
The Randomized Complexity of Maintaining the

Minimum

Gerth St�lting Brodal� Shiva Chaudhuriy

Jaikumar Radhakrishnanz

May 14, 1996

Abstract

The complexity of maintaining a set under the operations Insert, Delete

and FindMin is considered. In the comparison model it is shown that any
randomized algorithm with expected amortized cost t comparisons per Insert

and Delete has expected cost at least n=(e22t)�1 comparisons for FindMin. If

FindMin is replaced by a weaker operation, FindAny, then it is shown that a
randomized algorithm with constant expected cost per operation exists, but

no deterministic algorithm. Finally, a deterministic algorithm with constant

amortized cost per operation for an o�ine version of the problem is given.

1 Introduction

We consider the complexity of maintaining a set S of elements from a totally ordered
universe under the following operations:

Insert(e): inserts the element e into S,

Delete(e): removes from S the element e provided it is known where e is stored, and

FindMin: returns the minimum element in S without removing it.

We refer to this problem as the Insert-Delete-FindMin problem. We denote the
size of S by n. The analysis is done in the comparison model, i.e. the time required
by an operation is the number of comparisons it makes. The input is a sequence of
operations, given to the algorithm in an on-line manner, that is, the algorithmmust
process the current operation before it receives the next operation in the sequence.
The worst case time for an operation is the maximum, over all such operations in
all sequences, of the time taken to process the operation. The amortized time of an
operation is the maximum, over all sequences, of the total number of comparisons
performed, while processing this type of operation in the sequence, divided by the
length of the sequence.

Worst case asymptotic time bounds for some existing data structures supporting
the above operations are listed in Table 1. The table suggests a trade-o� between

�BRICS (Basic Research in Computer Science, a Centre of the Danish National Research Foun-
dation), Computer Science Department, Aarhus University, Ny Munkegade, DK-8000 �Arhus C,

Denmark. Supported by the Danish Natural Science Research Council (Grant No. 9400044). This
research was done while visiting the Max-Planck Institut f�ur Informatik, Saabr�ucken, Germany.
Email: gerth@daimi.aau.dk.

yMax{Planck{Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. This

work was partially supported by the EU ESPRIT LTR project No. 20244 (ALCOM IT).
Email: shiva@mpi-sb.mpg.de.

zTata Institute of Fundamental Research, Mumbai, India. Email: jaikumar@tcs.tifr.res.in.

1

Implementation Insert Delete FindMin

Doubly linked list 1 1 n

Heap [8] logn logn 1
Search tree [5, 7] logn 1 1
Priority queue [2, 3, 4] 1 logn 1

Figure 1: Worst case asymptotic time bounds for di�erent set implementations.

the worst case times of the two update operations Insert, Delete and the query opera-
tion FindMin. We prove the following lower bound on this tradeo�: any randomized
algorithm with expected amortized update time at most t requires expected time
(n=e2t) � 1 for FindMin. Thus, if the update operations have expected amortized
constant cost, FindMin requires linear expected time. On the other hand if FindMin

has constant expected time, then one of the update operations requires logarithmic
expected amortized time. This shows that all the data structures in Figure 1 are op-
timal in the sense of the trade-o�, and they cannot be improved even by considering
amortized cost and allowing randomization.

For each n and t, the lower bound is tight. A simple data structure for the Insert-
Delete-FindMin problem is the following. Assume Insert and Delete are allowed to
make at most t comparisons. We represent a set by dn=2te sorted lists. All lists
except for the last contain exactly 2t elements. The minimum of a set can be found
among all the list minima by dn=2te � 1 comparisons. New elements are added to
the last list, requiring at most t comparisons by a binary search. To perform Delete

we replace the element to be deleted by an arbitrary element from the last list. This
also requires at most t comparisons.

The above lower bound shows that it is hard to maintain the minimum. Is it
any easier to maintain the rank of some element, not necessarily the minimum?
We consider a weaker problem called Insert-Delete-FindAny, which is de�ned exactly
as the previous problem, except that FindMin is replaced by the weaker operation
FindAny:

FindAny: returns some element in S and its rank.

FindAny is not constrained to return the same element each time it is invoked or to
return the element with the same rank. The only condition is that the rank returned
should be the rank of the element returned. We give a randomized algorithm for the
Insert-Delete-FindAny problem with constant expected time per operation. Thus,
this problem is strictly easier than Insert-Delete-FindMin, when randomization is
allowed. However, we show that for deterministic algorithms, the two problems are
essentially equally hard. We show that any deterministic algorithm with amortized
update time at most t requires n=24t+3�1 comparisons for some FindAny operation.
This lower bound is proved using an explicit adversary argument. The adversary
strategy is simple, yet surprisingly powerful. The same strategy may be used to
obtain the well known
(n logn) lower bound for sorting. An explicit adversary for
sorting has previously been given by Atallah and Kosaraju [1].

The previous results show that maintaining any kind of rank information on-
line is hard. However, if the sequence of instructions to be processed is known in
advance, then one can do better. We give a deterministic algorithm for the o�ine
Insert-Delete-FindMin problem which has an amortized cost per operation of at most
3 comparisons.

Our proofs use various averaging arguments which are used to derive general
combinatorial properties of trees. These are presented in Section 2.2.

2

2 Preliminaries

2.1 De�nitions and notation

For a rooted tree T , let leaves(T) be the set of leaves of T . For a vertex, v in T ,
de�ne deg(v) to be the number of children of v. De�ne, for l 2 leaves(T), depth(l)
to be the distance of l from the root and path(l) to be the set of vertices on the
path from the root to l, not including l.

For a random variable X, let support[X] be the set of values that X assumes
with non-zero probability. For any non-negative real-valued function f , de�ned on
support[X], de�ne

E
X
[f(X)] =

X
x2support[X]

Pr[X = x]f(x); and GM
X

[f(X)] =
Y

x2support[X]

f(x)Pr[X=x]:

We will also use the notation E and GM to denote the arithmetic and geometric
means of a set of values as follows: for a set R, and any non-negative real-valued
function f , de�ned on R, de�ne

E
r2R

[f(r)] =
1

jRj

X
r2R

f(r); and GM
r2R

[f(r)] =
Y
r2R

f(x)1=jRj:

2.2 Some useful lemmas

Let T be the in�nite complete binary tree. Suppose each element of [n] = f1; : : : ; ng
is assigned to a node of the tree (more than one element may be assigned to the
same node). That is, we have a function f : [n] ! V (T). For v 2 V (T), de�ne
wtf (v) = jfi 2 [n] : f(i) = vgj, df = Ei2[n][depth(f(i))], Df = maxfdepth(f(i)) :
i 2 [n]g and mf = maxfwtf (v) : v 2 V (T)g.

Lemma 1 For every assignment f : [n]! V (T), the maximum number of elements

on a path starting at the root of T is at least n2�df .

Proof. Let P be a random in�nite path starting from the root. Then, for i 2 [n],

Pr[f(i) 2 P] = 2�depth(f(i)). Then the expected number of elements of [n] assigned
to P is

nX
i=1

2�depth(f(i)) = n E
i2[n]

[2�depth(f(i))] � nGM
i2[n]

[2�depth(f(i))]

= n2�Ei2[n] [depth(f(i))] = n2�df :

Since the maximum is at least the expected value, the lemma follows.

Lemma 2 For every assignment f : [n]! V (T), mf � n=(2df+3).

Proof. Let H = fh : mh = mfg. Let h be the assignment in H with minimum
average depth dh (the minimum exists). Let m = mh = mf , and D = Dh. We
claim that

wth(v) = m; for each v 2 V (T) with depth(v) < D: (1)

For suppose there is a vertex v with depth(v) < D and wt(v) < m (i.e. wt(v) �
m � 1). First, consider the case when some node w at depth D has m elements
assigned to it. Consider the assignment h0 given by

h0(i)
def
=

8<
:

w if h(i) = v;

v if h(i) = w;

h(i) otherwise:

3

Then h0 2 H and dh0 < dh, contradicting the choice of h. Next, suppose that
every node at depth D has less than m elements assigned to it. Now, there exists
i 2 [n] such that depth(h(i)) = D. Let h0 be the assignment that is identical to h
everywhere except at i, and for i, h0(i) = v. Then, h0 2 H and dh0 < dh, again
contradicting the choice of h. Thus (1) holds.

The number of elements assigned to nodes at depth at most D�1 is m(2D�1),
and the average depth of these elements is

1

m(2D � 1)

D�1X
i=0

mi2i =
(D � 2)2D + 2

2D � 1
� D � 2:

Since all other elements are at depth D, we have dh � D � 2. The total number of
nodes in the tree with depth at most D is 2D+1 � 1. Hence, we have

mf = m �
n

2D+1 � 1
�

n

2dh+3 � 1
�

n

2df+3 � 1
:

For a rooted tree T , let Wl =
Q

v2path(l) deg(v). Then, it can be shown by

induction on the height of tree that
P

l2leaves(T) 1=Wl = 1:

Lemma 3 For a rooted tree T with m leaves, GM
l2leaves(T)

[Wl] � m:

Proof. Since the geometric mean is at most the arithmetic mean [6], we have

GM
l

[
1

Wl

] � E
l
[
1

Wl

] =
1

m

X
l

1

Wl

=
1

m
:

Now,

GM
l

[Wl] =
1

GM
l

[1=Wl]
� m:

3 Deterministic o�ine algorithm

We now consider an o�ine version of the Insert-Delete-FindMin problem. The se-
quence of operations to be performed is given in advance, however, the ordering of
the set elements is unknown. The ith operation is performed at time i. We assume
that an element is inserted and deleted at most once. If an element is inserted
and deleted more than once, it can be treated as a distinct element each time it is
inserted.

From the given operation sequence, the o�ine algorithm can compute, for each
element e, the time, t(e), at which e is deleted from the data structure (t(e) is1 if
e is never deleted).

The data structure maintained by the o�ine algorithm is a sorted (in increasing
order) list L = (e1; : : : ; ek) of the set elements that can become minimum elements
in the data structure. The list satis�es that t(ei) < t(ej) for i < j, because otherwise
ej could never become a minimum element.

FindMin returns the �rst element in L and Delete(e) deletes e from L, if L
contains e. To process Insert(e), the algorithm computes two values, l and r, where
r = minfi : t(ei) > t(e)g and l = maxfi : ei < eg. Notice that once e is in the
data structure, none of el+1; : : : ; er�1 can ever be the minimum element. Hence,
all these elements are deleted and e is inserted into the list between el and er . No

4

comparisons are required to �nd r. Thus, Insert(e) may be implemented as follows:
starting at er , step backwards through the list, deleting elements until the �rst
element smaller than e is encountered.

The number of comparisons for an insertion is two plus the number of elements
deleted from L. By letting the potential of L be jLj the amortized cost of Insert is
jL0j� jLj+ # of element removed during the Insert +2 which is at most 3 because
the number of elements removed is at most jLj � jL0j+1. Delete only decreases the
potential, and the initial potential is zero. It follows that

Theorem 4 For the o�ine Insert-Delete-FindMin problem the amortized cost of In-

sert is three comparisons. No comparisons are required for Delete and FindMin.

4 Deterministic lower bound for FindAny

In this section we show that it is di�cult for a deterministic algorithm to maintain
any rank information at all. We prove

Theorem 5 Let A be a deterministic algorithm for the Insert-Delete-FindAny prob-

lem with amortized time at most t = t(n) per update. Then, there exists an input,

to process which A takes at least n=24t+3 � 1 comparisons for one FindAny.

The Adversary. We describe an adversary strategy for answering comparisons
between a set of elements.

The adversary maintains an in�nite binary tree and the elements currently in
the data structure are distributed among the nodes of this tree. New elements
inserted into the data structure are placed at the root. For x 2 S let v(x) denote
the node of the tree at which x is. The adversary maintains the following invariants
(A) and (B). For any distribution of the elements among the nodes of the in�nite
tree, de�ne the occupancy tree to be the �nite tree given by the union of the paths
from every non-empty node to the root. The invariants are

(A) If neither of v(x) or v(y) is a descendant of the other then x < y is consistent
with the responses given so far if v(x) appears before v(y) in an preorder
traversal of the occupancy tree, and

(B) If v(x) = v(y) or v(x) is a descendant of v(y), the responses given so far
yield no information on the order of x and y. More precisely, in this case, x
and y are incomparable in the partial order induced on the elements by the
responses so far.

The comparisons made by any algorithm can be classi�ed into three types, and
the adversary responds to each type of the comparison as described below. Let the
elements compared be x and y.

� v(x) = v(y): Then x is moved to the left child of v(x) and y to the right child
and the adversary answers x < y.

� v(x) is a descendant of v(y): Then y is moved to the unique child of v(y)
that is not an ancestor of v(x). If this child is a left child then the adversary
answers y < x and if it is a right child then the adversary answers x < y.

� v(x) 6= v(y) and neither is a descendant of the other: If v(x) is visited before
v(y) in a preorder traversal of the occupancy tree, the adversary answers x < y

and otherwise the adversary answers y < x.

The key observation is that each comparison pushes two elements down one level
each, in the worst case.

5

Maintaining ranks. We now give a proof of Theorem 5.
Consider the behavior of the algorithm when responses to its comparisons are

given according to the adversary strategy above. De�ne the sequences S1 : : :Sn+1

as follows. S1 = Insert(a1) : : : Insert(an)FindAny. Let b1 be the element returned in
response to the FindAny instruction in S1. For i = 2; 3; : : :n, de�ne

Si = Insert(a1) : : : Insert(an)Delete(b1) : : :Delete(bi�1)FindAny

and let bi be the element returned in response to the FindAny instruction in Si.
Finally, let

Sn+1 = Insert(a1) : : : Insert(an)Delete(b1) : : :Delete(bn):

For 1 � i � n, bi is well de�ned and for 1 � i < j � n, bi 6= bj. The latter point
follows from the fact that at the time bi is returned by a FindAny, b1; : : : ; bi�1 have
already been deleted from the data structure.

Let T be the in�nite binary tree maintained by the adversary. Then the sequence
Sn+1 de�nes a function f : [n] ! V (T), given by f(i) = v if bi is in node v just
before the Delete(bi) instruction during the processing of Sn+1. Since the amortized
cost of an update is at most t, the total number of comparisons performed while
processing Sn+1 is at most 2tn. A comparison pushes at most two elements down
one level each. Then, writing di for the distance of f(i) from the root, we havePn

i=1 di � 4tn. By Lemma 2 we know that there is a set R � [n] with at least
n=24t+3 elements and a vertex v of T such that for each i 2 R, f(bi) = v.

Let j = minR. Then, while processing Sj , just before the FindAny instruction,
each element bi, i 2 R is in some node on the path from the root to f(i) = v.
Since the element returned by the FindAny is bj, it must be the case that after
the comparisons for the FindAny are performed, bj is the only element on the path
from the root to the vertex in which bj is. This is because invariant (B) implies
that any other element that is on this path is incomparable with bj. Hence, these
comparisons move all the elements bi, i 2 Rnj, out of the path from the root to
f(j). A comparison can move at most one element out of this path, hence, the
number of comparisons performed is at least jRj � 1, which proves the theorem.

4.1 Sorting

The same adversary can be used to give a lower bound for sorting. We note that this
argument is fundamentally di�erent from the usual information theoretic argument
in that it gives an explicit adversary against which sorting is hard.

Consider an algorithm that sorts a set S, of n elements. The same adversary
strategy is used to respond to comparisons. Then, invariant (B) implies that at the
end of the algorithm, each element in the tree must be in a node by itself. Let the
function f : S ! V (T) indicate the node where each element is at the end of the
algorithm, where T is the in�nite binary tree maintained by the adversary. Then,
f assigns at most one element to each path starting at the root of T . By Lemma 1
we have 1 � n2�d, where d is average distance of an element from the root. It
follows that the sum of the distances from the root to the elements in this tree is at
least n logn, and this is equal to the sum of the number of levels each element has
been pushed down. Since each comparison contributes at most two to this sum, the
number of comparisons made is at least (n logn)=2.

5 Randomized algorithm for FindAny

We present a randomized algorithm supporting Insert, Delete and FindAny using, on
an average, a constant number of comparisons per operation.

6

5.1 The algorithm

The algorithm maintains three variables: S, e and rank . S is the set of elements
currently in the data-structure, e is an element in S, and rank is the rank of e in
S. Initially, S is the empty set, and e and rank are null. The algorithm responds
to instructions as follows.

Insert(x): Set S S [fxg. With probability 1=jSj we set e to x and let rank be
the rank of e in S, that is the number of elements in S strictly less than e. In
the other case, that is with probability 1 � 1=jSj, we retain the old value of
e; that is, we compare e and x and update rank if necessary. In particular, if
the set was empty before the instruction, then e is assigned x and rank is set
to 1.

Delete(x): Set S S � fxg. If S is empty then set e and rank to null and return.

Otherwise (i.e. if S 6= ;), if x � e then get the new value of e by picking an
element of S randomly; set rank to be the rank of e in S. On the other hand,
if x is di�erent from e, then decrement rank by one if x < e.

FindAny: Return e and rank .

5.2 Analysis

Claim 6 The expected number of comparisons made by the algorithm for a �xed

instruction in any sequence of instructions is constant.

Proof. FindAny takes no comparisons. Consider an Insert instruction. Suppose
the number of elements in S just before the instruction was s. Then, the expected
number of comparisons made by the algorithm is s � (1=(s+1))+ 1 � (s=(s+1))< 2.

We now consider the expected number of comparisons performed for a Delete

instruction. Fix a sequence of instructions. Let Si and ei be the values of S and
e just before the ith instruction. Note that Si depends only on the sequence of
instructions and not on the coin tosses of the algorithm; on the other hand, ei
might vary depending on the coin tosses of the algorithm. We �rst show that the
following invariant holds for all i:

jSij 6= ; =) Pr[ei = x] =
1

jSij
for all x 2 Si: (2)

We use induction on i. For i = 1, Si is empty and the claim holds trivially. Assume
that the claim holds for i = l; we shall show that then it holds for i = l + 1. If the
lth instruction is a FindAny, then S and e are not disturbed and the claim continues
to hold.

Suppose the lth instruction is an Insert. For x 2 Sl, we can have el+1 = x

only if el = x and we retain the old value of e after the Insert instruction. The
probability that we retain the old value of e is jSlj=(jSlj + 1). Thus, using the
induction hypothesis, we have for all x 2 Sl

Pr[el+1 = x] = Pr[el = x] �Pr[el+1 = el] =
1

jSlj
�
jSlj

jSlj+ 1
=

1

jSlj+ 1
:

Also, the newly inserted element is made el+1 with probability
1

jSlj+1
. Since jSl+1j =

jSlj+ 1, (2) holds for i = l + 1.

7

Next, suppose the lth instruction is a Delete(x). If the set becomes empty after
this instruction, there is nothing to prove. Otherwise, for all y 2 Sl+1 ,

Pr[el+1 = y] = Pr[el = x & el+1 = y] + Pr[el 6= x & el+1 = y]

= Pr[el = x] �Pr[el+1 = y j el = x] + Pr[el 6= x] � Pr[el = y j el 6= x]

=
1

jSlj
�

1

jSl+1j
+ (1�

1

jSlj
) �

1

jSlj � 1

=
1

jSl+1j
:

Thus, (2) holds for i = l + 1. This completes the induction.
Now, suppose the ith instruction is Delete(x). Then, the probability that ei = x

is precisely 1=jSij. Thus, the expected number of comparisons performed by the
algorithm is

(jSij � 2) �
1

jSij
< 1:

6 Randomized lower bounds for FindMin

One may view the problem of maintaining the minimum as a game between two
players: the algorithm and the adversary. The adversary gives instructions and
supplies answers for the comparisons made by the algorithm. The objective of
the algorithm is to respond to the instructions by making as few comparisons as
possible, whereas the objective of the adversary is to force the algorithm to use a
large number of comparisons.

Similarly, if randomization is permitted while maintaining the minimum, one
may consider the randomized variants of this game. We have two cases based on
whether or not the adversary is adaptive. An adaptive adversary constructs the
input as the game progresses; its actions depend on the moves the algorithm has
made so far. On the other hand, a non-adaptive adversary �xes the instruction
sequence and the ordering of the elements before the game begins. The input it
constructs can depend on the algorithm's strategy but not on its coin toss sequence.

It can be shown that against the adaptive adversary randomization does not
help. In fact, if there is a randomized strategy for the algorithm against an adap-
tive adversary then there is a deterministic strategy against the adversary. Thus,
the complexity of maintaining the minimum in this case is the same as in the deter-
ministic case. In this section, we show lower bounds with a non-adaptive adversary.

The input to the algorithm is speci�ed by �xing a sequence of Insert, Delete and
FindMin instructions, and an ordering for the set fa1; a2; : : : ; ang, based on which
the comparisons of the algorithm are answered.

Distributions. We will use two distributions on inputs. For the �rst distribution,
we construct a random input I by �rst picking a random permutation � of [n]; we
associate with � the sequence of instructions

Insert(a1); Insert(a2); : : : ; Insert(an);Delete(a�(1));Delete(a�(2)); : : : ;Delete(a�(n));
(3)

and the ordering
a�(1) < a�(2) < : : : < a�(n): (4)

For the second distribution, we construct the random input J by picking i 2 [n]
at random and a random permutation � of [n]; the instruction sequence associated

8

with i and � is

Insert(a1); : : : ; Insert(an);Delete(a�(1));Delete(a�(2)); : : : ;Delete(a�(i�1));FindMin;

(5)
and the ordering is given, as before, by (4).

For an algorithm A and an input I, let CU (A; I) be the number of comparisons
made by the algorithm while responding to the Insert and Delete instructions corre-
sponding to I; let CF (A; I) be the number of comparisons made by the algorithm
while responding to the FindMin instructions.

Theorem 7 Let A be a deterministic algorithm for maintaining the minimum.

Suppose

E
I
[CU(A; I)] � tn: (6)

Then

GM
J

[CF (A; J) + 1] �
n

e2t
:

Before we discuss the proof of this result, we derive from it the lower bounds on the
randomized and average case complexities of maintaining the minimum. Yao showed
that a randomized algorithm can be viewed as a random variable assuming values
in some set of deterministic algorithms according to some probability distribution
over the set [9]. The randomized lower bound follows from this fact and Theorem 7.

Corollary 8 (Randomized complexity) Let R be a randomized algorithm for

Insert-Delete-FindMin with expected amortized time per update at most t = t(n).
Then the expected time for FindMin is at least n=(e22t)� 1.

Proof. We view R as a random variable taking values in a set of deterministic
algorithms with some distribution. For every deterministic algorithm A in this set,
let

t(A)
def
= E

I
[CU(A; I)]=n:

Then by Theorem 7 we have GM
J

[CF (A; J) + 1] �
�n
e

�
� 2�t(A): Hence,

GM
R

[GM
J

[CF (R; J) + 1] � GM
R

[
�n
e

�
� 2�t(R)] =

�n
e

�
� 2
�E
R
[t(R)]

:

Since the expected amortized time per update is at most t, we have ER[t(R)] � 2t.
Hence,

E
R;J

[CF (R; J)] + 1 = E
R;J

[CF (R; J) + 1] � GM
R;J

[CF (R; J) + 1] �
n

e22t
:

Thus, there exists an instance of J with instructions of the form (5), for which the
expected number of comparisons performed by A in response to the last FindMin

instruction is at least n=(e22t)� 1.

The average case lower bound follows from the arithmetic-geometric mean in-
equality and Theorem 7.

Corollary 9 (Average case complexity) Let A be a deterministic algorithm for

Insert-Delete-FindMin with amortized time per update at most t = t(n). Then the ex-

pected time to �nd the minimum for inputs with distribution J is at least n=(e22t)�1.

9

Proof. A takes amortized time at most t per update. Therefore,

E
I
[CU(A; I)] � 2tn:

Then, by Theorem 7 we have

E
J
[CF (A; J)] + 1 = E

J
[CF (A; J) + 1] � GM

J
[CF (A; J) + 1] �

n

e22t
:

6.1 Proof of Theorem 7

The Decision Tree representation. Consider the set of sequences in support[I].
The actions of a deterministic algorithm on this set of sequences can be represented
by a decision tree with comparison nodes and deletion nodes. (Normally a deci-
sion tree representing an algorithm would also have insertion nodes, but since, in
support[I], the elements are always inserted in the same order, we may omit them.)
Each comparison node is labeled by a comparison of the form ai : aj, and has two
children, corresponding to the two outcomes ai > aj and ai � aj . Each deletion
node has a certain number of children and each edge, e, to a child, is labeled by
some element ae, denoting that element ae is deleted by this delete instruction.

For a sequence corresponding to some permutation �, the algorithm behaves as
follows. The �rst instruction it must process is Insert(a1). The root of the tree is
labeled by the �rst comparison that the algorithm makes in order to process this
instruction. Depending on the outcome of this comparison, the algorithm makes
one of two comparisons, and these label the two children of the root. Thus, the
processing of the �rst instruction can be viewed as following a path down the tree.
Depending on the outcomes of the comparisons made to process the �rst instruction,
the algorithm is currently at some vertex in the tree, and this vertex is labeled
by the �rst comparison that the algorithm makes in order to process the second
instruction. In this way, the processing of all the insert instructions corresponds to
following a path consisting of comparison nodes down the tree. When the last insert
instruction has been processed, the algorithm is at a delete node corresponding to
the �rst delete instruction. Depending on the sequence, some element, a�(1) is
deleted. The algorithm follows the edge labeled by a�(1) and the next vertex is
labeled by the �rst comparison that the algorithm makes in order to process the
next delete instruction. In this manner, each sequence determines a path down the
tree, terminating at a leaf.

We make two simple observations. First, since, in di�erent sequences, the el-
ements are deleted in di�erent orders, each sequence reaches a distinct leaf of the
tree. Hence the number of leaves is exactly n!. Second, consider the ordering
information available to the algorithm when it reaches a delete node v. This in-
formation consists of the outcomes of all the comparisons on the comparison nodes
on the path from the root to v. This information can be represented as a poset,
Pv, on the elements not deleted yet. For every sequence that causes the algorithm
to reach v, the algorithm has obtained only the information in Pv. If a sequence
corresponding to some permutation � causes the algorithm to reach v, and deletes
ai, then ai is a minimal element in Pv, since, in �, ai is the minimum among the
remaining elements. Hence each of the elements labeling an edge from v to a child
is a minimal element of Pv. If this Delete instruction was replaced by a FindMin,
then the comparisons done by the FindMin would have to �nd the minimum among
these minimal elements. A comparison between any two poset elements can cause
at most one of these minimal elements to become non-minimal. Hence, the FindMin

instruction would cost the algorithm deg(v) � 1 comparisons.

10

The proof. Let T be the decision tree corresponding to the deterministic algo-
rithm A. Set m = n!. For l 2 leaves(T), let Dl be the set of delete nodes on the
path from the root to l, and Cl be the set of comparison nodes on the path from
the root to l.

Each input speci�ed by a permutation � and a value i 2 [n], in support[J] causes
the algorithm to follow a path in T upto some delete node, v, where, instead of a
Delete, the sequence issues a FindMin instruction. As argued previously, the number
of comparisons made to process this FindMin is at least deg(v)�1. There are exactly
n delete nodes on any path from the root to a leaf and di�erent inputs cause the
algorithm to arrive at a di�erent delete nodes. Hence

GM
J

[CF (A; J) + 1] �
Y

l2leaves(T)

Y
v2Dl

(deg(v))1=nm: (7)

Since T has m leaves, we have using Lemma 3 that

m � GM
l2leaves(T)

[
Y

v2path(l)

deg(v)]

= GM
l2leaves(T)

[
Y
v2Cl

deg(v)] � GM
l2leaves(T)

[
Y
v2Dl

deg(v)]: (8)

Consider the �rst term on the right. Since every comparison node v has arity at
most two, we have

Q
v2Cl

deg(v) = 2jClj. Also, by the supposition of Theorem 7,

E
l2leaves(T)

[jClj] = E
I
[CU(A; I)] � tn:

Thus

GM
l2leaves(T)

[
Y
v2Cl

deg(v)] � GM
l2leaves(T)

[2jClj] � 2El[jClj] � 2tn:

From this and (8), we have

GM
l2leaves(T)

[
Y
v2Dl

deg(v)] � m2�tn:

Then using (7) and the inequality n! � (n=e)n, we get

GM
J

[CF (A; J) + 1] �
Y

l2leaves(T)

Y
v2Dl

(deg(v))1=nm

= (GM
l2leaves(T)

[
Y
v2Dl

deg(v)])1=n �
n

e2t
:

Remark. One may also consider the problem of maintaining the minimumwhen
the algorithm is allowed to use an operator that enables it to compute the minimum
of somem values in one step. The case m = 2 corresponds to the binary comparisons
model considered in the proof above. Since an m-ary minimum operation can be
simulated by m� 1 binary minimum operations, the above proof yields a bound of

n

e22t(m�1)
� 1:

However, by modifying the proof one can show the better bound of

1

m� 1

h n

em2t
� 1
i
:

11

References

[1] Mikhail J. Atallah and S. Rao Kosaraju. An adversary-based lower bound for
sorting. Information Processing Letters, 13:55{57, 1981.

[2] Gerth St�lting Brodal. Fast meldable priority queues. In Proc. 4th Workshop

on Algorithms and Data Structures (WADS), volume 955 of Lecture Notes in

Computer Science, pages 282{290. Springer Verlag, Berlin, 1995.

[3] Svante Carlsson, Patricio V. Poblete, and J. Ian Munro. An implicit binomial
queue with constant insertion time. In Proc. 1st Scandinavian Workshop on

Algorithm Theory (SWAT), volume 318 of Lecture Notes in Computer Science,
pages 1{13. Springer Verlag, Berlin, 1988.

[4] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan.
Relaxed heaps: An alternative to �bonacci heaps with applications to parallel
computation. Communications of the ACM, 31(11):1343{1354, 1988.

[5] Rudolf Fleischer. A simple balanced search tree with O(1) worst-case update
time. In Algorithms and Computation: 4th International Symposium, ISAAC

'93, volume 762 of Lecture Notes in Computer Science, pages 138{146. Springer
Verlag, Berlin, 1993.

[6] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University
Press, Cambridge, 1952.

[7] Christos Levcopoulos and Mark H. Overmars. A balanced search tree with O(1)
worst-case update time. ACTA Informatica, 26:269{277, 1988.

[8] J. W. J. Williams. Algorithm 232: Heapsort. Communications of the ACM,
7(6):347{348, 1964.

[9] A. C-C. Yao. Probabilistic computations: Towards a uni�ed measure of com-
plexity. In Proc. of the 17th Symp. on Found. of Comp. Sci., 222-227, 1977.

12

