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Abstract

We introduce a hyperbolic equation that describes the motion of closed hyper-
surfaces in a Riemannian manifold with surface tension and inner pressure as
driving forces. In the case of spherical surfaces this equation can be considered
as an idealized mathematical model for a moving soap bubble. The equation is
derived as an Euler-Lagrange equation from a suitable action integral. It is a
quasi-linear degenerate hyperbolic PDE of second order that describes the mo-
tion of the surfaces extrinsically.

Our main results are the solution of the Cauchy problem by means of the
Nash-Moser inverse function theorem, a continuation criterion, and stability es-
timates. © 2012 Wiley Periodicals, Inc.

1 Introduction
Let N be a smooth, closed, oriented manifold of dimension n, and let .MnC1; g/

be a smooth, complete, oriented, n C 1–dimensional Riemannian manifold. We
want to derive an equation of motion for closed hypersurfaces with surface tension
and inner pressure as driving forces. If N is the n-sphere, this equation can be
considered as an idealized model for a moving soap bubble. For a smooth family
of immersions u W Œ0; T � �N!M we define an action integral of the form

A.u/ D

Z T

0

K.u/ � I.u/ � J.u/dt

where K is the kinetic energy and I; J contribute to the potential energy. We choose
I.u/ as the energy of the surface tension, i.e., the surface area

I.u/ D

Z
N

d�t :

Here d�t denotes the induced surface measure of the induced metric g.t/ D
u.t/�g at time t .

The inner pressure is motivated by that of an ideal gas with constant temperature;
i.e., it is proportional to Vol.u/�1 where Vol.u/ is the enclosed volume of the
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surface u.N/. Therefore we define for a parameter % > 0

J.u/ D �% log
�

Vol.u/
Vol0

�
:

The constant % as well as the initial enclosed volume Vol0 are included for scaling
reasons. Of course other functions of the enclosed volume could be considered if
they lead to a lower volume bound as in Corollary 2.2 below.

In order to define the kinetic energy we fix a reference measure d y� on N with a
smooth density function defining a mass distribution on N. We then integrate the
kinetic energies 1

2
j@tuj

2 d y� of all the points of the surface and define

K.u/ D

Z
N

1

2
j@tuj

2 d y�:

This then describes the physical energy of the point particles making up the surface.
Altogether the action integral is

A.u/ D

Z T

0

Z
N

1

2
j@tuj

2 d y�dt �

Z T

0

Z
N

d�t dt C %

Z T

0

log
�

Vol.u/
Vol0

�
dt:

The equation we study in this paper is the Euler-Lagrange equation of A. It is
readily obtained as

(EQ) r@t@tu D
d�t

d y�

�
�H.u/C

%

Vol.u/

�
�

where H.u/ denotes the mean curvature of u.N/ with respect to the outer unit
normal �. By r@t we denote the covariant derivative along u, i.e.,

r@t@tu
˛
D @2t u

˛
C �

˛

ˇ
 .u/@tu
ˇ@tu




with �
˛

ˇ
 being the Christoffel symbols of g. We use the Einstein summation
convention; i.e., we sum over repeated upper and lower indices. By hij we will
denote the second fundamental form.

The structure of this equation (EQ) generates interest from a mathematical point
of view. Although Einstein’s equations have a similar structure they describe the
evolution of the geometry via intrinsic quantities. In contrast to wave maps our
equation is not semilinear, but rather quasi-linear and degenerate.

One of the few mathematically rigorous studies of equations in this category
is the paper of LeFloch and Smozcyk [7]. Some fundamental differences to our
equation are noted in Remark 1.1

The outline of this paper is as follows: In Section 2 we derive conservation laws
and find special solutions of the equation (EQ) such as oscillating and translating
spheres. In Section 3 we define a special kind of linear PDE system that will arise
in the linearization of (EQ). We derive estimates for these systems that will allow
us to solve the Cauchy problem associated to (EQ) in Section 4 by means of the
Nash-Moser inverse function theorem (Theorem 4.1).
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In Section 5 we prove a sufficient condition under which the solution can be
extended to a larger time interval (Theorem 5.1). The condition is that the family
of parametrizations of the surface and its time derivative are bounded in the spatial
C 4-norm.

In the last section, Section 6, we prove that the distance between two solutions
grows at most exponentially fast if they are close to each other initially (Theo-
rem 6.1). This estimate implies the uniqueness of solutions and a lifetime estimate.
A similar stability estimate holds if the metric of the ambient manifold is close to
the euclidean metric (Theorem 6.4).

The results in this paper are contained with more detailed proofs in the author’s
thesis [8].

Remark 1.1. In [7] LeFloch and Smozcyk consider an Euler-Lagrange equation
coming from an action functional including only kinetic energy and surface tension
where they use the induced surface measure to define the kinetic energy. There are
some fundamental differences that are due to this different definition of kinetic en-
ergy. Most importantly, the equation of LeFloch and Smozcyk is only hyperbolic
under certain conditions on the tangential velocity. In contrast to their geometric
definition of kinetic energy, we use the more physical definition where the surface
has a fixed mass density. As a consequence, adding a constant velocity translation
to a solution of our equation yields again a solution (see Section 2.3). They also get
a more general conservation of interior momentum which implies that the velocity
stays orthogonal if it does so initially. They use this to give a short time existence
proof in the case of normal velocity. We remark that this case is a restriction and
completely different behavior can occur if one allows tangential velocity. For ex-
ample, the equation of LeFloch and Smozcyk admits a circle rotating with constant
velocity as a solution and also a circle shrinking without tangential velocity to a
point in finite time.

2 Conservation Laws and Special Solutions
2.1 Energy Conservation

Define the energy

E.u.t; � // D

Z
N

1

2
j@tuj

2 d y�C

Z
N

d�t � % log
�

Vol.u/
Vol0

�
:

Let u W Œ0; T / �N!M solve (EQ) with E0 D E.u.0; � //.

PROPOSITION 2.1. We have E.u.t; � // D E0 for all t 2 Œ0; T /, and it holds that

@t

�
1

2
j@tuj

2
C
d�t

d y�

�
D div.@tuT/

d�t

d y�
C

%

Vol.u/
h@tu; �i

d�t

d y�

where @tuT is the tangential part of @tu.
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The proof is a simple computation and is omitted. From the energy conservation
we immediately get very general bounds.

COROLLARY 2.2.
(1) The enclosed volume is bounded from below by

Vol.u/ � Vol0 e
�

E0
% :

(2) Assume that an isoperimetric inequality holds on M, namely, that there is
a constant ciso > 0 such thatZ

N

d�t � ciso Vol.u/
n
nC1 :

Then there is a constant K depending only on ciso, %, E0, and Vol0 such
that Vol.u/ � K and consequentlyZ

N

1

2
j@tuj

2 d y�C

Z
N

d�t � E0 C % log
�
K

Vol0

�
:

2.2 Momentum Conservation
Let X be a Killing vector field on M. Define the momentum with respect to X

of a solution u of (EQ) by

PX .u.t; � // D

Z
N

h@tu;X.u/id y�:

PROPOSITION 2.3. Let u W Œ0; T / � N ! M solve (EQ). Then PX .u.t; � // is
constant as a function of t and it holds that

@t h@tu;X.u/i D divXT d�t

d y�
C

%

Vol.u/
h�;Xi

d�t

d y�
:

PROOF. Let �s be the local flow of X , which is by definition an isometry, and
put us D �s ı u. We have

@t h@tu;X.u/i D �hH�;X.u/i
d�t

d y�
C

%

Vol.u/
h�;Xi

d�t

d y�
C h@tu;r@tX.u/i„ ƒ‚ …

D0

D divXT d�t

d y�
�
@

@s

ˇ̌̌̌
sD0

log.d�t .us//
d�t

d y�
C

%

Vol.u/
h�;Xi

d�t

d y�
:

Now @
@s

ˇ̌
sD0

d�t .us/ D 0 as X is Killing. Integrating with respect to d y� and dt
and using that

R
Nh�;Xid�t D

d
ds

ˇ̌
sD0

Vol.us/ D 0, we get the result. �

We can obtain a third conservation law by exploiting another symmetry of the
action, namely, the invariance under diffeomorphisms of N that leave d y� invari-
ant. So let Y be a vector field on N with divd y� Y D 0. We define the interior
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momentum with respect to Y as

QY .u.t; � // D

Z
N

h@tu; u�Y id y�:

PROPOSITION 2.4. Let u W Œ0; T / � N ! M solve (EQ). Then QY .u.t; � // is
constant as a function of t . Furthermore, we have

@t h@tu; u�Y i D
1

2
divd y�.j@tuj

2Y /:

PROOF. In local coordinates on N write Y D Y i@i . We have that u�Y D Y i@iu
and compute

@t h@tu; u�Y i D hr@t@tu; u�Y i„ ƒ‚ …
D0

Ch@tu;r@t@iuiY
i

D Y i
1

2
@i j@tuj

2
D
1

2
divd y�.j@tuj

2Y / �
1

2
j@tuj

2 divd y� Y:

Integrating with respect to d y� and dt using the divergence theorem and divd y� Y D
0 yields the result. �

2.3 Special Solutions
Assume u W R � Sn ! RnC1 has the form u.t; x/ D r.t/x with initial condi-

tions r.0/ D r0 > 0 and Pr.0/ D r1. Let d y� be the surface measure of a spherical
metric g0, i.e., g0 D 
20gSn where gSn is the standard metric on Sn and 
0 > 0 is
a constant. Let !nC1 denote the volume of the unit ball in RnC1. Equation (EQ)
then becomes an ODE for the radius r.t/

Rr.t/ D �
nr.t/n�1


n0
C

%

!nC1

n
0 r.t/

:

This second-order ODE can be written as a system of first-order ODEs for .r; ´/ D
.r; Pr/

Pr D ´;

Ṕ D �
nr.t/n�1


n0
C

%

!nC1

n
0 r.t/

:

Clearly the right-hand side is locally Lipschitz and in fact smooth around .r0; r1/,
so there exists a local smooth solution. Using the energy conservation, we can
write the integral curves as a graph

´ D ˙

s
2E0

.nC 1/!nC1

n
0

� 2
rn


n0
C

2%

!nC1

n
0

log
�
r

r0

�
:

It is easy to check that these curves are closed. We have an equilibrium if initially
rn D %

n!nC1
and Pr D 0.We summarize this as a proposition.
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PROPOSITION 2.5. Let g0 D 
20gSn be a spherical metric with 
0 > 0 and d y�
its surface measure. Let r0 > 0, r1 2 R. Then there exists a unique rotationally
symmetric periodic solution u W R� Sn ! RnC1 of equation (EQ) centered at the
origin with initial conditions u.0; x/ D r0x, @tu.0; x/ D r1x. If

r0 D n

r
%

n!nC1
and r1 D 0;

then the solution is constant in t .

If u W Œ0; T / � N ! RnC1 is a solution of (EQ) and � is a vector in RnC1,
then zu.t; � / D u.t; � / C t� is also a solution of equation (EQ) with initial data
zu.0; � / D u.0; � /, @t zu.0; � / D @tu.0; � /C � . This is easy to see since d�t

d y�
.�H C

%Vol.u/�1/� is translation invariant and @2t zu D @2t u. Together with Proposi-
tion 2.5 we obtain translating vibrating solutions.

PROPOSITION 2.6. Let g0 D 
20gSn be a spherical metric with 
0 > 0 and d y� its
surface measure. Let r0 > 0, r1 2 R, p; � 2 RnC1. There exists a unique solution
u W R � Sn ! RnC1 of (EQ) having the form u.t; x/ D p C r.t/x C t� with
u.0; x/ D pCr0x and @tu.0; x/ D r1xC�. This solution is the oscillating solution
from Proposition 2.5 with initial conditions r0, r1 translating with velocity � . At
t D 0 it is centered at p.

3 Weakly Hyperbolic Linear Systems (WHLS)
In this section we define weakly hyperbolic linear systems. These systems will

arise in the linearization of our equation (EQ) (see page 808). They decompose
with respect to time-dependent subbundles into a system of coupled linear wave
equations and linear ODEs. We will also allow integrals of the unknowns to appear.
After the definition we derive estimates for WHLS, which in a first step are similar
to energy estimates for the wave equation that estimate spatial L2-Sobolev norms.
We then prove the solvability of WHLS. Finally, we integrate our estimates to
prove tame estimates for solutions of these systems in the L2-Sobolev grading in
space and time.

3.1 Definition of WHLS
Let � W V ! N be a d -dimensional Riemannian vector bundle over N. Let

F be the Fréchet space C1.Œ0; T � � N;V/ of smooth time-dependent sections
of V. Assume that we have an atlas of coordinate charts .x˛; U˛/ of N such that
˛ D 1; : : : ; J , x˛.U˛/ D B3.0/, and the sets x�1˛ .B1.0// cover N. Assume
also that for each such chart there are smooth time-dependent local sections �.˛/A ,
A D 1; : : : ; d 0, and � .˛/

k
, k D 1; : : : ; d 00, of V (d 0 C d 00 D d ) defined on the

domain of the chart that together form a basis of the fiber over each point in U˛.
For any other chart .xˇ ; Uˇ / with U˛ \ Uˇ ¤ ¿ we assume that the �.˛/A .p/ and
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�
.ˇ/
A .p/, p 2 U˛ \ Uˇ , span the same space and are bases for this space. Further-

more, we assume that the spaces spanned by the �.˛/A and the � .˛/
k

are orthogonal.
If the specific coordinate chart does not play a role or is fixed, then we will omit
the index .˛/. Let d y� be the volume form of a reference metric g0. Let V 2 F. In
each coordinate chart we can decompose

V D V? C VT WD �
A�A C  

k�k :

We say that V satisfies a weakly hyperbolic linear system if in each coordinate
chart .x˛; U˛/ we have

@2t �
A
� LA� �NA �QA1 � �Q

A
2  D v

A;

@2t 
k
�M k � P k� D wk;

(3.1)

for some given W D vA�A C wk�k . The operators are assumed to be of the

following form in local coordinates:

LA� D aAij @i@j�
A
C aAiB @i�

B
C aAB�

B
C aA0B @t�

B ;

NA D nAij @i 
j
C nAi  

i
C nA0k @t 

k;

QA1 � D q
A
1

JX
ˇD1

Z
N

cA.ˇ/B�
B
.ˇ/d y�;

QA2  D q
A
2

JX
ˇD1

Z
N

bA.ˇ/j 
j

.ˇ/
d y�;

M k D mki  
i
Cmk0i @t 

i ;

P k� D p
kj
B @j�

B
C pk0B @t�

B :

Of course we do not apply the summation convention for the index A here. We
assume all coefficients and also vA and wk to be smooth functions on x˛.U˛/ and
ƒıij �i�j � aAij �i�j � �ıij �i�j for all � 2 Rn with some fixed ƒ;� > 0.
Assume further aAij D aAji , supp bA

.ˇ/j
� x�1

ˇ
.B2.0//, and supp cA

.ˇ/B
�

x�1
ˇ
.B2.0//. Furthermore, we want that the operators are coordinate invariant un-

der coordinate transformations on N and under a change of basis between different
.�
.˛/
A ; �

.˛/

k
/ and .�.ˇ/A ; �

.ˇ/

k
/. This implies that W D vA�A C w

k�k is an element
of V.
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3.2 Norms
We wish to estimate the components �A;  k of a solution V D �A�A C  

k�k
to the WHLS (3.1) with respect to the time-dependent frames �A; �k . There-
fore we introduce the following notation: Let H s.�;Rd

0

/ denote the L2-Sobolev
space of functions from an open bounded set � � Rn to Rd

0

. Set H s.�/ D

H s.�;R/. Now the set of functions .�A
.˛/
/ can be considered as an element of

H s.B2.0/;Rd
0

/�J with norm

k�ks D

JX
˛D1

d 0X
AD1



�A.˛/

H s.B2.0//
:

We will also have to include �A; �k in our estimates and put

k�ks D

JX
˛D1

d 0X
AD1



�.˛/A ı x�1˛



H s.B2.0//

:

We similarly define k � kC s , jjj � jjjs , and jjj � jjjC s as the spatial C s-norm, the L2-
Sobolev norm of order s in space and time, and the C s-norm in space and time,
respectively.

For a linear differential operator we always define its “norm” to be the norm of
the coefficients in local coordinates. For example, if in a local coordinate chart
.x˛; U˛/ we have L� D aij @i@j� C ai@i� C a�, then we define the local norm

ŒL�s;˛ D
X
i;j

kaij kH s.B2.0// C

X
i

kaikH s.B2.0// C kakH s.B2.0//

and the full norm

ŒL�s D

JX
˛D1

ŒL�s;˛ :

We define similarly ŒL�C s , jŒL�js , and jŒL�jC s to measure the coefficients in k � kC s ,
jjj � jjjs , and jjj � jjjC s , respectively. Note that these are not the usual operator norms.
We also apply this notation for estimates on the integral operators although this
does not define a norm, e.g.,

ŒQ1�s D

JX
˛D1

X
A



qA1.˛/

H s.B2.0//
C

JX
˛D1

X
A;B



cA.ˇ/B

:
3.3 Wave and ODE Estimates

The following L2-energy estimate for linear wave equations is standard, but we
will need a version that accounts for the finite speed of propagation and keeps the
exponential under the integral. The proof uses standard methods and is omitted.
For a constant ƒ > 0 and .t0; x0/ 2 RnC1, we denote St .t0; x0/ D fx 2 Rn W
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jx � x0j <
p
ƒ.t0 � t /g. If there is no confusion about the point .t0; x0/, we only

write St .

PROPOSITION 3.1. Let � � Rn be open and let � W Œ0; T � ��! R satisfy

@2t �.t; x/ � a
ij .t; x/@i@j�.t; x/ � a

i .t; x/@i�.t; x/ � a.t; x/�.t; x/ D F.t; x/

where aij is symmetric and satisfies

�ıij �i�j � a
ij �i�j � ƒı

ij �i�j

for constants �;ƒ > 0. Furthermore, let aij , ak , a, and F be smooth functions
with

1C

nX
˛D0

nX
i;jD1

k@˛a
ij
kC0.�/ C

nX
kD1

kakkC0.�/ C kakC0.�/ � K

for some K > 0. Let .t0; x0/ 2 Œ0; T � �� such that S0 D S0.t0; x0/ � �. Then
there is a constant C depending on �, ƒ, and K such that for t 2 Œ0; t0�

kD�.t/kL2.St / C k@t�.t/kL2.St / C k�.t/kL2.St / �

CeCt
�
kD�.0/kL2.S0/ C k@t�.0/kL2.S0/

C k�.0/kL2.S0/ C

Z t

0

e�Ct
0

kF.t 0/kL2.St0 /dt
0

�
:

We need the following ODE estimate:

LEMMA 3.2. If� � Rn is open and bounded and  W Œ0; T ���! Rd is smooth
and satisfies @2t 

k D wk for some smooth wk W Œ0; T � ��! Rd , then

k .t/kH1.�/ C k@t .t/kH1.�/ � Ce
Ct

�
k .0/kH1.�/ C k@t .0/kH1.�/

C

Z t

0

e�Ct
0

kw.t 0/kH1.�/dt
0

�
:

PROOF. Define for some " > 0

E".t/ D
1

2

Z
�

j j2 C j@t j
2
C jD j2 C j@tD j

2dx C "

and estimate using Hölder’s inequality and Cauchy’s inequality

@tE".t/
1
2 � C.E".t/

1
2 C kw.t/kH1.�//:

Now apply Gronwall’s inequality and let "! 0. �
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3.4 Basic Estimates for WHLS
Define the total energy of the system (3.1) as

Es.t/ D k@
2
t �.t/ks C k@t�.t/ksC1 C k�.t/ksC1

C k@t .t/ksC1 C k .t/ksC1:
(3.2)

PROPOSITION 3.3. Assume that �; satisfy the weakly hyperbolic linear system
(3.1) on a time interval Œ0; T � and that for some s � bn

2
c C 2 and K1; K2; �1 > 0

(3.3) k�ksC1 C k@t�ksC1 C k@
2
t �ks C k�ksC1 C k@t�ksC1 � K1;

1C ŒL�s C Œ@tL�s C ŒM �sC1 C ŒQ1�s C Œ@tQ1�s

C ŒQ2�s C Œ@tQ2�s C ŒN �s C Œ@tN�s C ŒP �sC1 � K2;

and

(3.4) det.h�A; �Bi/ > �1; det.h�k; �li/ > �1:

Then we have the estimate

Es.t/ � Ce
CtEs.0/CC

Z t

0

eC.t�t
0/
�
kv.t 0/ksCk@tv.t

0/ksCkw.t
0/ksC1

�
dt 0;

where C only depends on K1, K2, �, �1, ƒ, and s.

PROOF.
(1) Set B1 D B1.0/ � Rn and B2 D B2.0/ � Rn. Choose .t0; x0/ D

. 3

2
p
ƒ
; 0/. Recall from Section 3.3 that St D fx 2 Rn W jx � x0j <

p
ƒ.t0 � t /g.

To avoid constants depending on St when we apply the elliptic regularity estimate,
define � D B7=4.0/. Then we always have B1 � St � � b B2 for t � t� WD
1

2
p
ƒ

. We will first prove the estimate for t � t�.

(2) Let ˇ be a multiindex with 1 � jˇj � s and @ˇ be a spatial derivative.
Note that by the Sobolev embedding theorem we have k � kCk � Ck � kbn2 cC1Ck .
Differentiating the system (3.1) in a coordinate chart yields

@2t @
ˇ� � LA@ˇ� D @ˇvA C @ˇ .LA�/ � LA@ˇ� C @ˇ .NA /(3.5a)

C @ˇ .QA1 �/C @
ˇ .QA2 �/ DW zv

A

@2t @
ˇ k D @ˇwk C @ˇ .M k /C @ˇ .P k�/ DW zwk :(3.5b)

We want to apply the basic energy estimate Proposition 3.1 and the ODE estimate
Lemma 3.2 to this system, and hence we must estimate the terms kzvkL2.St0 / and
k zwkH1.�/. We can do this using the Moser inequalities [11, chap. 13, prop. 3.7],
the Sobolev embedding theorem, and the assumptions, e.g.,

k@ˇ .N /kL2.B2/ � C
�
ŒN �s .k kC1 C k@t kC0/

C ŒN �C0 .k ksC1 C k@t ks/
�

� C .k ksC1 C k@t ksC1/ ;(3.6)
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k@ˇ .L�/ � L@ˇ�kL2.B2/ � C
�
ŒL�H s.B2/

k�kC2.B2/

C ŒL�C1.B2/ k�kH sC1.B2/

�
� Ck�kH sC1.B2/

:(3.7)

The other terms are estimated similarly, and we obtain

kzvkL2.St0 / � C.kvks CEs/;

k zwkH1.�/ � C.kwksC1 C k�kH sC2.�/ CEs/:

In order to estimate k�kH sC2.�/ we take some multiindex ˇ0 with jˇ0j D s. By
the elliptic regularity estimate [3, theorem 1, 6.3.1] and the equation (3.1) for L�,
we can estimate

k@ˇ
0

�kH2.�/ � C
�
kL@ˇ

0

�kL2.B2/ C k�ksC1
�

� C.kL�ks C k@
ˇ 0

.L�/ � L@ˇ
0

�kL2.B2/ C k�ksC1/

� C.kvks CEs/:(3.8)

Applying the basic energy estimate Proposition 3.1 to (3.5a) and the ODE estimate
Lemma 3.2 to (3.5b), we obtain

(3.9) k@t@ˇ�A.t/kL2.B1/ C kD@
ˇ�A.t/kL2.B1/ C k@

ˇ�A.t/kL2.B1/ �

CeCtEs.0/C C

Z t

0

eC.t�t
0/.kv.t 0/ks CEs.t

0//d t 0

and

(3.10) k@ˇ k.t/kH1.B1/
C k@ˇ@t 

k.t/kH1.B1/
�

CeCtEs.0/C C

Z t

0

eC.t�t
0/.kw.t 0/ksC1 C kv.t

0/ks CEs.t
0//d t 0:

(3) We also need the terms k@2t �kH s.B1/ C k@t�kH sC1.B1/
on the left-hand

side of the estimate in order to use Gronwall’s inequality later since they appear
in the energy. Therefore we differentiate the wave part (3.5a) additionally with
respect to time

(3.11)

@2t @t@
ˇ�A � LA@t@

ˇ�

D @t@
ˇvA C @ˇ .@tL

A�/C @ˇ .LA@t�/ � L
A@t@

ˇ�

C @ˇ .@tQ
A
1 �/C @

ˇ .QA1 @t�/C @
ˇ .@tQ

A
2  /

C @ˇ .QA2 @t /C @
ˇ .@tN

A /C @ˇ .NA@t / DW zzv
A:

We estimate similarly as above

kzzvkL2.B2/ � C.k@tvks C k�kH sC2.�/ C k@
2
t kH s.B2/ CEs/:

For k�kH sC2.�/ we use (3.8). We use the equation for @2t to estimate

k@2t kH s.B2/ � C.kwks CEs/:
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Applying Proposition 3.1 to (3.11), we obtain

(3.12)


@2t @ˇ�.t/

L2.B1/ C kD@t@ˇ�.t/kL2.B1/ C k@t@ˇ�.t/kL2.B1/ �

CeCtEs.0/C C

Z t

0

eC.t�t
0/
�
k@tv.t

0/ks C kv.t
0/ks C kw.t

0/ks CEs.t
0/
�
dt 0:

(4) We now sum estimates (3.9), (3.10), and (3.12) over all coordinate charts
and all ˇ. The case ˇ D 0 works the same except that the term estimated in (3.7)
vanishes. Due to the assumed bounds (3.3) and (3.4) on � and � , we can compare
norms taken on B1 and norms taken on B2. We can then apply Gronwall’s lemma
to obtain our estimate for t � 1

2
p
ƒ

. The estimate for arbitrary t follows by an
iteration. �

PROPOSITION 3.4. Assume that �, satisfy the weakly hyperbolic system (3.1) on
a time interval Œ0; T � and that for some K1; K2; �1 > 0

k�kC0 C k@t�kC0 C k@
2
t �kC0 C k�kC0 C k@t�kC0 � K1;

(3.13) 1C ŒL�C1 C Œ@tL�C0 C ŒM �C1 C ŒQ1�C0 C Œ@tQ1�C0

C ŒQ2�C0 C Œ@tQ2�C0 C ŒN �C0 C Œ@tN�C0 C ŒP �C1 � K2;

and

det.h�A; �Bi/ > �1; det.h�k; �li/ > �1:

Suppose further

(3.14) k�kC2 C k@t�kC2 C k kC1 C k@t kC1 � K3

and

kvkC0 C kwkC0 � K4

for some K3; K4 > 0. Then for any s � 0 we have the estimate

Es.t/ � Ce
Ct sup

Œ0;t�

�
k@2t �ks C k@t�ksC1 C k�ksC1 C k�ksC1 C k@t�ksC1 C 1

�
C CeCtEs.0/

C C

Z t

0

eC.t�t
0/
�
kvks C k@tvks C kwksC1 C ŒL�s

C Œ@tL�s C ŒQ1�s C Œ@tQ1�s C ŒQ2�s C Œ@tQ2�s

C ŒN �s C Œ@tN�s C ŒM �sC1 C ŒP �sC1
�
dt 0

where C depends only on K1, K2, K3, K4, �, �1, ƒ, and s.
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PROOF. The strategy of the proof is very similar to the proof of Proposition 3.3.
We just use the assumptions (3.13) and (3.14) instead of the Sobolev embedding
theorem in our estimates, e.g., replace (3.6) and (3.7) by

k@ˇ .L�/ � L@ˇ�kL2.B2/ � C
�
ŒL�H s.B2/

k�kC2.B2/

C ŒL�C1.B2/ k�kH sC1.B2/

�
� C.ŒL�H s.B2/

C k�kH sC1.B2/
/;(3.15)

k@ˇ .N /kL2.B2/ � C
�
ŒN �s .k kC1 C k@t kC0/

C ŒN �C0 .k ksC1 C k@t ks/
�

� C.ŒN �s C k ksC1 C k@t ks/:

The term

(3.16) sup
Œ0;t�

�
k@2t �ks C k@t�ksC1 C k�ksC1 C k�ksC1 C k@t�ksC1 C 1

�
arises when we compare norms taken on B1 with norms taken on B2 since we do
not assume that we have bounds on these terms here. �

Remark 3.5. As said in the last lines of the previous proof, if we had a bound

k�ks C k@t�ks C k@
2
t �ks C k�ks C k@t�ks � Cs

for all s > 0 and constants Cs > 0, we could remove the term (3.16) from the
estimate.

If we do not use the assumption k�kC2 C k@t�kC2 � K3 in (3.15) and in the
related estimates and assume P D 0, Q1 D 0, Q2 D 0, and M D 0, we obtain
the estimate

Es.t/ � Ce
CtEs.0/C C

Z t

0

eC.t�t
0/
�
kvks C k@tvks C kwksC1 C ŒL�s k�kC2

C Œ@tL�s k�kC2 C ŒL�s k@t�kC2
�
dt 0:

We will apply this modified estimate to estimate the time of existence in Section 6.
The idea behind this is that ŒL�s C Œ@tL�s might not be small and so it needs a
factor that is small if � is small.

3.5 Solvability of WHLS
PROPOSITION 3.6. Let V0; V1 2 C1.N;V/ andW 2 C1.Œ0; T ��N;V/ be given.
Then the system (3.1) has a unique smooth solution V on Œ0; T ��N with V.0/ D V0
and @tV.0/ D V1.

PROOF. Write locally V D �A�A C  k�k and W D vA�A C wk�k . Since

@tV.0/ D @t�
A.0/�A.0/C @t 

k.0/�k.0/C �
A.0/@t�A.0/C  

k.0/@t�k.0/
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our initial conditions in terms of �A0 WD �A.0/,  k0 WD  k.0/, �A1 WD @t�
A.0/,

and  k1 WD @t 
k.0/ are �A0 D hV0; �B.0/i�

BA.0/,  k0 D hV0; �l.0/i�
kl.0/, and

(3.17)

�A1 D hV1; �B.0/i�
BA.0/ � �C0 h@t�C .0/; �B.0/i�

BA.0/

�  k0 h@t�k.0/; �B.0/i�
BA.0/;

 k1 D hV1; �l.0/i�
lk.0/ � �A0 h@t�A.0/; �l.0/i�

lk.0/

�  m0 h@t�m.0/; �l.0/i�
lk.0/;

with �AB D .h�A; �Bi/�1 and �kl D .h�k; �li/�1.
We will solve the system (3.1) for �A;  k by a simple fixed point iteration. Start

with �A
.0/
D 0,  k

.0/
D 0. Then solve inductively

@2t �
A
.mC1/ � L

A�.mC1/ D v
A
CNA .m/ CQ

A
1 �.m/ CQ

A
2  .m/;

@2t 
k
.mC1/ D w

k
CM k .m/ C P

k�.m/;
(3.18)

with initial conditions

�A.mC1/.0/ D �
A
0 ;  k.mC1/.0/ D  

k
0 ;

@t�
A
.mC1/.0/ D �

A
1 ; @t 

k
.mC1/.0/ D  

k
1 :

The system (3.18) only consists of linear wave equations for �A
.mC1/

and linear

ODEs for  k
.mC1/

. The ODEs have a unique smooth solution on Œ0; T �. The wave
equations can be solved locally in space and for a short time due to finite speed
of propagation. The coordinate invariance of the system implies that V.mC1/ D
�A
.mC1/

�A C  
k
.mC1/

�k is well defined for small t . This can be iterated such that
we get a solution on Œ0; T �.

The differences z�A
.mC1/

D �A
.mC1/

��A
.m/

and z k
.mC1/

D  k
.mC1/

� k
.m/

satisfy
a WHLS. Using Proposition 3.3 it is easy to check that the iteration converges to a
unique smooth solution. �

3.6 Tame Estimate for WHLS
PROPOSITION 3.7. Let the assumptions of Proposition 3.3 be satisfied with s0 �
b
n
2
cC2. Let locally V D �A�AC k�k andW D vA�ACwk�k . Let V.0/ D V0,

@tV.0/ D V1 with

kV0ks0C2 C kV1ks0C1 � K3

for some K3 > 0. Suppose further

k�ks0C2 � K
0
2 and kW ks0C1 C k@tW ks0 � K4
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for some K 02; K4 > 0. Then for any s � 1 we have the estimate

jjjV jjjs � C
�
kV0ksC1 C kV1ks C jjjW jjjbn

2
cCs C jŒL�jbn

2
cCs C jŒM �js

C jŒN �jbn
2
cCs C jŒP �js C jŒQ1�jbn

2
cCs

C jŒQ2�jbn
2
cCs C jjj�jjjsCbn2 cC2

C jjj� jjjsCbn
2
cC2 C 1

�
with C depending on K1, K2, K3, K4, �, �1, ƒ, s, and T .

PROOF.

(1) We first show that the assumptions of Proposition 3.4 are also satisfied.
Define �A0 D hV0; �B.0/i�

BA.0/,  k0 D hV0; �l.0/i�
lk.0/, and

�A1 D hV1; �B.0/i�
BA.0/ � �C0 h@t�C .0/; �B.0/i�

BA.0/

�  k0 h@t�k.0/; �B.0/i�
BA.0/;

 k1 D hV1; �l.0/i�
lk.0/ � �A0 h@t�A.0/; �l.0/i�

lk.0/

�  
j
0 h@t�j .0/; �l.0/i�

lk.0/

(cf. (3.17)). We can represent vA D �ABhW; �Bi and wk D �klhW; �li. Using
first Moser inequalities, the Sobolev embedding theorem, and the assumptions, we
obtain the bounds

k�0ks0C2 C k�1ks0C1 C k 0ks0C1 C k 1ks0C1 �

C.kV0ks0C2 C kV1ks0C1/ � C

and

kvks0 C k@tvks0 C kwks0C1 � C.kW ks0C1 C k@tW ks0/ � C:

So by the Sobolev embedding theorem and Proposition 3.3 we have the estimate

(3.19) k�kC2 C k@t�kC2 C k@
2
t �kC1 C k@t kC1 C k kC1 � C:

Hence together with the other assumptions and the Sobolev embedding theorem,
the assumptions of Proposition 3.4 are satisfied.

(2) We will first show by an induction on s that

(3.20) jjj�jjjs C jjj jjjs � CRs

with

Rs WD k�0ksC1 C k 0ks C k�1ks C k 1ks C jjjvjjjbn
2
cCs

C jjjwjjjs C jjj�jjjbn
2
cCsC2 C jjj� jjjbn

2
cCsC2 C jŒL�jbn

2
cCs C jŒM �js

C jŒN �jbn
2
cCs C jŒP �js C jŒQ1�jbn

2
cCs C jŒQ2�jbn

2
cCs C 1:

The case s D 1 is trivial in view of (3.19), so assume (3.20) for some s > 1.
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(3) We have to prove the estimate

(3.21)
Z T

0



@jt �

2sC1�j dt C Z T

0



@jt  

2sC1�j dt � CR2sC1
for j D 0; : : : ; s C 1. To this end we do an induction on j as long as j � s C 1.
For the base cases j D 0 and j D 1 we apply Proposition 3.4:

k@2t �.t/ks C k@t�.t/ksC1 C k�.t/ksC1 C k@t .t/ksC1 C k .t/ksC1

� C sup
Œ0;T �

�
k@2t �ks C k@t�ksC1 C k�ksC1 C k�ksC1 C k@t�ksC1 C 1

�
C CEs.0/C C

Z t

0

kvks C k@tvks C kwksC1 C ŒL�s C Œ@tL�s C ŒQ1�s

C Œ@tQ1�s C ŒQ2�s C Œ@tQ2�s C ŒN �s C Œ@tN�s

C ŒM �sC1 C ŒP �sC1 dt
0:

We neglect some unnecessary terms on the left-hand side, square, and integrate this
estimate.

To estimate Es.0/ note that we can estimate k@2t �.0/ks using the equation by

k@2t �.0/ks � kL.0/�.0/ks C kN.0/ .0/ks

C kQ1.0/�.0/ks C kQ2.0/ .0/ks C kv.0/ks:

We then estimate

kL.0/�.0/ks � C.ŒL.0/�s k�0kC2 C ŒL.0/�C0 k�0ksC2/

� C.jŒL�jC s C k�0ksC2/

� C.jŒL�jbn
2
cCsC1 C k�0ksC2/:

The other terms can be estimated similarly and hence Es.0/ � CRsC1.
We estimate

sup
Œ0;T �

�
k@2t �ks C k@t�ksC1 C k�ksC1 C k�ksC1 C k@t�ksC1

�
�

C.jjj�jjjC sC2 C jjj� jjjC sC2/ � C.jjj�jjjbn
2
cCsC3 C jjj� jjjbn

2
cCsC3/:

This yields the base cases for the induction on j .
(4) Assume that (3.21) holds true for some 1 < j < sC1 and for j �1. Using

the equations we can writeZ T

0

k@
jC1
t �k2s�j dt D

Z T

0

k@
j�1
t .L� CQ1� CQ2 CN C v/k

2
s�j dt;Z T

0

k@
jC1
t  k2s�j dt D

Z T

0

k@
j�1
t .M C P� C w/k2s�j dt:
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Now it is almost straightforward to estimate each term on the right by CR2sC1
using the first Moser inequality in space and time, the assumptions, and the in-
duction hypothesis. The only term that needs more care is

R T
0 k@

j�1
t .L�/k2s�j dt

since an application of the Moser inequality in space and time would mix space
and time derivatives and leave us with a term jjj�jjj2sC1. But if we first expand
@
j�1
t @ˇ .L�/ with jˇj D s�j using the product rule, we see that at most s�j C2

space derivatives fall on � and s � j C 2 < s C 1. We can take out this critical
term, which is easy to estimate byZ T

0



L@j�1t @ˇ�


2
s�j

dt � C jŒL�j2C0

Z T

0



@j�1t �


2
s�jC2

dt � CR2sC1

in view of the induction hypothesis (3.21) for j � 1. The remaining terms can be
estimated by jjj�jjjs C jŒL�js using the Moser inequality if we apply it for DL or
@tL and �. This proves (3.20) for any s > 0.

(5) It is simple to rewrite (3.20) in terms of V0, V1, V , andW using the Moser
inequalities and the representations vA D �ABhW; �Bi and wk D �klhW; �li. �

4 Short-Time Existence
THEOREM 4.1. For every smooth immersion u0 W N ! M with Vol.u0/ D Vol0
> 0 and initial velocity u1 2 �.u�0TM/, there exists " > 0 and a smooth family of
immersions u W Œ0; "/ �N!M solving the Cauchy problem8̂<̂

:
r@t@tu D

d�t
d y�
.�H.u/C %

Vol.u//� for all t 2 Œ0; "/;

u.0/ D u0;

@tu.0/ D u1:

Remark 4.2. Here we only prove existence. Uniqueness is a special case of our
stability estimate Theorem 6.1 (see Corollary 6.2).

Our equation (EQ) is a quasi-linear second-order partial differential equation.
As we will see in the proof, the linearization (4.1) is not strictly hyperbolic. Due to
the diffeomorphism invariance of the mean curvature, only the normal part of the
linearized operator is a wave operator. For Ricci flow and mean curvature flow, a
suitable family of reparametrizations has been used to remove such a degeneracy.
This procedure is known as DeTurck’s trick [2]. Here this does not work since,
due to the d y�-term the action is not diffeomorphism invariant and the evolution
of the reparametrizations does not decouple from our equation. It is not clear how
this degeneracy can be removed. We therefore work directly with the degenerate
equation and use the Nash-Moser inverse function theorem to obtain short-time
existence. The strategy of the proof is similar to the short-time existence proof
for the Ricci flow given by Hamilton in [5]. For background on the Nash-Moser
theorem we recommend [4].
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4.1 Euclidean Case
We will first prove Theorem 4.1 for the simpler case M D RnC1. The modifica-

tions necessary to generalize this result to arbitrary target manifolds are indicated
in Section 4.2.

PROOF OF THEOREM 4.1 (EUCLIDEAN CASE).

(1) THE STRATEGY. Let F be the Fréchet space C1.Œ0; T � �N;RnC1/ and
let F0 be the Fréchet space C1.N;RnC1/. We define the open subsets

U D fu 2 F; det.gij / > 0 for all t 2 Œ0; T �g;

U0 D fu 2 F0; det.gij / > 0g;

and on a subset U0 � U to be chosen later, we define the operator P W U0 ! F by

P.u/ D r@t@tu �
d�t

d y�

�
�H.u/C

%

Vol.u/

�
�:

Of course, P.u/ is a vector field along u but we identify Tu.x/RnC1 with RnC1 in
the usual way.

From the initial data and the equation we can compute all time derivatives that a
solution must have at t D 0. Now by Borel’s lemma we can find xu W Œ0; T � �N!

RnC1 with these time derivatives and xu.0/ D u0. By making T small we can
assume that P.xu/ is defined. Then xf WD P.xu/ satisfies @kt xf

ˇ̌
tD0
D 0 for all

k D 0; 1; : : : .
We shall use the Nash-Moser inverse function theorem to show that the operator

P W U! F � U0 � F0 defined by

P.u/ D .P.u/; u.0/; @tu.0//

is locally invertible in a neighborhood of xu. This implies that there exists a neigh-
borhood W of .xu; u0; u1/ such that we can solve P.u/ D .f; zu0; zu1/ for every
.f; zu0; zu1/ 2 W. We put xf D 0 for t < 0 and define f".t/ D xf .t � "/ for
0 � " � "0. If " is small enough such that .f"; u0; u1/ 2 W, then we get a so-
lution of P.u/ D f" with the right initial conditions. Then in fact P.u/ D 0 for
0 � t � ".

(2) LINEARIZATION. To apply the Nash-Moser inverse function theorem to
the operator P , we have to analyze its linearization. Therefore let V 2 F and let
u W Œ0; T � � N ! RnC1 be a smooth family of immersions such that Vol.u/ > 0.
Decompose V D �� C  k@ku. Then we can write DP.u/V D W 0� CW k@ku
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with

W 0
D @2t � �

d�t

d y�

�
�� C jhj2� � hrH; i �

%

Vol.u/2

Z
N

� d�t

C

�
�H C

%

Vol.u/

�
.div CH�/

�
C �h@2t �; �i C 2@t 

k
h@t@ku; �i C  

k
h@2t @ku; �i

W k
D @2t 

k
C
d�t

d y�

�
�H C

%

Vol.u/

�
.rk� � hi

k i /

C 2@t�h@t�; @juig
jk
C �h@2t �; @juig

jk

C 2@t 
l
h@t@lu; @juig

jk
C  lh@2t @lu; @juig

jk :

(4.1)

To see this, let u" be a variation of u with @"j"D0u" D V . It is well known that

�@"j"D0H.u"/ D �hV; �i C jhj
2
hV; �i � hrH;V T

i

and

� @"j"D0�.u"/ D �h@"j"D0�.u"/; @luig
lk@ku D h@lV; �ig

lk@ku

D @lhV; �ig
lk@ku � hV; @l�ig

kl@ku D rhV; �i � hV; @luih
lk@ku:

By [1, lemma 2.1] the variation of Vol.u"/�1 is given by

�
1

Vol.u/2

Z
N

hV; �id�t ;

and the variation of d�t is given by

@

@"

ˇ̌̌̌
"D0

d�.u"/ D .hV; �iH C divV T/d�:

The decomposition of @2t V into normal and tangential parts is straightforward.
To check that (4.1) is a WHLS, take the bundle V D N�RnC1, d 0 D 1, d 00 D n.

Take �1 D � and �k D @ku. Let �˛ be a partition of unity subordinate to the sets
x�1˛ .B2.0//. Then (4.1) is a WHLS with Q2 D 0,

Q1� D �
d�t

d y�

%

Vol.u/2

JX
˛D1

Z
N

�˛�
d�t

d y�
d y�

and obvious definitions of the operators L, N , M , and P .
(3) CONCLUSION. Given .W; V0; V1/, the existence of a unique smooth solu-

tion V D �� C  k�k to (4.1) satisfying V.0/ D V0, @tV.0/ D V1, is assured by
Proposition 3.6. Hence DP.u/ is invertible.
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From [4, cor. II.2.2.7] we know that a nonlinear partial differential operator is
a smooth tame map. But P is not a differential operator in this sense because it
includes the Vol.u/-term. But we can write P.u/ D yP.u;Vol.u// where yP is a
differential operator of second order in u and zeroth order in Vol.u/. The tameness
and smoothness of the map u 7! Vol.u/ can be checked easily by writing

Vol.u/ D Vol.u0/C
Z t

0

@t Vol.u/dt D Vol.u0/C
Z t

0

Z
N

h@tu; �id�t dt:

To make sure that DP�1 satisfies a tame estimate, we will apply Proposi-
tion 3.7. We can estimate jŒE�jbn

2
cCs � C.1C jjjujjjbn2 cCsC3

/ for E 2 fL;M;N;
P;Q1;Q2g using the Moser inequalities since at most third derivatives of u occur
in the operators. Also, by the third Moser inequality [11, chap. 13, prop. 3.9] if
detgij > � > 0

jjj�jjjsCbn
2
cC2 � C.1C jjjujjjsCbn

2
cC3/;

jjj� jjjsCbn
2
cC2 � C.1C jjjujjjsCbn

2
cC3/:

Hence Proposition 3.7 provides us with a tame estimate for DP�1 if we just
choose a neighborhood around the data such that its assumptions are satisfied. This
is always possible due to compactness of the domain.

Continuity of DP�1 follows from the fact that C1 satisfies the Heine-Borel
property and from the uniqueness of solutions to the WHLS. It follows thatDP�1

is a smooth tame map by [4, theorem II.3.1.1]. By the Nash-Moser inverse function
theorem P is locally invertible, and this concludes the proof in the euclidean case.

�

4.2 General Case
The space E � C1.Œ0; T � � N;M/ of time-dependent immersions from N to

the manifold M is a Fréchet manifold. For u 2 E the operator

P.u/ D r@t@tu �
d�t

d y�

�
�H.u/C

%

Vol.u/

�
�

is a vector field along u. In order to employ a similar strategy as for the euclidean
case, we will in the following translate our problem to an equivalent problem for
maps in the Fréchet space C1.Œ0; T � �N;Rd /.

By the Nash embedding theorem we can suppose that the ambient manifold M

is isometrically embedded into Rd by � W M ! Rd for some d . We will in the
following derive an extrinsic form of the Euler-Lagrange equation (EQ) similar
to the extrinsic form of wave maps (see, e.g., [9]) and the extrinsic form of the
evolution equation for magnetic geodesics [6].

Let �M be the closest point projection to �.M/ that can be defined on a neigh-
borhood

zM D fx C v j x 2 �.M/; v 2 .Tx�.M//
?; jvj < ı.x/g;
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of �.M/ and is smooth there. Here ı is a positive smooth function on �.M/. Now
the second fundamental form of M is given by

xh˛ˇ D x@˛x@ˇ � � �



˛ˇ
x@
 �:

This is normal to �.M/ and so D�M.�.p//.xh˛ˇ / D 0 for p 2M. Since � D �M ı �
we have

(4.2)
x@˛x@ˇ � � �




˛ˇ
x@
 � D DADB�Mx@ˇ �

Ax@˛�
B
CD�M.x@˛x@ˇ � � �




˛ˇ
x@
 �/

D DADB�Mx@ˇ �
Ax@˛�

B :

Here DA is the derivative in the direction of the canonical basis vector eA in Rd .
Now if u W Œ0; T ��N! �.M/ we can write u D �ı yu with yu W Œ0; T ��N!M.

We write

z�u D @2t u �
d�t

d y�
gij
�
@i@ju � �

k
ij @ku

�
and compute using (4.2)

z�u �
d�t

d y�
.u/

%

Vol.u/
�.u/

�DADB�M.u/

�
@tu

A@tu
B
�
d�t

d y�
.u/gij @iu

A@ju
B

�
D D�

�
r@t@t yu �

d�t

d y�
.yu/

�
�H.yu/C

%

Vol.yu/

�
�.yu/

�
:

Hence yu W Œ0; T � � N ! M solves (EQ) if and only if u W Œ0; T � � N ! �.M/

solves

(4.3) z�u �
d�t

d y�
.u/

%

Vol.u/
�.u/

�DADB�M.u/

�
@tu

A@tu
B
�
d�t

d y�
.u/gij @iu

A@ju
B

�
D 0:

We will extend this equation for functions u W Œ0; T � � N ! zM � Rd that do
not necessarily map to �.M/. We will do this in such a way that the linearization
is a WHLS in order to apply the Nash-Moser argument for this new equation. Let
�†?

t
.u/ be the projection onto the normal space of†t D u.t;N/, i.e., �†?

t
.u/V D

V � gij hV; @jui@iu for V 2 Rd . We replace �.u/ by z�.u/ D �†?
t
.u/�.�M ı u/,

i.e., the projection onto the normal space of †t of the normal vector �.�M ı u/ in
�.M/ of the map �M ı u W Œ0; T � � N ! �.M/. If u is close enough in C 1 to a
family of immersions that map to �.M/, then �M ıu is also a family of immersions
and �.�M ı u/ is defined. By definition z�.u/ is normal to @iu and �.�M ı u/ is
an element of T�M.u/�.M/. We define fVol.u/ WD Vol.�M ı u/. We define further
…u.@˛u; @ˇu/ D �†?

t
.u/DADB�M.u/@˛u

A@ˇu
B .
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Then we want to solve the equation

(4.4) z�u D
d�t

d y�

%fVol.u/
z� C…u.@tu; @tu/ �

d�t

d y�
gij…u.@iu; @ju/

subject to given initial conditions.
Assume u solves (4.4). It is clear by definition that if u maps to �.M/, then we

have solved (4.3). We will prove in the following lemma that if u maps to �.M/
initially and the initial velocity is tangent to �.M/, then umaps to �.M/ for all time.

LEMMA 4.3. Let u W Œ0; T ��N! zM � Rd be a smooth solution of equation (4.4)
with u.0; x/ 2 �.M/ and @tu.0; x/ 2 Tu.0;x/�.M/ for all x 2 N. Then u.t; x/ 2
�.M/ for all .t; x/ 2 Œ0; T ��N and yu D ��1ıu solves (EQ) with yu.0/ D ��1ıu.0/
and @t yu.0/ D D��1.@tu.0//.

PROOF. Define �?M.x/ D x � �M.x/. Then clearly D�?M D 1 � D�M and
DADB�

?
M D �DADB�M. We compute

(4.5)

@2t .�
?
M ı u/ �

d�t

d y�
gij .@i@j .�

?
M ı u/ � �

k
ij @k.�

?
M ı u//

D
%fVol.u/

d�t

d y�
DC�

?
M.u/�

C .�M ı u/

�
%fVol.u/

d�t

d y�
h�.�M ı u/; @luig

kl@k.�
?
M ı u/

�DC�M.u/DADB�
C
M.u/

�
@tu

A@tu
B
�
d�t

d y�
gij @iu

A@ju
B

�
� hDADB�M.u/; @luig

kl

�
@tu

A@tu
B
�
d�t

d y�
gij @iu

A@ju
B

�
@k.�

?
M ı u/:

If u maps to �.M/, then (4.5) is a linear wave equation for �?M ı u because then we
know that DC�?M.u/�

C .�M ı u/ D 0 and DC�M.u/DADB�CM.u/@˛u
A@ˇu

B D

0 since then DADB�CM.u/@˛u
A@ˇu

B is normal to �.M/. If u does not map to
�.M/, then we can estimate these terms in terms of the distance j�?M.u/j of u to
�.M/. Hence if we define the energy

e.t/ D
1

2

Z
N

j@t .�
?
M ı u/j

2 d y�C
1

2

Z
N

jr.�?M ı u/j
2 d�t C

1

2

Z
N

j�?M ı uj
2 d y�;

it is not hard to check that @te.t/ � Ce.t/. Here the constant C may also depend
on u. Since e.0/ D 0 we conclude by Gronwall’s lemma that e.t/ D 0 for all
t 2 Œ0; T �. �

PROOF OF THEOREM 4.1 (GENERAL CASE). To conclude the short-time exis-
tence proof in the general case, we just note that the linearization of (4.4) can be
written as a WHLS. For the bundle V we take V D N � Rd . For �k we simply
take @ku and for �A we take a local frame for the space orthogonal to �k with
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�1 D z� D �†?
t
.u/�.�M ı u/. We also remark that if u" is a variation of u with

@"j"D0u" D V D �
A
.˛/
�
.˛/
A C  k

.˛/
�
.˛/

k
, then

@"fVol.u/ D
Z
N

h�.�M ı u/; V i d�t

D

X
˛

Z
N

�˛h�.�M ı u/; �Bi�
B
.˛/

d�t

d y�
d y�

C

X
˛

Z
N

�˛h�.�M ı u/; �li 
l
.˛/

d�t

d y�
d y�

where �˛ is a partition-of-unity subordinate to the sets x�1˛ .B2.0//. The variation
of the volume only occurs in the �1-part of the system.

If V D  k�k is tangential, then only the variation of d�t gives spatial deriva-
tives of V since all other terms are diffeomorphism invariant. But this term always
accompanies a normal term. This is the reason for defining … and z� with the
additional projection to the normal space of †t .

The other conditions are easy to check, and we conclude that the linearization
of (4.4) is indeed a WHLS. The Nash-Moser argument applies, and this concludes
the proof of Theorem 4.1 in the general case. �

5 Continuation Criterion
THEOREM 5.1. Let u W Œ0; T /�N!M be a solution of (EQ). Assume that for all
t 2 Œ0; T /

ku.t/kC4 C k@tu.t/kC4 � K

for some K > 0. Then there exists ı > 0 such that u can be extended to a solution
zu W Œ0; T C ı� �N!M of (EQ).

Remark 5.2. This statement can be formulated as a singularity criterion: If the
solution u cannot be extended beyond time T , then kukC4 C k@tukC4 becomes
unbounded as t ! T .

DEFINITION 5.3. Let u W Œ0; T / �N!M. Define

� D h@tu; �i; Si D h@tu; @iui;

ˇi D hr@i@tu; �i; Bim D hr@i@tu; @mui;

where r@i@tu
˛ D @i@tu

˛ C �
˛

ˇ
 .u/@iu
ˇ@tu


 . Hence we have

@tu D �� C S
i@iu and r@i@tu D ˇi� C Bi

k@ku:

Remark 5.4. As in Section 4.2 we assume that � WM! Rd is an isometric embed-
ding, and if we identify M and �.M/, we can assume M � Rd . When we consider
norms of u, we will take the norm of u W Œ0; T / � N ! Rd as a map into Rd .
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We assume that the metric g of the ambient manifold M and all its derivatives are
uniformly bounded in local coordinates. We assume that the second fundamental
form of M and its derivatives are uniformly bounded.

LEMMA 5.5. Let u be a solution of (EQ). Let

.�A/AD1;:::;1Cn2 D .�; .hij /i;jD1;:::;n/;

. k/kD1;:::;dCndCnCn2Cn3 D
�
.uA/AD1;:::;d ; .@iu

A/ iD1;:::;n
AD1;:::;d

; .Sj /jD1;:::;n;

.Bl
m/l;mD1;:::;n;

�
�kij �

y�kij
�
i;j;kD1;:::;n

�
;

where y�kij are the Christoffel symbols of a reference metric g0 that has d y� as its
surface element. Then .�A/ and . k/ satisfy

@2t �
A.t; x/ � LA�.t; x/ D FA.x; �;D�; @t�; ;D ; @t ;Vol.u//;

@2t 
k
D Gk.x; �;D�; @t�; ; @t ;Vol.u//;

where FA andGk are smooth functions in all their arguments such that if k�kC1C
k@t�kC0 Ck kC1 Ck@t kC0 � K and det.gij / > �1 for some K;�1 > 0, then
FA and GA and all their derivatives stay bounded. The operator L is given by
L� D d�t

d y�
��.

PROOF. The proof is a tedious calculation. We just motivate it by the follow-
ing informal consideration. If @˛ is a derivative, then differentiating our equation
P.x; u/ D 0 gives

0 D DuP.x; u/f@˛ug CDx˛P.x; u/:

For instance, with @˛ D @t we get the evolution equation for � and S i . Regarding
the structure of the linearized operator DP as in (4.1), it is clear that the normal
part � satisfies a wave equation and the tangential part S i satisfies an ODE, which
means that no spatial derivatives of S i occur in the equation for S i .

Differentiating once more using @ˇ , we get

0 D DuP.x; u/f@ˇ@˛ug CD
2
uP.x; u/f@˛u; @ˇug CDuDx˛P.x; u/f@ˇug

CDxˇDuP.x; u/f@˛ug CDxˇDx˛P.x; u/:

Taking @ˇ@˛ D r@i@j and decomposing r@i@ju D �hij � C �
k
ij @ku, we obtain

a wave equation for hij and an ODE for �kij . With r@t@i we obtain the evolution
equations for ˇi and Bi k . Since we can always express

ˇi D hr@i .�� C S
k@ku/; �i D @i� � S

khik;

we can eliminate all occurrences of ˇi in the other equations and do not need the
evolution equation for ˇi . Since P is a second-order operator no more than third
derivatives will occur due to the decomposition into normal and tangential parts.
Third derivatives can always be expressed in terms of at most first derivatives of
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the quantities Du, � , S i , hij , �kij , and Bi k . The claimed structure of the system is
apparent since the leading-order term is always the linearized operator.

Note that due to the assumption det.gij / > �1, terms such as gij and � will not
blow up and Vol.u/�1 is bounded in view of the energy conservation. �

LEMMA 5.6. Let u W Œ0; T /�N!M with k@tukC1 CkukC1 � K for someK >

0. Then the metrics gij .t/ for all different times are equivalent, and they converge
as t ! T uniformly to a positive definite metric gij .T /, which is continuous and
also equivalent.

PROOF. This follows from [5, lemma 14.2] using the assumed bound on

�@tgij D hr@t@iu; @jui C h@iu;r@t@jui:

PROOF OF THEOREM 5.1. Let s � bn
2
c C 2.

(1) ESTIMATING THE OPERATOR L. The coefficients of L D d�t
d y�
� con-

tain gij , Christoffel symbols, and derivatives of Christoffel symbols. Lemma 5.6
implies det.gij / � �1 for some �1 > 0. By the Moser inequalities we can estimate

ŒL�s � C.1C kuksC3/

with C depending on K since L contains no more than third derivatives of u.
Clearly, also by the assumption, ŒL�C1 � CK . Similarly, Œ@tL�s � C.1CkuksC3C
k@tuksC3/ and Œ@tL�C1 � CK .

(2) APPLICATION OF THE ESTIMATE FOR WHLS. In order to apply Propo-
sition 3.4 we have to specify the vector bundle V and the basis in which the system
from Lemma 5.5 is a WHLS if we consider the right-hand side FA. � � � /, Gk. � � � /
as fixed functions. For the bundle we take

V D .N �R/˚ .T �N˝ T �N/˚ .N �Rd /˚ ..N �Rd /˝ T �N/

˚ TN˚ .T �N˝ TN/˚ .T �N˝ T �N˝ TN/:

Let .x˛; U˛/ be a local coordinate chart with canonical tangent vectors @k and dxi

its dual covectors. For �A we take

f�AgAD1;:::;1Cn2 D f.1; 0; 0; 0; 0; 0; 0/; .0; dx
i
˝ dxj ; 0; 0; 0; 0; 0/i;jD1;:::;ng;

and for �k we take

f�kgkD1;:::;dCndCnCn2Cn3 D
˚
.0; 0; eA; 0; 0; 0; 0/AD1;:::;d ;

.0; 0; 0; eA ˝ dx
i ; 0; 0; 0/ iD1;:::;n

AD1;:::;d

;

.0; 0; 0; 0; @k; 0; 0/kD1;:::;n;

.0; 0; 0; 0; 0; dxi ˝ @k; 0/i;kD1;:::;n;

.0; 0; 0; 0; 0; 0; dxi ˝ dxj ˝ @k/i;j;kD1;:::;n
	
:
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The system for �; from Lemma 5.5 is a WHLS with M D N D P D Q1 D
Q2 D 0 and right-hand side FA; Gk . By assumption and Lemma 5.5 the right-
hand side is bounded. It is easy to check using the definitions of � and  and the
assumptions that

k�kC2 C k@t�kC2 C k kC1 C k@t kC1 � CK :

As in (3.2), define

Es.t/ D


@2t �.t/

sCk@t�.t/ksC1Ck�.t/ksC1Ck@t .t/ksC1Ck .t/ksC1:

Hence we can apply Proposition 3.4 to obtain

Es.t/ � Ce
Ct

�
1CEs.0/C

Z t

0

kF. � � � /ks C k@t .F. � � � //ks

C kG. � � � /ksC1 C ŒL�s C Œ@tL�s dt
0

�
:

(3) ESTIMATING THE RIGHT-HAND SIDE. We have to estimate kF. � � � /ks ,
k@t .F. � � � //ks , and kG. � � � /ksC1. By assumption

jVol.u/j D
ˇ̌̌̌
Vol0C

Z t

0

Z
N

h@tu; �i d�tdt
0

ˇ̌̌̌
� C

and

j@t Vol.u/j D
ˇ̌̌̌Z
N

h@tu; �id�t

ˇ̌̌̌
� C:

By assumption and from Lemma 5.5, we can apply the third Moser inequality [11,
chap. 13, prop. 3.9],

kF. � � � /ksCkG. � � � /ksC1Ck@t .F. � � � //ks � C.1CEsCk�ksC2Ck@
2
t ks/:

Using the equation for @2t , we can estimate

k@2t ks � CkG. � � � /ks � C.1CEs C k�ksC2/:

We use the elliptic estimate and the equation (similarly as in (3.8)) to estimate

k�ksC2 � C.kL�ks C k�ksC1 C ŒL�s/

� C.k@2t �ks C kF. � � � /ks C k�ksC1 C kuksC3 C 1/

� C.1CEs/:

The initial energy Es.0/ is fixed. So we obtain the estimate

Es.t/ � CT;K.1C

Z t

0

1CEs.t
0/d t 0/:

We use Gronwall’s lemma to conclude

k�.t/ksC1 C k@t�.t/ksC1 C k@
2
t �.t/ks C k .t/ksC1 C k@t .t/ksC1 � C
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for all 0 � t < T . This can be done for any s � bn
2
c C 2. This implies that all

derivatives of u are bounded uniformly in t .
It is then easy to see that u.t/ and @tu.t/ converge in C1 to a smooth immer-

sion u.T / and corresponding velocity @tu.T /. Then we can apply the short-time
existence result Theorem 4.1 to extend the solution. �

6 Stability Estimates

Assume that we have a solution zu W Œ0; zT /�N!M of (EQ). For instance, this
could be one of the special solutions in Section 2.3 with zT D 1. All quantities
with zwill refer to zu, e.g., zhij is the second fundamental form of zu. We intend to
prove the following theorem:

THEOREM 6.1. Let s � bn
2
c C 2, zT 2 RC [ f1g, and zu W Œ0; zT / �N! M be a

solution of (EQ). Assume for all t 2 Œ0; zT /

kzu.t/ksC4 C k@t zu.t/ksC3 � K; det.zgij / � �1; and zgij � �

for some constants K;�1; � > 0. There exist constants c1, c2, and "0 > 0 such
that if u0 W N ! M is an immersion and u1 W N ! u�0TM is a vector field along
u0 with

ku0 � zu.0/ksC4 C ku1 � @t zu.0/ksC3 � "

for some 0 < " � "0, then there exists T � minf zT ; c1 log
�
c2
"

�
g and u W Œ0; T � �

N!M that solves8̂<̂
:
r@t@tu D

d�t
d y�

�
�H.u/C %

Vol.u/

�
� for all t 2 Œ0; T �;

u.0/ D u0;

@tu.0/ D u1:

For all t 2 Œ0; T � we have the estimate

ku.t/ � zu.t/ksC4 C k@tu.t/ � @t zu.t/ksC3 � Ce
Ct"

with C depending on s and zu.

COROLLARY 6.2 (Uniqueness). Let u W Œ0; T ��N!M and zu W Œ0; T ��N!M

be solutions of (EQ) with u.0/ D zu.0/ and @tu.0/ D @t zu.0/. Then u.t/ D zu.t/
for all t 2 Œ0; T �.

LEMMA 6.3. Let u be a solution of (EQ) and zu as in Theorem 6.1. Let

.�A/AD1;:::;1Cn2 D
�
.� � z�/; .hij � zhij /i;jD1;:::;n

�
. k/kD1;:::;dCndCnCn2Cn3 D

�
.uA � zuA/AD1;:::;d ; .@iu

A
� @i zu

A/ iD1;:::;n
AD1;:::;d

;

.Sj � zSj /jD1;:::;n; .Bl
m
� zBl

m/l;mD1;:::;n;�
�kij �

z�kij
�
i;j;kD1;:::;n

�
:
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Then .�A/ and . k/ satisfy

@2t �
A.t; x/ � LA�.t; x/ D FA.x; �;D�; @t�; ;D ; @t ;Vol.u/ � Vol.zu//;

@2t 
k
D Gk.x; �;D�; @t�; ; @t ;Vol.u/ � Vol.zu//;

where FA andGk are smooth functions in all their arguments such that if k�kC1C
k@t�kC0 Ck kC1 Ck@t kC0 � K and det.gij / > �1, then FA and GA and all
its derivatives stay bounded. Furthermore, F.x; 0/ D 0 and G.x; 0/ D 0 and the
operator L is given by L� D d�t

d y�
�g.t/�.

PROOF. Simply subtract the evolution equations for all the quantities corre-
sponding to zu from the evolution equations for the quantities corresponding to u.
Replace everywhere, e.g., � D z� C .� � z�/, to write the equations as equa-
tions for the differences. Then the claimed structure follows as in the proof of
Lemma 5.5. �

PROOF OF THEOREM 6.1. As in (3.2), define

Es.t/ D k@
2
t �.t; � /ks C k@t�.t; � /ksC1 C k�.t; � /ksC1

C k@t .t; � /ksC1 C k .t; � /ksC1

with � and  from Lemma 6.3. Define

zEs.t/ D Es.t/C jVol.u.t// � Vol.zu.t//j:

Choose a constant � > 0 such that gij � �2 > 0 and det.gij / � �3 > 0 if
zEs.t/ � �. Assume that zEs.t/ � �. We will prove under this assumption that
zEs.t/ �

1
2
� as long as t � minf zT ; c1 log.c2

"
/g.

Using the Sobolev embedding theorem, we see that the assumptions of Proposi-
tion 3.4 are satisfied. With the modifications of Remark 3.5, we obtain

Es.t/ � Ce
CtEs.0/

C C

Z t

0

eC.t�t
0/
�
kF. � � � /ks C k@t .F. � � � //ks

C kG. � � � /ksC1 C ŒL�s k�kC2 C Œ@tL�s k�kC2

C ŒL�s k@t�kC2
�
dt 0:

We carry out the estimates of the right-hand side using the third Moser inequal-
ity, similarly to the proof of Theorem 6.1. Since F.x; 0/ D 0 and G.x; 0/ D 0, we
do not need the constant term on the right-hand side

(6.1) kF. � � � /ks C k@t .F. � � � //ks C kG. � � � /ksC1 �

C�.Es C kVol.u/ � Vol.zu/k0 C k@t Vol.u/ � @t Vol.zu/k0/:
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We also have

ŒL�s k�kC2 C Œ@tL�s k�kC2 C ŒL�s k@t�kC2 � C� .1CEs/Es � C�Es:

Now @t Vol.u/ D
R
Nh@tu; �id�t and hence

j@t Vol.u/ � @t Vol.zu/j � C�Es:

We use the fundamental theorem of calculus to estimate

(6.2) jVol.u/�Vol.zu/j � CeCt jVol.u0/�Vol.zu.0//jCC
Z t

0

eC.t�t
0/Es.t

0/d t 0:

Adding (6.1) and (6.2), we get

zEs.t/ � Ce
Ct zEs.0/C C

Z t

0

eC.t�t
0/ zEs.t

0/d t 0:

We apply Gronwall’s inequality to see that

(6.3) zEs.t/ � Ce
Ct":

Hence if t � C�1 log
�
�
2C"

�
, then zEs.t/ � 1

2
�. Define c1 D C�1 and c2 D �

2C
.

We need t > 0 and hence " < c2.
If we choose "0 such that "0 < c2 and such that zEs.0/ � �, then the bootstrap

principle (e.g., [10, prop. 1.21]) shows that our solutions exist and (6.3) holds as
long as t � minf zT ; c1 log

�
c2
"

�
g. �

If we include the difference of the ambient metric to the euclidean metric, we
obtain a similar stability result. The proof is similar to that of Theorem 6.1 and is
omitted.

THEOREM 6.4. Let M D .RnC1; g/ and let zM D .RnC1; ı/ with the euclidean
metric ı on RnC1. Let s � bn

2
c C 2 and zu W Œ0;1/ � N ! zM be a solution of

(EQ), and let for all t 2 Œ0;1/

kzu.t/ksC4 C k@t zu.t/ksC3 � K and det.zgij / � �1 and zgij � �

for some constants K;�1; � > 0. There exist constants c1, c2, and "0; "1 > 0 such
that if u0 W N ! M is an immersion and u1 W N ! u�0TM is a vector field along
u0 with

ku0 � zu.0/ksC4 C ku1 � @t zu.0/ksC3 � "

and

kg � ıkC sC4 � "0

for some 0 < " � "0 and 0 < "0 � "1, then there exists T � c1 log
�
c2
"C"0

�
and

u W Œ0; T � �N!M that solves8̂<̂
:
r@t@tu D

d�t
d y�

�
�H.u/C %

Vol.u/

�
� for all t 2 Œ0; T �;

u.0/ D u0;

@tu.0/ D u1:
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For all t 2 Œ0; T � we have the estimate

ku.t/ � zu.t/ksC4 C k@tu.t/ � @t zu.t/ksC3 � Ce
Ct ."C "0/

with C depending on s and zu.
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