supplementary materials


su2459 scheme

Acta Cryst. (2012). E68, o2242-o2243    [ doi:10.1107/S160053681202870X ]

4,6-Dichloro-2-[(E)-(2-{[(E)-3,5-dichloro-2-oxidobenzylidene]azaniumyl}ethyl)iminiumylmethyl]phenolate

R. Kia, H. Kargar, A. Adabi Ardakani and M. N. Tahir

Abstract top

The asymmetric unit of the title compound, C16H12Cl4N2O2, comprises half of a potentially tetradentate Schiff base ligand, located about a twofold rotation axis which bisects the central C-C bond of the ethane-1,2-diamine group. In the solid state, the compound exists in the zwitterionic form. There are two intramolecular N-H...O hydrogen bonds making S(6) ring motifs. In the crystal, molecules are linked by C-H...O hydrogen bonds, forming two-dimensional frameworks which lie parallel to (100). There are also short Cl...Cl [3.4395 (9) Å] contacts present.

Comment top

In continuation of our work on the crystal structure of Schiff base ligands (Kargar et al., (2011); Kia et al., (2010), we report herein on the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand that exists in the keto-amine tautomeric form. The molecule is located about a two-fold rotation axis which bisects the central C8-C8a bond of the ethane-1,2-diamine group. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular N—H···O hydrogen bonds make S(6) ring motifs (Table 1; Bernstein et al., 1995).

In the crystal, molecules are linked by C—H···O hydrogen bonds along the b and c axes directions, forming two dimensional networks which lie parallel to the bc plane [Table 1 and Fig. 2]. There are also short Cl···Clii [3.4384 (10)Å; symmetry code: (ii) -x, y, 1/2 - z] contacts present, which are shorter than the sum of the van der waals radius of Cl atoms (Bondi, 1964; Fig. 3).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964). For related Schiff base ligands, see: Kargar et al. (2011); Kia et al. (2010).

Experimental top

The title compound was synthesized by adding 3,5-dichlorosalicylaldehyde (2 mmol) to a solution of ethylenediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Yellow single crystals of the title compound, suitable for X-ray structure determination, were obtained by recrystallization from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The N-bound H atom was located in a difference Fourier map. It was constrained to ride on the parent N-atom with Uiso(H) = 1.2 Ueq(N). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.97 Å for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A = -x + 1/2, -y + 3/2, -z + 2].
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the c-axis, showing hoe the molecules are linked via C—H···O interactions (dashed lines), so forming two dimensional networks (see Table 1 for details).
[Figure 3] Fig. 3. The crystal packing diagram of the title compound viewed down the b-axis, showing the short intermolecular Cl···Cl contacts (dashed lines). All H atoms have been omitted for clarity.
4,6-Dichloro-2-[(E)-(2-{[(E)-3,5-dichloro-2- oxidobenzylidene]azaniumyl}ethyl)iminiumylmethyl]phenolate top
Crystal data top
C16H12Cl4N2O2F(000) = 824
Mr = 406.08Dx = 1.614 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 936 reflections
a = 20.0505 (14) Åθ = 2.5–27.5°
b = 10.1460 (9) ŵ = 0.72 mm1
c = 9.0579 (6) ÅT = 291 K
β = 114.955 (4)°Block, yellow
V = 1670.6 (2) Å30.21 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1838 independent reflections
Radiation source: fine-focus sealed tube1146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2525
Tmin = 0.864, Tmax = 0.932k = 712
6453 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
1838 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H12Cl4N2O2V = 1670.6 (2) Å3
Mr = 406.08Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.0505 (14) ŵ = 0.72 mm1
b = 10.1460 (9) ÅT = 291 K
c = 9.0579 (6) Å0.21 × 0.14 × 0.10 mm
β = 114.955 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1838 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1146 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.932Rint = 0.040
6453 measured reflectionsθmax = 27.1°
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.24 e Å3
S = 0.97Δρmin = 0.28 e Å3
1838 reflectionsAbsolute structure: ?
109 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15792 (12)0.3326 (2)0.9612 (3)0.0382 (6)
C20.13797 (12)0.1976 (3)0.9247 (3)0.0402 (6)
C30.09283 (12)0.1562 (3)0.7713 (3)0.0451 (6)
H30.08140.06720.75110.054*
C40.06374 (12)0.2481 (3)0.6446 (3)0.0456 (7)
C50.07928 (12)0.3784 (3)0.6728 (3)0.0444 (6)
H50.05910.43840.58770.053*
C60.12553 (12)0.4231 (2)0.8292 (3)0.0376 (6)
C70.14430 (12)0.5599 (3)0.8529 (3)0.0413 (6)
H70.12170.61750.76610.050*
Cl10.17398 (4)0.08447 (7)1.08141 (8)0.0568 (2)
Cl20.00981 (4)0.19341 (9)0.44794 (8)0.0718 (3)
N10.19105 (10)0.6061 (2)0.9888 (2)0.0432 (5)
H10.21000.53761.07120.052*
C80.21355 (13)0.7436 (3)1.0075 (3)0.0479 (6)
H8A0.21930.77561.11300.057*
H8B0.17610.79630.92420.057*
O10.20257 (9)0.37045 (17)1.10541 (17)0.0482 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (12)0.0382 (16)0.0418 (14)0.0014 (11)0.0203 (11)0.0028 (12)
C20.0407 (12)0.0379 (16)0.0450 (13)0.0008 (11)0.0210 (11)0.0003 (12)
C30.0474 (14)0.0370 (16)0.0545 (16)0.0089 (12)0.0250 (13)0.0078 (13)
C40.0430 (14)0.0510 (19)0.0432 (15)0.0101 (12)0.0185 (12)0.0109 (13)
C50.0411 (13)0.0533 (19)0.0395 (13)0.0013 (12)0.0176 (11)0.0036 (13)
C60.0385 (12)0.0374 (16)0.0408 (13)0.0017 (11)0.0206 (11)0.0008 (12)
C70.0443 (14)0.0415 (17)0.0424 (13)0.0029 (11)0.0224 (12)0.0030 (12)
Cl10.0654 (4)0.0412 (4)0.0622 (4)0.0037 (3)0.0253 (4)0.0099 (3)
Cl20.0669 (5)0.0858 (7)0.0498 (4)0.0168 (4)0.0119 (4)0.0205 (4)
N10.0539 (12)0.0323 (14)0.0452 (12)0.0036 (10)0.0227 (10)0.0003 (10)
C80.0610 (15)0.0300 (16)0.0576 (16)0.0066 (12)0.0298 (14)0.0038 (12)
O10.0571 (10)0.0443 (12)0.0361 (9)0.0042 (9)0.0128 (8)0.0005 (8)
Geometric parameters (Å, º) top
C1—O11.292 (2)C5—H50.9300
C1—C21.426 (3)C6—C71.430 (3)
C1—C61.429 (3)C7—N11.281 (3)
C2—C31.366 (3)C7—H70.9300
C2—Cl11.729 (2)N1—C81.453 (3)
C3—C41.401 (3)N1—H10.9724
C3—H30.9300C8—C8i1.529 (5)
C4—C51.358 (4)C8—H8A0.9700
C4—Cl21.740 (2)C8—H8B0.9700
C5—C61.401 (3)
O1—C1—C2121.8 (2)C5—C6—C1120.7 (2)
O1—C1—C6122.1 (2)C5—C6—C7119.1 (2)
C2—C1—C6116.1 (2)C1—C6—C7120.0 (2)
C3—C2—C1122.2 (2)N1—C7—C6122.7 (2)
C3—C2—Cl1119.9 (2)N1—C7—H7118.7
C1—C2—Cl1117.91 (18)C6—C7—H7118.7
C2—C3—C4119.8 (2)C7—N1—C8121.9 (2)
C2—C3—H3120.1C7—N1—H1111.5
C4—C3—H3120.1C8—N1—H1126.5
C5—C4—C3120.8 (2)N1—C8—C8i109.5 (3)
C5—C4—Cl2119.8 (2)N1—C8—H8A109.8
C3—C4—Cl2119.4 (2)C8i—C8—H8A109.8
C4—C5—C6120.5 (2)N1—C8—H8B109.8
C4—C5—H5119.8C8i—C8—H8B109.8
C6—C5—H5119.8H8A—C8—H8B108.2
O1—C1—C2—C3177.7 (2)C4—C5—C6—C10.8 (3)
C6—C1—C2—C32.4 (3)C4—C5—C6—C7176.3 (2)
O1—C1—C2—Cl11.4 (3)O1—C1—C6—C5177.77 (19)
C6—C1—C2—Cl1178.53 (15)C2—C1—C6—C52.3 (3)
C1—C2—C3—C41.0 (3)O1—C1—C6—C72.3 (3)
Cl1—C2—C3—C4180.00 (17)C2—C1—C6—C7177.81 (19)
C2—C3—C4—C50.7 (3)C5—C6—C7—N1173.9 (2)
C2—C3—C4—Cl2177.00 (17)C1—C6—C7—N11.6 (3)
C3—C4—C5—C60.8 (3)C6—C7—N1—C8175.4 (2)
Cl2—C4—C5—C6176.92 (17)C7—N1—C8—C8i97.9 (3)
Symmetry code: (i) x+1/2, y+3/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.971.742.585 (3)143
C8—H8A···O1ii0.972.553.436 (3)152
Symmetry code: (ii) x+1/2, y+1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.971.742.585 (3)143
C8—H8A···O1i0.972.553.436 (3)152
Symmetry code: (i) x+1/2, y+1/2, z+5/2.
Acknowledgements top

HK and AAA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bondi, A. (1964). J. Phys. Chem. 68, 441–452.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.

Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.