the corresponding penalty in efficiency), so as to integrate this new concept into the framework
of STL.

A serious design problem is the slight change of the semantic for circulator ranges as compared
to iterator ranges. Since this semantic is defined by the intuitive operators ++ and ==, which
we would like to keep for circulators as well, circulator ranges can be used in STL algorithms.
This is in itself a useful feature, if there would not be the definition of a full range [c, c)
that an STL algorithm will treat as an empty range. However, the likelihood of a mistake may
be overestimated, since for a container C supporting circulators there is no end() member
function, and an expression such as sort( C.begin() , C.end()) will fail. It is easy to
distinguish iterators and circulators at compile time, which allows for generic algorithms
supporting both as arguments. It is also possible to protect algorithms against inappropriate
arguments with the same technique, though it is beyond the scope of CGAL to extend STL
algorithms.

5 Generic Geometric Algorithms using Traits classes

Also at a higher level, CGAL uses traits classes. In algorithms, primitives are encapsulated in
traits classes, so that application specific primitives and specialized versions can be plugged
in. To illustrate this, consider the problem of computing the minimum enclosing circle of a set
of points. This problem is generally motivated as a facility location problem, or in robotics,
as how to anchor a robot arm so as to minimize its range under the constraint that it must
reach all specified locations, modeled as points.

Suppose now that those points are at different heights and that the robot arm can slide along
a vertical axis. To test whether a number of points in space can be reached by this robot
arm, it is possible to compute the smallest enclosing vertical cylinder, and check whether the
radius is not larger than the length of the robot arm. For the sake of simplicity we ignore
possible collisions.

The smallest enclosing circle is calculated in the two-dimensional plane, but the points are
three-dimensional. Of course we could make a version of the smallest enclosing circle algo-
rithm that operates on three-dimensional points, but generates the two—dimensional circle.
This is against the principle of code reuse, one of the hallmarks of modern programming.
Alternatively, we could perform the projection explicitly, generate two-dimensional points,
apply the two-dimensional algorithm, and maintain the correspondence between the three-
dimensional and the two—dimensional points if needed. This requires extra bookkeeping and
space, and is not so elegant.

In general, the smallest enclosing circle algorithm can treat points in an abstract way using
predicates like side_of_bounded_circle (p,q,r,test) to test if the point test lies on the



bounded side (inside), on the unbounded side, or on the boundary of the circle through p,
q and r (assuming p, q and r are not collinear). So, the algorithm can be parameterized
by point type and predicates. CGAL does this: the point type and predicates are put into
what CGAL calls a traits class. In the following example, the algorithm min_encl_circ1e is
template-parameterized with the Forwardlterator and the Traits class:

template <class ForwardIterator, class Traits>
Circle
min_encl_circle(ForwardIterator first, ForwardIterator beyond,

Traits traits)

Rather than explicitly working with a CGAL point type, the algorithm internally works
with type traits: :Point_2. Likewise, instead of using a global function for the predi-
cate Side_of_bounded_circle (p,q,r,test), it uses a function object which is accessible
through a member function of the traits class. This function object provides the operator()
(traits::Point_2 p,traits::Point_2 q,traits::Point_2 r,traits::Point_2 test}

template <class ForwardIterator, class Traits)
Circle
min_enc1_circle(ForwardIterator first, ForwardIterator beyond,

Traits traits) {
typedef traits::Point_2 Point_2; // local type for points
for ( ; first != beyond; ++first ) {

// ... using traits.side_of_bounded_circle()( p, q, I, test)
}
// return result

An application programmer can use any point type by defining an appropriate traits class
My_traitsxvfih.aruoperMy_side_of_bounded_circle:

struct My_side_of_bounded_circle {
bool
operator()(My_point *p, My_point *q, My_point *r, My_point *test)
{ ... }

};

struct My_traits {
typedef My_point Point_2;
typedef My_side_of_bounded_circle Side_of_bounded_circle;
Side_of_bounded_circle side_of_bounded_circle() const {

return Side_of_bounded_circle();
}

} my_traits;



The use of a member function to access the predicate allows to pass additional data from
a traits object to the predicate object in order to influence the predicate’s behavior. The
smallest enclosing circle algorithm can be invoked with this traits class:

vector<My_point> points(num) ;
Circle min_enc1_circ1e (points .beginO , points.end() , My_traits());

In this way, specialized predicates can be used that work on 3D points, but evaluate the
orientation on projections of those points, leaving the algorithm itself unchanged. CGAL uses
traits classes for algorithms and for data structures throughout the basic library, and provides
traits classes for common use, such as the two CGAL kernels and projections of them, or the
LEDA geometry kernels. A default argument even hides the mechanism of the traits classes
from inexperienced users.

6 Generic Programming eases Efficient Robust Geometric
Computing

Since the field of computational geometry has its roots in theoretical computer science, algo—
rithms developed in computational geometry are designed for a theoretical machine model,
the so—called real RAM model [23]. In a real RAM, exact computation with arbitrary real
numbers is assumed (with constant cost per arithmetic operation). In practice, however,
the most popular substitution for computation with real numbers in scientific computing
is floating—point computation. Floating-point arithmetic is fast, but not necessarily exact.
Depending on the type of geometric problem to be solved, implementations of theoretically
correct algorithms frequently produce garbage, or crash, due to rounding errors in floating-
point arithmetic. The reason for such crashes with floating-point arithmetic are inconsistent
decisions leading the algorithms into states they never could get into with exact arithmetic
[12, 24]. Exact computation has been proposed to resolve the problem [27]. This approach
is appealing, since it lets an implementation behave exactly as its theoretical counterpart.
No redesign for a machine model that takes imprecise arithmetic into account is necessary.
Fortunately, exact computation in the sense of guaranteeing correct decisions is, at least in
principle, possible for many geometric problems. It is, however, also known to be expensive
in terms of performance. In this section we discuss how parameterization opens the way for
affordable efficient exact computation.

In many cases, geometric algorithms are already described in layers. Elementary tasks are
encapsulated in geometric primitives. As described above, implementations of geometric
algorithms in CGAL are generic with respect to the concrete implementation of geometric
primitives. A traits class specifies the concrete types that are actually used. Most interesting
with respect to the precision and robustness issue are geometric predicates, e.g. checking
whether three points form a left turn. Naturally, the correctness of the overall algorithm
depends on the correctness of the primitive operations.

CGAL provides generic implementations of such primitive operations that allow one to ex-
change the arithmetic. Both currently available CGAL kernels, namely CGAL_Cartesian and



CGALJ-Iomogeneous, are parameterized by a number type. The actual requirements on the
number type parameter vary with the primitive. For example, division operations are avoided
in most primitives for the homogeneous kernel. Thus, a number type need not have a division
operation in order to be used in an instantiation of a template for such a geometric primitive.
For the majority of the primitives in CGAL, the basic arithmetic operations +, —,*, and /
suffice. For some other primitives, a number type must also provide a square root operation.
A number type model must not only provide the arithmetic operations in the syntactically
correct form, the available arithmetic operations must also have the correct semantics. Con-
cerning the syntax of the operations on a number type, operator overloading is assumed. This
makes the code highly readable.

Strictly speaking, a number type should be a model for the mathematical concept of a real
number, just in accordance with the assumptions made in the abstract machine the geometric
algorithm was developed for. However, there is no such valid model. Fortunately, in prac-
tice, the numerical input data for a geometric primitive are not arbitrary real numbers, but
restricted to some subset of the real numbers, e.g. the set of real numbers representable by
an int or a double. In such a situation, a concrete model for a number type is useful, if it
provides the correct semantics for the relevant arithmetic operations restricted to the possible
set of operands. Less strictly speaking, it suffices if the primitive computes the correct result.

C++ has several built-in number type models. There are signed and unsigned integral types
and floating—point types. In general, they all fail to be valid models for the mathematical
concepts of integers and real numbers, respectively. Due to rounding errors and over— or
underfiow, basic laws of arithmetic are violated. There are also various software packages [11,
2] and libraries [16, 14] that provide further models of number types, e.g. arbitrary precision
integral types. A very useful model for geometric computations is the number type ledaleal
[4, 16]. This type models a subset of algebraic numbers. leda_reals subsume (arbitrary
precision) integers and are closed under addition, subtraction, multiplication, division, and
k-root operations. Invisible to the user, this number type uses adaptive computation to speed
up exact comparison operations.

In order to be useful as a library component, there should be a handy description of the set of
permissible inputs, for which an instantiation of the template code of a geometric primitive
works. For example, a description like ‘Instantiated with double, this primitive gives the
correct result for all those inputs where rounding errors do not lead to incorrect decisions
during the evaluation of the primitive’ is by no means useful. For number types guaranteeing
exact decisions, a useful description is easy, however. Admittedly, there is no satisfactory
solution to this issue for potentially inexact number types yet.

Choosing a more powerful number type is only one way to get reliable primitive operations
for CGAL algorithms. An alternative is to make special implementations for the primitives,
which use evaluation strategies different from the default templates. A number of techniques
for exact implementation of geometric primitives have been suggested, e. g. [8, 26]. Alternative
implementations can be provided within the CGAL kernel framework as explicit specializations
of the template primitives for certain number types. Furthermore, primitives can be imple—
mented independently from the CGAL kernel and can be used directly in traits class models.
Finally, existing geometry kernels can be easily used with CGAL algorithms. For example,
there are adaptations of the floating-point and the rational geometry kernel of LEDA.
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Figure 1: Running times of a CGAL implementation of the Graham-scan algorithm with differ-
ent geometry kernels. The kernels labelled C< > and H< > are instantiations of the Cartesian
and homogeneous CGAL kernels resp., with the number type argument in angle-brackets.
Both use reference counting [17]. The goal is to speed up copying operations at the cost of
an indirection in accessing data. The kernels labelled S< > use Cartesian coordinates as well
but no reference counting. The kernels labelled V< > are similar to the S< > kernels, but
more Java—like: all access functions are virtual and not inlined. Finally, leda and rat_leda
are adaptations of the floating-point and rational geometry kernels resp. of LEDA. In the
C<doub1e>++ kernel, some primitives are specialized and use a slightly more robust compu-
tation in the primitives. Furthermore, the code for number type CGAL_S_int<N> is explicitly
specialized. The primitives for CGAL_S_int<N> assume that the Cartesian coordinates, which
are internally maintained as doubles, are integers with at most N bits. In the specializa-
tions, a static floating point filter [9] is used. The filter is based on the assumption of the
integrality and the size of the numbers. If the filter fails, primitives are re—evaluated with
arbitrary precision integer arithmetic. C<double> Ed Pred uses special primitives based on
[26]. CGAL provides different inlining policies. Here, for all CGAL kernels, the level of inlining
was increased with respect to the default in the current release.



7 Concluding Remarks

The generic design offers a lot of flexibility. Figure 1 shows a bar chart with (typical running
times for) various geometry kernels in a planar convex hull computation. The geometry
kernels differ not only in their efficiency, but also in their effectiveness with respect to exact
geometric computation. The number of stars on the left in Fig. 1 is an indicator for the power
of the kernels to produce correct results in the predicates. The predicates in the kernels
without any star are potentially unreliable. In the kernels with one star, the predicates
are reliable, if the numerical data passed to the predicates are integers (of bounded size).
The predicates in a kernel with two stars also make correct decisions for numerical data
represented as double precision floating-point numbers.2 The reliability of the kernels with
one or two stars is based on the assumption that the numerical data passed to the predicates
are exact. This assumption might not hold anymore for numerical data computed by primitive
operations in those kernels, for example the coordinates of an intersection point. The rat Jeda
geometry kernel has three stars, because it gives correct result even with cascaded rational
computations. Since the number type leda_real guarantees exact decisions for a superset of
the rationals as described above, all kernels parameterized with number type leda_real have
four stars.

There are significant differences in the performance, ranging from fairly slow arbitrary preci-
sion integer arithmetic via fast, exact kernels based on adaptive evaluation to very fast, but
potentially unreliable floating-point arithmetic. For further discussion of the various kernels
and their performance we refer to [25].
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