supplementary materials


lh5494 scheme

Acta Cryst. (2012). E68, m999-m1000    [ doi:10.1107/S1600536812028462 ]

catena-Poly[{[mu]3-4,4',6,6'-tetrachloro-2,2'-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato}{[mu]2-4,4',6,6'-tetrachloro-2,2'-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato}dicopper(II)]

R. Kia, H. Kargar, A. Adabi Ardakani and M. N. Tahir

Abstract top

The asymmetric unit of the title compound, [Cu2(C18H14Cl4N2O2)2]n, contains two independent CuII ions which are bridged by a pair of 4,4',6,6'-tetrachloro-2,2'-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolate ligands, forming a dinuclear unit. One of the CuII ions is coordinated in a distorted square-planar environment and the other is coordinated in a distorted square-pyramidal environment. The long apical Cu-O bond of the square-pyramidal coordinated CuII ion is formed by a symmetry-related O atom, creating a one-dimensional polymer along [010]. In addition, short intermolecular Cl...Cl distances [3.444 (2) Å] and weak [pi]-[pi] interactions [centroid-centroid distances = 3.736 (2)-3.875 (3) Å] are observed. The crystal studied was an inversion twin with a refined twin component ratio of 0.60 (1):0.40 (1).

Comment top

The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).

The asymmetric unit of the title complex is shown in Fig. 1. The bond lengths and angles are comparable to those in related structures (Kargar & Kia, 2011a,b). The long apical Cu—O bond is shorter than the sum of the van der Waals (vdW) radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964] and is formed by a symmetry related O atom creating a one-dimenional polymer along [010] (Fig. 2). In the crystal there are intermolecular Cl4···Cl6(1/2 - x, y, -1/2 + z) [3.444 (2)Å] distances which are shorter than the sum of the van der Waals radii for Cl [3.50Å] atoms (Bondi, 1964; Fig. 3). In addition, intermolecular ππ interactions [Cg1···Cg2i = 3.736 (2)Å, (i) x, -1+y, z; Cg3···Cg4ii = 3.875 (3) Å, (ii) x, 1+y, z; Cg1,Cg2, Cg3 and Cg4 are the centroids of the (C1–C6), (C6–C8), (C13–C18) and (C31–C36) rings respectively].

Related literature top

For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006). For bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000). For related structures, see: Kargar & Kia (2011a,b).

Experimental top

The title complex was synthesized by an methanolic solution (50 ml) of bis(3,5-chlorosalicylaldeyde)-1,4-butanediimine (2 mmol) and CuCl2.4H2O (2 mmol). After stirring at reflux conditions for 2 h, the solution was filtered and the resulting dark-red powder was crystallized from DMF, giving single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and constrained to refine with the parents atoms using the riding-model approximation, with C—H = 0.93 - 0.97Å and Uiso(H) = 1.2 Ueq(C). The crystal used was an inversion twin with refined twin components ratio of 0.60 (1)/0.40 (1).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex, showing 40% probability displacement ellipsoids [H-atoms have been omitted for clarity].
[Figure 2] Fig. 2. Part of the crystal structure, viewed along the c-axis, showing the one-dimensional coordination chain propagating along the b-axis [H-atoms have been omitted for clarity].
[Figure 3] Fig. 3. Part of the crystal structure, viewed along the b-axis, showing zig-zag linking of molecules through intermolecular Cl···Cl interactions along the c-axis [only the Cl atoms involved in the interactions are shown and H-atoms omitted for clarity].
catena-Poly[{µ3-4,4',6,6'-tetrachloro-2,2'-[butane-1,4- diylbis(nitrilomethanylylidene)]diphenolato}{µ2-4,4',6,6'-tetrachloro- 2,2'-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato}dicopper(II)] top
Crystal data top
[Cu2(C18H14Cl4N2O2)2]Z = 4
Mr = 990.30F(000) = 1988
Orthorhombic, Pca21Dx = 1.697 Mg m3
Hall symbol: P 2c -2acMo Kα radiation, λ = 0.71073 Å
a = 26.6927 (16) ŵ = 1.70 mm1
b = 7.7775 (4) ÅT = 291 K
c = 18.6689 (9) ÅNeedle, dark-red
V = 3875.7 (4) Å30.36 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8990 independent reflections
Radiation source: fine-focus sealed tube6793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 27.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3534
Tmin = 0.581, Tmax = 0.773k = 1010
18623 measured reflectionsl = 2423
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
8990 reflectionsΔρmax = 0.43 e Å3
488 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 4247 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.605 (10)
Crystal data top
[Cu2(C18H14Cl4N2O2)2]V = 3875.7 (4) Å3
Mr = 990.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 26.6927 (16) ŵ = 1.70 mm1
b = 7.7775 (4) ÅT = 291 K
c = 18.6689 (9) Å0.36 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8990 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6793 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.773Rint = 0.034
18623 measured reflectionsθmax = 27.9°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.43 e Å3
S = 0.99Δρmin = 0.35 e Å3
8990 reflectionsAbsolute structure: Flack (1983), 4247 Friedel pairs
488 parametersFlack parameter: 0.605 (10)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.337328 (15)0.58203 (6)0.49568 (2)0.03303 (11)
Cu20.372623 (16)1.16823 (6)0.50686 (2)0.03338 (11)
Cl10.16981 (4)0.56157 (19)0.41600 (6)0.0637 (4)
Cl20.10357 (4)0.81832 (18)0.66592 (6)0.0630 (3)
Cl30.62687 (5)0.9809 (2)0.39111 (8)0.0819 (5)
Cl40.44901 (4)1.14708 (19)0.27711 (5)0.0632 (4)
Cl50.30179 (5)1.27744 (18)0.73675 (6)0.0610 (3)
Cl60.11528 (5)1.28198 (19)0.62737 (8)0.0720 (4)
Cl70.57210 (5)0.5842 (2)0.30261 (8)0.0873 (5)
Cl80.50484 (4)0.49330 (18)0.57186 (6)0.0551 (3)
O10.26712 (9)0.5760 (4)0.48373 (13)0.0397 (7)
O20.41409 (10)1.1451 (4)0.42485 (13)0.0409 (7)
O30.33216 (9)1.2300 (4)0.58740 (14)0.0403 (7)
O40.40552 (9)0.5174 (3)0.50582 (15)0.0408 (6)
N10.33065 (11)0.6318 (4)0.60038 (16)0.0339 (8)
N20.42848 (12)1.1052 (4)0.57284 (16)0.0334 (7)
N30.31196 (12)1.1706 (4)0.44287 (17)0.0357 (8)
N40.34356 (12)0.6048 (4)0.38931 (17)0.0338 (8)
C10.23262 (14)0.6340 (5)0.5258 (2)0.0345 (9)
C20.18203 (13)0.6377 (5)0.5021 (2)0.0386 (8)
C30.14355 (15)0.6947 (6)0.5433 (2)0.0435 (10)
H30.11110.69630.52530.052*
C40.15322 (15)0.7505 (6)0.6124 (2)0.0411 (10)
C50.20089 (14)0.7489 (5)0.6389 (2)0.0389 (9)
H50.20700.78730.68530.047*
C60.24090 (14)0.6895 (5)0.5963 (2)0.0326 (8)
C70.28933 (14)0.6746 (5)0.6297 (2)0.0370 (9)
H70.29060.69900.67850.044*
C80.37456 (14)0.6148 (6)0.6481 (2)0.0368 (10)
H8A0.39280.51110.63570.044*
H8B0.36320.60360.69720.044*
C90.40930 (13)0.7679 (5)0.6423 (2)0.0364 (9)
H9A0.43880.74610.67130.044*
H9B0.42020.77880.59300.044*
C100.38622 (14)0.9362 (5)0.6657 (2)0.0368 (9)
H10A0.37950.93130.71670.044*
H10B0.35440.95110.64130.044*
C110.41906 (15)1.0905 (5)0.65037 (19)0.0371 (9)
H11A0.40271.19400.66750.045*
H11B0.45061.07850.67560.045*
C120.47348 (15)1.0699 (6)0.5522 (2)0.0369 (10)
H120.49641.04280.58800.044*
C130.49213 (14)1.0681 (5)0.47969 (19)0.0357 (9)
C140.54318 (16)1.0277 (6)0.4704 (2)0.0485 (12)
H140.56291.00010.50990.058*
C150.56376 (17)1.0291 (6)0.4032 (2)0.0527 (12)
C160.53470 (17)1.0663 (6)0.3442 (2)0.0484 (11)
H160.54901.06600.29880.058*
C170.48514 (15)1.1036 (6)0.3521 (2)0.0406 (10)
C180.46083 (16)1.1077 (5)0.4208 (2)0.0377 (10)
C190.28383 (14)1.2284 (5)0.5951 (2)0.0339 (9)
C200.26211 (15)1.2550 (6)0.6637 (2)0.0410 (10)
C210.21145 (17)1.2690 (6)0.6737 (2)0.0476 (11)
H210.19861.28890.71930.057*
C220.17914 (16)1.2535 (6)0.6154 (2)0.0472 (11)
C230.19810 (15)1.2208 (6)0.5491 (2)0.0445 (11)
H230.17641.20780.51050.053*
C240.24970 (15)1.2066 (5)0.5385 (2)0.0381 (10)
C250.26634 (15)1.1856 (5)0.4653 (2)0.0378 (10)
H250.24151.18260.43040.045*
C260.31740 (15)1.1496 (5)0.36388 (19)0.0365 (9)
H26A0.34461.22170.34710.044*
H26B0.28691.18790.34060.044*
C270.32770 (15)0.9657 (5)0.3430 (2)0.0374 (10)
H27A0.35760.92760.36790.045*
H27B0.33480.96230.29200.045*
C280.28539 (14)0.8383 (5)0.3588 (2)0.0396 (10)
H28A0.27540.85070.40850.048*
H28B0.25670.86690.32930.048*
C290.29957 (15)0.6540 (5)0.3455 (2)0.0371 (10)
H290.28300.58090.31400.045*
C300.38488 (16)0.5911 (6)0.3557 (2)0.0408 (10)
H300.38310.59740.30600.049*
C310.43377 (14)0.5672 (6)0.3857 (2)0.0397 (10)
C320.47492 (17)0.5804 (6)0.3381 (2)0.0497 (11)
H320.46930.59750.28950.060*
C330.52243 (17)0.5682 (6)0.3633 (3)0.0536 (12)
C340.53194 (16)0.5446 (6)0.4350 (2)0.0489 (11)
H340.56480.53990.45160.059*
C350.49241 (14)0.5279 (5)0.4820 (2)0.0403 (10)
C360.44190 (14)0.5369 (5)0.4595 (2)0.0365 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0270 (2)0.0393 (2)0.0328 (2)0.0001 (2)0.0010 (2)0.0004 (2)
Cu20.0324 (2)0.0408 (3)0.0269 (2)0.0028 (2)0.0005 (2)0.0008 (2)
Cl10.0383 (6)0.1084 (11)0.0443 (6)0.0003 (7)0.0076 (5)0.0216 (7)
Cl20.0434 (6)0.0912 (10)0.0544 (7)0.0174 (6)0.0098 (5)0.0116 (7)
Cl30.0438 (7)0.1340 (15)0.0678 (8)0.0229 (8)0.0065 (6)0.0041 (9)
Cl40.0514 (7)0.1088 (11)0.0296 (5)0.0003 (7)0.0031 (5)0.0046 (6)
Cl50.0560 (7)0.0944 (10)0.0324 (5)0.0004 (7)0.0039 (5)0.0003 (6)
Cl60.0393 (6)0.0929 (10)0.0837 (9)0.0038 (7)0.0194 (6)0.0158 (8)
Cl70.0457 (7)0.1407 (15)0.0755 (9)0.0138 (8)0.0286 (7)0.0277 (9)
Cl80.0365 (6)0.0757 (9)0.0529 (6)0.0033 (6)0.0062 (5)0.0012 (6)
O10.0267 (13)0.0592 (18)0.0333 (14)0.0012 (13)0.0027 (11)0.0040 (13)
O20.0325 (15)0.061 (2)0.0297 (14)0.0029 (14)0.0006 (11)0.0028 (13)
O30.0297 (15)0.0592 (19)0.0321 (14)0.0018 (13)0.0018 (12)0.0064 (14)
O40.0253 (13)0.0590 (16)0.0382 (14)0.0055 (12)0.0033 (13)0.0037 (16)
N10.0323 (18)0.036 (2)0.0333 (17)0.0036 (15)0.0036 (14)0.0023 (15)
N20.0380 (19)0.037 (2)0.0248 (15)0.0019 (16)0.0042 (14)0.0008 (14)
N30.0372 (19)0.039 (2)0.0306 (16)0.0060 (16)0.0023 (15)0.0020 (15)
N40.0338 (18)0.0336 (19)0.0340 (17)0.0033 (16)0.0009 (14)0.0018 (15)
C10.032 (2)0.034 (2)0.038 (2)0.0024 (17)0.0021 (16)0.0034 (17)
C20.0291 (17)0.052 (2)0.0345 (19)0.0034 (16)0.0023 (19)0.003 (2)
C30.029 (2)0.057 (3)0.045 (2)0.000 (2)0.0037 (18)0.000 (2)
C40.035 (2)0.051 (3)0.037 (2)0.003 (2)0.0070 (18)0.002 (2)
C50.037 (2)0.048 (2)0.0319 (19)0.003 (2)0.0021 (18)0.0021 (19)
C60.0289 (19)0.035 (2)0.0341 (19)0.0013 (17)0.0013 (16)0.0026 (18)
C70.035 (2)0.048 (3)0.0278 (19)0.003 (2)0.0014 (17)0.0032 (19)
C80.032 (2)0.045 (3)0.033 (2)0.0002 (19)0.0099 (17)0.0078 (19)
C90.0267 (19)0.044 (2)0.038 (2)0.0003 (19)0.0029 (16)0.0020 (19)
C100.035 (2)0.048 (2)0.0269 (18)0.0002 (19)0.0026 (16)0.0021 (18)
C110.036 (2)0.048 (3)0.0275 (19)0.004 (2)0.0003 (16)0.0010 (18)
C120.032 (2)0.048 (3)0.0303 (19)0.0076 (19)0.0091 (17)0.0041 (19)
C130.035 (2)0.036 (2)0.036 (2)0.0020 (18)0.0018 (16)0.0000 (18)
C140.037 (2)0.064 (3)0.045 (2)0.004 (2)0.0009 (19)0.003 (2)
C150.039 (2)0.070 (3)0.049 (3)0.010 (2)0.004 (2)0.006 (2)
C160.043 (3)0.065 (3)0.036 (2)0.002 (2)0.0077 (19)0.006 (2)
C170.040 (2)0.053 (3)0.0287 (19)0.003 (2)0.0015 (17)0.0042 (19)
C180.041 (2)0.039 (3)0.033 (2)0.005 (2)0.0012 (18)0.0049 (18)
C190.037 (2)0.030 (2)0.035 (2)0.0015 (18)0.0003 (17)0.0061 (17)
C200.040 (2)0.049 (3)0.035 (2)0.001 (2)0.0070 (18)0.003 (2)
C210.049 (3)0.052 (3)0.041 (2)0.000 (2)0.014 (2)0.006 (2)
C220.035 (2)0.048 (3)0.059 (3)0.001 (2)0.016 (2)0.014 (2)
C230.036 (2)0.050 (3)0.047 (2)0.002 (2)0.001 (2)0.004 (2)
C240.036 (2)0.036 (2)0.042 (2)0.0010 (19)0.0015 (19)0.0034 (19)
C250.034 (2)0.041 (3)0.039 (2)0.002 (2)0.0116 (17)0.0007 (18)
C260.035 (2)0.048 (3)0.0264 (19)0.002 (2)0.0018 (16)0.0009 (18)
C270.038 (2)0.042 (3)0.032 (2)0.0019 (19)0.0000 (16)0.0052 (18)
C280.034 (2)0.046 (3)0.039 (2)0.001 (2)0.0068 (17)0.002 (2)
C290.037 (2)0.043 (2)0.0307 (19)0.001 (2)0.0120 (17)0.0063 (19)
C300.040 (2)0.048 (3)0.034 (2)0.002 (2)0.0044 (18)0.001 (2)
C310.031 (2)0.042 (2)0.046 (2)0.0037 (19)0.0032 (18)0.003 (2)
C320.043 (3)0.062 (3)0.044 (3)0.008 (2)0.006 (2)0.008 (2)
C330.038 (2)0.064 (3)0.058 (3)0.005 (2)0.018 (2)0.012 (3)
C340.032 (2)0.054 (3)0.060 (3)0.003 (2)0.010 (2)0.008 (2)
C350.032 (2)0.040 (2)0.049 (2)0.0047 (18)0.0009 (18)0.007 (2)
C360.028 (2)0.036 (2)0.046 (2)0.0055 (18)0.0040 (17)0.0001 (18)
Geometric parameters (Å, º) top
Cu1—O11.888 (2)C10—C111.513 (5)
Cu1—O41.898 (2)C10—H10A0.9700
Cu1—N42.000 (3)C10—H10B0.9700
Cu1—N12.001 (3)C11—H11A0.9700
Cu2—O21.898 (3)C11—H11B0.9700
Cu2—O31.913 (3)C12—C131.443 (5)
Cu2—N21.995 (3)C12—H120.9300
Cu2—N32.012 (3)C13—C141.409 (5)
Cu2—O4i2.854 (3)C13—C181.415 (5)
Cl1—C21.744 (4)C14—C151.369 (6)
Cl2—C41.741 (4)C14—H140.9300
Cl3—C151.740 (4)C15—C161.378 (6)
Cl4—C171.733 (4)C16—C171.362 (6)
Cl5—C201.735 (4)C16—H160.9300
Cl6—C221.733 (4)C17—C181.437 (5)
Cl7—C331.748 (4)C19—C241.405 (5)
Cl8—C351.730 (4)C19—C201.422 (5)
O1—C11.292 (4)C20—C211.369 (6)
O2—C181.283 (5)C21—C221.395 (6)
O3—C191.298 (4)C21—H210.9300
O4—C361.309 (4)C22—C231.360 (6)
N1—C71.276 (5)C23—C241.396 (5)
N1—C81.478 (5)C23—H230.9300
N2—C121.291 (5)C24—C251.447 (5)
N2—C111.473 (5)C25—H250.9300
N3—C251.293 (5)C26—C271.507 (5)
N3—C261.491 (5)C26—H26A0.9700
N4—C301.273 (5)C26—H26B0.9700
N4—C291.482 (5)C27—C281.532 (5)
C1—C61.403 (5)C27—H27A0.9700
C1—C21.421 (5)C27—H27B0.9700
C2—C31.358 (5)C28—C291.503 (6)
C3—C41.385 (5)C28—H28A0.9700
C3—H30.9300C28—H28B0.9700
C4—C51.365 (5)C29—H290.9300
C5—C61.409 (5)C30—C311.432 (6)
C5—H50.9300C30—H300.9300
C6—C71.440 (5)C31—C361.415 (6)
C7—H70.9300C31—C321.417 (6)
C8—C91.513 (5)C32—C331.356 (6)
C8—H8A0.9700C32—H320.9300
C8—H8B0.9700C33—C341.375 (6)
C9—C101.512 (5)C34—C351.379 (5)
C9—H9A0.9700C34—H340.9300
C9—H9B0.9700C35—C361.414 (5)
O1—Cu1—O4163.19 (11)C14—C13—C12116.8 (3)
O1—Cu1—N488.14 (12)C18—C13—C12121.6 (4)
O4—Cu1—N492.45 (12)C15—C14—C13119.9 (4)
O1—Cu1—N191.82 (11)C15—C14—H14120.0
O4—Cu1—N192.25 (12)C13—C14—H14120.0
N4—Cu1—N1163.77 (13)C14—C15—C16120.5 (4)
O2—Cu2—O3170.89 (13)C14—C15—Cl3120.4 (3)
O2—Cu2—N292.23 (12)C16—C15—Cl3119.1 (3)
O3—Cu2—N289.91 (12)C17—C16—C15120.4 (4)
O2—Cu2—N389.50 (12)C17—C16—H16119.8
O3—Cu2—N390.57 (12)C15—C16—H16119.8
N2—Cu2—N3165.95 (14)C16—C17—C18122.6 (4)
O2—Cu2—O4i84.56 (10)C16—C17—Cl4119.7 (3)
O3—Cu2—O4i86.56 (10)C18—C17—Cl4117.7 (3)
N2—Cu2—O4i90.47 (11)O2—C18—C13125.3 (4)
N3—Cu2—O4i103.57 (11)O2—C18—C17119.8 (4)
C1—O1—Cu1128.9 (2)C13—C18—C17115.0 (4)
C18—O2—Cu2129.5 (2)O3—C19—C24124.2 (4)
C19—O3—Cu2130.2 (2)O3—C19—C20120.2 (4)
C36—O4—Cu1128.0 (3)C24—C19—C20115.5 (4)
C7—N1—C8116.8 (3)C21—C20—C19122.5 (4)
C7—N1—Cu1123.2 (3)C21—C20—Cl5119.2 (3)
C8—N1—Cu1120.0 (3)C19—C20—Cl5118.3 (3)
C12—N2—C11115.8 (3)C20—C21—C22119.8 (4)
C12—N2—Cu2124.3 (3)C20—C21—H21120.1
C11—N2—Cu2119.9 (2)C22—C21—H21120.1
C25—N3—C26115.0 (3)C23—C22—C21119.8 (4)
C25—N3—Cu2124.5 (3)C23—C22—Cl6120.5 (4)
C26—N3—Cu2120.5 (2)C21—C22—Cl6119.7 (3)
C30—N4—C29115.8 (3)C22—C23—C24120.7 (4)
C30—N4—Cu1123.6 (3)C22—C23—H23119.6
C29—N4—Cu1120.3 (2)C24—C23—H23119.6
O1—C1—C6124.5 (3)C23—C24—C19121.6 (4)
O1—C1—C2119.7 (3)C23—C24—C25116.5 (4)
C6—C1—C2115.8 (3)C19—C24—C25121.6 (4)
C3—C2—C1123.3 (4)N3—C25—C24127.3 (4)
C3—C2—Cl1119.5 (3)N3—C25—H25116.4
C1—C2—Cl1117.2 (3)C24—C25—H25116.4
C2—C3—C4119.3 (4)N3—C26—C27112.2 (3)
C2—C3—H3120.4N3—C26—H26A109.2
C4—C3—H3120.4C27—C26—H26A109.2
C5—C4—C3120.5 (4)N3—C26—H26B109.2
C5—C4—Cl2120.3 (3)C27—C26—H26B109.2
C3—C4—Cl2119.2 (3)H26A—C26—H26B107.9
C4—C5—C6120.3 (4)C26—C27—C28115.4 (3)
C4—C5—H5119.8C26—C27—H27A108.4
C6—C5—H5119.8C28—C27—H27A108.4
C1—C6—C5120.7 (4)C26—C27—H27B108.4
C1—C6—C7121.6 (3)C28—C27—H27B108.4
C5—C6—C7117.5 (4)H27A—C27—H27B107.5
N1—C7—C6127.6 (4)C29—C28—C27113.5 (3)
N1—C7—H7116.2C29—C28—H28A108.9
C6—C7—H7116.2C27—C28—H28A108.9
N1—C8—C9111.9 (3)C29—C28—H28B108.9
N1—C8—H8A109.2C27—C28—H28B108.9
C9—C8—H8A109.2H28A—C28—H28B107.7
N1—C8—H8B109.2N4—C29—C28110.7 (3)
C9—C8—H8B109.2N4—C29—H29124.6
H8A—C8—H8B107.9C28—C29—H29124.6
C10—C9—C8114.3 (3)N4—C30—C31127.4 (4)
C10—C9—H9A108.7N4—C30—H30116.3
C8—C9—H9A108.7C31—C30—H30116.3
C10—C9—H9B108.7C36—C31—C32120.3 (4)
C8—C9—H9B108.7C36—C31—C30122.9 (4)
H9A—C9—H9B107.6C32—C31—C30116.9 (4)
C9—C10—C11113.3 (3)C33—C32—C31120.2 (4)
C9—C10—H10A108.9C33—C32—H32119.9
C11—C10—H10A108.9C31—C32—H32119.9
C9—C10—H10B108.9C32—C33—C34121.3 (4)
C11—C10—H10B108.9C32—C33—Cl7118.7 (4)
H10A—C10—H10B107.7C34—C33—Cl7120.0 (4)
N2—C11—C10110.3 (3)C33—C34—C35119.4 (4)
N2—C11—H11A109.6C33—C34—H34120.3
C10—C11—H11A109.6C35—C34—H34120.3
N2—C11—H11B109.6C34—C35—C36122.4 (4)
C10—C11—H11B109.6C34—C35—Cl8119.0 (3)
H11A—C11—H11B108.1C36—C35—Cl8118.6 (3)
N2—C12—C13127.1 (4)O4—C36—C35120.4 (4)
N2—C12—H12116.4O4—C36—C31123.3 (4)
C13—C12—H12116.4C35—C36—C31116.4 (3)
C14—C13—C18121.6 (4)
O4—Cu1—O1—C1120.7 (4)N2—C12—C13—C14179.2 (4)
N4—Cu1—O1—C1146.9 (3)N2—C12—C13—C180.2 (7)
N1—Cu1—O1—C116.8 (3)C18—C13—C14—C151.2 (7)
N2—Cu2—O2—C182.0 (4)C12—C13—C14—C15177.9 (4)
N3—Cu2—O2—C18168.1 (4)C13—C14—C15—C161.3 (8)
N2—Cu2—O3—C19151.8 (3)C13—C14—C15—Cl3179.5 (3)
N3—Cu2—O3—C1914.2 (3)C14—C15—C16—C170.5 (8)
O1—Cu1—O4—C36108.6 (5)Cl3—C15—C16—C17179.7 (4)
N4—Cu1—O4—C3616.9 (3)C15—C16—C17—C180.5 (7)
N1—Cu1—O4—C36147.6 (3)C15—C16—C17—Cl4179.1 (4)
O1—Cu1—N1—C712.0 (3)Cu2—O2—C18—C132.5 (6)
O4—Cu1—N1—C7175.7 (3)Cu2—O2—C18—C17177.6 (3)
N4—Cu1—N1—C777.6 (6)C14—C13—C18—O2179.7 (4)
O1—Cu1—N1—C8166.3 (3)C12—C13—C18—O21.3 (7)
O4—Cu1—N1—C82.6 (3)C14—C13—C18—C170.1 (6)
N4—Cu1—N1—C8104.2 (5)C12—C13—C18—C17178.8 (4)
O2—Cu2—N2—C120.9 (3)C16—C17—C18—O2179.4 (4)
O3—Cu2—N2—C12170.2 (4)Cl4—C17—C18—O21.0 (6)
N3—Cu2—N2—C1297.8 (6)C16—C17—C18—C130.7 (6)
O2—Cu2—N2—C11176.9 (3)Cl4—C17—C18—C13178.9 (3)
O3—Cu2—N2—C1112.0 (3)Cu2—O3—C19—C2411.7 (6)
N3—Cu2—N2—C1180.0 (6)Cu2—O3—C19—C20170.4 (3)
O2—Cu2—N3—C25179.5 (3)O3—C19—C20—C21174.3 (4)
O3—Cu2—N3—C258.6 (3)C24—C19—C20—C213.8 (6)
N2—Cu2—N3—C2583.3 (7)O3—C19—C20—Cl53.5 (5)
O2—Cu2—N3—C262.2 (3)C24—C19—C20—Cl5178.4 (3)
O3—Cu2—N3—C26173.1 (3)C19—C20—C21—C221.3 (7)
N2—Cu2—N3—C2695.0 (6)Cl5—C20—C21—C22179.2 (3)
O1—Cu1—N4—C30169.2 (4)C20—C21—C22—C231.4 (7)
O4—Cu1—N4—C306.0 (4)C20—C21—C22—Cl6176.8 (3)
N1—Cu1—N4—C30100.7 (5)C21—C22—C23—C241.5 (7)
O1—Cu1—N4—C2916.0 (3)Cl6—C22—C23—C24176.7 (3)
O4—Cu1—N4—C29179.2 (3)C22—C23—C24—C191.2 (6)
N1—Cu1—N4—C2974.2 (6)C22—C23—C24—C25175.2 (4)
O4i—Cu2—O2—C1888.2 (4)O3—C19—C24—C23174.4 (4)
O4i—Cu2—O3—C19117.7 (3)C20—C19—C24—C233.7 (6)
O4i—Cu2—N2—C1283.7 (3)O3—C19—C24—C250.7 (7)
O4i—Cu2—N2—C1198.5 (3)C20—C19—C24—C25177.3 (4)
O4i—Cu2—N3—C2595.2 (3)C26—N3—C25—C24179.6 (4)
O4i—Cu2—N3—C2686.5 (3)Cu2—N3—C25—C241.3 (7)
Cu1—O1—C1—C611.3 (5)C23—C24—C25—N3179.7 (4)
Cu1—O1—C1—C2171.3 (3)C19—C24—C25—N35.7 (8)
O1—C1—C2—C3179.2 (4)C25—N3—C26—C27102.5 (4)
C6—C1—C2—C31.6 (6)Cu2—N3—C26—C2775.9 (4)
O1—C1—C2—Cl10.1 (5)N3—C26—C27—C2864.9 (4)
C6—C1—C2—Cl1177.5 (3)C26—C27—C28—C29173.0 (3)
C1—C2—C3—C40.9 (7)C30—N4—C29—C28105.5 (4)
Cl1—C2—C3—C4178.2 (3)Cu1—N4—C29—C2869.7 (4)
C2—C3—C4—C50.3 (7)C27—C28—C29—N458.2 (4)
C2—C3—C4—Cl2178.3 (3)C29—N4—C30—C31171.4 (4)
C3—C4—C5—C60.4 (6)Cu1—N4—C30—C313.6 (7)
Cl2—C4—C5—C6178.2 (3)N4—C30—C31—C367.0 (7)
O1—C1—C6—C5179.2 (4)N4—C30—C31—C32171.1 (4)
C2—C1—C6—C51.7 (5)C36—C31—C32—C331.6 (7)
O1—C1—C6—C74.4 (6)C30—C31—C32—C33176.5 (4)
C2—C1—C6—C7173.0 (3)C31—C32—C33—C340.6 (7)
C4—C5—C6—C11.2 (6)C31—C32—C33—Cl7179.7 (4)
C4—C5—C6—C7173.8 (4)C32—C33—C34—C351.9 (7)
C8—N1—C7—C6175.9 (4)Cl7—C33—C34—C35178.4 (4)
Cu1—N1—C7—C62.4 (6)C33—C34—C35—C361.0 (7)
C1—C6—C7—N18.7 (7)C33—C34—C35—Cl8178.5 (4)
C5—C6—C7—N1176.4 (4)Cu1—O4—C36—C35161.8 (3)
C7—N1—C8—C9103.0 (4)Cu1—O4—C36—C3118.3 (6)
Cu1—N1—C8—C978.6 (4)C34—C35—C36—O4178.8 (4)
N1—C8—C9—C1063.3 (4)Cl8—C35—C36—O40.7 (5)
C8—C9—C10—C11172.3 (3)C34—C35—C36—C311.1 (6)
C12—N2—C11—C10109.1 (4)Cl8—C35—C36—C31179.3 (3)
Cu2—N2—C11—C1068.9 (4)C32—C31—C36—O4177.5 (4)
C9—C10—C11—N260.6 (4)C30—C31—C36—O44.4 (7)
C11—N2—C12—C13177.6 (4)C32—C31—C36—C352.4 (6)
Cu2—N2—C12—C130.3 (6)C30—C31—C36—C35175.6 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O30.972.463.073 (5)121
C27—H27A···O20.972.503.098 (5)120
C28—H28A···O10.972.573.137 (5)118
Acknowledgements top

HK and AAA thank PNU for support of this work. RK thanks the Science and Research Branch, Islamic Azad University.

references
References top

Bondi, A. (1964). J. Phys. Chem. 68, 441–451.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.

Hannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024.

Kargar, H. & Kia, R. (2011a). Acta Cryst. E67, m497–m498.

Kargar, H. & Kia, R. (2011b). Acta Cryst. E67, m499–m500.

Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368.

Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667.

Li, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308–6316.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.