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Abstract

We introduce a hyperbolic equation that describes the motion of closed hyper-
surfaces in a Riemannian manifold with surface tension and inner pressure as
driving forces. In the case of spherical surfaces this equation can be considered
as an idealized mathematical model for a moving soap bubble. The equation is
derived as an Euler-Lagrange equation from a suitable action integral. It is a
quasi-linear degenerate hyperbolic PDE of second order that describes the mo-
tion of the surfaces extrinsically.

Our main results are the solution of the Cauchy problem by means of the
Nash-Moser inverse function theorem, a continuation criterion, and stability es-
timates. © 2012 Wiley Periodicals, Inc.

1 Introduction

Let N be a smooth, closed, oriented manifold of dimension 7, and let (M’H'1 ,2)
be a smooth, complete, oriented, n + 1-dimensional Riemannian manifold. We
want to derive an equation of motion for closed hypersurfaces with surface tension
and inner pressure as driving forces. If N is the n-sphere, this equation can be
considered as an idealized model for a moving soap bubble. For a smooth family
of immersions u : [0, T] x N — M we define an action integral of the form

T
Au) = /0 K@) —I(u) —J(u)dt

where X is the kinetic energy and J, J contribute to the potential energy. We choose
J(u) as the energy of the surface tension, i.e., the surface area

Ju) = /dut.
N

Here du; denotes the induced surface measure of the induced metric g(¢) =
u(t)*g at time 7.

The inner pressure is motivated by that of an ideal gas with constant temperature;
i.e., it is proportional to Vol(x)~! where Vol(u) is the enclosed volume of the
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surface u(N). Therefore we define for a parameter ¢ > 0
Vol(u)
=—pl .
d(u) = —elog ( Volg )

The constant g as well as the initial enclosed volume Voly are included for scaling
reasons. Of course other functions of the enclosed volume could be considered if
they lead to a lower volume bound as in Corollary [2.2] below.

In order to define the kinetic energy we fix a reference measure d j1 on N with a
smooth density function defining a mass distribution on N. We then integrate the
kinetic energies %|8,u |2 d i of all the points of the surface and define

1 ~
K(u) = [ 5|a,u|2am.
N

This then describes the physical energy of the point particles making up the surface.
Altogether the action integral is

T 1 T T Vol
0 e 0 % 0 Olo

The equation we study in this paper is the Euler-Lagrange equation of A. It is
readily obtained as

= duy o
E Vg, 0iu = — | —H(u — v
(EQ) 9,0¢ i ( (u) + Vol(u)
where H(u) denotes the mean curvature of u(N) with respect to the outer unit
normal v. By V3, we denote the covariant derivative along u, i.e.,

Vata,u“ = afu“ +F§y(u)3,u’38,u”

with Fzy being the Christoffel symbols of g. We use the Einstein summation
convention; i.e., we sum over repeated upper and lower indices. By h;; we will
denote the second fundamental form.

The structure of this equation generates interest from a mathematical point
of view. Although Einstein’s equations have a similar structure they describe the
evolution of the geometry via intrinsic quantities. In contrast to wave maps our
equation is not semilinear, but rather quasi-linear and degenerate.

One of the few mathematically rigorous studies of equations in this category
is the paper of LeFloch and Smozcyk [7]. Some fundamental differences to our
equation are noted in Remark[I.1]

The outline of this paper is as follows: In Section 2 we derive conservation laws
and find special solutions of the equation such as oscillating and translating
spheres. In Section [3| we define a special kind of linear PDE system that will arise
in the linearization of (EQ). We derive estimates for these systems that will allow
us to solve the Cauchy problem associated to in Section 4] by means of the
Nash-Moser inverse function theorem (Theorem [.T).
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In Section [5] we prove a sufficient condition under which the solution can be
extended to a larger time interval (Theorem [5.1). The condition is that the family
of parametrizations of the surface and its time derivative are bounded in the spatial
C*-norm.

In the last section, Section [6} we prove that the distance between two solutions
grows at most exponentially fast if they are close to each other initially (Theo-
rem|[6.1). This estimate implies the uniqueness of solutions and a lifetime estimate.
A similar stability estimate holds if the metric of the ambient manifold is close to
the euclidean metric (Theorem [6.4).

The results in this paper are contained with more detailed proofs in the author’s
thesis [8]].

Remark 1.1. In [7] LeFloch and Smozcyk consider an Euler-Lagrange equation
coming from an action functional including only kinetic energy and surface tension
where they use the induced surface measure to define the kinetic energy. There are
some fundamental differences that are due to this different definition of kinetic en-
ergy. Most importantly, the equation of LeFloch and Smozcyk is only hyperbolic
under certain conditions on the tangential velocity. In contrast to their geometric
definition of kinetic energy, we use the more physical definition where the surface
has a fixed mass density. As a consequence, adding a constant velocity translation
to a solution of our equation yields again a solution (see Section[2.3). They also get
a more general conservation of interior momentum which implies that the velocity
stays orthogonal if it does so initially. They use this to give a short time existence
proof in the case of normal velocity. We remark that this case is a restriction and
completely different behavior can occur if one allows tangential velocity. For ex-
ample, the equation of LeFloch and Smozcyk admits a circle rotating with constant
velocity as a solution and also a circle shrinking without tangential velocity to a
point in finite time.

2 Conservation Laws and Special Solutions

2.1 Energy Conservation
Define the energy

1 ~
et = [ slomP i+ [ du —Qlog(
N

N

Vol (u)
VOI() ) '

Letu : [0, T) x N — M solve (EQ) with ¢ = E(u(0,-)).
PROPOSITION 2.1. We have E(u(t,-)) = E¢ forallt € [0, T), and it holds that

1 dp : di 0 dus
- 8 2 =d T
% (2' ™+ dﬁ) v(0ru )dﬁ + VO1(u)<a’“’”> dji

where d;u" is the tangential part of 0.



MOTION OF CLOSED HYPERSURFACES 793

The proof is a simple computation and is omitted. From the energy conservation
we immediately get very general bounds.
COROLLARY 2.2.

(1) The enclosed volume is bounded from below by

)
Vol(u) > Volge™ @ .

(2) Assume that an isoperimetric inequality holds on M, namely, that there is
a constant ciso > 0 such that

/ dits > civo Vol(u) 7.
N

Then there is a constant K depending only on ciso, 0, €o, and Volg such
that Vol(u) < K and consequently

1 K

—|0,ul?dfi /d <¢& log | — ).
/2| ulfdi + My <co+o Og(Volo)
N N

2.2 Momentum Conservation

Let X be a Killing vector field on M. Define the momentum with respect to X
of a solution u of (EQ)) by

Py(ut. ) = / (Beu. X)) .
N

PROPOSITION 2.3. Letu : [0,T) x N — M solve (EQ). Then Px (u(t,-)) is
constant as a function of t and it holds that

. dps o dpy
e (Oeu, X(u)) = div XT == LX)
107, X(u)) = div i + Vol(r) {v. X) i
PROOF. Let ¢, be the local flow of X, which is by definition an isometry, and
put uy = ¢s o u. We have

dps 0 dus =
8 8 . X - — H . X = ,X = 3 ,V X
({Bra X(0) = —(Hv, X)) o+ Goios (0 X) 2+ (. T, XGo)
=0
. dus 0 diiy o du
=divXT — — —| log(d —= X)) ——=.
v dﬁ as o Og( /’LI(MS)) dﬁ + Vol(u) <U )d,l,L
Now a—as ‘szod,ut(us) = 0 as X is Killing. Integrating with respect to d i and dt
and using that [,(v, X)du, = dis}s=0 Vol(ug) = 0, we get the result. g

We can obtain a third conservation law by exploiting another symmetry of the
action, namely, the invariance under diffeomorphisms of N that leave d ji invari-
ant. So let Y be a vector field on N with divgy ¥ = 0. We define the interior
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momentum with respect to Y as

Qy (u(t,-)) = /(atu,u*Y)dﬁ.
N

PROPOSITION 2.4. Let u : [0,T) x N — M solve (EQ). Then Qy (u(t,-)) is
constant as a function of t. Furthermore, we have

1
0 (0su, uxY) = idivdﬁ(|8tu|2Y).

PROOF. Inlocal coordinates on N write Y = Y?9;. We have thatu, Y = Y'0;u
and compute
3¢ (dru,uxY) = (Vy, 81, usY) +(d;u, V, 0;u) Y’

—
=0

1 1 1 :
= Y’§3i|3tu|2 = Edlvdﬁ(|3tu|2Y) - §|3t”|2dlvdﬁ Y.

Integrating with respect to d fi and d¢ using the divergence theorem and divyp ¥ =
0 yields the result. O

2.3 Special Solutions

Assume ¥ : R x S” — R”T1 has the form u(z, x) = r(¢)x with initial condi-
tions 7(0) = ro > 0 and 7(0) = ry. Let d i be the surface measure of a spherical
metric gy, i.€., go = )/gggn where ggn is the standard metric on S” and yp > 0 is
a constant. Let wy, 4 denote the volume of the unit ball in R”*!. Equation (EQ)
then becomes an ODE for the radius r(¢)

) nr()"! 0
Ft) =— n ” .
Yo wn—i—l)’or(t)

This second-order ODE can be written as a system of first-order ODEs for (r, ) =
(r.7)
F=z,
_nr@"! 0
N o)
Clearly the right-hand side is locally Lipschitz and in fact smooth around (rg, r1),

so there exists a local smooth solution. Using the energy conservation, we can
write the integral curves as a graph

2o rn 20 r
z=%|—— 25+ - log| — |
(n + l)wn—l—l)/o Yo Wn+1Yo ro
It is easy to check that these curves are closed. We have an equilibrium if initially
n Q

r = enti and 7 = 0.We summarize this as a proposition.
n




MOTION OF CLOSED HYPERSURFACES 795

PROPOSITION 2.5. Let gg = )/gggn be a spherical metric with yo > 0 and di
its surface measure. Let rg > 0, r; € R. Then there exists a unique rotationally
symmetric periodic solution u : R x S® — R*T1 of equation (EQ)) centered at the
origin with initial conditions u(0, x) = rox, 0;u(0,x) = rix. If

Q
nwp+1

n

ro = and r1 =0,

then the solution is constant in t.

Ifu : [0,7) x N — R”*1 is a solution of (EQ) and £ is a vector in R"T1,
then u(z,-) = u(t,-) + t€ is also a solution of equation (EQ) with initial data
#(0,-) = u(0,-), 0;u(0,-) = d,;u(0,-) + £. This is easy to see since (fi_lg(_H +
o Vol(u)~1)v is translation invariant and 3?% = 0?u. Together with Proposi-
tion [2.5] we obtain translating vibrating solutions.

PROPOSITION 2.6. Let go = )/gggn be a spherical metric with yo > 0 and d Ji its
surface measure. Letrg > 0, r1 € R, p,§& € R™+L. There exists a unique solution
u: R xS" — R*"" of (EQ) having the form u(t,x) = p + r(t)x + t& with
u(0,x) = p+rox and 9;u(0, x) = rix—+E&. This solution is the oscillating solution
from Proposition with initial conditions rg, r1 translating with velocity €. At
t = 0 it is centered at p.

3 Weakly Hyperbolic Linear Systems (WHLS)

In this section we define weakly hyperbolic linear systems. These systems will
arise in the linearization of our equation (see page [S08). They decompose
with respect to time-dependent subbundles into a system of coupled linear wave
equations and linear ODEs. We will also allow integrals of the unknowns to appear.
After the definition we derive estimates for WHLS, which in a first step are similar
to energy estimates for the wave equation that estimate spatial L2-Sobolev norms.
We then prove the solvability of WHLS. Finally, we integrate our estimates to
prove tame estimates for solutions of these systems in the L2-Sobolev grading in
space and time.

3.1 Definition of WHLS

Let 7 : V — N be a d-dimensional Riemannian vector bundle over N. Let
F be the Fréchet space C°°([0, T] x N,V) of smooth time-dependent sections
of V. Assume that we have an atlas of coordinate charts (x4, Uy) of N such that
o = 1,...,J, xo(Uy) = B3(0), and the sets x,!(B1(0)) cover N. Assume

also that for each such chart there are smooth time-dependent local sections v(a),

A=1,....,d, and rlga), k=1,....,d", of V(d +d’ = d) defined on the
domain of the chart that together form a basis of the fiber over each point in U,.
For any other chart (xg, Ug) with Uy N Ug # @ we assume that the v‘fla) (p) and
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vflﬁ )( P), p € Uy N Ug, span the same space and are bases for this space. Further-

more, we assume that the spaces spanned by the vfla) and the rlga) are orthogonal.

If the specific coordinate chart does not play a role or is fixed, then we will omit
the index («). Let d [i be the volume form of a reference metric go. Let V € F. In
each coordinate chart we can decompose

V=V +W:= ¢AUA + Wk‘fk.

We say that V' satisfies a weakly hyperbolic linear system if in each coordinate
chart (xo, Uy) we have

0794 — LAp — N4y — 019 — 03y = v*,
G.1) 2.k k k k
Yt —M "y — P p = w",
for some given W = v4vy + wkr;. The operators are assumed to be of the

following form in local coordinates:

LA = a9;0;¢% + af 0,08 + ad¢® + al03,¢P,

NAY = nf 0,97 + nfy’ +nf0,y*,

J
0fp=aft Y [ ctsyutlyydn

B=1y
J .
0y =at Y [ by, iy i
B=1y
MRy = mFyt 4+ mF09, vy,

o
PXp = py 0;0° + pi0:9".

Of course we do not apply the summation convention for the index A here. We
assume all coefficients and also v4 and w to be smooth functions on x¢ (Uy ) and
ASYE; & > adii g & > )tSijéiéj for all £ € R” with some fixed A,A > 0.
Assume further a4/ 471 supp bé;)j C x;l (B2(0)), and supp Cé)B C
x;l (B2(0)). Furthermore, we want that the operators are coordinate invariant un-
der coordinate transformations on N and under a change of basis between different

(v(a), r,gx)) and (vlflﬂ), rlgﬂ)). This implies that W = vAvy + w¥ 7, is an element

of V.

= da
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3.2 Norms

We wish to estimate the components ¢4, wk of a solution V = ¢p4vy + wkrk
to the WHLS (3.I) with respect to the time-dependent frames vgq, ;. There-
fore we introduce the following notation: Let H* (€2, R¢") denote the L2-Sobolev
space of functions from an open bounded set 2 C R” to R?". Set HS(Q) =
H?®(R2,R). Now the set of functions (¢é)) can be considered as an element of

H*(B»(0), R?)*/ with norm
J d
I6lls = D~ > 196 | s 8ac0yy-
a=1A=1

We will also have to include v4, 7% in our estimates and put

J d
vlls =Y ZH%&Q) © Xo | g5 (cony-

a=1A=1

We similarly define | - | cs, |||-|lls» and |||+ |||cs as the spatial C*-norm, the L2-
Sobolev norm of order s in space and time, and the C*-norm in space and time,
respectively.

For a linear differential operator we always define its “norm” to be the norm of
the coefficients in local coordinates. For example, if in a local coordinate chart
(xq, Uy) we have L = a”/ 3;0;¢ + a'd;¢ + a¢, then we define the local norm

[Llso =D _la” sy + D_la' las @0y + lall s 3.0
i,j i
and the full norm
J
Ly =) [Llse-
a=1
We define similarly [L]¢s, |[L]|;, and |[L]|cs to measure the coefficients in || - || ¢,
Il - |lls» and ||| - || s, respectively. Note that these are not the usual operator norms.

We also apply this notation for estimates on the integral operators although this
does not define a norm, e.g.,

J 7
[01]s = Z ZHqi‘l(a) ”HS(Bz(O)) + Z Z ”C&)B |-

a=1 A a=1A,B

3.3 Wave and ODE Estimates

The following L2-energy estimate for linear wave equations is standard, but we
will need a version that accounts for the finite speed of propagation and keeps the
exponential under the integral. The proof uses standard methods and is omitted.
For a constant A > 0 and (fo, xg) € R”T1, we denote S;(fg,x0) = {x € R" :
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|x — xo| < v/A(to —t)}. If there is no confusion about the point (g, xo), we only
write S;.

PROPOSITION 3.1. Let Q C R” be open and let ¢ : [0, T] x @ — R satisfy
Fp(t,x) —a” (t,x);0;¢(t, x) —a' (¢, x)d;p(t,x) —a(t, x)p(t,x) = F(t,x)
where a' is symmetric and satisfies
A8V E; < a it < NSV

for constants A, A > 0. Furthermore, let ai’, ak, a, and F be smooth functions
with

n n n
L+ > 18adY coy + Y lla¥llcoy + llallco) < K
@=0i,j=1 k=1

for some K > 0. Let (ty, xo) € [0, T] x Q such that So = So(to, x0) C Q. Then
there is a constant C depending on A, A, and K such that for t € [0, tg]

DS O12¢s,) + 119:dOIL2¢s,) + oD L2(s,) =

Cecf(ans(O)an(sO) 106 Oz 50y

t

10Oy + [ NPz, dr)

We need the following ODE estimate:

LEMMA 3.2. If Q C R” is open and bounded and y : [0, T] x Q@ — R? is smooth
and satisfies B%wk = wkfor some smooth wk : 0, T] x Q2 — R4, then

I Olla @ + 10: ¥ Ol @) = C€C’(||%/f(0)||H1(sz) + 19:¥v Ol a1 (@)

t
+/ €_Ct ||w([l)||H1(Q)dl/).
0

PROOF. Define for some ¢ > 0

1
Ee)) = 5 [ WP+ oyl + Dy + Dy + ¢
Q

and estimate using Holder’s inequality and Cauchy’s inequality

3, Ee(1)? < C(Ee(t)? + |w(®)ll g1 (g))-

Now apply Gronwall’s inequality and let & — 0. U
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3.4 Basic Estimates for WHLS
Define the total energy of the system (3.1)) as

Es(t) = 876 )lls + 10:6Olls+1 + 16 ls+1
F 10V (O lls+1 + 1Y @) ls+1-

PROPOSITION 3.3. Assume that ¢, satisfy the weakly hyperbolic linear system
(.1) on a time interval [0, T| and that for some s > | 5| 42 and K1, K2, A1 > 0

(3.2)

33 lls+r + 13evlisr + 197vlls + llells+r + 19, tlls+1 < K1,

1+ [L]s + [0: L]y + [M]g 41 + [Q1]s + [0: 01l
+ [Q2]s + [9: Q2] + [N]s + [0: N]; + [Pls41 = Ko,
and
(3.4 det({v4,vB)) > A1, det({tx,17)) > A1.

Then we have the estimate
t
Es(t) < CeCTEg(0)+C / U (@) ls + 18,05 + w@) | s41)dt,
0

where C only depends on K1, K, A, A1, A, and s.

PROOF.

(1) Set By = B1(0) € R” and B, = B,(0) € R”. Choose (ty, x9) =
(ﬁX,O). Recall from Sectionthat S; ={x e R" : |x — xo| < VA(to — 1)}
To avoid constants depending on S; when we apply the elliptic regularity estimate,
define Q& = B7/4(0). Then we always have By C S; C Q € By fort < t* :=

L_. We will first prove the estimate for t < ¢*.

27/A°

(2) Let B be a multiindex with 1 < |B| < s and 9 be a spatial derivative.
Note that by the Sobolev embedding theorem we have || - [|cx < C|| - || 12 ]+ 1+k-
Differentiating the system (3.1]) in a coordinate chart yields

(3.5a) 920Pp — LA9Pp = 0Pvd + 0P (L) — LA0P ¢ + 0P (N4 y)
+3(01'9) + 9 (039) =: 7

(3.5b) 2B y* = dPwk + 0B (M*y) + 88 (PFp) =: W*.

We want to apply the basic energy estimate Proposition [3.1]and the ODE estimate

Lemma to this system, and hence we must estimate the terms ||7]|;2(g,,) and

0] 71 (q)- We can do this using the Moser inequalities [11} chap. 13, prop. 3.7],

the Sobolev embedding theorem, and the assumptions, e.g.,

182 (NV) L2y < C(IN]s (1¥llcr + 19: ¥ llco)

+ [Nlco (W ls+1 + 19:v15))
(3.6) = Cl¥lls+1 +10: ¥ lls+1)
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10°(Lg) = LDl 1208, < C([L1as ) 19l c2(s2)
+ [Llc1(y) 19l gs+1(8,))
(3.7 < Cl#llgs+1(B,)-
The other terms are estimated similarly, and we obtain

19l L2s,) < Clvlls + Es),
1T g1@) < CUlwls+1 + @l gs+2) + Es)-

In order to estimate [|@|| ys+2(q) We take some multiindex B" with [8’| = s. By
the elliptic regularity estimate [3| theorem 1, 6.3.1] and the equation (3.1) for L¢,
we can estimate

192 ¢l 2y < C (1L llL2(my) + 1 lls+1)

< C(ILglls + 110% (L) — L3P ]l 125y + IS l5+1)
(3.8) < C(|[vlls + Ey).

Applying the basic energy estimate Proposition[3.1]to (3.5a) and the ODE estimate
Lemma[3.2]to (3.5b), we obtain

(3.9) 10,0864 ()IL2m,) + IDF A (D) 128y + 10264 D) 1208, <
CeC'Es(0) + C f LS (o) s + Esdr
and ’
3.10) [0Py* Ol g1 (myy + 19P 99 Oll g1 sy <
CeClEy(0) + C /0 S (Y 1 + [0l + Es@ Y

(3) We also need the terms ||8%¢||Hs(31) + [10:@ || gs+1(B,) on the left-hand
side of the estimate in order to use Gronwall’s inequality later since they appear
in the energy. Therefore we differentiate the wave part (3.5a) additionally with
respect to time

920,084 — L49,0P
= 9,080 + 08 (3, L4¢) + 3P (L43,:9) — L49,0P ¢
+ 020, 01'¢) + 0% (019:0) + 0% (9, 05'v)
+ 08 (049,9) + 98 (3, N4y) + 0B (N4d,y) =: 7.
We estimate similarly as above
1Bl2cas) < CUBIs + I8l arss2cay + 1029 s (e + Es).
For ||| grs+2(g) we use (3:8). We use the equation for 871 to estimate

1029 | s (By) < C(|wlls + Es).

(3.11)
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Applying Proposition [3.1]to (3.11)), we obtain
3.12) 870 9(0)| 2, + 1D3:0P POl L2(8,) + 19:P D)l 28, <
t
CeC'Eg(0) + C f eS80l + o @)l + w @)l + Es(¢))dr'.
0

(4) We now sum estimates (3.9), (3.10), and (3.12)) over all coordinate charts
and all 8. The case B = 0 works the same except that the term estimated in (3.7)
vanishes. Due to the assumed bounds (3.3) and (3.4) on v and 7, we can compare

norms taken on Bj and norms taken on B;. We can then apply Gronwall’s lemma

to obtain our estimate for ¢ < #X The estimate for arbitrary ¢ follows by an

iteration. 0

PROPOSITION 3.4. Assume that ¢, satisfy the weakly hyperbolic system (3.1)) on
a time interval [0, T'| and that for some K1, K2, A1 > 0

IWlco +13:vlico + 187vlco + llzlco + 13czlico < Ki.

(3.13) 14 [Llct +[9:L]co + [M]c1 + [Qilco + [9: @il co
+ [Qz]co + [at Qz]c() + [N]CO + [atN]CO + [P]Cl < K>,

and

det({(v4,vB)) > A1, det({tx,17)) > A1.
Suppose further
(3.14) I¢llc2 + 19:@llc2 + 1¥licr + 10:¥llcr < K3
and

[vlico + [wllco = K4
for some K3, K4 > 0. Then for any s > 0 we have the estimate

Es(t) < CeC sup ([107vlls + 10 lls41 + I lls41 + lTllstr + 10 Tllsr1 + 1)
[0.1]
+ CeC1E (0)

t
e /0 CO (olls + 13,0ls + Twllssr + [L],

+[0: L] + [Q1]s + [0: O1]5 + [Q2]; + [0: 02,
+ [N] 4 [0 Ny + [M]g4q + [Plygy )dt’

where C depends only on K1, K>, K3, K4, A, A1, A, and s.
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PROOF. The strategy of the proof is very similar to the proof of Proposition[3.3]
We just use the assumptions (3.13) and (3.14) instead of the Sobolev embedding
theorem in our estimates, e.g., replace (3.6) and (3.7) by

107 (Lg) — LOP @l 128,y < C([L1as(my) 19l c2(8,)
+ [Llci sy 1@l ms+18,))
(3.15) < C([LlgsB,) * @1l gs+1(By))s
102 (NI L2(8y) < C(INT; (W ller + 19:% [l co)
+ [Nlco (I1¥lls41 + 119:¥ ]15))
< C(INTs + 19 541 + 13: ¥ [ls).

The term

(3.16) sup (197 vlls + 19:vlls+1 + Ivlls41 4+ ITlst1 + 19 Tlst1 + 1)
[0,]

arises when we compare norms taken on B; with norms taken on B; since we do
not assume that we have bounds on these terms here. O

Remark 3.5. As said in the last lines of the previous proof, if we had a bound

Wlls + 18evlls + 197vls + Iells + 13:lls < Cs

for all s > 0 and constants Cg > 0, we could remove the term (3.16) from the
estimate.

If we do not use the assumption ||@¢||c2 + [|0:¢]lc2 < K3 in (3.13) and in the
related estimates and assume P = 0, O; = 0, O, = 0, and M = 0, we obtain
the estimate

t
Eg(1) < CeCTE5(0) + C / O (olls + 1800l + Nlwlls+1 + [L]s 1]l c2
0

+ [0: Ll Illcz + [Lls 10:llc2)dt’.

We will apply this modified estimate to estimate the time of existence in Section [6]
The idea behind this is that [L]; + [d;L]; might not be small and so it needs a
factor that is small if ¢ is small.

3.5 Solvability of WHLS

PROPOSITION 3.6. Let Vg, Vi € C®(N,V)and W € C°°(J0, T]|xN,V) be given.
Then the system (3.1) has a unique smooth solution V on [0, T|xN with V(0) = Vy
and 3, V(0) = V1.

PROOF. Write locally V = ¢4vy + wkrk and W = v4vy + wkry. Since

3:V(0) = 3:0A(0)v4(0) + 3, ¥ ¥ (0) £ (0) + ¢ (0)3rv.4(0) + ¥*(0)d, 7 (0)
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our initial conditions in terms of ¢g = ¢4(0), y& := y*(0), ¢ := 3,04(0),
and y¥ := 9,9%(0) are ¢ = (Vo, vp(0))vB4(0), y& = (Vo, 7,(0))7%!(0), and
o = (Vi ve(0)B4(0) — ¢§ (3:vc (0). v5(0))vP4(0)
— V& (9, 14(0), vp (0))vB4(0),
vt = (V1. 5(0)) 7% (0) — ¢ (3:v4(0). 7 (0)) % (0)
— Y3 T (0), 7 (0)) 7% (0),
with V48 = ((v4,vg))~! and Tkl = (e, )~ L

We will solve the system (3.1)) for ¢4, Yk by a simple fixed point iteration. Start
with (]5("(1)) =0, W(ko) = 0. Then solve inductively

(3.17)

07 D(mr1) — LA Pom+1) = v + NWim) + OF bimy + 05 V(m),

(3.18)
3%Wé€m+1) =w* + MkW(m) + Pk¢(m),

with initial conditions

‘Pgn.;.l)(o) = ¢64v Wécm+1)(0) = W(])c,
0Py = b1, 9V iy (0) = ¥f.

The system (3.18) only consists of linear wave equations for ¢3n 41y and linear

ODE:s for wg‘m +1) The ODEs have a unique smooth solution on [0, 7']. The wave
equations can be solved locally in space and for a short time due to finite speed
of propagation. The coordinate invariance of the system implies that V{;,,;1) =
qﬁ(“:n +nva Tt Wé‘m +1)Tk is well defined for small 7. This can be iterated such that
we get a solution on [0, T]. B

The differences qﬁgnﬂ) = ¢13n+1) —¢61n) and W(kmﬂ) = wg(m—}-l) —wg‘m) satisfy
a WHLS. Using Proposition [3.3|it is easy to check that the iteration converges to a
unique smooth solution. U

3.6 Tame Estimate for WHLS

PROPOSITION 3.7. Let the assumptions of Proposition [3.3| be satisfied with so >
|2] +2. Let locally V = ¢pAvs + y*r and W = vAvyg + wk oy, Let V(0) = s,
3,V(0) = V; with

[Vollso+2 + IVillso+1 = K3
for some K3 > 0. Suppose further

Wliso+2 < K5 and  [[Wliso1 + 10:W sy < Ka
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for some K),, K4 > 0. Then for any s > 1 we have the estimate
IVIlls < C(IVolls+1 + IVills + WLz 45 + L 215 + M1
+ IV 245 + TPIs + Q11 245
+ [[Qall 245 + IVIls+ 12142 + Tllst12)42 + 1)
with C depending on K1, K», K3, K4, A, A1, A, s, and T.

PROOF.

(1) We first show that the assumptions of Proposition [3.4] are also satisfied.
Define gl = (Vo, vp(0))vB4(0), v = (Vo, 1(0)) 2% (0), and

¢1t = (V1.v8(0))vB4(0) — ¢ (3,vc (0), v (0))vB4(0)
— Y& (0,7 (0), v (0))E4(0),

vt = (V. 7(0) 7% (0) — ¢¢'(9:v4(0). 7,(0)) =¥ (0)
— (97 0). 7 (0)) % (0)

(cf. BI7)). We can represent v4 = vAB (W, vp) and wk = ¥/ (W, 7;). Using
first Moser inequalities, the Sobolev embedding theorem, and the assumptions, we
obtain the bounds

Pollso+2 + lP1llso+1 + [[Vollso+1 + 1V1llso+1 =<
C(IWllso+2 + IV1llsg+1) = C

and
[vllso + 10:vllso + lwllso+1 < CUIW llso+1 + [10:Wlso) < C.

So by the Sobolev embedding theorem and Proposition 3.3 we have the estimate
(3.19) Ipllc> + 19:llc> + 197¢llcr + [3evllcr + ¥ ler < C.

Hence together with the other assumptions and the Sobolev embedding theorem,
the assumptions of Proposition [3.4|are satisfied.

(2) We will first show by an induction on s that
(3.20) ll#llls + lll¥llls = CRs
with
Rs = lgolls+1 + I¥olls + llprlls + 1¥alls + Mvlll 2+
+ wllls + Mvlll 2 j4s+2 + Mzl 2 4542 + 1L 2) 45 + [IM]]
N 245 + IPUs + Q1)1 2 )45 + [Q2]l 245 + 1.

The case s = 1 is trivial in view of (3.19), so assume (3.20) for some s > 1.
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(3) We have to prove the estimate

T . T .
Y R O R L7 Ty

for j =0,...,5 4+ 1. To this end we do an induction on j as longas j < s + 1.
For the base cases j = 0 and j = 1 we apply Proposition (3.4

19705 + 13:d O ls+1 + IO ls1 + 1:W @ lls1 + 1Y @) lls+1

< C sup ([87vlls + [13evlls1 + [Vils1 + Nelsr1 + 18eTls+1 +1)
[0.T]

+ CE(0) + C/O [vlls + 10:vlls + lwlls+1 + [L]g + [0:L]s + [Q1];
+ [81Q1]s + [QZ]s + [81Q2]s + [N]s + [alN]s

+ Mgy + [Py dt.

We neglect some unnecessary terms on the left-hand side, square, and integrate this
estimate.
To estimate E5(0) note that we can estimate ||0?¢(0) | s using the equation by

1876 O)s = ILO)$O)s + [N O (05
+ 11210)¢(0)[ls + [[Q2(0)¥ (0[5 + [v(0) ;.
We then estimate
IL0)¢ ()]s = CULO0)]s ligollcz + [L(O)co ligolls+2)
= C([Lli¢s + llgolls+2)
< CUILY 2 ) s+41 + Idolls+2)-
The other terms can be estimated similarly and hence E5(0) < CRg41.

We estimate

[SUTI“)] (19215 + 19vlls+1 + V51 + Nells41 + 1BeTllst1) <
Oa

Clvlles+2 + lizllles+2) = CUIVIIT 2 4543 + Tl 2)4+5+3)-
This yields the base cases for the induction on j .

(4) Assume that (3.21) holds true for some 1 < j < s+ 1 and for j — 1. Using
the equations we can write

T T
fo 19 g2 dr = /0 107 (L + 016 + Q2w + Ny + )2, d.

T ) T .
/0 107 2 dr = /0 1607 My + P+ w2 dr.
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Now it is almost straightforward to estimate each term on the right by C R? 1
using the first Moser inequality in space and time, the assumptions, and the in-
. . . T qj—1 2
duction hypothesis. The only term that needs more care is [, [07  (L$)[5_ j dt
since an application of the Moser inequality in space and time would mix space
and time derivatives and leave us with a term |||¢|||? 41~ Butif we first expand

8{_1 3P (L¢) with || = s — j using the product rule, we see that at most s — j + 2
space derivatives fall on ¢ and s — j + 2 < s + 1. We can take out this critical
term, which is easy to estimate by

T . T
[ T Ny R T

in view of the induction hypothesis (3.21)) for j — 1. The remaining terms can be
estimated by [||¢|||s + |[L]|; using the Moser inequality if we apply it for DL or
d;L and ¢. This proves (3.20) for any s > 0.

(5) Itis simple to rewrite (3.20) in terms of Vp, V1, V, and W using the Moser
inequalities and the representations v4 = vAB (W, vg) and w* = (W, ;). O

4 Short-Time Existence

THEOREM 4.1. For every smooth immersion ug : N — M with Vol(ug) = Volg
> 0 and initial velocity uy € I'(ugTM), there exists ¢ > 0 and a smooth family of
immersions u : [0,&) x N — M solving the Cauchy problem

Vo, deu = L(—H () + gl)v forall t € [0,),
u(0) = uo,
0:u(0) = uy.

Remark 4.2. Here we only prove existence. Uniqueness is a special case of our
stability estimate Theorem [6.1](see Corollary [6.2)).

Our equation is a quasi-linear second-order partial differential equation.
As we will see in the proof, the linearization (4.1)) is not strictly hyperbolic. Due to
the diffeomorphism invariance of the mean curvature, only the normal part of the
linearized operator is a wave operator. For Ricci flow and mean curvature flow, a
suitable family of reparametrizations has been used to remove such a degeneracy.
This procedure is known as DeTurck’s trick [2]. Here this does not work since,
due to the d [i-term the action is not diffeomorphism invariant and the evolution
of the reparametrizations does not decouple from our equation. It is not clear how
this degeneracy can be removed. We therefore work directly with the degenerate
equation and use the Nash-Moser inverse function theorem to obtain short-time
existence. The strategy of the proof is similar to the short-time existence proof
for the Ricci flow given by Hamilton in [5]. For background on the Nash-Moser
theorem we recommend [4].
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4.1 Euclidean Case

We will first prove Theorem for the simpler case M = R”*!. The modifica-
tions necessary to generalize this result to arbitrary target manifolds are indicated
in Section 4.2l

PROOF OF THEOREM [.1| (EUCLIDEAN CASE).

(1) THE STRATEGY. Let F be the Fréchet space C*®°([0, T] x N, R”*1) and
let F be the Fréchet space C (N, R”*1). We define the open subsets

U = {u € F,det(g;;) > Oforallt € [0, T]},
Up = {u € Fo,det(g;;) > 0},

and on a subset U’ C U to be chosen later, we define the operator 3 : U — F by

v dus 0
B = Vi o = (—H(m + W) .

Of course, P(u) is a vector field along u but we identify TM(X)R""'1 with R?*1 in
the usual way.

From the initial data and the equation we can compute all time derivatives that a
solution must have at # = 0. Now by Borel’s lemma we can find # : [0, T] x N —
R”*1 with these time derivatives and #(0) = uo. By making 7 small we can
assume that 3(i7) is defined. Then f := (i) satisfies 8]t‘f_‘t:0 = 0 for all
k=01,....

We shall use the Nash-Moser inverse function theorem to show that the operator
Z .U — F x Uy x Fy defined by

P (u) = (PBu),u(0), 9,u(0))

is locally invertible in a neighborhood of u. This implies that there exists a neigh-
borhood W of (i1, ug, u1) such that we can solve &(u) = (f,uo,u1) for every
(fitig, 1) € W. Weput f = 0 fort < 0 and define f.(t) = f(t — &) for
0 < & < gg. If ¢ is small enough such that ( f¢, ug,u1) € W, then we get a so-
lution of P(u) = f, with the right initial conditions. Then in fact B(u) = 0 for
0<t<e.

(2) LINEARIZATION. To apply the Nash-Moser inverse function theorem to
the operator &2, we have to analyze its linearization. Therefore let V' € F and let
u : [0,T] x N — R”*1 be a smooth family of immersions such that Vol(u) > 0.
Decompose V = ¢v + ¥ u. Then we can write DP(u)V = WO + Wkj,u
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with
diis
¢——{A¢+|h| 6~ (VH.Y) =~ o )2/¢ »
0 :
+ (—H + Vol(u)) (divy + H¢)}
@.1) + (020, v) + 20, % (0w, v) + YF (020, v)

dps vk
a7 (1 g ) o=

+20,;0(0,v, 3ju)g’* + (%, d;u)g’*

wk = a2y* +

+ 20,9 (0, 07u, 3;u)g’* + ¢! (9%0;u, 0,u)g k.
To see this, let u, be a variation of u with d¢|,=ou, = V. It is well known that
—0¢le=0 H(ue) = A(V,v) + [h>(V,v) = (VH, V)
and
— ele=ov (ue) = —(Dele=ov (ue), dyu)g ™ du = (3, V, v) g du
= 0;(V,v)g"*du — (V,0;v)g" du = V(V,v) — (V, 0;u)h"* 3 u.

By [1} lemma 2.1] the variation of Vol(ug)~! is given by

s [ vdu,

~ Vol(u)?
N
and the variation of di; is given by

0

de

The decomposition of 8,2 V into normal and tangential parts is straightforward.

To check that (@.1)) is a WHLS, take the bundle V = NxR"*! 4’ = 1,d" = n.
Take vi = v and 73 = dru. Let ny be a partition of unity subordinate to the sets
x5, 1(B2(0)). Then @) is a WHLS with O, = 0,

_ d,lLt d,u/t
014 = _WVol(uV Z/nad)

du(ug) = (V,v)H +divVT)dpu.
=0

and obvious definitions of the operators L, N, M ,and P.

(3) ConcLUsION. Given (W, Vy, V1), the existence of a unique smooth solu-
tion V = ¢v + ¥k to @) satisfying V(0) = Vo, 3,V (0) = V4, is assured by
Proposition 3.6 Hence D 2 (u) is invertible.
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From [4, cor. I1.2.2.7] we know that a nonlinear partial differential operator is
a smooth tame map. But ‘¥ is not a differential operator in this sense because it
includes the Vol(u)-term. But we can write P (u) = ‘fi(u, Vol(u)) where ‘f3 is a
differential operator of second order in u and zeroth order in Vol(u). The tameness
and smoothness of the map u + Vol(u) can be checked easily by writing

t t
Vol(u) = Vol(ug) —i—/ d; Vol(u)dt = Vol(ug) —|—[ /(8tu,v)dut dt.
0 0
N

To make sure that D &2~ ! satisfies a tame estimate, we will apply Proposi-
tion We can estimate |[E]|L%J+s <C(l+ |||”|||L%J+s+3) for E € {L,M, N,
P, Q1, O»} using the Moser inequalities since at most third derivatives of u occur
in the operators. Also, by the third Moser inequality [11, chap. 13, prop. 3.9] if

detgij >A >0

IVllls412)4+2 = CA + llullls+15)+3)
lzlls412)42 = CA + lllullls+12)+3)-

Hence Proposition provides us with a tame estimate for D 2~ if we just
choose a neighborhood around the data such that its assumptions are satisfied. This
is always possible due to compactness of the domain.

Continuity of D 227! follows from the fact that C* satisfies the Heine-Borel
property and from the uniqueness of solutions to the WHLS. It follows that D 22 ~!
is a smooth tame map by [4} theorem I1.3.1.1]. By the Nash-Moser inverse function
theorem &7 is locally invertible, and this concludes the proof in the euclidean case.

g

4.2 General Case

The space E C C*°([0, T] x N, M) of time-dependent immersions from N to
the manifold M is a Fréchet manifold. For u € E the operator

= di o
Pu) = Vy,0,u — E(—H(u) + W)v
is a vector field along u. In order to employ a similar strategy as for the euclidean
case, we will in the following translate our problem to an equivalent problem for
maps in the Fréchet space C®([0, T] x N, R%).

By the Nash embedding theorem we can suppose that the ambient manifold M
is isometrically embedded into R4 by ¢ : M — R? for some d. We will in the
following derive an extrinsic form of the Euler-Lagrange equation similar
to the extrinsic form of wave maps (see, e.g., [9]) and the extrinsic form of the
evolution equation for magnetic geodesics [6].

Let ¢ be the closest point projection to (M) that can be defined on a neigh-
borhood

M=1{x+v]|xeiM), ve (T, |v| <8x)}
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of t(M) and is smooth there. Here § is a positive smooth function on ¢(M). Now
the second fundamental form of M is given by

Fup = BBt — Tlgdu.
This is normal to (M) and so D (¢ (p))(ﬁaﬂ) = 0 for p € M. Sincet = mpr ot
we have
“2) 5a5,3t —Fzﬁgyt = DADBnmﬁﬂLAéaLB + Dnm(gagﬂt —F},’lﬂéyt)
= DADBnmaﬂtAaaLB.

Here D /4 is the derivative in the direction of the canonical basis vector e4 in RY.
Now if u : [0, T]xN — ¢(M) we can write u = to with/ : [0, T] x N — M.
We write

dp,, ij

and compute using @])
)y vt)

d N
— DADBnM(u)(B;uABtuB — diﬁt(u)g” BiuABjuB)

. = ~ th ~

Hence u : [0, T] x N — M solves (EQ) if and only if u : [O, T] XN — (M)
solves

0
Vol(u)

4.3) Cu — d—ﬁit(u) v(u)
du

d ..
- DADBJTM(M)(atuAatuB _ %(u)g” a,-uAajuB) _o.
n

We will extend this equation for functions u : [0, 7] x N — M c R¥ that do
not necessarily map to ¢(JM). We will do this in such a way that the linearization
is a WHLS in order to apply the Nash-Moser argument for this new equation. Let
Tst (u) be the projection onto the normal space of X; = u(¢, N), i.e., Ts L w)V =
V — g (V,0;u)d;u for V R?. We replace v(u) by 7(u) = nZtL(u)v(nM ou),
i.e., the projection onto the normal space of X; of the normal vector v(7yg o u) in
t(M) of the map mygou : [0,T] x N — ¢«(M). If u is close enough in C! to a
family of immersions that map to ¢ (M), then 7y o u is also a family of immersions
and v(my o u) is defined. By definition v (u) is normal to d;u and v(myy o u) is
an element of Ty, )¢ (M). We define Vol(u) = Vol (7 o u). We define further
My (0qu, dgu) = nzti(u)DADBnM(u)aauAaﬂu .
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Then we want to solve the equation

dur o
d i Vol(u)
subject to given initial conditions.

Assume u solves {@.4). It is clear by definition that if u maps to ¢(M), then we
have solved (@.3). We will prove in the following lemma that if ¥ maps to ¢ (M)
initially and the initial velocity is tangent to ¢ (M), then u maps to ¢(MM) for all time.

(4.4) Cu

LEMMA 4.3. Letu : [0, T|xN — M c R4 be a smooth solution of equation @4)
with u(0,x) € t(M) and 9;u(0,x) € Ty (o,x)t(M) for all x € N. Then u(t,x) €
L) forall (¢, x) € [0, T)xN and it = 1~ ou solves (EQ) with 1(0) = 1~ ou(0)
and 3;11(0) = D=1 (3,u(0)).

PROOF. Define nj\J;E(x) = x — my(x). Then clearly anvf = 1— Dmy and

DADBJTJ\J/‘[ = — Dy Dpmy. We compute
d ..
O (5t ou) — diﬁt g7(8;9; (w3 o u) — Fikjak(nj‘& ou))

0 dit Lo
= ~——= Dcry(u)v~(myou
Tien 4 2¢ M@)v™ (T o )

o du
~ o) da o). dngtdi(ri o)

4.5)
C Aq B Al ija.., Ao . B
— Deny(u)DaDpry(u)| 0,u”0,u —d—Ag diuoju
i

— (DaDpmc (), dju)gt! (8tuA8tuB - f{—’“ggifaiuAa,-uB)ak(m o u).
If u maps to ¢ (M), then (@.9) is a linear wave equation for njﬁ[ o u because then we
know that Dcnjjv-[(u)vc(mv[ ou) = 0and Dch(u)DADBnﬁ(u)aauABBuB =
0 since then DADBnﬁ(u)BauAaﬂuB is normal to ¢(M). If u does not map to
t(M), then we can estimate these terms in terms of the distance |7rj\J;[(u)| of u to
t(M). Hence if we define the energy

1 1 1 -
e(t) = §/|a,(n3¢[ou)|2du+E/W(nfv-[ou)ﬁdu, +§/|7rJJv‘[ou|2du,
N N N

it is not hard to check that d;e(t) < Ce(t). Here the constant C may also depend
on u. Since e(0) = 0 we conclude by Gronwall’s lemma that e(¢) = 0 for all
t €[0,T]. O

PROOF OF THEOREM [.T|(GENERAL CASE). To conclude the short-time exis-
tence proof in the general case, we just note that the linearization of (4.4) can be
written as a WHLS. For the bundle V we take V = N x R. For 1 we simply
take dru and for v4 we take a local frame for the space orthogonal to 7z with
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v =9V = TsL (u)v(my o u). We also remark that if u, is a variation of u with

8 |6‘ OMS - V ¢((X) (a) + w(a) (a) then

dsVol(u) = /(v(mv[ ou),V)du;
- Z/na vy o). va) 8 2 4

die
+Z/na<v(mou>,n>w@)d% an

where 7 is a partition-of-unity subordinate to the sets x;!(B2(0)). The variation
of the volume only occurs in the v;-part of the system.

ItV = 1/fk 7j is tangential, then only the variation of du, gives spatial deriva-
tives of V' since all other terms are diffeomorphism invariant. But this term always
accompanies a normal term. This is the reason for defining IT and vV with the
additional projection to the normal space of X;.

The other conditions are easy to check, and we conclude that the linearization
of is indeed a WHLS. The Nash-Moser argument applies, and this concludes
the proof of Theorem[d.1]in the general case. U

5 Continuation Criterion

THEOREM 5.1. Letu : [0, T) X N — M be a solution of (EQ). Assume that for all
tel0,T)

lu@llcs + 10:u@)lcs = K

for some K > 0. Then there exists § > 0 such that u can be extended to a solution

u:[0,T + 8] x N — M of (EQ).

Remark 5.2. This statement can be formulated as a singularity criterion: If the
solution u cannot be extended beyond time 7', then ||u| ca + ||0;u||c4 becomes
unbounded as t — T.

DEFINITION 5.3. Letu : [0, T) x N — M. Define
o = (0;u,v), Si = (0ru, dju),
Bi = (Vo 00u,v),  Bim = (Vy,8ru, Omu),
where Vaia,ua = 0d;0,u% + F‘;y(u)a,-uﬂatuy. Hence we have
d;u =ov+ S'9;u and Vaia,u :,Biv-l—Bikaku.

Remark 5.4. As in Section4.2lwe assume that : : M — R is an isometric embed-
ding, and if we identify M and ((M), we can assume M C R¢. When we consider
norms of u, we will take the norm of u : [0,7) x N — R? as a map into R,
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We assume that the metric g of the ambient manifold M and all its derivatives are
uniformly bounded in local coordinates. We assume that the second fundamental
form of M and its derivatives are uniformly bounded.

LEMMA 5.5. Let u be a solution of (EQ). Let
(¢™)a=1

.....

.....

.....

(Bi™)1,m=1,..., n’(rfj_f{cj)i,j,kﬂ n):

where fl]; are the Christoffel symbols of a reference metric go that has d ji as its
surface element. Then (¢p4) and (wk) satisfy

2pA(t.x) — LAp(t,x) = FA(x,¢. Dp.d; . V. DY, 3,9, Vol(u)),
8$wk = Gk(x’ ¢’ D¢’ al‘¢’ W, 8tw’ VOI(M))»

where F4 and G* are smooth functions in all their arguments such that if | ¢ || c1 +
10:bllco+ I1¥lict + 110: ¥ |lco < K and det(g;j) > Ay for some K, Ay > 0, then
FA and G4 and all their derivatives stay bounded. The operator L is given by
Lo = ‘;—%Aqs.

PROOF. The proof is a tedious calculation. We just motivate it by the follow-
ing informal consideration. If d, is a derivative, then differentiating our equation

PB(x,u) = 0 gives
0= DyB(x,u){dqu} + DxeP(x, u).

For instance, with 9, = 9, we get the evolution equation for o and S’. Regarding
the structure of the linearized operator DB as in (4.1)), it is clear that the normal
part o satisfies a wave equation and the tangential part S* satisfies an ODE, which
means that no spatial derivatives of S* occur in the equation for S*.

Differentiating once more using dg, we get

0 = DyB(x,u){0gdqu} + D%‘B(x, u){0qu, dgu} + Dy DxaP(x,u){dgu}

+ D, s Dy P(x,u){0qu} + D s Dxe’P(x, u).

Taking dgdq = Vj,d; and decomposing V. d;u = —h;;v + I’ikj dxu, we obtain
a wave equation for /;; and an ODE for l"ll; With Va ,0i we obtain the evolution

equations for ; and B;*. Since we can always express

Bi = (Va, (0v + S¥0pu), v) = di0 = S¥hyy,

we can eliminate all occurrences of f8; in the other equations and do not need the
evolution equation for 8;. Since 13 is a second-order operator no more than third
derivatives will occur due to the decomposition into normal and tangential parts.
Third derivatives can always be expressed in terms of at most first derivatives of
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the quantities Du, o, S i h; s Fik]-, and Bik . The claimed structure of the system is
apparent since the leading-order term is always the linearized operator.

Note that due to the assumption det(g;;) > A1, terms such as g and v will not
blow up and Vol(z)~! is bounded in view of the energy conservation. g

LEMMA 5.6. Letu : [0, T) x N — Mwith || d;ullc1 + |ullc1 < K for some K >
0. Then the metrics gij(t) for all different times are equivalent, and they converge
as t — T uniformly to a positive definite metric g;; (T), which is continuous and
also equivalent.

PROOF. This follows from [5, lemma 14.2] using the assumed bound on
atgij = (vataiu,aju) + (8iu,vataju). ]
PROOF OF THEOREM[S.Tl Lets > [ 5] + 2.

(1) ESTIMATING THE OPERATOR L. The coefficients of L = %A con-
tain g/, Christoffel symbols, and derivatives of Christoffel symbols. Lemma
implies det(g;;) > A1 for some A1 > 0. By the Moser inequalities we can estimate

[Lls = C( + [lulls+3)

with C depending on K since L contains no more than third derivatives of u.
Clearly, also by the assumption, [L]-1 < Ck. Similarly, [0;L]; < C(1+|u|s+3+
[9rulls+3) and [0; L]c1 < Ck.

(2) APPLICATION OF THE ESTIMATE FOR WHLS. In order to apply Propo-
sition 3.4 we have to specify the vector bundle V and the basis in which the system

from Lemma 5.5|is a WHLS if we consider the right-hand side FA(---), G¥(--)
as fixed functions. For the bundle we take

V=ONxR)®(T*N®T*N)® (N xRY) & (N xR%) @ T*N)
STN®(T*N®TN) @ (T*N® T*N® TN).

Let (xq, Uy) be a local coordinate chart with canonical tangent vectors dy and dx’
its dual covectors. For v4 we take

.....

and for 7; we take

{Tkbk=1....d+nd+n+n2+n3 = 1(0,0,€4,0,0,0,0)4=1,. 4.

.....
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The system for ¢, ¥ from Lemmal[5.5)is a WHLS with M = N = P = Q; =
0> = 0 and right-hand side F4, GK. By assumption and Lemma the right-
hand side is bounded. It is easy to check using the definitions of ¢ and v and the
assumptions that

Illcz + 19:¢llc2 + ¥ llcr + 19:¥llcr = Ck.
As in (3.2), define

Es(t) = 070, +19:dOlls+1+ | Olls+1+ 189 @ lls+1 4+ 1 @ lls+1-
Hence we can apply Proposition [3.4]to obtain

t
Es(t) < Cec’(l + Es(0) +/0 IEC- s 4+ 10 (FC--))lls

GG lsxt + [L]; + B L], dz’).

(3) ESTIMATING THE RIGHT-HAND SIDE. We have to estimate || F(---)]s.,
9 (F(---)s. and |G(---)|s+1. By assumption
t
Volo—i-[ /(E),u,v)d,utdt/
0
N

[Vol(u)| = <C

and

<C.

19, Vol(u)| = ' f (e, vy
N

By assumption and from Lemma(5.5] we can apply the third Moser inequality [11]
chap. 13, prop. 3.9],

IEC- s HIGC D s+1+19:(FC- s < CU+Es+ I ls+2+ 1079 ]15)-

Using the equation for 3?1/, we can estimate

1379 1ls < CIG(--)lls < C(1 + Es + [¢lls+2)-
We use the elliptic estimate and the equation (similarly as in (3.8)) to estimate

[#lls+2 = CUILANs + lI@lls+1 + [L]s)
< C>197¢lls + IFC)lls + I lls+1 + lulls+3 + 1)

< C(1 + Ey).
The initial energy E;(0) is fixed. So we obtain the estimate
t
B = Crac(i+ [ 14 (),
0
‘We use Gronwall’s lemma to conclude
Ip @) ls+1 4+ 10: D lls+1 + 1070 @)lls + 1Y D lls+1 + 10:¥ ()]s+1 < C
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forall 0 < ¢ < T. This can be done for any s > [ %] + 2. This implies that all
derivatives of u are bounded uniformly in .

It is then easy to see that u(¢) and d,u(¢) converge in C°° to a smooth immer-
sion u(7T) and corresponding velocity d;u(7). Then we can apply the short-time
existence result Theorem 4.1l to extend the solution. O

6 Stability Estimates

Assume that we have a solution i : [0, 7) x N = M of (EQ). For instance, this
could be one of the special solutions in Section with 7 = oo. All quantities
with ~ will refer to i, e.g., ;; is the second fundamental form of #. We intend to
prove the following theorem:

THEOREM 6.1. Lets > | 5] + 2, T eRTU {oo}, and u : [0, T)xN —> Mbea
solution of (EQ). Assume forall t € [0, T)
@) 54 + 197 [543 < K, det(Zij) = A1, and g7 > 2

for some constants K, A1, A > 0. There exist constants c1, ¢z, and g9 > 0 such
that ifug : N — M is an immersion and uy : N — uiTM is a vector field along
ug with

o — u(0)|[s+a + llur — 9 (0) [543 < ¢

for some 0 < ¢ < g, then there exists T > min{f, c1 log (%2)} and u : [0, T] x
N — M that solves

Vo, deu = ‘ﬁ,—‘g(—H(u) + Gl )V forall t € [0, T],
u(0) = uo.
d:u(0) = u;.
Forallt € [0, T] we have the estimate
e (6) = &) |5+ + [10u(t) = 9,7 (0) [543 < Cee
with C depending on s and i.

COROLLARY 6.2 (Uniqueness). Letu : [0, T] xN — Mandu : [0, T] x N — M
be solutions of (EQ) with u(0) = %(0) and d;u(0) = 0;u(0). Then u(t) = u(t)
forallt €10, T].

LEMMA 6.3. Let u be a solution of (EQ) and it as in Theorem[6.1] Let
@D a=1,t4nz = (0 = 5). (hij = hij)ij=1....n)

k A ~A 4 ~A
WV Vk=1...d+nd+nin2+n’ = (W =0 a=1_a. Qiu = 0;0%) i=1,..n .

A=1,....d
(SJ _S])j=1 ..... ny(Blm_Blm)l,m=1 ..... n»
k T~k
(T = Ti)i jk=1,m)-
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Then (¢p4) and (wk) satisfy
PpA(t, x) — LAp(t,x) = FA(x,p. D, d, ¢, ¥, D, 3,9, Vol (u) — Vol (i),
2yk = GK(x, ¢, D, ;. . d: 1, Vol(u) — Vol (i),

where F4 and G* are smooth functions in all their arguments such that if | ¢ || c1 +
l0:dllco + ¥ llct + 10: ¥ ||co < K and det(g;j) > A1, then FA and G4 and all
its derivatives stay bounded. Furthermore, F(x,0) = 0 and G(x,0) = 0 and the

operator L is given by L¢ = %Ag(t)¢-

PROOF. Simply subtract the evolution equations for all the quantities corre-
sponding to # from the evolution equations for the quantities corresponding to u.

Replace everywhere, e.g., 0 = G + (0 — 0), to write the equations as equa-
tions for the differences. Then the claimed structure follows as in the proof of
Lemmal[3.3l O

PROOF OF THEOREM Asin (3.2), define

Es(t) = 02t )lls + 19:¢ (. )lls1 + ¢, )lls41
F 109 (1) lls+1 + ¥ (@, ) lls+1
with ¢ and ¥ from Lemmal6.3] Define
Es(t) = Ex(t) + [Vol(u(1)) — Vol(@ (1))

Choose a constant ¥ > 0 such that gij > A2 > 0 and det(g;j) > A3 > 0if
Eg(t) < k. Assume that Eg(f) < k. We will prove under this assumption that
Es(t) < %K aslongast < min{7T, ¢ log(<2)}.

Using the Sobolev embedding theorem, we see that the assumptions of Proposi-
tion [3.4] are satisfied. With the modifications of Remark [3.5] we obtain

Es(t) < Ce€TE4(0)

t
+C/0 OG5 + 10, F s
GG lstr + L] 9]z + BeL], plle

+[LIs 10:lic2)dt’.

We carry out the estimates of the right-hand side using the third Moser inequal-
ity, similarly to the proof of Theorem 6.1} Since F(x,0) = 0 and G(x,0) = 0, we
do not need the constant term on the right-hand side

6.1 NFC-)ls + 18 (FC-Nlls +NGC-)lls+1 =
Ci(Es + [ Vol(u) — Vol(i) [lo + [|0; Vol(u) — d; Vol(it) o).
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We also have
[L]s I¢llc2 + [0:L]s 1@l c2 + [L]s 19:dllc2 < Ce (1 + Es) Es < Ce Es.
Now 9; Vol(u) = [,(d;u,v)d; and hence
|0; Vol(u) — d; Vol(%r)| < C E.

We use the fundamental theorem of calculus to estimate
(6.2) [Vol(u) —Vol(&)| < Ce€?|Vol(ug)—Vol(i(0))| 4 C f t eCUTE(1"dt'.
Adding and (6.2), we get ’

Es(1) < Ce€TEg(0) + C /Ot eCCTE (dt'.

We apply Gronwall’s inequality to see that
(6.3) Es(t) < CeCe.

Hence if t < C~!log (ZLCS), then E(f) < %K. Definec; = Cland ¢, = ok
We need ¢ > 0 and hence ¢ < c¢».

If we choose &g such that &g < ¢» and such that E s(0) < «, then the bootstrap
principle (e.g., [10, prop. 1.21]) shows that our solutions exist and (6.3)) holds as
long as 1 < min{T, ¢1 log (). O

If we include the difference of the ambient metric to the euclidean metric, we

obtain a similar stability result. The proof is similar to that of Theorem [6.1]and is
omitted.

THEOREM 6.4. Let M = (R"*1, %) and let M = (R, 8) with the euclidean
metric § on R*"1. Let s > |51 +2and i : [0,00) x N — M be a solution of
(EQ), and let for all t € [0, 00)

(@) Nls+a + 19:57() [543 < K and det(Z;;) = Ay and 7 > A
for some constants K, A1, A > 0. There exist constants c1, ¢, and &g, &1 > 0 such
that if ug : N — M is an immersion and uy : N — ugTM is a vector field along
ug with

o — u(0)|[s+4 + [u1 — 0:;u(0)[[s4+3 < &

and

Ig = 8llcs+s =&

for some 0 < ¢ < gg and 0 < &' < &y, then there exists T > ¢y log (C—z) and

ete’
u : [0, T] x N — M that solves

Vs, 00u = %(—H(u) + oty v forall t € [0, T),
u(0) = uo,

d:u(0) = uy.
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Forallt € [0, T] we have the estimate

lu(t) — () |54 + [9:u(t) — 3 H(1) | s+3 < CeC' (e + &)

with C depending on s and u.
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