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Contrary to linear difference equations, there is no general theory
of difference equations of the form G(P (x − τ1), . . . , P (x − τs)) +
G0(x) = 0, with τi ∈ K, G(x1, . . . , xs) ∈ K[x1, . . . , xs] of total degree
D � 2 and G0(x) ∈ K[x], where K is a field of characteristic zero.
This article concerns the following problem: given τi , G and G0,
find an upper bound on the degree d of a polynomial solution P (x),
if it exists. In the presented approach the problem is reduced
to constructing a univariate polynomial for which d is a root.
The authors formulate a sufficient condition under which such
a polynomial exists. Using this condition, they give an effective
bound on d, for instance, for all difference equations of the form
G(P (x−a), P (x−a −1), P (x−a −2))+ G0(x) = 0 with quadratic G ,
and all difference equations of the form G(P (x), P (x − τ )) +
G0(x) = 0 with G having an arbitrary degree.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This article considers polynomial solutions of difference equations of the form

G
(

P (x − τ1), . . . , P (x − τs)
) + G0(x) = 0 (1)

where G(x1, . . . , xs) ∈ K[x1, . . . , xs] is a polynomial of total degree D � 2 in s variables, K is a field of
characteristic zero, G0(x) ∈ K[x] and τi ∈ K are pairwise different and ordered so that τ1 < · · · < τs .
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The aim is to find a bound on the degree d of polynomial solutions P (x) if such solutions and a bound
exist.

It is worth to note that there are difference equations which are solvable by a polynomial of any
degree (therefore, no bound exists), e.g.:

P (x)P (x − 2)P (x − 3) − 2P (x − 1)2 P (x − 3) + P (x − 1)P (x − 2)2

+ P (x)P (x − 1)P (x − 3) − 2P (x)P (x − 2)2 + P (x − 1)2 P (x − 2) = 0. (2)

It is solved by any factorial power gn(x) = (x + a)(x + a − 1) . . . (x + a − (n − 1)). The proof resembles
the technique for differential equations from the article van den Essen (1992) and can be found in
the technical report Shkaravska and van Eekelen (2010). Moreover, the statement can be checked by
a direct substitution using a computer algebra system.

In the present article the equations of form (1) are called algebraic difference equations with constant
coefficients. The terminology “with constant coefficients” is used because one considers polynomials
G(x1, . . . , xs) with coefficients which are independent of x. The authors believe that extending the
proposed method to difference equations where the coefficients of xi1

1 · · · xis
s depend on x will re-

quire only some technical adjustments. However it is left to future work because the results even for
constant coefficients require technically involved computations.

Notation

The present article involves reasoning about symbolic vectors, products of powers and indexed
polynomials whose coefficients are polynomials as well. Therefore technical overhead in formal rea-
soning is inevitable. The following list of the most frequently used notation, which can be used as a
general reference, should help to handle this overhead:

Notation Denoted object

r the vector (ρ1, . . . , ρd) ∈ K
d of the roots of P (x) ∈ K[x],

where K is the algebraic closure of K

T the set {(τk1 , . . . , τkD ) | 1 � k1 � · · · � kD � s} of all the ordered vectors
with entries from the ordered set {τ1, . . . , τs}

t a vector (t1, . . . , tD ) that ranges over T

u� and v� vectors (u1, . . . , u�) and (v1, . . . , v�) respectively

i� and j� vectors (i1, . . . , i�) and ( j1, . . . , j�) respectively

vi�
� and uj�

� monomials vi1
1 · · · vi�

� and u j1
1 · · · u j�

� respectively

p�(y1, . . . , ym) the power-sum symmetric polynomial y�
1 + · · · + y�

m

p�(y1, . . . , ym) the vector (p1(y1, . . . , ym) . . . , p�(y1, . . . , ym))

0� the �-dimensional null-vector (0, . . . ,0)

The computations supporting the presented results are mainly computer-aided. This means that
reading some formulæ might not be easy. Moreover, this explains why such results could not appear
a few decades ago or earlier: the field of computer algebra was not developed enough.

The approach in a nutshell and the outline of the paper

Let d denote the degree of a solution P (x) ∈ K[x] of Eq. (1). Our aim is to construct a degree
polynomial for Eq. (1), that is a univariate polynomial for which d is a root. Degree polynomials for
linear recurrence relations with polynomial coefficients are defined, e.g., in the book Petkovs̆ek et al.
(1996).

The approach presented in this article is based on equating the corresponding coefficients on the
right- and left-hand side of an identity between two polynomials. This approach is applied not to
Eq. (1), but to the equivalent Eq. (3) below:

G D
(

P (x − τ1), . . . , P (x − τs)
) = −G<D

(
P (x − τ1), . . . , P (x − τs)

) − G0(x) (3)
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where G(x1, . . . , xs) is represented as the sum G D(x1, . . . , xs) + G<D(x1, . . . , xs) with G D being the
homogeneous part with total degree D and G<D containing the terms of G with total degrees < D .1

Without loss of generality one can assume that d(D − 1) > deg(G0), otherwise clearly we
have a bound d � deg(G0)/(D − 1). Then the degree w.r.t. x on the right-hand side of Eq. (3)
is at most d(D − 1). The degree w.r.t. x of the left-hand side is at most dD . All coefficients of
xdD , xdD−1, . . . , xd(D−1)+1 on the left-hand side must vanish because dD > d(D − 1). In Section 2 we
give a necessary set-up and show that these coefficients can be expressed in terms of the power-sum
symmetric polynomials evaluated at the roots r of P (x). Note that for P (x) ∈ K[x] the values p�(r) are
in K even if there are roots in K \ K. One constructs polynomials S�(u0, (u1, . . . , u�)) such that the
coefficient of xdD−� on the l.h.s. of Eq. (3) is equal to S�(d, (p1(r), . . . , p�(r))). In general, S� cannot
be taken as degree polynomials, because they depend on � + 1 variables.

In this article we analyse some cases when the variables u1, . . . , u� can be eliminated from a
certain equation S�(u0, (u1, . . . , u�)) = 0, so that the degree polynomial Q 0(u0) is equal to S�(u0,0�).
The framework lemma in Section 2 gives a sufficient condition for such an elimination to be possible.
In Sections 3 and 4, respectively, we consider two independent cases for which the conditions of the
framework lemma hold and therefore the degree d can be bounded:

• let L denote the set {� | S�(u0,0�) is not everywhere zero}; if L �= ∅ and L := min(L) � 5 then
either d � max{L,deg(G0)/(D − 1)}, or d is a root of SL(u0,0L) (see Theorem 4 and the example
in Section 5),

• d � max{D,deg(G0)/(D −1)} for all difference equations of the form G(P (x), P (x−τ ))+G0(x) = 0
(see Theorem 5).

In Section 6 we sum up the results and outline future work. Technical details of the proofs can
be found in the Appendix or the technical report Shkaravska and van Eekelen (2010). The proofs
are supported by calculations in Maple (download nonlindifeq.tar.gz, available on the site
http://resourceanalysis.cs.ru.nl under the item Technical reports).

Related work

The bound d � D for G(P (x), P (x − τ )) = 0 with vanishing G0(x) resembles the result d = D for
ordinary difference equations of the form G(P (x), P (x − 1)) = 0 where the polynomial G(x1, x2) is
irreducible in rational field extension and D is the total degree of G , see Feng et al. (2008). The latter
gives the precise degree of a polynomial solution for an irreducible polynomial G whereas we give
just an upper bound. However, we do not demand irreducibility of G . Since G is the product of its
irreducible factors, applying the result of the article Feng et al. (2008) for each of them gives d � D .

In the article Tang et al. (2010) the authors investigate the global behaviour of solutions of nonlin-
ear difference equations of the form xn+1 = (α + xn)/(A + Bxn + xn−k), where n � 0, the parameters
are positive real numbers and the initial conditions x−k, . . . , x0 are non-negative real numbers, k � 2.
One of the results is that every solution is bounded from above and from below by positive constants.
In Öcalan (2009) one gives necessary and sufficient conditions for the oscillation of solutions xn of
nonlinear difference equations of the form xn+1 − xn + ∑m

i=1 pi f i(xn−ki ) = 0 where ki ∈ {. . . ,−2,−1}
and pi < 0 for 1 � i � m. Moreover, the result is generalised to equations with non-constant coeffi-
cients, pin .

A bound on the degree of polynomial solutions of linear homogeneous recurrence relations with
polynomial coefficients P (n) = G(n, P (n − 1), . . . , P (n − s)) is obtained in the article Abramov (1989).
It is done via a degree polynomial. In the article Mezzarobba and Salvy (2010) a similar problem
is considered for complex polynomials, satisfying linear recurrence relations with rational–polynomial
coefficients. The authors constructively define a real sequence that dominates the absolute value of the
complex polynomial sequence. In Borcea et al. (2011) one gives the asymptotic ratio limn→∞ fn+1(x)

fn(x)

1 Subsequently, we say that a monomial in the variables x1, . . . , xn is the product of powers of xi . It has the form xi1
1 . . . xin

n .
A term is a product of powers multiplied by a constant.

http://resourceanalysis.cs.ru.nl


18 O. Shkaravska, M. van Eekelen / Journal of Symbolic Computation 60 (2014) 15–28
for fn(x) satisfying a linear recurrence equation of the form fn+k(x)+∑k
i=1 φi,n(x) fn+k−i(x) = 0, with

n � k − 1.

2. Coefficients of x in G D(P (x − τ1), . . . , P (x − τs)) as symmetric polynomials

We consider a multivariate polynomial G D(x1, . . . , xs) = ∑
i1+···+is=D ai1,...,is xi1

1 · · · xis
s of total de-

gree D . Re-index the coefficients ai1,...,is of G D(x1, . . . , xs) in such a way that, for instance, the coef-
ficient a2,0 of x2

1 = x1x1 becomes α(τ1,τ1) and the coefficient a1,1 of x1x2 becomes α(τ1,τ2) . Consider
another example: take G5(x1, x2, x3) of degree D = 5 with s = 3. Its term a2,3,0x2

1x3
2 is represented

as α(τ1,τ1,τ2,τ2,τ2)x1x1x2x2x2. In general, the reindexation I : {(i1, . . . , is) | i1 + . . . + is = D, i j ∈ N} →
T = {(τk1 , . . . , τkD ) | 1 � k1 � . . . � kD � s} maps (i1, . . . , is) to t = (t1, . . . , tD) = (τ

(i1)
1 , τ

(i2)
2 , . . . , τ

(is)
s ),

where τ (i) denotes τ repeated i times. Clearly, I is a bijection since the τi are pairwise distinct.
With this reindexation we write

G D(x1, . . . , xs) =
∑

t=(τk1 ,...,τkD
)∈T

αtxk1 . . . xkD .

For instance, for D = 2, s = 3 one has

T = {
(τ1, τ1), (τ1, τ2), (τ1, τ3), (τ2, τ2), (τ2, τ3), (τ3, τ3)

}
and for the polynomial G2(x1, x2, x3) = x2

1 − 2x1x2 + x2
3 the reindexation yields α(τ1,τ1) = 1, α(τ1,τ2) =

−2, α(τ3,τ3) = 1 and α(τ1,τ3) = α(τ2,τ2) = α(τ2,τ3) = 0.
Let the polynomial P be represented via its roots: P (x) = ad(x − ρ1) . . . (x − ρd). The product

P (x − t1) . . . P (x − tD) is equal to aD
d

∏D
i=1

∏d
j=1(x − ti − ρ j). For this product one wants to find the

coefficients ε�(t, r) of xDd−� , where 0 � � � d − 1. The sums (ti + ρ j), where 1 � i � D , 1 � j � d are

obviously the (only) roots of the polynomial
∏D

i=1
∏d

j=1(x − ti − ρ j). Therefore, its coefficients ε�(t, r)
are represented via the elementary symmetric polynomials e�(y1, . . . , ydD) := ∑

1�i1<i2...<i��dD yi1 . . . yi�
and e0(y1, . . . , ydD) := 1 (Macdonald, 1979) in the standard way:

ε�(t, r) = (−1)�e�(t1 + ρ1, . . . , ti + ρ j, . . . , tD + ρd). (4)

Lemma 1. If a polynomial P of degree d solves Eq. (3) and d > � for some � � 0 then the roots r of P (x) must
satisfy the identity∑

t∈T

ε�(t, r)αt = 0. (5)

Proof. Due to d > � one has that dD − � > d(D − 1). Since P solves Eq. (3), the coefficients
aD

d

∑
t∈T ε�(t, r)αt of xdD−� on the l.h.s. of Eq. (3) must vanish. Having ad �= 0, one obtains iden-

tity (5). �
Lemma 1 does not give direct information about d, since each ε�(t, r) depends on d implicitly: d is

the dimension of r. To obtain an explicit equation for d from Eq. (5), employ power-sum symmetric
polynomials and the Newton–Girard formulæ (Macdonald, 1979):

e�(y1, . . . , ym) = (1/�)

�∑
κ=1

(−1)κ−1e�−κ (y1, . . . , ym)pκ (y1, . . . , ym).

One can easily check by the definition of pκ and the binomial formula, that

pκ (t1 + ρ1, . . . , ti + ρ j, . . . , tD + ρd) =
D∑

i=1

d∑
j=1

(ti + ρ j)
κ =

κ∑
λ=0

(
κ

λ

)
pκ−λ(t)pλ(r). (6)
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Substitute (t1 + ρ1, . . . , ti + ρ j, . . . , tD + ρd) for (y1, . . . , ydD) in the Newton–Girard formulæ with
m = dD and combine them with identity (6). This yields an inductively defined family of functions
E�(v0,v�, u0,u�):

Definition 1.

E0
(

v0, (), u0, ()
) := 1,

E�(v0,v�, u0,u�) := −(1/�)

�∑
κ=1

E�−κ (v0,v�−κ , u0,u�−κ )

( κ∑
λ=0

(
κ

λ

)
vκ−λuλ

)
.

For instance, E1(v0,v1, u0,u1) = −v1u0 − v0u1. Now we can make the following statement.

Lemma 2. For all � � 0 the following identity holds:

ε�(t, r) = E�

(
D,p�(t),d,p�(r)

)
. (7)

Proof. We prove the lemma by induction on � using the Newton–Girard formulæ on the induction
step.

For � = 0 one obtains ε0(t, r) = 1 = E0(D,p0(t),d,p0(r)) immediately by the definitions.
For � > 0, combining identity (4) with the Newton–Girard formulæ, where (y1, . . . , ym) is replaced

by (t1 + ρ1, . . . , ti + ρ j, . . . , tD + ρd), one obtains

(−1)�ε�(t, r) = (1/�)

�∑
κ=1

(−1)κ−1(−1)�−κε�−κ (t, r)pκ (t1 + ρ1, . . . , ti + ρ j, . . . , tD + ρd).

From this and identity (6) it follows that

ε�(t, r) = −(1/�)

�∑
κ=1

ε�−κ (t, r)
κ∑

λ=0

(
κ

λ

)
pκ−λ(t)pλ(r). (8)

Using the induction assumption ε�−κ (t, r) = E�−κ (D,p�−κ (t),d,p�−κ (r)) one easily obtains ε�(t, r) =
E�(D,p�(t),d,p�(r)) by the definition. The lemma is proven. �

Using the functions E� , one can symbolically compute ε�(t, r) for any � > 0. For instance, ε1(t, r) =
−dp1(t) − Dp1(r).

Now we are ready to combine Definition 1 and Lemma 1. This is expressed via the following
definition and lemma.

Definition 2. S�(u0,u�) := ∑
t∈T E�(D,p�(t), u0,u�)αt .

Lemma 3. If a polynomial P of degree d solves Eq. (3) and d > � for some � � 0 then S�(d,p�(r)) = 0.

Proof. By Lemma 2 and the definition of S� one has
∑

t∈T ε�(t, r)αt = S�(d,p�(r)). By Lemma 1 one
obtains the identity S�(d,p�(r)) = 0. �

Yet, from the point of view of bounding the degree d, Lemma 3 is too general. We will figure
out the cases when for some non-negative integer number L � 0 the identities S�(d,p�(r)) = 0, with
0 � � � L, yield a non-zero univariate polynomial Q (u0) such that Q (d) = 0. To be more precise, we
are looking for L such that Q (u0) = SL(u0, (0, . . . ,0)). For this we have a closer look at the functions
E�(v0,v�, u0,u�). These functions are obviously polynomials in v0,v�, u0,u� . The total degree w.r.t.
v0, . . . , v� and u0, . . . , u� is �, however one can prove a more precise connection between the powers
of the v- and u-variables:
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Lemma 4. For any term with the monomial part vi0
0 . . . vi�

� u j0
0 . . . u j�

� that occurs in E�(v0,v�, u0,u�) the

following equation holds:
∑�

κ=0 κ(iκ + jκ ) = �.

The proof follows by induction on �. This property is used when one wants to give the complete
list of all coefficients of the powers of the variables u� , when E�(v0,v�, u0,u�) is considered as a
polynomial in u� .

Definition 3. Ai� (v0,v�, u0) denotes the coefficient of ui�
� in E�(v0,v�, u0,u�), that is E�(v0,v�,

u0,u�) = ∑
i� Ai� (v0,v�, u0) · ui�

� .

Using Definition 3 it is easy to obtain the representation of S�(u0,u�) as a polynomial in u�:

S�(u0,u�) =
∑

i�

(∑
t∈T

αt Ai�

(
D,p�(t), u0

)) · ui�
� . (9)

In its turn, each of the Ai� (v0,v�, u0) is a polynomial in u0, where the corresponding coefficients
of uμ

0 are denoted by B i�,μ(v0,v�). As one will see now, the coefficients B0�,μ play a special role.

Lemma 5. Let L > 0 be such that for any 0 � � � L − 1 the polynomial S�(u0,0�) is everywhere zero, and
moreover, for iL �= 0L and for all μ � � there exist polynomials H iL ,�,μ(D, u0), such that

AiL

(
D,pL(t), u0

) =
L−1∑
�=0

�∑
μ=0

H iL ,�,μ(D, u0)B0�,μ

(
D,pl(t)

)
. (10)

Then SL(u0,uL) = SL(u0,0L) for all u0 .

Proof. Since for any 0 � � � L −1 the polynomial S�(u0,0�) is everywhere zero, it follows that for any
0 � μ � � the coefficient of uμ

0 in S�(u0,0�) = ∑
t∈T αt A0�

(D,p�(t), u0) = ∑
t∈T αt

∑�
μ=0 B0�,μ(D,

p�(t))uμ
0 vanishes:
∑
t∈T

αt B0�,μ

(
D,p�(t)

) = 0 for all 0 � μ � �. (11)

Now, plugging identity (10) into identity (9), we obtain that for any iL �= 0L the coefficient of uiL
L in

SL(u0,uL) vanishes. Indeed, it is equal to

∑
t∈T

αt

L−1∑
�=0

�∑
μ=0

H iL ,�,μ(D, u0)B0�,μ

(
D,p�(t)

)

=
L−1∑
�=0

�∑
μ=0

H iL ,�,μ(D, u0)
∑
t∈T

αt B0�,μ

(
D,p�(t)

)

identity (11)=
L−1∑
�=0

�∑
μ=0

H iL ,�,μ(D, u0) · 0 = 0.

Therefore, SL(u0,u�) = SL(u0,0�). �
Lemma 6 (Framework). Let the set L := {� | S�(u0,0�) is not everywhere zero} be non-empty and L =
min(L). Moreover, let for all iL �= 0L and for all μ � � < L there exist polynomials H iL ,�,μ(D, u0) such that
identities (10) hold. Then either d � max{L,deg(G0)/(D − 1)}, or d is a root of Q (u0) := SL(u0,0L).
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Proof. If d > L and d > deg(G0)/(D − 1), then dD − L > d(D − 1) > deg(G0) which implies that the
coefficient of xdD−L on the l.h.s. of Eq. (3) must vanish. We apply Lemma 3 to obtain SL(d,pL(r)) = 0.
Next, we apply Lemma 5 and obtain SL(u0,u�) = SL(u0,0�) for all u0. From this and the condition
SL(d,pL(r)) = 0, it follows that Q (d) = 0. �
3. Existence of a degree polynomial for 0 � L � 50 � L � 50 � L � 5

It turned out that a property stronger than identity (10) holds for E(v0,v�, u0,u�), where 1 �
� � 5. It is stated in the following lemma.

Lemma 7. For all 1 � L � 5, for all iL �= 0L and for all μ � � < L there exist polynomials H iL ,�,μ(v0, u0) such

that AiL (v0,vL, u0) = ∑L−1
�=0

∑�
μ=0 H iL ,�,μ(v0, u0)B0�,μ(v0,v�).2

Proof. The coefficients AiL (v0,vL, u0), B0�,μ(v0,v�) and H iL ,�,μ(v0, u0) are computed symbolically
for all 0 � L � 5, μ � � < L in the script lemma-7.mw (see Section 1 for the url). Linear algebra
suffices to obtain H iL ,�,μ(v0, u0).3 Fix some 1 � L � 5. Think of AiL (v0,vL, u0), and B0�,μ(v0,v�) as
polynomials in v1, . . . , v L only, but with coefficients which belong to the field K(u0, v0) of rational
functions in u0, v0 over the field of constants K. Let H iL ,�,μ(v0, u0) belong to K(u0, v0). Make the list
of all the monomials in v1, . . . , v L of degree � L. Represent each of AiL (v0,vL, u0) and B0�,μ(v0,v�)

by the corresponding vectors F = (F jL ) and F�,μ = (F jL ,�,μ) of their coefficients w.r.t. vjL
L , with μ �

� < L. Direct computations show that the linear system MH = F is solvable over K(u0, v0), where
M is the matrix with columns F�,μ , and jL ranges over rows. Moreover, the entries of the solution
H = (H iL ,�,μ(v0, u0)) are polynomials for L � 5.

The polynomials B0�,μ(v0,v�) and the corresponding coefficients H iL ,�,μ(v0, u0) are given in Ap-
pendix A.1. �

The main theorem below gives an effective bound on d in the case when there exists 0 � L � 5
such that SL(u0,0L) is not everywhere zero.

Theorem 4. If the set L = {� | S�(u0,0�) is not everywhere zero} is not empty and, moreover, L :=
min(L) � 5, then either d � max{L,deg(G0)/(D − 1)}, or d must be among the non-negative integer roots
of SL(u0,0L).

Proof. The condition L � 5 together with Lemma 7 yields the conditions of the framework lemma.
Applying it straightforwardly gives the conclusion of the theorem. �
Corollary 1. For any difference equation (3) with D = 2 and τi = a+ i −1 where i = 1,2,3, there is 0 � L � 5
such that SL(u0,0L) is not everywhere zero. Therefore, the degree d of a polynomial solution P either does
not exceed max{L,deg(G0)/(D − 1)}, or must be among the non-negative integer roots of the polynomial
SL(u0,0L).

Proof. Without lost of generality one can consider only the case a = 0. Indeed, if G(P (x − a), P (x −
a − 1), P (x − a − 2)) + G0(x) = 0 has a polynomial solution P (x) then G(F (x), F (x − 1), F (x − 2)) +
G0(x) = 0 has the polynomial solution F (x) = P (x − a), of the same degree.

Now, for a = 0 assume the opposite: for all 0 � � � 5 the polynomials S�(u0,0�) for G(P (x),
P (x − 1), P (x − 2)) + G0(x) = 0 are everywhere zero. We show that in this case G D is reduced
to the zero polynomial. With D = 2 and τi = i, where i = 0,1,2, one has T = {(i1, i2) | 0 � i1 �
i2 � 2}. Compute the concrete values of B0�,μ(D,p�(t)) for all t ∈ T , 1 � � � 5, 1 � μ � �, and

2 This identity is stronger than identity (10) because it holds for all v0 and v� , not only for v0 := D and v� := p�(t).
3 This observation belongs to M. Petkovs̆ek. Originally we used the procedure Groebner[NormalForm] to perform the division

of the polynomial AiL (v0,vL , u0) in vL by the polynomials from the set {B(),0 = 1} ∪ {B0�,μ(v0,vl)}1��<L, 1�μ�l . Note that
B0�,0(v0,v�) = 0 for � > 0.



22 O. Shkaravska, M. van Eekelen / Journal of Symbolic Computation 60 (2014) 15–28
B(),0 = 1. These values form the matrix of the over-determined linear system of 16 equations∑
t∈T B0�,μ(D,p�(t))αt = 0 for 6 variables αt (see Appendix A.2 for more detail). This system has

only the zero solution ᾱ = 06 which means that the polynomial G D is everywhere zero, which con-
tradicts the condition D = 2. �

In the same way one proves the similar statement for difference equations with D = 3 and τi =
a + i − 1, where i = 1,2.

Now consider what happens if the conditions of Theorem 4 do not hold, that is, for all 0 � � � 5
the polynomials S�(u0,0�) are everywhere zero. The next lemma shows that then, in general,
S6(u0,u6) and S6(u0,06) do not have to be equal as polynomials and therefore S6(u0,06) cannot
be taken as a degree polynomial.

Lemma 8. If the polynomial S�(u0,0�) is everywhere zero for any 0 � � � 5, then

S6(u0,u6) = S6(u0,06) + (1/8)
(
u2

1 − u2u0
)∑

t∈T

p2
2(t)αt. (12)

Proof. The computations of H i6,�,μ are performed as in the proof of Lemma 7. The coefficients
H i6,�,μ for Ai6(v0,v6, u0) can be found using linear algebra, except those for A(0,1,0,0,0,0) and
A(2,0,0,0,0,0) . As in the proof of Lemma 5, all

∑
t∈T B0�,μ(D,p�(t))αt vanish. Therefore the sums∑

t∈T Ai6(D,p6(t), u0)αt vanish as well, if i6 �= (0,1,0,0,0,0) and i6 �= (2,0,0,0,0,0).
The linear systems of the form MH = F for A(0,1,0,0,0,0) and A(2,0,0,0,0,0) are not solvable over

K(u0, v0). However, replacing B02,1(v1, v2) = −v2/2 with v2
2 in the list of polynomials {B(),0 = 1} ∪

{B0�,μ(v0,v2)}1���5,1�μ�� one can obtain the alternative systems M ′H′ = F which are solvable
for A(0,1,0,0,0,0)(v0,v6, u0) and A(2,0,0,0,0,0)(v0,v6, u0) over K(u0, v0). The coefficients of v2

2 are
−(1/8)u0 and 1/8 respectively. Identity (12) follows from these identities and the definition of
S�(u0,u�). Check lemma-8.mw from nonlindifeq.tar.gz archive mentioned in the Introduc-
tion, where all H i6,�,μ and H ′

i6,�,μ , for the original MH = F and the alternative M ′H′ = F systems,
respectively, are computed. �

Therefore, if the polynomials S�(u0,0�) are everywhere zero for all 0 � � � 5 then the proposed
approach, in general, does not give a bound on d.

However, D = 2 gives a special case where the framework lemma is applicable for � = 6.

Corollary 2. For all difference equations with D = 2, if S�(u0,0�) is everywhere zero for 0 � � � 5 then
S6(u0,u6) = S6(u0,06). From this it follows that if S6(u0,06) is not everywhere zero, then either d �
max{6,deg(G0)}, or d is one of the positive integer roots of S6(u0,06) if they exist.

The proof can be found in the technical report Shkaravska and van Eekelen (2010).

4. Difference equations with a single shift

Consider difference equations of the form

G
(

P (x), P (x − τ )
) + G0(x) = 0. (13)

In this equation τ1 = 0, τ2 = τ . For the sake of convenience denote (0, . . . ,0, τ , . . . , τ ), where τ occurs
m times, by t(m). The aim is to prove

Theorem 5. The degree of a polynomial solution P of Eq. (13), if it exists, is d � max{D,deg(G0)/(D − 1)}.

To show that the conditions of the framework lemma are satisfied consider a few facts about p�

and S�(u0,u�) for Eq. (13). First of all, it is easy to see that p�(t(m)) = 0� + · · · + 0� + τ � + · · · + τ � =
mτ � . Second, from this and identity (6) it follows that p�(t(m) + r) = m

∑�
λ=0

(
�
λ

)
τ �−λ pλ(r), where

� � 1. Third, by the definition of E� for � � 1 one obtains
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E�

(
D,p�

(
t(m)

)
, u0,u�

) = −(m/�)

�∑
κ=1

E�−κ

(
D,p�−κ

(
t(m)

)
, u0,u�−κ

) κ∑
λ=0

(
κ

λ

)
τ k−λuλ.

(14)

From this one obtains the following recurrent formulæ:

A0�

(
D,p�

(
t(m)

)
, u0

) = (−m/�)

�∑
κ=1

u0τ
κ A0�−κ

(
D,p�−κ

(
t(m)

)
, u0

)
,

B0�,μ

(
D,p�

(
t(m)

)) = (−m/�)

�∑
κ=1

τκ B0�−κ ,μ−1
(

D,p�−κ

(
t(m)

))
. (15)

We refine the upper limit on κ of the sum in the identities for B0�,μ in the following way. From the
definition of B0�−κ ,μ−1, due to 0 � μ − 1 � � − κ , we obtain κ � � − μ + 1.

Lemma 9. For � = 0, μ = 0, and for all � > 0, 1 � μ � � there exist constants C�,μ > 0 such that

B0�,μ

(
D,p�

(
t(m)

)) = (−1)μC�,μmμτ �. (16)

Proof. For � = 0, μ = 0 we have B( ),0 = 1, and therefore C0,0 = 1. For � > 0 we prove the lemma by
induction on �. To begin with, for � = 1 one has B01,1(v0, v1) = −v1. Therefore B01,1(D, p1(t(m))) =
−mτ = (−1)1m1τ 1, so C1,1 = 1.

Now, fix some � > 1. Use the recurrent formula for B0�,μ:

B0�,μ

(
D,p�

(
t(m)

)) = −(m/�)

�−μ+1∑
κ=1

τκ B0�−κ ,μ−1
(

D,p�−κ

(
t(m)

))
. (17)

By the induction assumption the statement of the lemma holds for all �′ < �. This implies that
B0�,μ(D,p�(t(m))) is equal to

−(m/�)

�−μ+1∑
κ=1

τκτ �−κ (−1)μ−1mμ−1C�−κ,μ−1

= τ �m1+μ−1(−1)1+μ−1(1/�)

�−μ+1∑
κ=1

C�−κ,μ−1. (18)

From this it follows that C�,μ = (1/�)
∑�−μ+1

κ=1 C�−κ,μ−1 > 0. For μ = 1 we note that C�−κ,μ−1 =
C0,0 = 1 if κ = �, and C�−κ,μ−1 = C�−κ,0 = 0 if κ < �. �

Now we can prove Theorem 5.

Proof of Theorem 5. We show that the conditions of the framework lemma hold. To begin with, we
show that there exists 0 � L � D such that the polynomial SL(u0,0L) is not everywhere zero. Assume
the opposite: S�(u0,0�) are everywhere zero for all 0 � � � D . This implies that the corresponding
coefficients of uμ

0 in S�(u0,0�) must be all zeros. Hence by Lemma 9 with μ := � it follows that∑D
m=0(−1)�C�,�τ

�m�αt(m) = 0 which due to τ �= 0 and C�,� > 0 implies
∑D

m=0 m�αt(m) = 0 for all
0 � � � D . That is, one gets a system of D + 1 linear equations for D + 1 variables xm . The matrix of
this system is of rank D +1 because its determinant is equal to the D × D Vandermonde determinant.
Therefore, the system has only the zero solution αt(m) which contradicts the fact that G is of degree D .
Therefore there exists SL(u0,0L) which is not everywhere zero. W.l.o.g. assume that for all 0 � � �
L − 1 the polynomials S�(u0,0�) are everywhere zero.
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If L = 0 then S0(u0) �= 0. Comparing the left- and right-hand sides of the corresponding equation
of the form (3) yields dD � max{deg(G0),d(D − 1)}. If deg(G0) < d(D − 1) then dD � d(D − 1) which
is impossible. Therefore deg(G0) � d(D − 1) which implies d � deg(G0)/(D − 1) � max{D,deg(G0)/

(D − 1)}.
Now we consider the case L � 1 in more detail. The function AiL (D,pL(t(m)), u0) can be seen

as a polynomial in m because p�(t(m)) = mτ � . Let T D,τ
iL,μ

(u0) denote its coefficients of mμ . Since

AiL (D,pL(t(m)), u0) is a linear combination of mμ , it is a linear combination of B0μ,μ(D,pμ(t(m))) =
(−1)μmμCμ,μτμ as well, with the coefficients Hτ

iL ,μ,μ(D, u0) = (−1)μT D,τ
iL ,μ

(u0)/(Cμ,μτμ) and

Hτ
iL ,μ,μ′(D, u0) = 0 for μ′ �= μ.

Assume that d > max{L,deg(G0)/(D − 1)} � 0. By the framework lemma one obtains that d is a
root of SL(u0,0L). Since SL(u0,0L) = ∑D

m=0 αt(m) A0L (D,pL(t(m)), u0) = ∑L
μ=0 uμ

0

∑D
m=0 αt(m)B0L ,μ(D,

pL(t(m))), by Lemma 9 one obtains that SL(u0,0L) = ∑L
μ=0 uμ

0 (−1)μτ L CL,μ
∑D

m=0 mμαt(m) . Consider

the sums
∑D

m=0 mμαt(m) for 0 � μ � L − 1. Since the polynomials Sμ(u0,0μ) are everywhere zero for
all 0 � μ � L − 1 one gets

∑D
m=0(−1)μCμ,μτμmμαt(m) = 0, which implies that

∑D
m=0 mμαt(m) = 0

for 0 � μ � L − 1. Therefore, SL(u0,0L) = uL
0(−1)Lτ L CL,L

∑D
m=0 mLαt(m) = 0. Since SL(u0,0L) is not

everywhere zero in u0 the inequation
∑D

m=0 mLαt(m) �= 0 holds. From this it follows that SL(d,0L) = 0
implies d = 0, which contradicts the assumption d > 0.

Therefore, d � max{L,deg(G0)/(D − 1)} � max{D,deg(G0)/(D − 1)}. �
5. Example

The equation P (x) = P 2(x − 1)− 2P (x − 1)P (x − 2)+ 3P (x − 1)P (x − 3)− 2P 2(x − 2)− 17P (x − 1)+
29x2 − 45x + 51 has a polynomial solution of degree d = 3 which is a root of the degree polyno-
mial. Here D = 2 and deg(G0)/(D − 1) = 2. To find the degree polynomial it is enough to calculate
S0(u0, ( )), S1(u0, (0)) and S2(u0, (0,0)). Use the definition

S�(u0,0�) =
∑
t∈T

A0�

(
D,p�(t), u0

)
αt.

A direct calculation yields A()(v0, ( ), u0, ()) = 1, next A(0)(v0, (v1), u0) = −v1u0 and A(0,0)(v0,

v2, u0) = (1/2)v2
1u2

0 − (1/2)v2u0 (see Appendix A.1). Compute the values p�(t) (for non-vanishing αt):

t p1(t) p2
1(t) p2(t) αt

(1,1) 1 + 1 = 2 4 12 + 12 = 2 1

(1,2) 1 + 2 = 3 9 12 + 22 = 5 −2

(1,3) 1 + 3 = 4 16 12 + 32 = 10 3

(2,2) 2 + 2 = 4 16 22 + 22 = 8 −2

As one can see from the equation, the coefficients αt for t that are not mentioned in the table
vanish. Now, by the substitutions v� := p�(t) one obtains

S0
(
u0, ( )

) =
∑
t∈T

αt = 1 − 2 + 3 − 2 = 0 for all values of u0,

S1
(
u0, (0)

) = u0

∑
t∈T

p1(t)αt = u0(1 · 2 − 2 · 3 + 3 · 4 − 2 · 4) = 0 for all values of u0,

S2
(
u0, (0,0)

) = u0(1/2)

(∑
t∈T

(
u0 p2

1(t) − p2(t)
)
αt

)

= (u0/2)
(
u0 · (1 · 4 − 2 · 9 + 3 · 16 − 2 · 16)

− (1 · 2 − 2 · 5 + 3 · 10 − 2 · 8)
) = u0(u0 − 3).
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So, here L = 2. From this it follows, that if the difference equation has a polynomial solution of
degree d > L then for this degree it must hold d = 3. It is easy to check that there is a solution
P (x) = x3 + x2 + x + 1 for the equation.

6. Conclusions and outlook

The present article concerns polynomial solutions P (x) of difference equations of the form
G(P (x − τ1), . . . , P (x − τs)) + G0(x) = 0, where G(x1, . . . , xs) is a known polynomial of degree D � 2
and G0 is a known polynomial in x. The authors address the cases when one can bound the
degree d of a polynomial solution P if such a solution exists. For the difference equation a fam-
ily of polynomials S�(u0,0�), � � 0, has been defined, and it has been shown that if L := {� |
S�(u0,0�) is not everywhere zero} �= ∅ and L := min(L) � 5 then d � max{L,deg(G0)/(D − 1)} or d
must be among the positive integer roots of SL(u0,0L) (Theorem 4). Also, it has been shown that in
this way one can bound d for all quadratic difference equations with τi = a + i − 1, where i = 1,2,3,
and all cubic difference equations with τi = a + i − 1 where i = 1,2. In general, with the presented
approach it is impossible to bound the degree of solutions of difference equations for which S�(u0,0�)

are everywhere zero for all 0 � � � 5. However, it has been proven that d � max{D,deg(G0)/(D − 1)}
for equations with s = 2, τ1 = 0 and τ2 = τ , see Theorem 5.

An obvious direction of future research is applying the presented technique to polynomial differ-
ence equations with polynomial non-constant coefficients. A more challenging problem is to check if
there are connections between the obtained results and Galois theory.

From the application point of view the obtained result improves polynomial resource analysis of
computer programs developed in article Shkaravska et al. (2009). There the authors consider the size
of an output as a polynomial function on the sizes of inputs. In the Charter project the authors
developed the ResAna tool (Kersten et al., 2012) that applies polynomial interpolation to generate an
upper bound on Java loop iterations. The tool requires the user to input the degree of the solution.
The results of this article will help to automatically obtain the degree of the polynomial in many
cases.
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Appendix A

This appendix assists the proofs of Lemmata 7 and 8, and Corollary 1. In Appendix A.1 the coef-
ficients B i�,μ(v0,v�) and H iL ,�,μ(v0, u0) are listed. They are referred to in the proofs of Lemmata 7
and 8. In Appendix A.2 one finds the matrix of the linear system for ᾱ which is used in the proof of
Corollary 1.

A.1. The coefficients B i�,μ(v0,v�) and H iL ,�,μ(v0, u0)

In this section we consider the polynomials B i�,μ(v0,v�) which are the coefficients of the mono-
mials uμ

0 of Ai� (v0,v�, u0). Moreover, we give the coefficients H iL ,�,μ(v0, u0) for the representations
of AiL (v0,v�, u0) as the linear combinations of B0�,μ(v0,v�), for iL �= 0L . Calculations are performed
in lemma-7.mw and lemma-8.mw.

• (L = 0.) In this case E0(v0, (), u0, ()) = 1 and one gets B(),0 = A() = 1 immediately by the defini-
tions.

• (L = 1.) In this case E1(v0,v1, u0,u1) = −v0u1 − v1u0, and therefore A(0)(v0,v1, u0) = −u0 v1
and A(1)(v0,v1, u0) = −v0. From this it follows that B(0),1(v0, v1) = −v1 and B(0),0(v0, v1) = 0.
At the end of the day one obtains H(1),0,0 = −v0 because of the identity A(1)(v0, v1, u0) =
−v0 B(),0.
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• (L = 2.) Then E2(v0,v2, u0,u2) = (1/2)u2
0 v2

1 + (1/2)v2
0u2

1 + v1u0 v0u1 − (1/2)v2u0 − v1u1 −
(1/2)v0u2 and A(0,0)(v0,v2, u0) = (1/2)v2

1u2
0 − (1/2)v2u0. From this it follows that

B(0,0),2(v0,v2) = (1/2)v2
1 B(0,0),1(v0,v2) = −(1/2)v2 B(0,0),0(v0,v2) = 0

and

H(1,0),1,1 = (−u0 v0 + 1) H(2,0),0,0 = (1/2)v2
0 H(0,1),0,0 = −(1/2)v0

• (L = 3.) Then for E3(v0,v3, u0,u3) one obtains A(0,0,0) = −(1/6)v3
1u3

0 − (1/3)v3u0 + (1/2)v2u2
0 v1.

From this it follows that

B(0,0,0),3(v0,v3) = −(1/6)v3
1 B(0,0,0),2(v0,v3) = (1/2)v1 v2 B(0,0,0),1(v0,v3) = −(1/3)v3

B(0,0,0),0(v0,v3) = 0

Eventually,

H(1,0,0),2,2 = −u2
0 v0 + 2u0 H(1,0,0),2,1 = −u0 v0 + 2 H(2,0,0),1,1 = (1/2)v2

0u0 − v0

H(3,0,0),0,0 = −(1/6)v3
0 H(0,1,0),1,1 = −(1/2)u0 v0 + 1 H(1,1,0),0,0 = (1/2)v2

0

H(0,0,1),0,0 = −(1/3)v0

and the other H i3,�,μ vanish.

• (L = 4.) For E4(v0,v4, u0,u4) symbolic computation yields that

B(0,0,0,0),4 = (1/24)v4
1 B(0,0,0,0),3 = −(1/4)v2 v2

1 B(0,0,0,0),2 = (1/3)v3 v1 + (1/8)v2
2

B(0,0,0,0),1 = −(1/4)v4 B(0,0,0,0),0 = 0

and

H(1,0,0,0),3,3 = −v0u3
0 + 3u2

0 H(1,0,0,0),3,2 = −v0u2
0 + 3u0 H(1,0,0,0),3,1 = −v0u0 + 3

H(2,0,0,0),2,2 = (1/2)v2
0u2

0 − 2v0u0 + 1 H(2,0,0,0),2,1 = (1/2)v2
0u0 − 2v0 H(3,0,0,0),1,1 = −(1/6)v3

0u0 + (1/2)v2
0

H(4,0,0,0),0,0 = (1/24)v4
0 H(0,1,0,0),2,2 = −(1/2)v0u2

0 + 2u0 H(0,1,0,0),2,1 = −(1/2)v0u0 + 3

H(0,2,0,0),0,0 = (1/8)v2
0 H(0,0,1,0),1,1 = −(1/3)v0u0 + 1 H(0,0,0,1),0,0 = −(1/4)v0

H(1,1,0,0),1,1 = (1/2)v2
0u0 − (3/2)v0 H(2,1,0,0),0,0 = −(1/4)v3

0 H(1,0,1,0),0,0 = (1/3)v2
0

The other H i3,�,μ vanish.

• (L = 5.) Symbolic computation of E5(v0,v5, u0,u5) gives

B05,5(v0,v5) = −(1/120)v5
1 B05,4 = (1/12)v2 v3

1 B05,3 = −(1/6)v2
1 v3 − (1/8)v2

2 v1

B05,2 = (1/4)v4 v1 + (1/6)v3 v2 B05,1 = −(1/5)v5 B05,0 = 0
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Now we list the coefficients of Ai5 considered as linear combinations of B0�,μ(v0,v�) where � < 5:

H(1,0,0,0,0),4,4 = −v0u4
0 + 4u3

0 H(1,0,0,0,0),4,3 = 4u2
0 − v0u3

0

H(1,0,0,0,0),4,2 = −v0u2
0 + 4u0 H(1,0,0,0,0),4,1 = −u0 v0 + 4

H(2,0,0,0,0),3,3 = (1/2)v2
0u3

0 − 3v0u2
0 + 3u0 H(2,0,0,0,0),3,2 = (1/2)v2

0u2
0 − 3u0 v0 + 2

H(2,0,0,0,0),3,1 = −3v0 + (1/2)v2
0u0 H(3,0,0,0,0),2,2 = −(1/6)v3

0u2
0 + v2

0u0 − v0

H(3,0,0,0,0),2,1 = −(1/6)v3
0u0 + v2

0 H(4,0,0,0,0),1,1 = (1/24)v4
0u0 − (1/6)v3

0

H(5,0,0,0,0),0,0 = −(1/120)v5
0 H(0,1,0,0,0),3,3 = −(1/2)v0u3

0 + 3u2
0

H(0,1,0,0,0),3,2 = −(1/2)v0u2
0 + 4u0 H(0,1,0,0,0),3,1 = −(1/2)u0 v0 + 6

H(0,2,0,0,0),1,1 = (1/8)v2
0u0 − (1/2)v0 H(1,1,0,0,0),2,2 = (1/2)v2

0u2
0 − 3v0u0 + 2

H(1,1,0,0,0),2,1 = (1/2)v2
0u0 − 4v0 H(1,2,0,0,0),1,1 = −(1/8)v3

0

H(0,0,1,0,0),2,2 = −(1/3)v0u2
0 + 2u0 H(0,0,1,0,0),2,1 = −(1/3)u0 v0 + 4

H(1,0,1,0,0),1,1 = (1/3)v2
0u0 − (4/3)v0 H(2,1,0,0,0),1,1 = −(1/4)v3

0u0 + v2
0

H(2,0,1,0,0),0,0 = −(1/6)v3
0 H(3,1,0,0,0),0,0 = (1/12)v4

0

H(0,1,1,0,0),0,0 = (1/6)v2
0 H(0,0,0,1,0),1,1 = −(1/4)u0 v0 + 1

H(1,0,0,1,0),0,0 = (1/4)v2
0 H(0,0,0,0,1),0,0 = −(1/5)v0

The coefficients that are not in the table vanish.

• (L = 6.) The representation of Ai6(v0,v6, u0) is considered in detail in the technical report
Shkaravska and van Eekelen (2010).

Now we give the coefficients for the representation of A(0,1,0,0,0,0)(v0,v6, u0) and A(2,0,0,0,0,0)(v0,

v6, u0) via the alternative list of polynomials B0�,μ(v0,v�) where μ � � � 5, with B02,1(v0,v2) =
−v2/2 replaced by v2

2:

H ′
(0,1,0,0,0,0)v2

2
= −(1/8)u0 H ′

(0,1,0,0,0,0),4,1 = 10 − (1/2)u0 v0

H ′
(0,1,0,0,0,0),4,2 = −(1/2)u2

0 v0 + 7u0 H ′
(0,1,0,0,0,0),4,3 = −(1/2)u3

0 v0 + 5u2
0

H ′
(0,1,0,0,0,0),4,4 = −(1/2)u4

0 v0 + 4u3
0

H ′
(2,0,0,0,0,0),v2

2
= −(1/8) H ′

(2,0,0,0,0,0),4,1 = −4v0 + (1/2)u0 v2
0

H ′
(2,0,0,0,0,0),4,2 = (1/2)u2

0 v2
0 + 3 − 4u0 v0 H ′

(2,0,0,0,0,0),4,3 = 5u0 + (1/2)u3
0 v2

0 − 4u2
0 v0

H ′
(2,0,0,0,0,0),4,4 = (1/2)u4

0 v2
0 + 6u2

0 − 4u3
0 v0

In this table H ′
(0,1,0,0,0,0)v2

2
(resp. H ′

(2,0,0,0,0,0),v2
2
) denotes the coefficient of v2

2 in the representation

of A(0,1,0,0,0,0)(v0,v6, u0) (resp. A(2,0,0,0,0,0)(v0,v6, u0)) via the alternative list of polynomials.

A.2. Difference equations G(P (x), P (x − 1), P (x − 2)) + G0(x) = 0, D = 2

In this section we give the matrix of the linear system for ᾱ, encountered in solving quadratic
difference equations of the form G(P (x), P (x − 1), P (x − 2)) + G0(x) = 0, see Corollary 1. The ma-
trix is computed and the system is solved in corollaries_Ds.mw, which is available at http://
resourceanalysis.cs.ru.nl/, in the archive mentioned in the Introduction.

http://resourceanalysis.cs.ru.nl/
http://resourceanalysis.cs.ru.nl/


28 O. Shkaravska, M. van Eekelen / Journal of Symbolic Computation 60 (2014) 15–28
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
0 −1 −2 −2 −3 −4
0 −1/2 −2 −1 −5/2 −4
0 1/2 2 2 9/2 8
0 −1/3 −8/3 −2/3 −3 −16/3
0 1/2 4 2 15/2 16
0 −1/6 −4/3 −4/3 −9/2 −32/3
0 −1/4 −4 −1/2 −17/4 −8
0 11/24 22/3 11/6 97/8 88/3
0 −1/4 −4 −2 −45/4 −32
0 1/24 2/3 2/3 27/8 32/3
0 −1/5 −32/5 −2/5 −33/5 −64/5
0 5/12 40/3 5/3 81/4 160/3
0 −7/24 −28/3 −7/3 −183/8 −224/3
0 1/12 8/3 4/3 45/4 128/3
0 −1/120 −4/15 −4/15 −81/40 −128/15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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