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1 Introduction

In principle, all historical linguistics is phylogenetic, since phylogenetics encompasses the sci-
entific investigation of the descent of organisms in general. While prototypical phylogenetic
analysis involves investigating the evolutionary descent of a class of biological species, such
phylogenetic analyses have also been applied in other domains (e.g. social organization, musi-
cal instruments, decorative motifs on textiles); and indeed, can be applied to any domain which
varies according to general evolutionary processes. e reason that in linguistics this term is
oen used in contrast to other forms of historical linguistic investigation is that phylogenetic
approaches maintain their methodological link to the investigation of evolutionary processes
in other, mostly biological, domains. e appeal of incorporating the analysis of language into
a general theory of evolution is that current evolutionary theory offers a rigorous, quantifiable
approach to phylogenetic inference. As Felsenstein states in the preface to hismonumental Infer-
ring Phylogenies, “phylogenies, or evolutionary trees, are the basic structures necessary to think
clearly about differences between species, and to analyse those differences statistically” (Felsen-
stein 2004: xix). Linguistic phylogenetics incorporates the whole approach of the phylogenetic
comparative method — using language phylogenies as the historical backbone to quantitative
models of language change in order to test hypotheses about human dispersals, processes of cul-
tural change, and the evolution of other linguistic subsystems (see Section 5). In this sense phy-
logenetic linguistics is broader in its ambitions than historical linguistics: historical linguistics
seeks to illuminate the history of languages, and only secondarily seeks to say something about
the speakers of those languages in approaches like linguistic palaeontology and socio-cultural re-
constrction (see Chapters XREF:Heggarty and XREF:Epps), as well as gene-language correlation
(Chapter XREF:Paendorf).

e quantified, algorithmic approach to phylogenetics started in the early 1960s (Felsen-
stein 2004). Linguistics has been part of this movement twice: firstly with the development of
lexicostatistics and gloochronology in the late 1960s, and again with the development of model-
based, hypothesis-testing (and usually Bayesian) approaches starting around 2000 (see Section
5.3). e aim of this chapter is to present a overview of current quantitative approaches to lan-
guage change. ese approaches are increasingly well received within linguistics, but remain
controversial in some circles, in part because of the conflation of lexicostatistical approaches
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with beer theoretically grounded approaches used today, and partially because of a mismatch
between the aims and scope of the linguistic Comparative Method and the statistical, hypothesis
testing approach of quantitative methods.

2 Inferring linguistic phylogenies

Most phylogenetic analyses seeking to infer language history are based on modelling the his-
torical behaviour of lexical cognate sets, typically as represented in a Swadesh list or other stan-
dardised list of meanings. In its raw form, a Swadesh list contains a set of lexemes corresponding
to meanings. In a well-made Swadesh list the criteria for assigning particular lexemes to these
meanings are properly defined. According to Swadesh himself, the lexeme should be the stylis-
tically unmarked, everyday word corresponding to the meaning. According to Swadesh, “[t]he
rules for filling in the list for each language may be stated as follows: a) Try to find one simple
equivalent for each item by disregarding specialized and bound forms and the less common of
two equivalents. b) Use a single word or element rather than a phrase, even though the meaning
may be broader than that of the test item. c) Where it is impossible to find a single equivalent,
omit the form.” (Swadesh 1952). Obviously, care should be taken that words correspond to the
intended meaning (e.g. Swadesh’ “bark” is the “skin of a tree”, not the “noise of a dog”). Kas-
sian et al. (2010) have produced a useful semantic specification for a widely used version of
the Swadesh lists. In a phylogenetic analysis the lexemes are replaced by their cognate class,
rather than dealing with the lexical forms themselves, so that all lexemes which descend from a
common ancestor are indicated by the same code.

Meaning 1 Meaning 2
lexeme class lexeme class

Language A mhɨm a cɨŋ x
Language B mhɨm a kɨt y
Language C lɔ:t b kət, lpəc y, z
Language D ? ? lpət z

Table 1: Multistate coding of two meanings; a, b, x, y, z are cognate classes; “?” means unknown

Table 1 shows an example fragment of a cognate coding matrix from a Swadesh list. Tech-
nically, this is a multistate matrix, since each meaning (a character in phylogenetic terms) may
have multiple values (e.g. x, y or z). is matrix can be transformed into a binary presence-
absence matrix by treating each cognate class as a character; see Table 2. e presence-absence
matrix has the useful property that it can handle more than one cognate set per meaning (as in
Language C, Meaning 2).

Correct cognate classification is no trivial maer. Dunn, Greenhill, et al. (2011) and Bouck-
aert et al. (2012) used a database of cognate classifications checked against published data from
etymological dictionaries. Cognate judgements may also be supplied by historical linguists, as in
Ringe, Warnow, and Taylor (2002), and Greenhill, Blust, and Gray (2008). Phylogenetic analyses
can also be carried out on cognate candidate data, where cognate classification in the strict sense
(proved by historical linguistic methods) has not been (or possibly cannot be) carried out. e
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Cognate set
1a 1b 2x 2y 2z

Language A 1 0 1 0 0
Language B 1 0 0 1 0
Language C 0 1 0 1 1
Language D ? ? 0 0 1

Table 2: Binary (presence-absence) coding of cognate data from Table 1

data in these two cases looks identical, but using cognate candidates rather than proven cognates
necessarily adds a further (unfortunately unquantified) level of uncertainty to the analysis. Cod-
ing for lexical candidates rather than true lexical cognates is crucial for other kinds of analysis,
especially those where the research question is specifically about borrowing or admixture. For
instance, Shijulal et al. (2011) model horizontal transfer of lexical items inside families, and Bow-
ern (2012) uses cognate candidates to classify 19th century wordlists of Tasmanian languages
into probable languages and language families.

In principle, anything which carries a phylogenetic signal can be used as the basis for some
kind of phylogenetic inference, although of course the kind of phylogenetic signal constrains the
inferences which can be made. As in conventional historical linguistics, phylogenetic analysis
can model notionally unique events in the history of a language family such as sound changes
and morphological innovations. e perfect phylogenies approach (Ringe, Warnow, and Taylor
2002; Nakhleh, Ringe, and Warnow 2005) most closely approximates a fusion of traditional and
phylogenetic comparative methods. eir database (Nakhleh et al. 2005) includes cognate sets,
as well as features representing morphological and phonological innovations; their statistical
analyses are designed to incorporate the same assumptions that a traditional historical linguistic
analysis would make, seeking a tree which is maximally compatible with all the evidence for
subgrouping (potentially including evidence which is conflicting in the perfect phylogenetic
networks approach; Nakhleh, Ringe, and Warnow 2005).

Other kinds of analyses are not so tightly coupled to traditional historical linguistics as those
based on cognates and sound-changes. If traditional historical linguistic input is unavailable or
for some other reason unfeasible, then approaches to phylogenetic analysis based on phonologi-
cal similarity are appealing. ese methods use some kind of formally defined distance measure
to compare lexemes between languages. is measure can be used to identify cognate candi-
dates (Dunn and Terrill 2012), but more oen it is used to give an estimate of the amount of
evolutionary change between lexemes which are a priori presumed to be cognate. Lexical sim-
ilarity methods are particularly suited to investigation of dialect data, since the presumption
of cognacy is well justified (Prokić 2010). In general, lexical similarity measures work best at
relatively shallow time-depths (Greenhill 2011).

Phylogenetic methods are not limited to working with lexical, morphological or phonolog-
ical features. In work on the historical connections between the Papuan languages of Island
Melanesia, for example, Dunn et al. (2005) investigated the hypothesis that the typological simi-
larities between these languages retains a historical signal of earlier contact or shared ancestry,
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despite the absence (or just unavailability) of lexical evidence. Because of the limited “design
space” of language (Reesink and Dunn 2012), the probability of chance similarity in the typo-
logical domain is high, and particular care must be taken to use appropriate statistical tests if
such data is to be used to support detailed claims about history, or to make inferences about
deep time depths. Models of structural typological data presume that unrelated languages may
have identical values for some typological parameters, which make them particularly useful
for the analysis of contact and admixture (Reesink, Singer, and Dunn 2009), and gene-language
correlation (Hunley et al. 2008).

3 Distance-based models of ange

A distance-based model of change estimates the amount of change between two languages from
the aggregate amount of difference between them. Distance-based methods of phylogenetic
inference all use some kind of distance metric to measure how much each taxon differs from
every other one. ere are two different kinds of distance metric which are commonly used
in linguistics: shared cognate proportion and so-called Levenshtein distance, a word-by-word
measure of phonetic similarity.

3.1 Lexicostatistics

Language clustering by cognate distance is the earliest form of statistical phylogenetics done
in linguistics. A standardized list of meanings (a “Swadesh list” or the like; Section 2) is used
to compile wordlists representing each language of the sample. For each pair of languages, the
distance between them is the proportion of corresponding terms which are not cognate in the
two lists (e inverse of distance, 1 - d, is the proportion of terms which are cognate between
the two lists, and can be thought of as the similarity or proximity of the lists). e pairwise
distances between the languages are tabulated, as in Table 3.

Language A Language B Language C Language D
Language A -
Language B 2/5 = 0.4 -
Language C 5/5 = 1.0 3/5 = 0.6 -
Language D 3/3 = 1.0 2/3 = 0.66 1/3 = 0.33 -

Table 3: Pairwise distances from Table 2. Language A and Language B differ in 2 our of 5
comparisons, so have a distance of 0.4; because of missing data (‘?’) distances from Language D
are calculated on the basis of only 3 comparisons.

It is important that the criteria for inclusion in these lists are clear, otherwise biases to the
distance calculationmay be introduced simply due to availability ofmaterials for a particular lan-
guage. According to the Swadesh 1952 criteria cited above, there is minimal allowance made for
semantic change (known cognate terms which don’t fit the semantic criteria must be ignored).
Swadesh also does not allow cells to contain multiple lexemes (as in Language C, Meaning 2 in
Table 1). But in each of these cases this is an analytic choice: other criteria are possible, but the
distance measurements are only coherent if these criteria are applied consistently.

e term gloochronology is sometimes used as a synonym of lexicostatistics, but some
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scholars are punctilious about distinguishing the terms. If the terms are to be distinguished,
lexicostatistics refers to the process of clustering languages based on distances calculated from
meaning lists, whereas gloochronology refers to a method for using these distances to infer
chronological dates (McMahon and McMahon 2005: 33). e gloochronological method for de-
termining dates is based on the premise that over a sufficiently large tree, is is acceptable to
assume a constant rate of change. In the late 1940 and 1950s the promise of gloochronology
seemed vast: Swadesh (1952) talks breathlessly about the “discovery” of a mean rate constant of
lexical cognate turnover, believed to be 81% ± 2 per 1000 years for culturally neutral vocabulary.
According to this constant, a pair of languages which split 1000 years ago would share 81% of the
terms in a meaning list; a 2000 year old split would show 81% × 81% = 66% retention, and so on.
If you accept (both the validity and the value o) this rate constant it is fairly simple to determine
the age of any language relationship (Swadesh 1952: 461–462). e problem with this whole line
of research is that the constant rate of change turned out to be illusory. e rate of language
change varies due to a number of different factors. Amongst those to aempt to quantify this
is Nele (1999), who shows a general paern of faster language change in smaller communities
(the same phenomenon as faster genetic dri in smaller biological populations), and Atkinson
et al. (2008), who show that higher rates of cognate turnover are associated with language split-
ting events. Computer simulations by computational biologists have shown that distance-based
clustering is extremely sensitive to differences in rate of change in different branches of the tree
(Peer 2009: 147 for references), and other, more robust methods now exist (see Section 4). A role
remains for distance methods: the Automated Similarity Judgement Program (ASJP; Brown et
al. 2008; Holman et al. 2011) makes extensive use of distances (but see Greenhill 2011), as do the
dialectometric techniques discussed in Section 3.3.

3.2 Levenshtein distance

Instead of working from a distance measure based on cognate classification, it is also possible to
work directly from the similarity between the phonological forms of words. is is usually done
using some variant of the Levenshtein distance, a measure of how many operations are required
to turn one string of phonemes into another. To change a “hawk” into a “handsaw” requires two
substitutions and three insertions, for a distance of five (it can also be done with one deletion
and four insertions; see Figure 1 for another illustration). e distances between one short word
and one long word will always be great (because of the number of deletions required), and so it
is common to normalize the measure along a 0-to-1 scale by dividing by the length of the longer
word. e Levenshtein distance measure can be customized in many other ways too. Different
weights can be given to insertions and deletions, and the distance cost of a substitution can be
calculated from phonological features (so to change a /t/ to a /d/ counts as less distance than
a change from a /t/ to a /ŋ/). e substitution measure can also be made more coarse, so that
classes of similar phonemes are treated as identical, as is done in the ASJP project (Holman et
al. 2011). In the ASJP all phonemes are collapsed into 41 classes (so, for example, L represents
all laterals except for /l/; Brown et al. 2008) to allow maximal cross-linguistic comparability.
e loss of phonological distinctiveness is compensated for by the extremely large scope of the
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comparison — 4817 languages and dialects at the time of the Holman et al. 2011 paper.
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Figure 1: Levenshtein distance: How to turn a “Shakespeare” into “Jacques Pierre” (in broad
phonological transcription) with two substitutions, a deletion, and an insertion, for a Leven-
shtein distance of four.

3.3 When to use distance, and when not to use it

One serious criticism of the Levenshtein distance measure is that it is only a coherent measure
of language change where the forms being compared descend from a common ancestor. e
Levenshtein distance between non-cognate items is not predicted by the degree of relatedness
of the two languages that the words come from. In the computational dialectometry tradition
(Goebl 1993; Heeringa and Nerbonne 2001) this objection is largely irrelevant, since most words
in a comparative dialectology wordlist are cognate. In addition, the time depths of separation
between dialectal varieties is generally much smaller than between varieties recognised as dis-
tinct languages, meaning that variation in rates of change has less influence on the amount of
linguistic difference. Taking these two factors into account, the amount of phonological dif-
ference between two dialects can be considered a good proxy for their amount of historical
separation. Dialect diversification tends to be wavelike, rather than treelike, and qualitative dif-
ferences between dialects are usually represented by isoglosses. ese quantitative approaches
to dialectology differ from the isogloss approach in that isoglosses show discontinuities, while
distancemeasures give a continuous clustering. Computational dialectometrymeasures are usu-
ally analysed and visualized using network methods. One vivid technique for visualizing dialect
clusters is to transform the pairwise Levenshtein distance matrix (i.e. the distance calculated
from each variety to every other variety) using multidimensional scaling (MDS) with three di-
mensions. ese dimensions can then be converted to intensities of the three colour axes in the
Red-Green-Blue colour space, and the resulting colours can then be used to colour the dialect
polygons on a geographic map (Heeringa 2004). In general, varieties with similar relationships
of similarity and difference to the other varieties considered will have similar MDS values, which
in turn will produce visually similar colours. Note that the Red-Green-Blue colour space is not
perceptually even: humans discriminate many more hues in some areas of the colour space
than others, meaning that visualization by RGB transformed MDS values is intrinsically dis-
torted. Real, scientific analysis of distance relationships must be numeric. For example, Manni,
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Guérard, and Heyer (2004) use Monmonier’s algorithm to detect barriers, abrupt changes in lin-
guistic distance uncorrelated with geographic space.

Levenshtein distance is a good proxy, however, for historical relatedness when the languages
being compared share a recent common ancestor. Because Levenshtein distance between non-
cognate lexemes is not a meaningful measure of historical relatedness, this measure is a partic-
ularly risky technique to use for long distance comparison. It becomes increasingly unreliable
when trying to quantify older linguistic relationships. If a pair of languages are not related at
all, the Levenshtein distance between them is solely a function of their similarities in phonology
and phonotactics, as well as chance. Dunn and Terrill (2012) present a method for investigating
the base rate of chance similarity between words from two different languages, based on the
“Oswalt Shi Test” (Oswalt 1970, 1998). e Oswalt Shi Test was conceived of as a validity test
for lexicostatistics: the rate of shared cognate candidates between two lists was compared with
the rates of shared cognates between lists with their rows offset by one, two, three, etc. us, for
a list of 100 meanings you would be able to compare the percentage of apparent shared cognates
in the true, semantically aligned list to the percentages of apparent cognates in 99 semantically
unaligned lists. is test would obviously be quite difficult to do by hand, since the linguist
would have to make 1000 cognate judgements knowing that all but one percent of them were
bogus comparisons. It would be desirable to do the cognate coding blind, with no knowledge
about either of the languages involved which, in practice, would mean that this painfully tedious
academic task could only be done by somebody with no prior exposure to the area. Unsurpris-
ingly, the Oswalt Test was rarely carried out in practice. Dunn and Terrill (2012) propose a
modernization of the Oswalt Shi Test, called the Oswalt Monte Carlo Test. is is a version of
the Shi Test using a Levenshtein measure to propose cognate candidates. e distance thresh-
old and the parameters of the precise variant of the Levenshtein measure are tuned against a
set of training data. is makes it practicable to carry out large numbers of comparisons, so the
ad hoc “shi” method for selecting 99 semantically unaligned lists to compare can be replaced
by the statistically more standard Monte Carlo randomization technique, where the wordlists
are randomly shuffled thousands of times in order to get a reliable sample of the distribution of
distance measures under the semantically scrambled condition. ASJP comparisons have begun
to use an Oswalt Monte Carlo-type procedure to correct their mean Levenshtein distance by
dividing it by the distances between scrambled wordlists. In principle this should indicate that
the mean Levenshtein distance measured between one pair of languages should be comparable
to the mean Levenshtein distance measured between any other pair of languages. One outcome
of the case study of presented in Dunn and Terrill (2012) was to demonstrate how vulnerable
distance measures are to undetected loanwords. An apparent high degree of lexical common-
ality between the non-Austronesian languages of the Solomon Islands vanishes when probable
loanwords are removed. Even one or two loanwords in a wordlist give a strong false-positive
signal.
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4 Character-based models of ange

An alternative family of approaches to phylogenetic inference, known as character-based models

of change, estimate the relationship between two languages by inferring the pathways by which
each evolved from their common ancestor. e difference between two languages according to
a distance model is always equal to or less than the difference according to a character-based
model. Another way of looking at this is that the distance between two languages is the shortest
path from one to another. A character-based model is constrained to provide an evolutionarily
plausible pathway to each language from their inferred common ancestor---and this is almost
always a longer pathway than the shortest distance for turning one language into another. e
shortcuts that distance measures take are more serious the further back in time the common
ancestor is located. Character-based methods are thus more realistic models of evolutionary
processes.

e earliest, and until recently the most widely used character-based method for inferring
phylogeny was the parsimonymethod (Swofford and Sullivan 2009:268). e parsimonymethod
seeks a tree that explains a data set (e.g. a set of cognate judgements) by minimizing the number
of evolutionary changes required to produce the observed states. is means that tree structures
are preferred that place innovations where they account for the greatest amount of observed
diversity as possible. is is a similar logic to that used used in the linguistic Comparative
Method: trees are constructed on the basis of shared innovations, and where possible, a tree
topology is found inwhich each innovation has occurred only once. Studies using simulated data
show that parsimony methods are weak at recovering the true evolutionary tree in particular
kinds of conditions. e most serious of these is probably long branch araction: long branches
(branches with a lot of change) in a tree will tend to be clustered together even if they are only
distantly related in the true evolutionary history. is occurs because where two branches have
both undergone a lot of change, the most parsimonious account is always to bundle the two
branches together as a single set of innovations with a relatively small amount of independent
diversification at the end. Parsimonymethods have recently been overtaken by statisticallymore
robust, but computationally harder, likelihood methods, which are not subject to this problem.

4.1 Likelihood methods

Likelihood methods seek to explain a set of observed data by quantifying how likely it was to
have been produced by a particular process. e likelihood (L) is the probability of seeing the
observed data (D) under a particular hypothetical mechanism (H), formalized as L = P(D|H).
Within phylogenetics, the hypothesised mechanism is an evolutionary process, referred to as
the “model”, which consists of a mathematical description of evolutionary change. A model
might typically include tree topology and branch lengths, as well as, e.g., the probability that a
new cognate set appears in the tree, and the probability that a reflex of a cognate set is lost. e
model itself is not in question within the likelihood calculation: the model is the researcher’s
hypothesis about the mechanisms of evolutionary history (but different models can be compared
and evaluated, see Section 4.3.1).

Maximizing the likelihood of the parameters of a tree (the most likely branch lengths, the
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most likely transition parameter values, etc.) is generally tractable to exact mathematical meth-
ods. However finding the best tree topology out of the vast space of possible trees is extremely
challenging, and no algorithm is known that guarantees that this best tree will be found in any
reasonable amount of computational time (Schmidt and Haeseler 2009). It is not possible to solve
this using random sampling of tree likelihoods: since they are very skewed towards low like-
lihood values, and only a tiny proportion of the trees in the space represent good solutions to
the evolutionary hypothesis. Most reasonably sized random samples of trees from this space
will contain no high likelihood trees at all, and there would be no way to know that the high-
est likelihood trees in the sample would count as high within the distributions of likelihoods in
the entire space. e practicable solution to this is to use Bayesian Monte Carlo Markov chain
(MCMC) sampling. is algorithm searches the tree space for the region of highest likelihood.
It starts at a random point in the space, and by randomly perturbing the parameter values at
that space, compares the likelihood score of the current position in the tree space to the new
set of values. If the new values have higher likelihood, then the same search is repeated from
the new position. is functions like a simple hill-climbing algorithm: if likelihood is eleva-
tion, then the search reaches out and measures the height difference of a nearby point, and if
it is higher, takes a step in that direction. In this overly simple version of the algorithm the
search would risk geing stuck at a local maximum (at the top of a foothill, rather than at the
top of the mountain); the real algorithm has a number of ways for dealing with this. Rather
than completely ignoring lower likelihood positions in the tree space, the search will randomly
accept proposals to move to lower likelihood positions in proportion to differences in likelihood
(so it would be much more likely to accept a move to a position which is only slightly lower,
but would most likely reject a move to a very much lower likelihood position). Every thousand
steps or so (to avoid autocorrelation, sampling of statistically non-independent trees from too
close in the parameter space), the tree parameters and likelihood value are saved to the posterior
sample. Figure 2 shows a typical record of likelihood (or elevation, for hill climbing) over the
search. If all goes well, aer an initial period of wild oscillation, the search reaches a reasonably
level, maximum state. e initial period — the “burn-in” — is discarded, and the remainder of
the sample represents more-or-less equally highly likely sets of parameters (strictly speaking,
they are sampled in proportion to their likelihood). In phylogenetic inference these parameters
typically include tree topology, branch lengths, and transition probabilities.

4.2 Evolutionary models

In Section 3.1 it was mentioned that one of the great theoretical weaknesses of gloochronology
was that it assumed a constant rate of change. Rate of change is included in likelihood analyses
as the clock model. A strict clock corresponds to the constant rate of change assumption, and
in biology as in linguistics, it has been shown empirically to be inappropriate in many cases
(Felsenstein 2004: 322–329). Several other more realistic clock models have been devised. So
called relaxed clock methods relax the strict clock assumption by allowing rates to vary across
the tree, chosen from a probability distribution whose mean is determined by the rate of the
parent branch (Drummond et al. 2006). is relaxed clock parameter is incorporated as part
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Figure 2: Likelihood trace MCMC sampling under two models, A and B. e Bayes Factor = 2 ×
(likelihood of Model A ­ likelihood of Model B) = 48, which indicates “very strong” support for
Model A (see Section 4.3.1).

of the a priori model of evolutionary change. Different kinds of probability distribution can
model processes where rate change occurs continuously along a branch, or where rates change
at nodes independently of branch length. Another clock model, the random local clocks model
(Drummond and Suchard 2010), treats rate variation as a series of independent local clocks, each
extending over a subregion of the complete tree. e number of distinct local clocks required to
account for the observed data is a parameter estimated by this model, which makes this tech-
nique applicable to questions of clade-specific rate variation. A note should also be made here
of no clock models. In cases where it is unclear which clock model is appropriate for a data
set, it might be tempting to use a model which enforces no clock at all. But this would be a
mistake: a no clocks model explicitly states that there is no limit on the evolutionary variation
between branches — an assumption which is even less likely to be a good fit to the real evolution
processes than any of the other clock models available (Pybus 2006).

Along with the clock model, which specifies how rates change globally across branches, a
substitutionmodel must also be specified, indicating how rates differ from character to character
(e.g. from cognate set to cognate set). Model complexity is defined by the number of param-
eters the model has, and in general a good model should have as few parameters as possible
(Section 4.3.1). e basic substitution models for binary data are the simple one-rate or two-rate
models (Figure 4a). In a one-rate model, a single parameter q expresses the probability that a
character state 1 will turn into 0 or vice versa. In a two-rate model the probability that 1 will
turn into 0 (q10) is estimated separately from the probability that 0 will turn into 1 (q01). is is
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Figure 3: Unrooted and rooted trees. An unrooted tree makes no assumptions about chronology.
ree possible roots are marked, (i–iii); the bar on the branch leading to a indicates a change
between state 0 and state 1 of a feature known to occur on this branch of the tree. Each root
hypothesis allows you to make different inferences about subgrouping and directions of change:
If the tree is rooted on (i), the split between a and (b,c) is the earliest in the tree, and thus b and
c are sisters and the evolutionary change of state is from 0 to 1; if the tree is rooted on (ii) then a
and c are sisters, and rooting on (iii) puts the earliest division between c and (a,b); in both these
laer cases the evolutionary change of the feature is 1 to 0.

a more realistic model, in that the rate of innovation is treated separately from the rate of loss.
A tree produced under a two rate model must be rooted, since you need to know the root posi-
tion to know whether a change is 0 → 1 or 1 → 0 (see Figure 3). Some phylogenetics packages
require that the root be specified by the researcher, but since the root selection determines the
overall tree likelihood under any given rates hypothesis, it is possible to estimate the tree root
as part of the topology (e.g. as in BEAST; Section 7). e gamma model assumes that each char-
acter belongs to one of a specified number of rate classes . Figure 4b schematically illustrates a
three class, two rate version of this model. e rates for each class are sampled from a gamma
distribution, a probability distribution with the useful property that its shape is controlled by a
single parameter. is could be expected to be a beer fit to linguistic data, as different terms
on the Swadesh list have different stability. e covarion model (Figure 4c) gives another way
to account for rate variation in the data. Under the covarion model the rate of each character is
allowed to vary along the branches of the tree. e Stochastic Dollo model (Figure 4d) captures
a key feature of real cognate histories, that a cognate set may only be innovated once in the
dataset. One parameter governs the distribution of rates of cognate sets arising in the data, and
another parameter the distribution of rates of loss of their reflexes (Nicholls and Gray 2008). e
Stochastic Dollo model necessarily produces a rooted tree.

Note that the Stochastic Dollo model would not be suitable for modelling the history of
typological features. Typological features evolve in a more limited design space than lexical
cognates, with a correspondingly higher probability of chance homology, and so a reversible
model would be more appropriate (for this reason it is in any case most unlikely in the model
selection procedure, outlined in Section 4.3.1, that the Stochastic Dollomodel would out-perform
Gamma or Covarion models on a structural database).
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(a) Binary simple (no rate variation) (b) Gamma (among site rate variation)

(c) Covarion (site-specific rate variation) (d) Stochastic Dollo (cognate-birth, word-death)

q

One rate 
(reversible) 

model

q01

q10
Two rates

Figure 4: Substitution models. Gains and losses of reflexes of cognate sets are modelled as (a)
occuring at a single rate, or at a distinct rate for gains and a for losses, (b) different rates for
different cognate sets, (c) different rates for different branches, and (d) a rate of innovation and
a rate of loss.

4.3 Interpreting the results

4.3.1 Model oice

e likelihood score of an analysis is the probability for the observed data to evolve given a
particular model. Even assuming that for each model the optimal parameter values have been
inferred, some models still fit beer than others. e difference in acceptability of two models
can be expressed by the Bayes Factor, which is calculated as the ratio of L(H₁), the likelihood
of hypothesis one (also expressed as “Pr(D|H₁)”, the probability of the data D under H₁) to the
likelihood of L(H₂) (or “Pr(D|H₂)”), as follows:

BF₁₂ =
L(H₁)
L(H₂)

e Bayes Factor statistic is oen expressed as twice its natural logarithm, 2logBF₁₂, rather than
using the raw ratio BF₁₂. Likelihood ratios are the same as the difference in log-likelihoods; thus
2logBF₁₂ = 2(logL(H₁) – logL(H₂)). e interpretation of the Bayes Factor statistics are given in
Table 4. e Bayes Factor is not like a p-value: it is only meaningful in testing one hypothesis
against another. A negative Bayes Factor simply supports H₂ over H₁ (which incidentally means
that the Bayes Factor test can give evidence in favour of the null hypothesis; the strongest evi-
dence frequentist statistics can give for the null hypothesis is not to rule it out). Note also that
the probability of geing the observed data with a model has nothing to do with the probability
that the model is correct. e best model is as simple as possible, but not simpler (a maxim
aributed to Einstein). Where likelihood ratios do not provide a clear front-runner, the analysis
should be based upon the front-running model with the fewest parameters.

4.3.2 Tree sample

e results of a Bayesian phylogenetic inference analysis are a sample of trees (as well as logs
of other model parameters of interest associated with each of these trees), sampled in propor-
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BF₁₂ 2logBF₁₂ Evidence for H₁ over H₂
0 to 2 1 to 2 Negligible
3 to 20 2 to 6 Positive
20 to 50 6 to 10 Strong
>150 >10 Very strong

Table 4: Guidelines for the interpretation of Bayes Factors and Log Bayes Factors (aer Kass and
Raery 1995: 777)

tion to their posterior probability. is sample typically runs to thousands of trees, and it is of
course not feasible simply to inspect it by eye. Summarizing all this output in a single, coherent
narrative is difficult. is is usually best done using some form of visual summary. ere are
several possibilities. For a tree sample, most practitioners currently prefer a maximum clade
credibility tree (Figure 5a). is is a tree selected from the tree sample which maximizes the
product of likelihoods of each of its branches. is tree can be treated as the best representative
of the tree sample. Branch lengths are usually taken from the median or mean of corresponding
branches in the sample. A maximum clade credibility tree can be constructed using the TreeAn-
notator tool of the BEAST package (Drummond et al. 2012). e consensus tree method has also
been popular as a way of summarizing sets of trees. Consensus trees are built by ranking all
the binary splits in a tree sample and building a tree which includes all the branches that don’t
contradict any more highly ranked branch. One of the disadvantages of a consensus tree is that
there is no guarantee that a tree with the same topology as the consensus tree will actually be
present in the tree sample. ere is no generally accepted way to specify the branch lengths
of a consensus tree. Consensus trees can be made using many different soware packages; the
“consensus” function of the APE package in R (Paradis, Claude, and Strimmer 2004; see also
Section 7) is a convenient and flexible option. Whichever kind of tree representation is used, it
is normally desirable to annotate branches with confidence estimates (their posterior probabil-
ities for a Bayesian tree; other kinds of confidence estimates such as bootstrap values exist for
non-Bayesian trees). A DensiTree visualization of the tree sample gives a vivid representation
of the entire tree sample by overploing all the trees of the sample in partial transparency (Fig-
ure 5b). Finally, if conflicting groupings in the tree sample are of interest, the tree sample can
be summarised with a consensus network (Holland et al. 2004). Each branch of a tree in the tree
sample represents a possible binary split of the data. ese splits are weighted according to their
frequency, and used to compute a splits graph. Where the splits are compatible, the splits graph
is identical to a tree; where splits are incompatible, each split is represented by a collection of
parallel edges, where incompatible splits are orthogonal (see Figure 5c). e length of the edges
can be used to represent the weight (in this case, frequency) of the split.

4.3.3 Priors

One of the great advantages of the Bayesian approach to inference is that it allows you to inte-
grate many different forms of prior knowledge. Apart from the distributional priors on model
parameters (Section 4.2), it is frequently desirable to integrate a priori known elements of tree
structure. is is done by constraining the MCMC search to those parts of the parameter space
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Figure 5: Summarizing the posterior tree sample; Aslian phylogenies (Dunn, Burenhult, et al.
2011) visualized with (a) Maximum Clade Credibility (MCC) Tree, (b) DensiTree, and (c) Con-
sensus Network. Note how the uncertainty about the classification of the language “Jah Hut”
is reflected by (a) low posterior probability values, (b) multiple points of origin, and (c) a box
showing conflicting splits.

where the tree topologies are consistent with the prior knowledge. is can have the simple
practical advantage of speeding up the analysis — if the data contain a strong signal for par-
ticular elements of structure, then searching other parts of the tree space may simply be un-
necessary. But tree priors are also the most direct way to integrate subgrouping knowledge
based on linguistic Comparative Method criteria, such as phonological and morphological in-
novations. Constraining the tree search to areas of the parameter space which are consistent
with comparative method innovation-based subgrouping is a perfectly valid way of integrating
traditional comparative method and computational phylogenetic methods of tree inference, and
can give results which are greater than the sum of their parts: combining comparative method
subgrouping information into a Bayesian MCMC analysis as priors allows inference of (i) trees
which are further resolved than the subgroupings provided by sound changes; (ii) comparative
method trees with meaningful branch lengths or chronological calibrations; and (iii) compara-
tive method trees with quantified estimates of uncertainty and rate change.

In addition, Bayesian Phylogenetic inference methods can be used to test between compet-
ing sets of priors (using the likelihood ratios test; Section 4.3.1). For instance, where there are
conflicting tree constraints based on apparent shared innovations a likelihood ratio test would
allow a test of whether the cognate histories support one subgrouping hypothesis over the other.
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4.4 More complex cases

It is also possible to use phonological and morphological innovations as characters in the anal-
ysis, rather than constraints. is is the approach taken by Ringe, Warnow, and Taylor (2002)
and Nakhleh (2011), in an analysis which seeks to reconcile both cognate histories and shared
phonological and morphological innovations. Within the Bayesian Phylogenetic Inference ap-
proach it would probably be most appropriate to do this using partitions — carrying out the
analysis with a different model used for cognate evolution than for morphological/phonological
innovations. A similar partitioned analysis can be used to carry out phylogenetic inference on
other kinds of disparate data where different evolutionary processes apply to different parts of
the data.

Dunn et al. (2008) and Dunn (2009) present Bayesian Phylogenetic inferences based on typo-
logical features of language rather than lexicon. e rationale in this case was to investigate the
history of a set of languages showing typological similarities which were suggestive of a histor-
ical relationship, but which did not show lexical similarities sufficient to demonstrate their re-
latedness (See also Dunn and Terrill 2012). is approach has been adopted for languages where
sufficiently complete word lists are unavailable (e.g. Daniëlsen, Dunn, and Muysken 2011). e
reliability of historical inference based on typological features is the subject of some controversy
(Donohue and Musgrave 2007; Dunn et al. 2007); a non-controversial use of typological features
is for comparison of the linguistic similarity between languages which are not (or not known
to be) related for the purposes of hypothesis generation or testing paerns of genetic versus
linguistic diversity (Dunn 2009; Reesink, Singer, and Dunn 2009; Hunley et al. 2007, 2008).

A number of Bayesian phylogenetic methods deal with reticulation. e reticulated tree
model of Shijulal et al. (2011) adapts some of the insights of evolutionarymicrobiology to linguis-
tic questions of family-internal borrowing. Bacterial evolution is highly complex, as bacteria have
a number of mechanisms which allow them to combine and exchange DNA, including swap-
ping of the DNA coding for complete functional subsystems (e.g. antibiotic resistance). A naïve
reconstruction of evolutionary history of bacteria would infer an ancestral mega-bacterium, al-
ready embodying the precursors to all the DNA diversity of its descendants. e essential insight
of this method is to apply the uniformitarian hypothesis, that bacteria in the past were not sub-
stantially different to bacteria in the present; more precisely, the size of the genome of ancestral
bacteria should fit within the distribution of observed genome sizes in present-day bacteria. A
Bayesian phylogenetic tree search is carried out with an additional “horizontal gene transfer”
parameter. is parameter is optimised to maintain the inferred genome size at ancestral nodes
to within the statistical distribution of known bacteria. e linguistic adaptation of this uses the
same logic: rather than inferring an ancestral language containing all the lexical diversity of the
contemporary languages, the algorithm infers lexical transfer where it can efficiently account
for shared cognates in distant branches. By keeping the inferred size of the ancestral lexicon
within the bounds of the observed distribution, this avoids pushing the date of proto-forms fur-
ther back than they need to be.

Ringe, Warnow, and Taylor (2002) take a different kind of perspective to the problem of
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phylogenetic inference from the Bayesian inference approach. ey develop an algorithm to test
the perfect phylogeny problem, that is, whether a tree can be found which perfectly reconciles
a set of phonological, morphological and lexical characters. In a series of tests on data from
the Indo-European language family, they show that a perfect phylogeny is not possible. While
most characters were compatible with a single evolutionary tree, there were inconsistencies
localised particularly in the Germanic languages, presumably reflecting borrowing. Extensions
of this method, reported in Nakhleh, Ringe, and Warnow (2005); Warnow et al. (2006), adapt the
perfect phylogenies method to search instead for perfect phylogenetic networks. e perfect
phylogenetic network infers a tree with a certain number of contact/reticulate branches which
allow horizontal transfer events. emethod seeks to maximise the amount of treelike character
transmission (as per the previous perfect phylogenetic tree approach), and minimise the contact
edges and transfer events.

In a complete departure from tree and network models, the STRUCTUREmethod (Pritchard,
Stephens, and Donnelly 2000; Rosenberg et al. 2002) infers ancestral population structure by
modelling evolutionary admixture. is method has been used by Reesink, Singer, and Dunn
(2009) to investigate language dispersal and contact in the Sahul region, and explore the possible
traces of ancient Australian-Papuan connections.

5 Testing hypotheses about language ange

antitative phylogenetic approaches to language change should not be treated solely as an
alternative to traditional methods in historical linguistics. As a tool for inferring language phy-
logeny, quantitative methods are inseparable from the Comparative Method. ey are method-
ologically inseparable, because they rely on the same fundamental notions such as “cognacy”,
but also conceptually inseparable, because the Comparative Method provides a kind of gold
standard for evaluating new phylogenetic results. But from another perspective, quantitative
phylogenetic methods have much broader ambitions: that they are the first step for incorporat-
ing statistically framed models of historical relatedness into tests of hypotheses about evolved
phenomena. In a rather unfortunate collision of terminology, these methods are called “com-
parative methods” in evolutionary biology (less oen “e Comparative Method”, but see Har-
vey and Pagel 1991). Phylogenetic comparative methods use phylogenetic trees to model other
evolved aspects of language. is can involve inference of ancestral states, tests of dispersal or-
der of languages, rates of change and evolutionary regime, coevolution of aspects of language,
or of language and culture (Mace and Pagel 1994; XREF:Greenhill).

5.1 Dating and Phylogeography

e techniques for dating phylogenetic trees are closely integrated into Bayesian phylogenetic
inference, as implemented by the BEAST package, although it is possible to log trees calibrated
by substitution rates only. It is only a small conceptual step from substitution rates to chrono-
logical rates: if some tree-internal chronological calibration points are known (such as ancient
inscriptions recording the arrival of a new ethnolinguistic group, or archaeological evidence
dating the first arrival on an island), normalizing factors can be calculated for each branch ac-
cording to what is required to morph the uncalibrated tree so as to match the calibration points.

16



e dates of internal nodes are specified as a probability distribution, and different types of
distribution can express different kinds of prior knowledge. A lognormal prior can express a
situation where we know that node N₁ must be dated before time T₁, but unlikely to be a long
time before; a normal prior expresses knowledge that node N₂ must be around time T₂ with a
certain standard deviation; a uniform prior expresses that node N₃ must be some time between
T₃ and T₄. During the MCMC parameter search it is possible to log the inferred dates for the
root and any other unobserved internal nodes of interest.

Other kinds of historical prior are also possible. In the phylogeographic approach a model
of spatial diffusion is incorporated into the model, along with spatial priors (Walker and Ribeiro
2011; Bouckaert et al. 2012).is allows probabilistic inference of the spatial location of particular
nodes in the past. As the spatial inference is incorporated into the likelihood calculation, this
represents a principled violation of the principle of “Only Linguistic Evidence” (Campbell 1998:
323).

5.2 Character evolution

One of the principal uses of phylogenetic comparative methods is to model the evolution of char-
acters along trees. e tree is generated independently to this analysis; in effect, the Bayesian
tree sample is a phylogenetic prior in the analysis of the evolutionary behaviour of another
character. Phylogenetic comparative methods can be used to infer ancestral states of a feature
which is known to evolve along with the family. ere are three requirements: (i) a genealogical
hypothesis, (ii) a model of transitions between states of a feature (e.g. probabilities for transition
from ‘presence’ to ‘absence’, and from ‘absence’ to ‘presence’), and (iii) a set of observations of
feature states from the tips of the tree. From these the method allows us to infer the most likely
parameters of themodel, and thus tomake probabilistic judgements about the state of the feature
at unobserved nodes of the tree. is is a standard technique used in computational phyloge-
netics, and has been applied in cultural evolutionary studies of kinship and residence systems in
Austronesian (Jordan et al. 2009; Jordan 2011) and Indo-European societies (Fortunato, Holden,
and Mace 2006; Fortunato 2011a, 2011b, 2011c), as well as to infer ancestral subsistence mode in
Bantu-speaking societies (Mace and Holden 2005). Ancestral state reconstruction methods have
barely begun to be exploited for purely linguistic questions.

Phylogenetic comparative methods can also be used to test for evolutionary dependencies;
i.e. whether changes in one trait on a tree regularly correspond to changes in another trait.
is technique (currently available as the DISCRETE test in the BayesTraits package) has been
used to test evolutionary hypotheses in anthropology and linguistics. Holden and Mace (1997;
2003) use the method to show how the cultural innovation of pastoralism led to the evolution
of lactose tolerance and patrilineal descent in Bantu societies (see also Mace and Holden 2005).
Dunn, Greenhill, et al. (2011) use the samemethods to test some of Dryer’s generalizations about
the Greenbergian word order universals.

5.3 Evolutionary ordering and evolutionary mode

I date the start of the modern phylogenetic era in linguistics to Gray and Jordan (2000), whose
clever treatment of dispersal order as an ordered set of multistate features allowed them to
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use a parsimony analysis to test the Taiwanese Origin hypothesis for Austronesian. Later,
Bayesian analyses addressing the same question have improved upon these beginnings statis-
tically, but have not produced a substantially different result (Gray, Drummond, and Greenhill
2009). Holden (2002) addresses a similar question for Bantu-speaking cultures, but in terms of
subsistence rather than spatial location.

e best known study is Atkinson et al. (2008), which tested whether the Austronesian lan-
guages showed punctuated evolution, or jumps in the rate of change correlating with nodes on
the tree. Punctuated evolution can be measured with Pagel’s κ, one of Pagel’s three comparative
method statistics (Pagel 1997, 1999). Pagel’s λ, alongwith Blomberg’s K, tests for phylogenetic sig-
nal: the extent to which a trait (e.g. a feature of language) follows a paern which is determined
by phylogeny (Pagel 1997, 1999; Blomberg, Garland, and Ives 2003). Pagel’s other phylogenetic
comparative method test, Pagel’s δ, which tests whether rates of change increase or decrease
over time, does not have any obvious application to any linguistic questions.

6 Conclusion

Recent advances in quantitative approaches to language history have put diachronic approaches
at the forefront of modern linguistics. e power of computational phylogenetics and network
analyses to perform explicit testing of evolutionary scenarios is only beginning to be explored.

7 Tenical advice

MrBayes (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) is a good, general-
purpose Bayesian Phylogenetic Inference package, and is well-documented and reasonably easy
to use. BEAST (Drummond et al. 2012) is more complex, but is also closer to the forefront of
methodological development in phylogenetics, and the developers are active participants in lan-
guage evolution projects. e Stochastic Dollo model in BEAST was implemented specifically
for modelling the evolution of language. One of the difficulties in using BEAST is that it doesn’t
offer any default seing: the developers do not want to encourage researchers to use soware
without making informed decisions about priors. is uncompromising aitude is offset, how-
ever, by the friendly and helpful user community.

e phylogenetic packages provided for the R statistical programming language are highly
flexible and the number of different packages is growing rapidly. e Phylogenetics Task View
on CRAN (http://cran.r-project.org/web/views/Phylogenetics.html) is a continuously
updated list of the different methods available.

8 Outstanding problems

Phylogenetic linguistics is an area undergoing rapid development, and we can look forward to
improvements and further developments to many of the ideas described above. With respect to
phylogenetic inference proper, we can expect to see more work on computational replication
of the Comparative Method (detecting sound changes, inferring cognates and sound changes
simultaneously). At the time of writing Bouchard-Côté et al. (2013) doesn’t yet offer a usable
methodology for non-developers to apply their techniques, but we can expect that this approach
will gain in power and credibility. Borrowing and reticulation in trees has been addressed
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(Nakhleh, Ringe, and Warnow 2005; Shijulal et al. 2011), but these methods are not currently
mature enough to be used more widely: no standard soware incorporates these methods, and
they are not yet being used outside the teams that developed them.

Once phylogenetic network methods become more widely usable, then we can hope that it
will become possible to begin using networks in phylogenetic comparative method hypothesis
testing. Phylogenetic comparative methods are also developing rapidly at the moment, and the
possibilities for using them to examine new linguistic questions in tree-like phylogenies are
certainly not exhausted either.

Finally, we can always use beer databases. is should include more, higher quality lan-
guage data, as well as linguistic databases linked to databases from the cultural, geographi-
cal, ecological, historical, and biological domains. e Austronesian Basic Vocubulary Database
(http://language.psy.auckland.ac.nz/austronesian/) and the Indo-European Lexical Cog-
nate database (http://ielex.mpi.nl/) stand out here as large, accessible databases undergoing
active development.

9 Further reading

• Gray, Greenhill, and Ross (2007) is a short survey of phylogenetic comparative methods
and how they can shed light on linguistic questions.

• Nunn (2011) presents an accessible, book-length survey of phylogenetic comparativemeth-
ods.

• Nichols and Warnow (2008) survey some of the quantitative methods used to infer lin-
guistic phylogenies and test their performance against some sample language data.

• Lemey, Salemi, and Vandamme (2009) is a collected volume, with chapters treating all the
major themes in phylogenetic inference.

• Paradis (2012) is a useful manual to help researchers implement their own phylognetic
analyses using the R statistical programming environment.

10 Related topics

• Greenhill’s chapter on the Demographic correlates of language change also discusses the
problem of phylogenetic non-independence of observations of cultural and linguistic di-
versity.

• Chapters by Heggarty (Prehistory through language and archaeology) and Pakendorf (His-
torical linguistics and molecular anthropology) are concerned with linking historical lin-
guistics to events and individuals existing in the past, through quantitative and statistical
methods.
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