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Abstract

The group Steiner tree problem is a generalization of the

Steiner tree problem where we are given several subsets

(groups) of vertices in a weighted graph, and the goal is

to �nd a minimum-weight connected subgraph containing

at least one vertex from each group. The problem was

introduced by Reich and Widmayer and �nds applications

in VLSI design. The group Steiner tree problem generalizes

the set covering problem, and is therefore at least as hard.

We give a randomized O(log

3

n log k)-approximation

algorithm for the group Steiner tree problem on an n-node

graph, where k is the number of groups. The best previous

performance guarantee was (1 +

ln k

2

)

p

k (Bateman, Helvig,

Robins and Zelikovsky).

Noting that the group Steiner problem also models the

network design problems with location-theoretic constraints

studied by Marathe, Ravi and Sundaram, our results also

improve their bicriteria approximation results. Similarly, we

improve previous results by Slav��k on a tour version, called

the errand scheduling problem.

We use the result of Bartal on probabilistic approxima-

tion of �nite metric spaces by tree metrics to reduce the

problem to one in a tree metric. To �nd a solution on a

tree, we use a generalization of randomized rounding. Our

approximation guarantees improve to O(log

2

n log k) in the

case of graphs that exclude small minors by using a bet-

ter alternative to Bartal's result on probabilistic approxima-

tions of metrics induced by such graphs (Konjevod, Ravi and

Salman) { this improvement is valid for the group Steiner

problem on planar graphs as well as on a set of points in the

2D-Euclidean case.

1 Introduction.

1.1 Motivation. The group Steiner problem was in-

troduced by Reich and Widmayer [19]. The problem

arises in wire routing with multiport terminals in physi-

cal VLSI design. The traditional model assuming single

ports for each of the terminals to be connected in a net of

minimum length is the Steiner tree problem. When the

terminal is a collection of di�erent possible ports, so that

�
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the net can be connected to any one of them, we have

a group Steiner tree problem: each terminal is a collec-

tion of ports and we seek a minimum length net con-

taining at least one port from each terminal group The

multiple port locations for a single terminal may also

model di�erent choices of placing a single port by rotat-

ing and/or mirroring the module containing the port in

the placement. The choice allows for more interaction

between the placement and routing phases of physical

VLSI-design, potentially allowing for more overall opti-

mization of the design.

The group Steiner tree problem can be stated

formally as follows: we are given a graph G = (V;E)

with the cost function c : E ! R

+

, and sets of vertices

g

1

; g

2

; : : : g

k

� V . We call g

1

; : : : ; g

k

groups. The

objective is to �nd the minimum cost subtree T of G

that contains at least one vertex from each of the sets g

i

.

Formally, �nd T = (V

0

; E

0

) that minimizes

P

e2E

0

c

e

,

such that V

0

\ g

i

6= ; for all i 2 f1; � � � ; kg. We use n

to denote jV j and N to denote the size of the largest

group, N = max

i

jg

i

j � n. We may assume that the

groups are pairwise disjoint without loss of generality

using the following transformation: if a node is in many

groups, replace the node by a clique of zero-cost edges

of size equal to the number of groups it occurs in; In

addition to the neighbors in the clique, every copy of

this node has the same neighbors as the original node

in the graph.

The group Steiner problem is a generalization of the

classical Steiner tree problem [21], and therefore NP-

hard. In fact, it is also a direct generalization of the

even harder set-covering problem as observed several

times earlier [10, 14, 20]. In the set covering problem,

we are given a collection of weighted subsets of a given

ground set and seek a minimum-weight subcollection

whose union is the entire ground set. To reduce this

problem to a group Steiner problem, build a star with a

leaf for each set and a new center node. Every element in

the set-covering problem de�nes a group of leaves in the

star in a natural way, namely, the leaves corresponding

to the sets that contain this element. The equivalence

is completed by giving the edges the weights of the

corresponding sets. (Even if we require the groups to be

disjoint, this construction can be realized by expanding

each leaf node representing a set by attaching as many
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children to it as its size, one for each element, using

zero-weight edges). Because of this, it is NP-hard to

approximate the group Steiner problem to a factor of

o(ln k) [7, ?, ?].

1.2 Previous Work. The papers of Ihler [9, 10,

11], and Ihler, Reich and Widmayer [12, 13] contain

some early work on the group Steiner problem. (In

some of the cited papers the group Steiner problem is

referred to as the class Steiner problem, or the tree-

cover problem.) In particular, in [9] it is proved that

the heuristic introduced by Reich and Widmayer [19]

has approximation ratio of k � 1 (k is the number of

groups). The related problem of minimum diameter

group tree is shown to be polynomially solvable in [12].

The paper [11] gives a polynomial algorithm for a special

case of the group Steiner problem where the groups of

points are intervals on two parallel lines. [13] shows that

the group Steiner tree problem is NP-hard even if the

graph is a subgraph of a square grid in the plane, and

each group has at most 3 vertices.

Slav��k [20] considered the group Steiner problem on

trees and gave an algorithm with a performance ratio

of B �H(N ) = B � O(lnN ), where B is the maximum

number of vertices of a group in a subtree of the root,

and H(N ) is the N -th harmonic number.

In a recent paper, Bateman, Helvig, Robins and

Zelikovsky [5] have given the �rst algorithm with a sub-

linear performance guarantee. Their algorithm (with a

Java implementation available on the Internet [4]) gives

an approximation ratio of (1+

lnk

2

)

p

k. This ratio comes

from approximating the group Steiner tree by a 2-star

(tree of depth 2), and then approximating the 2-star

within a logarithmic factor.

1.3 Our results. We give a polynomial time algo-

rithm that with high probability (at least 1� c, for any

�xed constant c) �nds a group Steiner tree of cost within

O(log

3

n log k) of the cost of the best group Steiner tree.

The main technical result is a randomized algorithm

that solves the problem on trees (even this is still as

hard as set-covering, by the reduction described above)

with a O(logk logN ) approximation ratio. This is ex-

tended to arbitrary graphs by using the result of [3],

and the �nal approximation ratio is then O(log

3

n logk)

(the size of the largest group, N , is at most the number

of nodes n). The results of [15] used in place of Bar-

tal's improve the performance ratio to O(log

2

n logk) on

graphs that exclude K

s;s

as a minor for some �xed con-

stant s. An example is planar graphs that exclude K

3;3

.

Since planar graph distances approximate distances in

the two-dimensional Euclidean plane well [6], the im-

provement also carries over to group Steiner problems

in the plane.

Our approximation algorithm for the case of tree

metrics �rst solves a linear programming relaxation of

the group Steiner tree problem. Then an extension of

randomized rounding is employed to get the solution

subtree. The bound on the cost of the tree follows

from the rounding process. On the other hand, to show

that the solution tree actually covers all the groups with

reasonable probability, we use Janson's inequality.

Our algorithm works with similar performance

bounds when applied to the errand scheduling problem

of [20], and to the service-constrained network design

problems of [17, 16].

In the remainder of the paper, we �rst present our

linear programming formulation for the problem on tree

metrics and our rounding procedure, and then prove

the performance guarantee. Then, we describe the

reduction of the general case to the case of tree metrics,

and close with applications to related problems.

2 Linear program.

We consider the group Steiner tree problem on a tree

T

0

= (V;E) with nonnegative costs c on its edges. We

study the rooted version where a prespeci�ed root node

r is required to be in the solution subtree. To solve

the unrooted version, we can run through the di�erent

nodes in a smallest group as the choice for the root r,

and pick the best solution among these runs. Let �S

denote the set of edges with exactly one endpoint in S

for any subset of nodes S � V . We use the following

linear programming relaxation of the (rooted) group

Steiner tree problem:

min

X

e2E

c

e

x

e

X

e2�S

x

e

� 1, 8S � V such that

r 2 S and S \ g

i

= ; for some i

0 � x

e

� 1; 8e 2 E

(2.1)

where r 2 V is the root vertex.

The above linear program can be solved in poly-

nomial time, despite the exponential number of con-

straints. This follows, for example from [8] and the fact

that a separation oracle can be constructed easily, using

a minimum cut procedure.

A more direct way to see the polynomial-time

solvability of the program is by re-interpreting the

constraints using the max-
ow min-cut theorem. The

constraints require that any cut separating the root from

all the nodes of a given group must have capacity at

least one. We can think of adding a new source node
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for this group with edges to all the nodes in it of in�nite

capacity and interpret the value x

e

as capacity of the

edge e. Then, by the constraints and the max-
owmin-

cut theorem, any solution x must support a 
ow of at

least one unit from this source to the root|in other

words, the program stipulates that we install su�cient

capacity x such that it can support a total 
ow of value

at least one from all the nodes in any group to the

root. This can be written as a polynomial-sized set of

constraints involving one set of 
ow variables for each

group: the resulting formulation is equivalent to the

above.

Let x be the optimal solution of the linear program

2.1, and T

0

the underlying graph (consisting of all edges

e such that x

e

> 0). We assume that T

0

is a tree, and

give its edges capacities x

e

. We denote by z

�

the optimal

value of the objective function.

3 Random experiment.

In this section we explain our rounding process and

prove the main technical results. Our rounding may be

seen as an extension of traditional randomized round-

ing [18] for the set cover problem to our \tree version"

of the set-covering problem.

Consider the following random experiment. Assume

without loss of generality that all group vertices are

leaves of T

0

(internal group vertices can be made leaves

by inserting a zero-cost edge). Similarly we may assume

without loss of generality that the tree T

0

is binary by

expanding out higher degree internal nodes with zero-

cost edges into ternary nodes. For every edge e 2 E(T

0

),

include e in a forest T with probability x

e

=x

f

, where f

is the edge adjacent to e and closer to r (the parent

edge of e). If e is incident on r, then we include it

with probability x

e

(we think of a �ctitious edge above

r with unit 
ow as the parent edge of e denoting that r

is always included in T ). Then delete all components of

T not containing the root r, as well as every edge that

is not contained in a path from r to a group vertex. Let

T denote the resulting tree.

Lemma 3.1. The expected cost of the tree T picked

by the random experiment is at most z

�

.

Proof. We show that the probability of including

any edge e in T is x

e

, and the lemma follows from the

linearity of expectation.

An edge e is included in T i� all the edges in

the path from r to e, say e; e

1

; : : : ; e

p

are picked in

their respective independent random experiments. The

probability of this is

x

e

1

1

�

x

e

2

x

e

1

� � �

x

e

x

e

p

= x

e

. �

To analyze this experiment, we use Janson's in-

equality (see, e.g., [1]), which can be stated as follows:

let 
 be a universal set, and R � 
 determined by the

experiment in which each element r 2 
 is indepen-

dently included in R with probability p

r

. Let A

i

be

subsets of 
, and denote by B

i

the event that A

i

� R.

Write i � j if B

i

and B

j

are not independent. De�ne

� =

P

i�j

Pr[B

i

\ B

j

] (the sum is over ordered pairs).

Let � =

P

i

Pr[B

i

], and � be such that Pr[B

i

] � � for all

i.

Theorem 3.1. (Janson's inequality.) With the no-

tation as above, if � � �(1� �), then

Pr

�

\

i

B

i

�

� e

��

2

(1��)

2�

:

In our case, 
 = E(T

0

), and p

e

= x

e

=x

f

. The

subsets A

i

are edge-sets of paths from r to leaves

belonging to a �xed group g, and

T

i

B

i

is the event

that we don't reach g in the experiment. In the

sequel, we lower bound the success probability of the

event of including a group's vertex by using Janson's

inequality to upper bound the failure probability of the

complementary event.

To prove the main result we need a simple lemma.

Lemma 3.2. If T and T

0

are trees that di�er only

in the capacity of an edge e, such that x

T

(e) � x

T

0

(e),

then for any group the success probability of including a

vertex from the group is no greater in T

0

than in T .

Proof. Let e be an edge of T with exactly two child

edges f and g (We assumed the trees to be binary

without loss of generality). The interesting case is when

both the subtrees contain nodes of the group. We have

Pr[fail in e's subtree] = 1�x

e

+x

e

�

1�

x

f

x

e

��

1�

x

g

x

e

�

:

The 1 � x

e

in the sum is the chance that the edge

e is not included in the subtree containing the root,

and the remaining term is the chance, given that e is

included, that neither of its two child edges is included.

If x

e

is decreased by a little, the value of the above

expression will decrease as well. But, we can think of

the success probability in the subtree of T under the

edge e as the probability of another equivalent single

edge e

0

with x

e

0

= Pr[succeed in the subtree below e

0

].

Now it is clear that if x

e

0

is decreased, then probability

of success in T will also decrease. �

Theorem 3.2. If we run the random experiment

on a feasible solution to the LP (1), then for every group

G, the success probability of including a vertex from G

in the randomly chosen tree T is 
(1= logN ) where N

is the maximum size of a group.

Proof. Consider the tree spanned by the paths from

r to the leaves of a �xed group g. We will transform

this tree into one where it will be easier to estimate the
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success probability. In the process we only decrease the

success probability, so that a lower bound carries over

to the original tree.

Since this tree comes from a feasible solution x to

the LP (1), as argued before, the capacities x support

a 
ow of at least one between r and the nodes of g.

Starting from the root and going down the tree, decrease

the capacity on the edges so that the 
ow from r to

the nodes of this group is exactly 1 at the end. By

lemma 3.2, this only decreases the success probability

at each decreasing step.

We now have a tree with 
ow of 1 between the root

and g. Round down all the capacities to next powers

of 2. This in the worst case halves the 
ow from r

to g. (Note that 
ow constraints need not be satis�ed

anymore.) Let N

g

= jgj be the number of leaves in this

tree, and let d = dlogN

g

e. Delete all edges of capacity

less than 1=2

d+2

. This reduces the 
ow again, but since

there were only N

g

leaves to begin with, the total 
ow

we lose now is at most N

g

2

�(d+2)

� 1=4. Assume that

the 
ow is now exactly 1=4: otherwise delete some leaves

until this is true. Finally, shrink every edge (except the

pendant edges) that is preceded (on the path from the

root) by another edge of the same weight. This doesn't

change the success probability, and reduces the depth of

the tree to d. We abuse notation slightly and continue

to denote the resulting rounded edge capacity values

carrying a 
ow of value exactly 1=4 to group g by x.

We will show that in this tree (henceforth referred

to as T

rnd

), � = O(logN

g

). Consider a pendant edge

e, and let

�

e

=

X

f�e

x

e

x

f

x

g

;

where g is the least common ancestor of e and f . Recall

that f � e implies that f is another pendant edge to

a node in this group whose path to r shares at least

one edge with the path from e to r. Thus �

e

is the

contribution to � of the edge e, and � =

P

e

�

e

.

Suppose edge e goes from level i to level i + 1 of

T

rnd

, and denote by e

j

= v

j

v

j+1

the edges on the path

from the root to e (j = 0; : : : ; i, v

0

= r and e

i

= e).

Further, let T

j

be the subtree of T

rnd

whose root is v

j

,

and which does not include e

j

(See �gure). Let f

j

be

the total 
ow from subtree T

j

to the root. Then we have

�

e

=

i

X

j=1

x

e

f

j

x

e

j�1

;

where we again assume x

e

�1

= 1:

r=v

0

v

1

v

i�1

v

i

v

i+1

e

0

e

i�1

e

i

=e

T

1

T

i�1

T

i

f

1

f

i�1

f

i

Since the capacities on these edges are a result of

rounding down to powers of 2, it follows that f

j

�

2x

e

j�1

. (Indeed, assume f

j

> 2x

e

j�1

. In the rounding,

x

e

j�1

was at most halved, and so before the rounding it

must have been true that f

j

> x

e

j�1

. But this would

contradict the 
ow constraints that were satis�ed before

the rounding.) So,

�

e

� x

e

i

X

j=0

2 = 2(i+ 1)x

e

:

Therefore,

� =

X

e

�

e

�

X

e

2(d+ 2)x

e

=

1

2

(d+ 2) � logN

g

:

Now we can apply Janson's equality with � =

1

4

,

� = logN

g

and � =

1

2

. We get

Pr[fail to reach g] � e

�

1

64�

= e

�

1

64 logN

g

=

1�

1

64 logN

g

+

1

4096 log

2

N

g

� � � � ;

and we see that we will reach group g with probability

of about

1

64 logN

g

. Since N

g

� N , the maximum size of

any group, the theorem follows. �

Our analysis in the above theorem is essentially

tight as can be seen by considering T

rnd

to be a

complete binary tree where all capacities in a level are

equal and this decreases by a factor of two as we go

down the tree. The success probability for this tree

can be shown (via a recurrence relation) to be O(

1

logn

)

where n is the number of leaves.

4 Building the Steiner tree.

Now we show how to use the result of the previous

section and amplify the probability of success, while
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keeping the �nal cost low.

When we pick a single tree randomly, the probabil-

ity that it covers g is at least

1

64 logN

for any group g.

If we pick 64 logN trees in the same way, we will cover

any group with a constant probability of about 1� 1=e.

If we pick about 64 logN ln 2k trees, the probability of

missing a given group is at most 1=2k, and by subaddi-

tivity, the probability of missing any group is at most

1=2. So, if we have picked A logN ln 2k trees, where,

for example A = 128, the union of these trees will cover

every group with probability at least 3=4.

The total cost of those trees is at most the sum of

their costs. Denote this by c(T ). Then by Markov's

inequality,

Pr[c(T ) � 4A logN log 2k z

�

] � 1=4:

Thus the tree T has low cost with probability at least

3=4.

Since the two \good" events each occupy at least

3=4 of the probability space, they must overlap in at

least 1=2, and so with probability at least 1=2, we cover

all groups with a tree of cost O(logN logk z

�

). Since z

�

is a lower bound on the cost of an optimal group Steiner

tree, we obtain the following theorem.

Theorem 4.1. There is a randomized polynomial

time algorithm that, with probability at least 1=2, �nds

a group Steiner tree on an underlying graph which is

a tree, of cost no more than O(logN log k) times the

minimum, where N is the maximum size of a group and

k is the number of groups.

Note that we have also proved the following:

Corollary 4.1. The integrality gap of the LP 2.1

is at most O(logn logk) when the underlying graph is a

tree.

5 General graphs.

Definition 5.1. A set of metric spaces S over

V is said to �-probabilistically approximate a metric

space M over V , if (1) for all x; y 2 V and S 2 S,

d

S

(x; y) � d

M

(x; y), and (2) there exists a probability

distribution D over metric spaces in S such that for all

x; y 2 V , E[d

D

(x; y)] � �d

M

(x; y).

Bartal [3] proved

Theorem 5.1. Every weighted n-node connected

graph G can be �-probabilistically approximated by a set

of weighted trees, where � = O(log

2

n). Moreover, the

probability distribution can be computed in polynomial

time.

The trees that we get from Bartal's algorithm are

not subtrees of the original graph. Only their leaves are

the original vertices of G. To solve the group Steiner

tree problem on a general graph G, �rst �nd a set

of trees and the distribution on them that O(log

2

n)-

approximates G. Then pick a tree from the distribution

and solve the group Steiner tree problem on it. Now this

solution subtree must be transformed into a subgraph

of G, and this can be done by simply taking the tour

that visits all the leaves of the solution tree, as in

the classical 2-approximation for the metric TSP. The

distances in the tree are greater than those in the

original graph, so this tour will at most double the cost

of the solution tree. The expected cost of this tree is at

most O(log

3

n logk)z

�

. By Markov's inequality we can

say that with high probability (at least 1 � �, for any

constant �) the cost of our tree is at most O(log

3

n logk)

times the cost of the optimal tree.

Theorem 5.2. The algorithm described above with

high probability �nds a group Steiner tree of cost

O(log

3

n logk) times the cost of the optimal tree.

6 Other formulations and applications.

In this section, we �rst sketch the improvement in

the case of graphs that exclude small minors. Then

we give two more applications of our results. One is

to a bicriteria network design problem that involves

location-theoretic constraints, and the other to the er-

rand scheduling problem which generalizes the traveling

salesman problem.

6.1 Improved metric approximations. The fol-

lowing improvement of Bartal's result to graphs that

exclude smallminors is presented by Konjevod et al [15].

Theorem 6.1. Let G be an n node graph that

excludes K

s;s

as a minor. Then G can be �-probabi-

listically approximated by a set of weighted trees, where

� = O(s

3

logn). Moreover, the probability distribution

can be computed in polynomial time.

This improved result (for constant s) applies, e.g.,

to planar graphs, which exclude K

3;3

as a minor. This

theorem, together with the arguments from the previous

section, then gives an improved approximation ratio of

O(log

2

n logk) for such graphs.

Since distances in the Euclidean plane can be ap-

proximated to within a factor of 2 by a planar graph

[6], the improvements also apply to this case. More

formally, if the edge lengths of the resulting planar

graph can be assumed to be integers in a polynomial

range, then we can probabilistically approximate the

original distances by trees with only a logarithmic loss.

Even if these assumptions cannot be made, by identify-

ing some points we can assume the distances to be in

f1; : : : ; O(n

2

)g. This can be done so that the optimum

value of a group Steiner tree only changes by a factor of

1 + � for any constant � as in [2].
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6.2 Service constrained network design prob-

lems. Marathe et al. [17, 16] study the following prob-

lem: given an undirected graph G = (V;E) with two dif-

ferent cost functions c (modeling the service cost) and

d (modeling the construction or communication cost)

for each edge e 2 E, and a bound S

v

(on the service

distance for each vertex v). The goal is to �nd a mini-

mum d-cost tree such that every node v in the graph is

serviced by some node in the tree, i.e. every node v is

within distance S

v

(under the c-costs) of some node in

the tree.

An (�; �)-bicriteria approximation for such a prob-

lem is an algorithm which �nds a solution whose cost

under d is within a � factor of the optimal one that

satis�es the budget constraints, and whose budget con-

straints are not exceeded by more than a factor of �.

[17, 16] give a (1; 2�)-approximation algorithm, where

� is the maximum service degree of any node, the max-

imum number of nodes that can service any given node.

We observe that if the �rst approximation factor �

is �xed at 1, this problem is equivalent to the group

Steiner tree problem.

First we reduce their problem to a group Steiner

tree problem. De�ne n groups g

v

, one for each vertex v

of G. Let g

v

consist of all vertices w that are within the

budget (c-)distance of v,

g

v

= fw 2 V j c(vw) � S

v

g;

where S

v

denotes the value of the service constraint for

v. Now any group Steiner tree will satisfy the service

constraints, and conversely, any tree that services all

vertices within the budget will be a group Steiner tree.

Note that our algorithm improves the approxima-

tion guarantee of [16] to (1; O(log

3

n log k)), where n =

jV j and k is the maximum service degree of any vertex

(in particular, k � n).

Next we reduce the group Steiner problem to a

version of their network design problem. Assume

without loss of generality that the groups are disjoint.

Let the weights in the given graph represent the d-costs.

De�ne the c-costs as follows: between a pair of nodes in

the same group, the c-cost is zero, and between all other

pairs, the c-cost is unit. The service radius S

v

is set to

zero for every node in every group and to n for all other

nodes. Any solution output by an (�; �)-approximation

algorithm for this service-constrained network design

problem must include at least one node from every

group, and is therefore a group Steiner tree of cost at

most � times the minimum.

6.3 Errand scheduling. This problem was formu-

lated by Slav��k [20] as a generalization of the traveling

salesman problem. Let U be a set of tasks, and G an

edge weighted graph. A set of tasks S

v

is associated

with each vertex v of G. The goal is to �nd a shortest

closed walk in G such that each element of U is con-

tained in at least one visited vertex.

We can interpret an instance of the errand schedul-

ing problem as an instance of the group Steiner problem,

and then it is easy to see that the best group Steiner

tree and the best errand tour di�er in cost by at most

a factor of 2. Therefore, our algorithm also gives a

O(log

3

n log k) approximation for the errand scheduling

problem.

7 Conclusion.

We have presented the �rst algorithm with a polyloga-

rithmic approximation ratio for the group Steiner prob-

lem.

The only known lower bounds for these problems

are the ones that arise from the hardness of the set-

covering problem. It is a natural open problem then, to

reduce the approximation ratio to O(logn). Another

interesting question is whether better (say, constant

ratio) results are possible for the Euclidean case.
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