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This study aimed to identify vulnerability patterns in psychological, physiological and neural responses to mild psychosocial challenge in a population
that is at a direct risk of developing depression, but who has not as yet succumbed to the full clinical syndrome. A group of healthy and a group of
subclinically depressed participants underwent a modified Montreal Imaging Stress task (MIST), a mild neuroimaging psychosocial task and completed
state self-esteem and mood measures. Cortisol levels were assessed throughout the session. All participants showed a decrease in performance self-
esteem levels following the MIST. Yet, the decline in performance self-esteem levels was associated with increased levels of anxiety and confusion in the
healthy group, but increased levels of depression in the subclinical group, following the MIST. The subclinical group showed overall lower cortisol levels
compared with the healthy group. The degree of change in activity in the subgenual anterior cingulate cortex in response to negative evaluation was
associated with increased levels of depression in the whole sample. Findings suggest that even in response to a mild psychosocial challenge, those
individuals vulnerable to depression already show important maladaptive response patterns at psychological and neural levels. The findings point to
important targets for future interventions.
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INTRODUCTION

Experiences of psychological stress and major depressive disorder

(MDD) are intricately connected; indeed, onset and development of

MDD is often preceded by periods of extreme, prolonged or chronic

stress (e.g. Hammen, 2005). Given that worldwide, depression has been

projected to become the leading cause of burden of disease over the

next two decades (World Health Organization, 2008), it is of import-

ance to understand in what ways the mechanisms that are underlying

processing of psychological stress are affected in those who are at risk

for developing depression. To this end, in this study, we exposed a

group of young adults with subclinical levels of depression and a group

of healthy young adults, to a mild psychosocial challenge task. An

overall goal of the study was to identify vulnerability patterns in psy-

chological, physiological and neural responses to social evaluation, an

important aspect of psychological stress (Dickerson and Kemeny,

2004).

A thorough meta-analysis on over 200 laboratory studies of acute

psychological stressors revealed that behavioral tasks that combined a

motivated performance task with elements of uncontrollability and

especially, social evaluative threat components induced the largest

physiological stress response (Dickerson and Kemeny, 2004). The

elements of social evaluative threat included permanent recording of

the performance, presence of evaluative audience during the task

(main experimenter and at least one more individual) and presence

of negative social comparison (either real or mocked) (Dickerson and

Kemeny, 2004).

To capture some of these elements in the neuroimaging environ-

ment and be able to assess neural mechanism underlying psychosocial

stress processing and regulation, we have developed the Montreal

Imaging Stress task (MIST), a task that combines mental arithmetic

(motivated performance) with elements of social evaluation and nega-

tive feedback (provided by immediate task feedback and the experi-

menter; Dedovic et al., 2005). Findings from MIST studies and other

neuroimaging studies on this topic suggest that, in healthy popula-

tions, psychological stress processing is associated with deactivations

in the orbitofrontal cortex, medial prefrontal cortex (PFC) and the

hippocampus [reviewed in Dedovic et al. (2009a) and Wager et al.

(2009)]. Although, it should be noted that some studies have also

observed activations in the limbic system regions (e.g. Gianaros

et al., 2008).

Additional studies investigating neural correlates of social evaluation

reported deactivation in medial orbitofrontal cortex in response to

negative evaluation on participants’ performance on a math task, but

only in those participants who showed an increased physiological stress

response (Dedovic et al., 2009b). Furthermore, people who reported

lower state self-esteem over the course of receiving critical evaluation

about their life goals and aspirations showed greater activity in dorsal

anterior cingulate and bilateral insula, as well as dorsal medial PFC and

posterior superior temporal sulcus (pSTS) (Eisenberger et al., 2011).

Moreover, activation in the ventral anterior cingulate cortex/medial

PFC area has also been reported in response to positive feedback

compared with negative feedback in healthy individuals (Somerville

et al., 2006) and particularly in individuals with low self-esteem

(Somerville et al., 2010). Finally, increased activity in dorsal ACC in

response to exclusion compared with inclusion in a virtual ball tossing

game, a model of social rejection, has also been repeatedly observed

(Eisenberger et al., 2003; Eisenberger et al., 2007). Together, these

studies suggest that processing psychosocial stress results in the deacti-

vation of medial orbitofrontal cortex, medial PFC and hippocampus,

Received 20 October 2012; Revised 27 August 2013; Accepted 23 September 2013

Advance Access publication 26 September 2013

This study was supported in part by an operating grant from the Canadian Institutes of Health Research (CIHR)

grant (67071) to J.C.P. J.C.P. holds an FRQS Chercheur national award. K.D. is a recipient of a CIHR Postdoctoral

Fellowship. V.E. is supported by a Postdoctoral Grant from the German Research Foundation. A.D. and J.A. are

recipients of a CIHR Canada Graduate Scholarships Doctoral Award.

Correspondence should be addressed to Katarina Dedovic, Department of Psychology, UCLA, Franz Hall 8425D,

Los Angeles, CA 90095-1563, USA. E-mail: kdedovic@psych.ucla.edu

doi:10.1093/scan/nst151 SCAN (2014) 9,1632^1644

� The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article-abstract/9/10/1632/1655222 by M

PI C
ognitive and Brain Science user on 30 April 2019

,
the current
,
In order 
from 
,
(
)
for example
,
prefrontal cortex
prefrontal cortex
to 
to 
prefrontal cortex


as well as the activation of the dorsal anterior cingulate, pSTS and

insula.

To date, only a few neuroimaging studies have attempted to inves-

tigate the interplay between psychological stress and depression.

Specifically, a study by Masten et al. (2009) found that adolescents

showed activation in subgenual anterior cingulate cortex (sgACC)

during exclusion compared with inclusion in a virtual ball tossing

game; this sgACC activation was related to higher reports of distress

following exclusion. In addition, in another sample of adolescents,

greater sgACC activity during exclusion was positively associated

with their depressive symptoms (reported by their parents) a year

later (Masten et al., 2011). This is of particular interest as this region

has been implicated in etiology of depression (reviewed in Drevets

et al., 2008) and features a prominent role in cortical-limbic dysregula-

tion model of depression (Mayberg, 1997, 2003, 2009).

At the endocrine level, social evaluative threat triggers the main

endocrine stress axis, the hypothalamic–pituitary–adrenal (HPA)

axis. The HPA cascade consists of a sequential release of cortico-

tropin-releasing hormone from the hypothalamus, adrenocorticotro-

pic hormone from the anterior pituitary, and finally, cortisol from the

adrenals (Brown, 2000). There are individual differences with respect

to the HPA axis’ response to social evaluative threat (e.g. Kirschbaum

et al., 1995; Schommer et al., 2003; Kudielka et al., 2004; Kudielka

et al., 2009). Various factors such as intensity and context of the

threat, and presence of vulnerability and protective factors in an indi-

vidual and social environment can influence the magnitude of the

cortisol response (Dickerson and Kemeny, 2004).

Behavioral studies investigating processing of psychological stress in

vulnerable and depression samples have revealed that dysregulation of

the HPA axis is common in MDD. Although depressive state has been

associated with a hyperactive HPA axis (Gillespie and Nemeroff, 2005;

Stetler and Miller, 2011), studies using laboratory psychological stres-

sors have reported inconsistent findings, with some studies suggesting

a heightened stress response in depressed and other studies reporting

blunted response (e.g. Chopra et al., 2009; Handwerger, 2009;

Harkness et al., 2011). In a vulnerable sample, we have previously

shown that participants with subclinical levels of depression show a

blunted cortisol response to awakening (a natural challenge to the HPA

axis; Dedovic et al., 2010). Together, results to date suggest that the

cortisol stress response in depressed subjects is either similar to those

in control groups (if examining total plasma cortisol levels) or some-

what blunted (when levels of free cortisol are assessed in saliva) in

response to a psychosocial stressor or natural challenge (reviewed in

Burke et al., 2005; Handwerger, 2009).

To further understand the ways in which these mechanisms that are

underlying processing of social evaluation may contribute to the eti-

ology of depression, in this study, we focused on a sample of healthy

young adults who showed varying levels of depressive tendencies, at a

subclinical level. We focused on subclinical depression as it has been

suggested that subclinical depression may represent a milder condition

on the depression severity continuum (Solomon et al., 2001;

Lewinsohn et al., 2003; Rivas-Vazquez et al., 2004) and that it may

represent the precursor for the full disorder (Shankman et al., 2009).

Subclinical or subthreshold depression has been defined in various

ways: scoring above (and below) certain cut-off points on a self-

rating scale, having a depressed mood with one or more additional

symptoms of a mood disorder, or as meeting the criteria for minor

depression in Diagnostic and Statistical Manual of Mental Disorders

IV (DSM-IV) (Cuijpers and Smit, 2004). In our study, subclinical de-

pression was assessed as scoring above a cut-off point for the normal

range of depressive mood and below a cut-off point for the clinical

range of depressive mood on a self-rating depression inventory. A

recent study revealed that assessment of subclinical depression either

via symptom counting method or assessment of symptom severity was

associated with functional impairment in daily life; however, the symp-

tom severity assessment was found to be more suitable to measure

clinically relevant subclinical depression (Karsten et al., 2010). A sub-

clinical depression population is indeed a population that is at a direct

risk of developing depression, but who has not as yet succumbed to the

full clinical syndrome; it provides a unique opportunity for investiga-

tion of potential depression vulnerability indices.

The goal of the study was to identify, at psychological, endocrine

and neural levels, key response patterns to social evaluative threat that

can differentiate between healthy participants and the subclinically

depressed. Specifically, we examined changes in self-esteem, mood,

cortisol levels and stress and mood neural networks (hippocampus,

amygdala, medial PFC and sgACC) as potential early indices of vul-

nerability. Based on the previous literature, we hypothesized that in

comparison with the healthy group, the subclinical group would show

a blunted cortisol response to the psychosocial stress task. We also

hypothesized that the subclinical group would show a more reactive

psychological response to the task. In addition, we expected to find an

association between depression levels and changes in brain activity

in response to social evaluation in those brain areas that have been

previously implicated in stress and mood regulation-specifically,

hippocampus, medial orbitofrontal cortex and sgACC.

METHODS

Subjects

Sixty-four (30 men: 34 women) right-handed, healthy college students

(mean age¼ 21.9� 2.5) were recruited. Subjects completed screening

questionnaires and were excluded if they had prior and/or present

neurological or psychiatric illness, if they were regular smokers, used

recreational drugs on a regular basis and if they were taking any medi-

cation that could influence cortisol secretion. All subjects included met

the safety requirements for participation in a functional magnetic

resonance imaging (fMRI) study. Furthermore, they had no current

diagnosis or history of claustrophobia or axis I disorders. The final

selection was based on their score on the Beck Depression Inventory

(BDI; Beck and Steer, 1987). Following the published BDI cut-off

scores (Beck and Steer, 1987), the subjects were initially recruited to

either a healthy group (BDI� 9; N¼ 33) or a subclinically depressed

group (10�BDI� 18; N¼ 31).

On the scan day, subjects completed the Hamilton Depression

Inventory (HDI; Reynolds, 1995), as well as the Montgomery-Asberg

Depression Rating Scale Self-Assessment (MADRS-S) (Svanborg and

Asberg, 1994) as a crosscheck for BDI depression levels obtained at the

time of recruitment. Several subjects had scored at clinical depression

levels either on the HDI or MADRS-S at that time. These subjects

represented high-risk subclinical subjects and were advised to seek

professional counsel and were given a referral letter. We did not in-

clude these participants for the subsequent analyses, opting to instead

focus only on the healthy participants and those subjects whose levels

of depression remained at subclinical levels throughout the duration of

the study (27.6 days� 11.4 passed from the recruitment in the study

until completion of the testing session).

Finally, inspection of the data revealed that five subjects had to be

excluded due to missing functional data, abnormal cortisol profile or

an inadequate performance on the computer tasks, leaving the final

number of participants as 26 healthy (12 men; 14 women) and 23

subclinical (12 men; 11 women).

Women in the sample varied with respect to their menstrual cycle

and contraceptive usage. However, across the study groups, the sam-

ples were well balanced. Specifically, in the healthy group, five women

were in the follicular phase, two in luteal and seven were on hormonal
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contraceptives. In the subclinical group, three were in the follicular

phase, 0 in luteal and eight were on contraceptives.

The Institutional Review Board (IRB) of McGill University approved

the study, and informed consent was obtained prior to participation in

accordance with the requirements of the McGill IRB from all subjects.

Procedure

On the testing day, participants arrived at the Montreal Neurological

Institute (MNI) in the afternoon, 1 h prior to when the scanning was

scheduled. The subjects were given several psychological question-

naires to complete. Fifteen minutes prior to entering the scanning

room, a research assistant explained the procedure and tasks that

would be performed in the fMRI scanner. Subjects were then intro-

duced to the study investigator and placed in the scanner where they

completed an attentional bias task, followed by a structural scan and

finally two runs of a modified version of the MIST (Dedovic et al.,

2005). The attentional bias task was a classical dot-probe attentional

bias task that was adapted for neuroimaging environment. The pur-

pose of this task was to implicitly measure participants’ attentional

bias for sad and happy faces. Completion of this task is unlikely to

affect processing of the MIST. Behavioral and fMRI results relating to

the attentional bias task will be reported elsewhere (Dedovic, K, Giebl,

S., Duchesne, A., Lue, S. D., Andrews, J., Efanov, S., Engert, V.,

Beaudry, T., Baldwin, M., Pruessner, J. C., in preparation).

Modified Montreal Imaging Stress Task

The MIST (Dedovic et al., 2005) is a psychosocial stress task that uses

mental arithmetic to combine the key situational components shown

to facilitate mounting of a stress response: (i) presence of social evalu-

ative threat, (ii) atmosphere of high achievement (or challenge) and

(iii) little or no controllability (Dickerson and Kemeny, 2004). Below,

we describe the task and outline some of the changes that we have

introduced in this version.

The MIST is based on a computer algorithm that creates mental

arithmetic tasks using up to four numbers ranging from 0 to 99, and

up to three operands. The algorithm has been programmed so that the

solution of each task will always be an integer between 0 and 9 allowing

the response to be submitted with a single number key. A difficulty

gradient was built into the algorithm with seven different categories

of mental arithmetic tasks, ranging from easy [e.g. (aþ b� c¼ d)] to

difficult [e.g. (fraction a)� (fraction b)� (fraction c)¼ e]; in addition,

the time allowed to complete the task was manipulated (e.g. participants

were given 5 s for completion of an easy task and 8 s for a difficult one).

The program used probabilities to determine whether the next question

should be more difficult, easy or same as the previous, and whether to

reduce or increase the time allowed for answering the question (based

on the subject’s previous performance and on task difficulty).

In the modified MIST (Figure 1), subjects were exposed to four

conditions: (1) rest (12 acquisitions), where only the task interface

was shown; (2) control (20 acquisitions), where subjects were given

mental arithmetic tasks to complete with plenty of time allowance; (3)

experimental/evaluation stress (Exp_S) (30 acquisitions) (Figure 1A)

and (4) an experimental/no evaluation, i.e. no stress condition

(Exp_NS) (30 acquisitions) (Figure 1B). The conditions 3 and 4 are

described in detail below.

Importantly, the Exp_S and the Exp_NS were governed by the same

algorithm rules (math tasks from all categories were used, and the

corresponding time limit imposed). However, in the Exp_S condition,

which was outlined by a red frame, each task was presented with elem-

ents of evaluative components: (1) a performance color bar on the top

of the screen indicating the subject’s performance in comparison with

a mock ‘average’ user, (2) a time advance bar indicating the amount of

time the subjects had to complete the task and (3) a performance

feedback window, where upon the submission of response or timeout,

the subject’s performance on that task was printed out and associated

with the word ‘RECORDED’ (Figure 1A). The Exp_NS condition tasks

did not contain these evaluative elements. Indeed, it was explained to

the subjects that the tasks outlined by a red frame (Exp_S condition)

are of greatest importance for the study, and it was emphasized that

during this time subject’s performance was being evaluated by the

computer and the investigator outside the scanner room. All these

evaluative threat components were removed for the Exp_NS condition

(Figure 1B), and in fact, in the set-up appearance, the control (doing

math tasks with plenty of time allowance) and the Exp_NS conditions

looked the same.

Over the course of a run, these conditions were presented in a block

design, and repeated three times, in a pseudo-randomized fashion

(a block of one condition could not be followed by a block of that

same condition).

As with the original MIST version, in between each MIST run, the

subjects were exposed to additional negative feedback given directly by

the study investigator when the investigator would enter the scanner

room to collect the saliva samples. During the feedback, the participant

would be told that the investigator had been monitoring the partici-

pant’s performance during the experimental condition, the red condi-

tion, and that the participant’s performance was below that of an

average user during this task condition. The investigator would also

tell the participant that participant’s performance would need to match

up to performance of an average user if the study team was to collect

Fig. 1 The modified MIST user interface. (A) The experimental/stress (exp_S) condition includes performing challenging mental arithmetic in social evaluative setting: a performance color bar indicating the
subject’s performance (bottom arrow) in comparison to a mock ‘average’ user (top arrow), a time advance bar indicating the amount of time participants had to complete the task, and a performance feedback
window, emphasizing that the subject’s poor performance was recorded. (B) The experimental/non-stress (exp_NS) condition contains mental arithmetic task of same difficulty, and same time limit, but social
evaluative components are removed.
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any meaningful data. Following the last MIST run, the subject was

thanked for their participation and escorted by the research assistant

to another testing room to complete additional questionnaires and

saliva samples. The full debriefing was given only after all saliva sam-

ples were collected and questionnaires completed.

The key contrast of interest was exp_S > exp_NS, which is thought to

capture the processing of social evaluative threat components�important

components in psychological stress processing (Dickerson and Kemeny,

2004). The evaluative threat is stemming from the fact that participant’s

(inevitably poor) performance is compared to an average user, that the

performance is being recorded, and that the investigator is watching

participant’s performance.

In a small behavioral study assessing a similar version of the MIST,

25 participants answered the following question after completing

the task: ‘Were you more stressed during that condition

(EXPERIMENTAL) as oppose to the control condition?’ Out of 20

participants, 14 said that they were, 5 said that they were equally

stressed in the two conditions, one reported being more stressed

during the control condition. In addition, in another study using a

similar version of the MIST, we found that the participants thought

more about the fact that they were being evaluated by the investigator

during the ExpS compared with ExpNS condition (Duchesne A.,

Cooperman C., Cardoso C., Pruessner JC., submitted; Duchesne A.,

Cooperman C., Cardoso C., Pruessner JC., in preparation) (see also

Supplementary Material). Therefore, the two conditions have been

designed to differ on levels of actual and perceived evaluation.

Saliva sampling

Participants provided eight saliva samples in total to assess levels of

cortisol. Saliva was collected using the salivette sampling device

(Sarstedt Inc., Quebec City, Quebec, Canada). The first saliva sample

was taken about an hour after the participants came into the laboratory

and just prior to the scan, when subjects were seated at the scanning

bench. The second saliva sample was taken during the attentional bias

task prior to the last run of the attentional bias task and the structural

scan, �30 min following the first sample. Subsequently, saliva samples

relevant for the MIST were taken at the following time points: right

before the first MIST run, which occurred �30 min after the second

saliva sample, between 1:08 pm and 6:30 pm; then, after each MIST run

(�13 min between the samples), and the final three samples were as-

sessed outside of the scanner, at 15 min intervals, while subjects were

completing additional questionnaires and resting.

Once all the saliva samples were collected and questionnaires com-

pleted, the subject was debriefed about the testing procedure. The

saliva samples were stored in the laboratory freezer at �208C until

analysis. Samples were analyzed via a time-resolved fluorescence im-

munoassay, of which intra- and inter-assay variability have been shown

to be <10% and 12%, respectively (Dressendorfer et al., 1992).

As the cortisol values were not normally distributed, we log trans-

formed data for the statistical analyses. All data points for each group

were normally distributed following the transformation. Although we

log transformed cortisol data for the statistical analyses, the figures

reflect the non-transformed values for easier interpretation of the data.

Psychological assessment

For the fMRI and regression analyses, we created a composite score of

depression severity by firstly calculating Z scores on BDI, MADRS-S

and HDI questionnaires and then averaging these.

We investigated the impact of the MIST procedure on the subjects’

state levels of performance and social self-esteem via the Current

Thoughts Scale (Heatherton and Polivy, 1991). In addition, we also

assessed state changes in current mood by using the Profile of Mood

States that included the following subscales: depression, anxiety, anger,

fatigue, vigor and confusion (McNair et al., 1992). All state measures

were administered twice, both at baseline and following the MIST.

Behavioral statistical analysis

Differences with respect to change in cortisol were assessed via a

mixed-design ANCOVA with cortisol levels related to the MIST task

as repeated measures, group and sex as between factors, and additional

variables that were thought to carry influence on cortisol levels as

covariates. For example, although all participants were tested in the

afternoon, there was some variability in the exact time the participants

were tested at, due to participant and scanner availabilities. To make

sure that any observed effects on cortisol during the MIST are not due

to the time of day of the testing (range 1:08 pm–6:30 pm) and do not

reflect any change in cortisol that may have occurred prior to onset of

the MIST (e.g. entering the scanner or completing the attentional

bias task), we entered the following variables as covariates in the ana-

lysis: the time of day of start of MIST, as well as the first two cortisol

measures.

For the assessment of change in mood and self-esteem across time,

we applied mixed-design ANOVA, with levels of mood or self-esteem

and time as repeated measures, and group and sex as between factors.

Similarly, to assess potential differences in reaction times and per-

formance during the MIST, we conducted a mixed design ANOVA,

where group and sex were always between factors.

If the sphericity assumption was violated, we applied Greenhouse-

Geisser (GG) correction. In case of significant interactions, ANOVA

analysis was followed up by the simple main effects tests.

Functional imaging data acquisition and processing

The subjects were scanned in a 1.5 T Siemens Magnetom SonataVision

scanner. For the structural images, standard 3D gradient-echo pulse

sequence was used, with the field of view of 256 mm, the voxel size of

1� 1� 1 mm, repetition time (TR) of 22 ms, echo time (TE) of 9.2 ms

and a flip angle of 308.
Subjects were exposed to two functional MIST runs. During each

functional run, 276 whole-brain BOLD Mosaic 64 T2*-weighted echo-

planar images were acquired transversely, along the direction of the

anterior commissure to the posterior commissure line minus 308
(voxel size¼ 4� 4� 5 mm; slice number¼ 28; order of slice acquisi-

tion¼ interleaved; TR¼ 2370 ms; TE¼ 50 ms; flip angle¼ 908; ma-

trix¼ 64� 64; field of view¼ 256 mm).

Preprocessing of the structural and functional data was conducted

using FSL tools (Smith et al., 2004; Woolrich et al., 2009) and using

tools contained within the Statistical Parametric Mapping software

package (SPM8) (http://www.fil.ion.ucl.ac.uk/spm/).

Specifically, the Brain Extraction Tool was used to remove any non-

brain tissue from both structural and functional images (Smith, 2002).

Following this procedure, images were manually inspected to verify

that the procedure did not affect brain tissue. The functional raw

data were motion corrected by FMRIB’s Linear Image Registration

tool (mcflirt; http://www.fmrib.ox.ac.uk/fsl/mcflirt/index.html) which

conducts linear inter-modal registration with 6 degrees of freedom,

aligning each functional frame to the middle frame in each run

(Jenkinson et al., 2002).

The structural and functional images were then registered to a tem-

plate image (MNI152_T1_2mm_brain.nii.gz) using a three-step pro-

cedure and the FMRIB’s Linear Image Registration tool (flirt; http://

www.fmrib.ox.ac.uk/analysis/research/flirt/) (Jenkinson et al., 2002).

Finally, these normalized images were then transferred into SPM8

and smoothed using a 6 mm full-width-half-maximum Gaussian

kernel to spatially smooth the data and reduce noise.
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Modeling and analysis of data was conducted using SPM8. The main

contrast of interest was exp_S > exp_NS. To control for possible con-

tribution of performance and reaction times (see ‘Results’ section), and

movement to the changes in brain activity, we modeled one condition

where we included onsets and durations for both ExpS and ExpNS

condition, and then added, in the following order, reaction times,

performance scores and the contrast ExpS > ExpNS as separate para-

metric modulators. The second modeled condition was the control

condition and we also included the movement parameters as regressors

of no interest.

High-pass temporal filtering of the data and the model was set to

1640s based on the power spectra of the design matrix (estimated by

cutoffcalc; part of FSL). To account for serial correlations in fMRI time

series due to aliased biorhythms and unmodeled neuronal activity we

used an autoregressive AR (1) model during Classical parameter estima-

tion. Given that we were only interested in ExpS > ExpNS comparison

while controlling for all other variables, the final contrast was 0 0 0 1 0

which was additionally padded with zeros for the movement parameters.

These contrast images were then used in region of interest (ROI)

and whole-brain, group-level, random-effects analyses across all par-

ticipants, and for the whole-brain correlational analyses with covariates

of interest. For all analyses, gender was always used as a covariate of no

interest.

Regions of interest analyses

Although we planned to explore changes in response to social evaluation

across the whole brain, we were particularly interested in investigating

changes in activity in specific brain regions that have been previously

identified as being involved in processing social evaluation or being

involved in etiology of depression. These regions included the hippo-

campus, medial orbitofrontal cortex and sgACC. For the hippocampus,

we used the structural ROI mask from the aal atlas (Tzourio-Mazoyer

et al., 2002) in the WFU Pickatlas toolbox (Maldjian et al., 2003, 2004)

in SPM. For the medial orbitofrontal cortex, we defined a region based

on previous results in our study investigating processing of social evalu-

ative components (Dedovic et al., 2009b), with the center voxel being

x¼�0.3, y¼ 43, z¼�20, and the extent set to 12 mm radius sphere.

The sgACC ROI was based on work by Masten et al. (2009). We used the

local maxima within sgACC, which was previously found to be activated

during social exclusion compared with inclusion (8, 22, �4 mm)

(Masten et al., 2009), as the center voxel for a 10 mm radius sphere.

To control for multiple comparisons across multiple ROIs, these masks

were then combined into one image and used for ROI analyses.

In accordance with previous studies and to balance both type I and

type II error rates, we employed the recommended combination of

intensity and cluster size thresholds of P < 0.005, 20 voxels for estab-

lishing significance (Lieberman and Cunningham, 2009).

RESULTS

Psychological data

The two study groups differed on levels of depression. As would be

expected, a two-way ANOVA (group� gender) revealed a significant

effect of the group, F(1,45)¼ 66.83, P < 0.001, on the composite de-

pression score, confirming that the subclinical group had higher scores

compared with the healthy (P < 0.001). All other effects were not sig-

nificant (all F < 1, P > 0.51).

Changes in mood measures following the MIST: in all
participants, levels of fatigue and confusion increase,
vigor decreases

We conducted a mixed design ANOVA with current mood (depres-

sion, anxiety, anger, fatigue, vigor and confusion) and time (pre-scan

and post-MIST) as repeated measures, and group and gender as

between factors. The mixed design ANOVA revealed a significant

main effect of group [F(1,41)¼ 4.72, P¼ 0.036] and mood

[F(1.76,72.09)¼ 63.14, P < 0.001, GG corrected], as well as significant

interaction of mood by time [F(2.23,91.56)¼ 13.31, P < 0.001, GG cor-

rected] and mood by group [F(1.76,72.09)¼ 3.46, P < 0.042, GG cor-

rected]. Results of the significant mood by gender interaction

[F(1.76,72.09)¼ 7.09, P¼ 0.002] can be found in the Supplementary

Material.

The simple main effects analysis of mood� time interaction

revealed no effect of time on anxiety [F(1,41)¼ 2.19, P¼ 0.14] or

depression [F(1,41)¼ 1.42, P¼ 0.240]. However, anger increased

over time at a trend level [F(1,41)¼ 3.75, P¼ 0.060]. In addition,

fatigue and confusion increased and vigor decreased over time {vigor

[F(1,41)¼ 19.20, P < 0.001]; fatigue [F(1,41)¼ 13.76, P¼ 0.001]; con-

fusion [F(1,41)¼ 5.03, P¼ 0.03]}, suggesting that the MIST was psy-

chologically taxing on the participants.

Decomposing the current mood� group interaction revealed, as

would be expected, that the subclinical group showed higher levels

of state levels of depression [F(1,43)¼ 5.65, P¼ 0.022] and were

more fatigued than the healthy [F(1,43)¼ 10.34, P¼ 0.002]. The sub-

clinical participants also showed higher levels of anxiety, but at a trend

level only [F(1,43)¼ 3.42, P¼ 0.071]. The healthy group showed

higher anger compared with the subclinical group [F(1,43)¼ 4.78,

P¼ 0.034]. There were no group differences with respect to vigor

[F(1,43)¼ 1.39, P¼ 0.245], or confusion [F(1,43)¼ 2.28, P¼ 0.139]

levels. The findings suggest that, as would be expected, the groups

did differ in levels of depression and anxiety, which is in keeping

with the subclinical participants having a heightened depression risk

status compared with the healthy participants. The groups also differed

on levels of fatigue and anger, moods that may be more state depend-

ent. Therefore, we controlled for levels of fatigue and anger in the fMRI

analyses.

Change in state self-esteem following the MIST:
performance self-esteem decreased

A mixed design ANOVA, with self-esteem type (performance, social)

and time (pre- and post-MIST) as repeated measures, and group and

gender as between measures, revealed a main effect of group

[F(1,45)¼ 6.9, P¼ 0.012], showing that the healthy participants had

overall higher self-esteem levels compared with the subclinically

depressed.

In addition, we observed a main effect of self-esteem [F(1,45)¼ 4.26,

P¼ 0.045, GG corrected], main effect of time [F(1,45)¼ 6.56,

P¼ 0.014, GG corrected] and a time� self-esteem interaction

[F(1,45)¼ 19.24, P < 0.001].

The simple main effects of time� self-esteem interaction revealed

that specifically the state levels of performance self-esteem decreased

following the MIST [F(1,45)¼ 15.55, P < 0.001] (Figure 2A). There was

no effect of time on state levels of social self-esteem [F(1,45)¼ 0.44,

P¼ 0.51]. Furthermore, prior to undergoing the MIST there was no

difference in levels of performance and social self-esteem in the whole

group [F(1,45)¼ 0.52, P¼ 0.474]; however, following the MIST, per-

formance self-esteem was lower compared with the social self-esteem

levels [F(1,45)¼ 22.68, P < 0.001], owing to the fact the performance

self-esteem decreased following the MIST.

It should be noted that when controlling for the change in levels

of fatigue, vigor and confusion, the time� self-esteem interaction

remains significant [F(1,40)¼ 9.96, P¼ 0.003].

The main ANOVA also revealed a time� gender interaction

[F(1,45)¼ 4.24, P¼ 0.045, GG corrected], and a self-esteem� gender
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interaction [F(1,45)¼ 4.34, P¼ 0.043], and decomposition of these

effects can be found in the Supplementary Material.

Greater negative change in performance self-esteem
is associated with higher anxiety levels in controls,
but greater depression levels in subclinically depressed
following the MIST

In addition, we assessed whether the change in performance self-

esteem levels is associated with depression, anxiety, anger, fatigue or

confusion levels either prior to the scan or post-MIST in each of the

study groups. After controlling for multiple comparisons, partial cor-

relations (controlling for gender) revealed associations with mood

levels at post-MIST time point only. Specifically, the healthy group

showed an inverse correlation between change in performance self-

esteem and anxiety (r¼�0.610, P¼ 0.001) and confusion levels

(r¼�0.620, P¼ 0.001) (Figure 2B and C). For the subclinical group,

we found that the greater the decline in self-esteem, the higher the

depression levels post-MIST (r¼�0.614, P¼ 0.002) (Figure 2D).

Physiological data

The subclinical group shows lower overall cortisol levels
during the modified MIST compared with healthy controls

We conducted a mixed design ANCOVA to examine change in cortisol

levels specifically related to the MIST with the study group and sex as

between variables. To make sure that any observed effects on cortisol

are not due to the time of day of the testing and do not reflect any

change in cortisol that may have occurred prior to onset of the MIST

(e.g. entering the scanner or completing the attentional bias task;

please see ‘Methods’ section), we entered the following variables as

covariates in the analysis: the time of day of start of MIST, cortisol

levels at the start of scan and cortisol levels following second run of

attentional bias task {the groups did not differ on these first two cor-

tisol samples [F(1,45)¼ 1.04, P¼ 0.312]}.

This analysis revealed a main effect of the group [F(1,42)¼ 4.13,

P¼ 0.048], showing that the healthy group showed overall greater cor-

tisol levels compared with the subclinical group (Figure 3). However,

neither groups showed a typical cortisol stress response. Indeed, there

were no main effects of time or any other two- or three-way

interactions.

Montreal Imaging Stress Task results

Behavioral findings

MIST performance. We calculated percent correct performance

(number of correct trials/total number of trials) for each condition

and each run. A mixed design ANOVA with time (run 1 and run 2)

and condition (control, exp_NS, exp_S) as within factors, and group

and gender as between factors revealed a significant main effect of

condition only [F(1.12,50.45)¼ 22.24, P < 0.001, GG corrected].

Simple main effects revealed that, as designed, performance during

the control condition (91.7%) was better in comparison to exp_NS

(52.6%) [t(48)¼ 4.09, P < 0.001] and exp_S condition (39.5%)

[t(48)¼ 4.98, P < 0.001]. While the exp_S and exp_NS both induced

failure, exp_S was associated with a significantly lower success rate

compared to exp_NS [t(48)¼ 4.34, P < 0.001].

A
B

C D

Fig. 2 Impact of social evaluative threat on performance self-esteem and its effect on mood following the MIST. (A) Significant decrease in performance self-esteem observed in the whole sample following the
MIST. (B) Change in performance self-esteem associated confusion levels following the MIST in the healthy group. (C) Change in performance self-esteem associated with anxiety levels following the MIST in the
healthy group. (D) Change in performance self-esteem associated with depression levels following the MIST in the subclinical group. **P < 0.001.
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Reaction times. A mixed design ANOVA with run (run 1 and run 2)

and condition (control, exp_S, exp_NS) as within factors, and group

and gender as between factors, revealed a main effect of run

[F(1,45)¼ 74.5, P < 0.001, GG corrected], a run� gender interaction

[F(1,45)¼ 5.61, P¼ 0.02, GG corrected], a main effect of condition

[F(2,50.8)¼ 54.3, P < 0.001, GG corrected], a run� condition inter-

action [F(1.47,66.05)¼ 14.5, P < 0.001, GG corrected] and run� con-

dition� group� gender interaction [F(1.47,66.05)¼ 3.73, P¼ 0.042,

GG corrected] effect on reaction times.

We decomposed the run� condition� group� gender interaction

to specifically assess whether there were any differences between groups

or between conditions on all levels of other factors.

Simple main effects revealed that the subclinical males compared

with healthy males had faster reaction times for the CTRL condition

during the second run [F(1,46)¼ 4.04, P¼ 0.05]. There were no other

significant group differences.

Furthermore, the simple main effects revealed a significant effect of

condition at each level of group, gender and run (all Fs > 7, all

P < 0.001). Simple t-tests assessing specifically the difference between

reactions times during the ExpS and ExpNS conditions revealed that

during the second run only, healthy men and women had slower re-

action times during the ExpNS condition compared to Exp S condition

[men: t(10)¼ 2.19, P¼ 0.053; women: t(14)¼ 4.31, P¼ 0.001]. In add-

ition, subclinical males during both first and second run had slower

reaction times for ExpNS compared to ExpS condition [run 1:

t(11)¼ 3.95, P¼ 0.002; run 2: t(11)¼ 7.21, P < 0.001].

As previously mentioned, to account for differences in performance

and reaction times between conditions, for fMRI analyses, these values

were entered as parametric modulators at the first level and were con-

trolled for. To control for any contribution of fatigue or anger in

processing social evaluation, and to control for impact of gender,

these variables (pre-MIST fatigue and anger levels, and gender) were

included as covariates of no-interest in all contrasts at the second level.

fMRI findings

ROI analyses. The ROI analyses revealed activations in the left

hippocampus and deactivations in the sgACC in the healthy group.

Similarly, in the subclinical group, right hippocampus showed an

increase in activity to ExpS > ExpNS, deactivations in the sgACC and

deactivations in the right medial orbitofrontal cortex (Table 1).

Analyses of the direct comparison between the healthy group and sub-

clinical group did not reveal any differences within the a priori ROI

regions. However, we observed a positive correlation between the

mean depression Z score and change in activity in response to social

evaluation in sgACC specifically (Table 2; Figure 4).

Whole-brain analyses. In the healthy group, whole-brain analysis

revealed increased activity in response to negative feedback in a host

of regions including the right posterior mid-temporal gyrus, right pos-

terior and mid-cingulate cortex, right cuneus and insula, bilateral

temporoparietal junction and cerebellum (Figure 5; Table 3). We

also observed deactivations in the right lateral orbitofrontal cortex

and right subgenual anterior cingulate.

In the subclinical group, the extent of activations was more con-

stricted compared with the healthy. The activations were observed in

the right precuneus and posterior cingulate, and cerebellum.

Deactivations were found in the left subgenual anterior cingulate,

left caudate and left nucleus accumbens (Figure 5; Table 3) in response

to negative feedback compared with no evaluation.

Direct comparison between groups revealed greater activation in the

healthy group compared with the subclinical group in several regions

including the temporoparietal junction, right middle temporal gyrus,

cuneus, thalamus and cerebellum, as well as right posterior cingulate

(Figure 5; Table 4).

We also observed a positive correlation between mean depression

score and changes in brain activity in response to social evaluation in

the right sgACC and septal area (Table 5). No significant correlations

were found in ROI analyses or whole brain with mean cortisol levels.

DISCUSSION

In this study, we focused on a sample of healthy individuals and those

with subclinical depression to identify vulnerability patterns in psycho-

logical, physiological and neural responses to mild psychosocial chal-

lenge that may be present prior to the onset of clinical levels of

Fig. 3 Group differences with respect to cortisol response to the MIST. The subclinical group has an
overall lower levels of cortisol compared with the healthy group during and following the MIST.
However, neither group shows a significant cortisol response.

Table 1 ROI analyses reveal changes in brain activity in response to mild social
evaluative threat in healthy and subclinical groups

Anatomical region x y z t k

Healthy group
Activation L hippocampus �34 �32 �6 3.95 22
Deactivation R sgACC 8 22 �6 4.88 110

Subclinical group
Activation R hippocampus 30 �36 4 4.54 31
Deactivation R sgACC 6 20 �8 4.11 70

R orbitofrontal cortex 4 36 �12 4.79 129

L, left; R, right; x, y and z, MNI coordinates; t, t-score at those coordinates (local maxima); k, cluster
size (in voxels).

Table 2 ROI analyses reveal correlations between changes in brain activity in response to
mild social evaluative threat and composite depression score in the study sample

Anatomical region x y z t k

All participants
Positive correlation R sgACC 8 26 �4 3.47 66

L, left; R, right; x, y and z, MNI coordinates; t, t-score at those coordinates (local maxima); k, cluster
size (in voxels).
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depression. We observed that while all subjects integrated the evalu-

ative negative feedback on their performance and showed reduction in

performance self-esteem, only in the subclinical participants was this

lowering of performance self-esteem associated with increased depres-

sion levels following the modified MIST; in the healthy, it was

associated with increased levels of anxiety and confusion. The subclin-

ical group showed overall reduced cortisol levels over the course of the

MIST compared with the healthy group; however, none of the groups

showed a typical cortisol stress response. Furthermore, the subclinically

depressed group recruited select cingulate and parietal regions in

Fig. 5 Changes in brain activity in response to social evaluation in healthy and subclinical groups and healthy > subclinical direct contrast. (A) Whole-brain analyses in the healthy group for ExpS > ExpNS
contrast revealed significant increase in precuneus (pCu), posterior cingulate (pCC), thalamus (Th) and posterior middle temporal gyrus (pmTG) and decreases in sgACC. (B) Whole-brain analyses in the subclinical
group for ExpS > ExpNS contrast revealed significant increase in pCu and decreases in sgACC. (C) Direct comparison between the groups revealed primarily greater activations in healthy group in regions such as
pCu, temporoparietal junction (TPJ) and insula (In). All clusters are thresholded at intensity threshold of P < 0.005, extent threshold of 20 voxels. ExpS, experimental stress; ExpNS, experimental non-stress.

Fig. 4 Positive association between changes in the sgACC in response to social evaluation and depression levels in the whole sample. (A) ROI analyses of whole-brain correlational analyses revealed a positive
correlation between changes in response to negative feedback in sgACC and levels of depression across the whole sample. Findings are thresholded at intensity threshold of P < 0.005, and extent threshold of 20
voxels. (B) Parameter estimates were extracted for the significant peak voxel (MNI coordinates x¼ 8, y¼ 26, z¼�4) and entered into a graphing program to create graphs for illustrative purposes only.
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response to ExpS > ExpNS contrast to a lower degree than the healthy

group. Finally, in the whole sample, there was a positive association

with depression levels and changes in deactivation within sgACC in

response to processing social evaluative feedback compared to no feed-

back. This is the first study, to our knowledge, to investigate psycho-

logical, endocrine and neural correlates of social evaluative threat and

depression in a sample showing subclinical levels of depression.

Impact of negative performance feedback on state
performance self-esteem, mood and cortisol levels

Social evaluative threat during the MIST in this study was strong

enough to elicit a decline in performance self-esteem in all subjects,

yet mild enough to not lead to a significant cortisol response. As such,

the task may have inadvertently modeled a situation that is common in

daily life, such as, for example, receiving a bad grade on a midterm.

Indeed, previous studies have shown that students, upon receiving

feedback on their performance (receiving a grade), experience a sig-

nificant dip in performance self-esteem without a change observed in

their social self-esteem (Heatherton and Polivy, 1991). Importantly,

in this study, we found that this decline in performance self-esteem

in response to negative performance feedback has a differential impact

on mood in the healthy and the subclinical groups. A decline in per-

formance self-esteem was associated with an increase in anxiety in

healthy, but an increase in depression levels in the subclinical group

following the MIST specifically. Counter to our hypotheses, these

results suggest that individuals who are at heightened risk for develop-

ing depression do not necessarily show heightened psychological

response to a mild negative feedback; rather, in this population, this

response has important repercussions on their mood following the

challenge.

Overall, the findings related to decline in performance self-esteem in

response to negative feedback suggest that, at the psychological level,

the subclinical group shows a maladaptive mood response to

internalizing negative feedback, and this may be one way that mild

negative experiences perpetuate and maintain heightened depression

levels in a subclinical sample.

Despite the absence of a significant cortisol stress response in the

healthy group, we found evidence of lower cortisol levels overall in the

subclinical group compared with the healthy group during the course

of the MIST session. The group differences observed may possibly

reflect (i) different circadian decline in each group, (ii) a possibility

that the exposure to the scanner may have challenged the HPA axis

during the first part of the scanning period, subsequently diminishing

HPA response to threat during the MIST, (iii) something that is in-

trinsically different between these groups in how the HPA system dealt

with mild forms of social evaluative feedback. A case can be made for

the latter possibility.

The group differences in the overall cortisol output during the MIST

were significant while controlling for both the two initial cortisol sam-

ples, as well as the time of day of testing for the MIST (controlling for

points 1 and 2 above). In addition, previous studies on depression and

cortisol circadian rhythm suggest that depressed people typically show

an increased cortisol output in the later afternoon compared to healthy

subjects (Knorr et al., 2010), while another study investigating effects

of MRI scanning on cortisol in healthy and depressed participants did

not find any group differences (Peters et al., 2011). Furthermore, we

have previously observed a blunted cortisol response to the natural

challenge of awakening in the subclinical group compared with the

healthy group (Dedovic et al., 2010), i.e. subjects showed a pattern

of cortisol response to awakening that is similar to how they responded

to social evaluative threat. Thus, in conjunction with these previous

results, the present endocrine findings are suggestive of a hypoactive

Table 3 Whole-brain activation and deactivations in response to mild social evaluative
threat in healthy and subclinical groups

Anatomical region x y z t k

Healthy group
Activation R posterior middle temporal gyrus 50 �62 8 5.82 27331

R temporoparietal junction 62 �40 28 4.68 27331

R cuneus 22 �90 16 4.42 27331

R posterior cingulate cortex 0 �12 40 5.78 30772

L mid-cingulate cortex �4 2 32 5.38 30772

thalamus 2 �20 4 5.49 1397
R anterior insula 34 16 16 5.37 367
R lingual gyrus 26 �56 �4 4.27 14603

R cerebellum 4 �62 �18 4.53 14603

L posterior middle temporal gyrus �38 �62 16 4.33 6364

L temporoparietal junction �48 �52 24 3.99 6364

L precentral gyrus �38 �26 44 4.31 4325

L postcentral gyrus �36 �36 48 4.03 4325

Deactivation R lateral orbitofrontal gyrus 20 30 �14 5.39 3446

R sgACC 8 22 �6 4.88 3446

Subclinical group
Activation R precuneus 10 �54 50 5.18 225

R posterior middle temporal gyrus 46 �68 6 4.83 146
R cerebellum 6 �50 �16 5.25 1457

L cerebellum �4 �46 �16 3.77 1457

Deactivation L sgACC �10 32 �14 5.09 11098

L caudate �12 20 2 5.54 11098

L nucleus accumbens �12 14 �8 6.40 11098

L, left; R, right; x, y and z, MNI coordinates; t, t-score at those coordinates (local maxima); k, cluster
size (in voxels), regions with ks that share a superscript originate from the same cluster.

Table 4 Whole-brain activation in response to mild social evaluative threat in the
healthy group compared to the subclinical group

Anatomical region x y z t k

Healthy >
subclinical
Activation L temporoparietal junction �46 �52 24 3.34 35

L superior frontal gyrus �16 �12 48 3.34 24
R posterior cingulate cortex 18 �22 40 3.30 31
L postcentral gyrus �36 �34 48 3.16 23
R temporoparietal junction 58 �40 32 3.04 40
Cuneus �2 �84 24 3.03 38
L precentral gyrus 38 �20 40 3.02 32
L cerebellum �8 �52 �36 3.68 50
R lingual 26 �58 �2 3.58 62
R middle temporal gyrus 58 �28 �14 3.57 30
R posterior insula 40 �6 10 3.44 40
Thalamus �6 �28 4 3.34 81

L, left; R, right; x, y and z, MNI coordinates; t, t-score at those coordinates (local maxima); k, cluster
size (in voxels).

Table 5 Whole-brain analyses reveal correlations between changes in brain activity in
response to mild social evaluative threat and composite depression score in the study
sample

Anatomical region x y z t k

All participants
Positive correlation R sgACC 8 26 �4 3.47 76

Septal area 2 10 �4 3.32 27

L, left; R, right; x, y and z, MNI coordinates; t, t-score at those coordinates (local maxima); k, cluster
size (in voxels).
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HPA axis in the subclinical group in response to a mild psychological

stressor.

This result extends the findings from the studies of clinically

depressed populations that also showed a blunted cortisol response

to laboratory psychological stressors as well as daily life stressors in

the depressed patient populations compared with controls (reviewed in

Burke et al., 2005; Handwerger, 2009). The present data suggest that a

blunted cortisol output during the mild psychosocial evaluative task

seems to be present prior to onset of clinical depression and may

represent a vulnerability factor. This interpretation is further sup-

ported by findings from a recent study in healthy students which

showed that greater trait depressive rumination was associated with

a more blunted cortisol response in the condition with social evalu-

ation present (Zoccola et al., 2008). In addition, a recent study from

our group has shown that participants who scored low on maternal

care had a blunted cortisol response to Trier Social Stress task (TSST)

compared to medium and high maternal care individuals; low mater-

nal care participants also had greater depression scores (Engert et al.,

2010).

One question that arises from these findings is why there was the

blunted cortisol output observed in the subclinical group? Given that

the subclinical group reported greater levels of chronic stress compared

to the controls (Dedovic et al., 2010), one explanation could be that

the blunted response reflects exhaustion of the regulatory mechanisms

of the HPA axis over time (Hellhammer and Wade, 1993; Fries et al.,

2005). It has been suggested that blunted HPA axis activity may occur

following an extensive period of hyperactivity, as in situations of

chronic stress (Heim et al., 2000). After such a period, the system

will then either become non-responsive or may over-adjust (Fries

et al., 2005).

Finally, the lack of cortisol response in the healthy group suggests

that a certain threshold may need to be passed with respect to the

intensity of the social evaluative threat in order for an increase in

cortisol or decrease in social self-esteem to be observed. Studies exam-

ining the TSST (Kirschbaum et al., 1993) and manipulating levels of

social evaluation have suggested this pattern of response regarding

cortisol (e.g. Andrews et al., 2007; Dickerson et al., 2008). However,

experiencing social evaluative feedback that is below such a threshold

may still have impact on one’s health. For example, a few studies have

proposed that even if a cortisol response is not significantly increased

in response to psychological stress, but is still significantly different

from a typical circadian decline (which we did not assess in this study;

see ‘Limitations’ section), this might carry important implications for

one’s well-being (Lovallo et al., 2010; Wolfram et al., 2012).

Overall, the findings related to cortisol output during the modified

MIST suggest that the subclinically depressed already show a pattern of

response consistent with a hypoactive HPA axis, which has been pre-

viously seen in clinical samples. In addition, even when social evalu-

ative threat is so mild that it does not lead to significant cortisol

increase in the healthy (nor the subclinically depressed), the impact

on the participants’ psychological well-being is still significant, and

potentially relevant for development of certain psychopathologies.

Intricacies of these associations should be investigated in future

studies.

Neural correlates of social evaluative threat

In the healthy group, whole-brain analyses revealed activations in areas

previously associated with mentalizing, theory of mind (e.g. Saxe and

Kanwisher, 2003), inferences of social intentions (Decety and Grezes,

2006; Ciaramidaro et al., 2007) and attentional reorienting (Decety and

Lamm, 2007; Cacioppo et al., 2009). Given that the negative feedback

is based on performance of the subject and they are able to see how this

performance is matching up to that of an average user (Figure 1),

activation of these regions in processing of negative feedback is in

line with their previously identified functions. No such areas were

found in the subclinical group, suggesting perhaps an already compro-

mised recruitment of higher order regions when processing social

evaluative threat.

In contrast to previous findings, ROI analyses revealed activation in

the hippocampal region in both the healthy group and the subclinical

group. Previous studies from our laboratory have consistently found

deactivation in the hippocampus in those participants who showed

increased cortisol stress response to social evaluative threat; we had

proposed that deactivation of the hippocampus, a region involved in

the regulation of the HPA axis, may lead to a release of negative feed-

back on the HPA axis, thus contributing to subsequent release of cor-

tisol (Pruessner et al., 2008; Dedovic et al., 2009a). In this study, given

that both groups did not show increase in cortisol response, activation

in hippocampus may thus represent heightened regulation of the HPA

axis in response to a mild negative evaluative feedback, thus providing

indirect confirmation of its regulatory role. Furthermore, the ROI ana-

lyses revealed deactivation in the medial orbitofrontal region in the

subclinical group in response to social evaluative threat. We had pre-

viously proposed that the medial orbitofrontal cortex might play a role

in initial stress perception and preservation of the stress response

(Dedovic et al., 2009b). Deactivation observed here without the pres-

ence of a cortisol stress response could suggest that perhaps the change

in signal may need to pass a certain threshold to trigger the regulatory

cascade that would allow for the significant increase in cortisol levels.

In both the control and the subclinical group, we observed deacti-

vation of the sgACC in response to negative performance evaluation

compared with no evaluation condition. Furthermore, in the whole

sample, we observed an association with change in levels of deactiva-

tion in sgACC and depression severity, showing that the greater the

depression severity, the lower the deactivation in sgACC in response to

negative evaluation. This finding would suggest that it is adaptive to

deactivate sgACC, and maladaptive to show activations in sgACC in

response to negative feedback.

These findings are in accordance with the literature showing that

increased cerebral blood flow in sgACC is associated with clinical

depression (Drevets et al., 2008), and correlates with induced sadness

in healthy people (Mayberg et al., 1999); resolution of clinical depres-

sion leads to decreases in activity in sgACC (Mayberg et al., 2000). In

addition, several models of emotion and mood regulation suggest that

there is a disruption of balance between prefrontal regulatory areas and

limbic reactive areas in depression (Mayberg, 1997; Phillips et al., 2008;

Disner et al., 2011). Specifically, hyperactivity in limbic system (par-

ticularly sgACC) and hypoactivity of the higher order cognitive regions

is a landmark of depression. Factors that disrupt the balance of the pre-

frontal-limbic circuit may pose particular vulnerability for depression.

In this study, healthy participants recruited both higher order areas

as well as limbic system areas in response to mild negative social evalu-

ation. The subclinical group however did not show such a pattern,

suggesting that not only do they show less deactivation in sgACC to

negative feedback, their ‘line of defense’ in higher order brain regions

may also be limited. The overall association between depression sever-

ity and change in activation in sgACC replicated previous findings

from Masten et al. (2011); although in that study, the authors observed

that greater activation of sgACC in response to exclusion compared

with inclusion was associated with greater depression levels in a group

of adolescents. Given that brain development and maturation includes

periods of time when great changes take place (Johnson, 2001;

Andersen, 2003; Gogtay et al., 2004)�and one such period is adoles-

cence�it may be possible that while the overall association between

depression severity and changes in the sgACC in response to evaluation
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or rejection remain similar over time, the nature of change (less

deactivation vs more activation) might be specific to a developmental

stage. A longitudinal study would be needed to assess this hypothesis.

There are other studies that have found differing effects in the

sgACC. For example, a study found that people with higher levels of

rejection sensitivity showed greater deactivation in sgACC in response

to viewing a dissatisfied facial expression compared to a fixation

(Burklund et al., 2007), while another study reported that the greater

the activation in this area to negative compared to neutral pictures

from IAPS is associated with greater psychological well-being (van

Reekum et al., 2007). However, what might be an important difference

in these studies compared to the present study is that the feedback

presented in the present study is explicitly related to self, whereas a

dissatisfied face or a negative image, while ecologically valid, are less

self-relevant stimuli.

Overall, these findings suggest that when considering the intricate

interplay that exists between psychological stress and onset of depres-

sion, sgACC may be an important player: sgACC underlies processing

of information regarding negative performance feedback and degree of

its deactivation in response to negative feedback tracks with levels of

depression. This association suggests that interventions such as neuro-

feedback involving real-time fMRI may not only be helpful in improv-

ing one’s mood (Weiskopf, 2012) but may also have beneficial effects

on how one processes mild negative performance feedback. Future

studies should evaluate this hypothesis further.

Limitations

This study suffers from several limitations. First, the fact that the

modified MIST failed to induce a clear stress response in the healthy

group limits the interpretation of group differences with respect to

cortisol output. The apparent lack of cortisol stress response may be

due to the changes we brought into the task. We have modified the

original MIST to introduce an experimental/non-stress condition that

would be exactly the same with respect to mental arithmetic and time-

limit imposition as the experimental/stress condition, except for the

presence of evaluative components. This, in addition to the control

condition, which now contained easy math and ample time to respond,

had amounted to a much longer period of time (total 5.93 min/run)

during which the subjects were exposed to what they knew as the ‘safe

condition’ compared to the evaluative condition (total 2.37 min/run).

These changes have inadvertently created a task that is strong enough

to elicit significant changes in state self-esteem and mood, but perhaps

too mild to result in a significant increase in cortisol response. An ideal

control for such a task with respect to cortisol output would involve an

additional control day where subjects would come in at the same time

of the day as during the stress session, but would just be required to

rest. Such a control session would allow for an assessment of a pure

circadian cortisol decline. As previously mentioned, studies have sug-

gested that a non-significant cortisol stress response that is nevertheless

significantly different from a typical circadian decline in cortisol might

still have important implications for one’s well-being (Lovallo et al.,

2010; Wolfram et al., 2012). This should be examined in future studies.

In addition, such a control session would also allow one to experimen-

tally determine that the changes in performance self-esteem in

response to the MIST are not attributable to fatigue or other charac-

teristics of the experimental design; in this study, we account for these

characteristics by statistically controlling for these in analyses.

Furthermore, cortisol levels were assessed in between each run,

rather than between each condition block over the course of the

scan. It is therefore possible that we might have missed some indices

of interindividual variability in cortisol reactivity (Engert et al., 2013)

that would have revealed an additional group� time interaction.

Future studies may consider sampling blood over the course of the

scan to obtain total levels of cortisol, in addition to sampling saliva for

free cortisol levels between each run.

Another factor that has to be addressed when considering the ExpS

and ExpNS conditions is the perception of presence of social evalu-

ation in the ExpS condition vs lack thereof in the ExpNS condition.

While in another study in our laboratory we have established that the

two conditions are perceived as different on this dimension in healthy

student population (Duchesne et al., submitted) (Supplementary

Material), we have not assessed this aspect specifically in the current

sample. Nevertheless, both the healthy and the subclinical sample are

drawn from the same student population as the previous study and

they also represent highly functional, university-educated individuals;

it is unlikely that the participants in this study would have issues

perceiving presence of evaluative components in the ExpS condition

compared with the ExpNS condition.

Women in the sample were quite diverse with respect to menstrual

cycle phase. Previous studies have shown that menstrual cycle and oral

contraceptive usage can influence cortisol response to stress (Kudielka

and Kirschbaum, 2005). However, the study groups were relatively

evenly matched with respect to number of women using oral contra-

ceptives and those in each menstrual cycle phase. Therefore, it is

unlikely that the group differences observed were influenced by the

diversity of menstrual cycle phase in women within this sample.

Finally, this is a population of university students and thus might

differ from general population in terms of their response to academic

failure; they might have higher performance self-esteem but their self-

esteem might also be particularly sensitive to academic failure. A rep-

lication study with community sample of young adults with subclinical

depression could address this limitation.

CONCLUSION

This is the first study to characterize psychological, endocrine and

neural responses to a mild negative social evaluation in a sample of

healthy individuals and those with subclinical levels of depression.

Investigating these factors in subclinical populations is essential for

better understanding the ways in which dysregulation of specific

physiological, emotional and cognitive processes may represent a vul-

nerability for specific forms of psychopathology and revealing import-

ant targets for therapeutic interventions.

SUPPLEMENTARY DATA

Supplementary data are available at SCAN online.
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