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Magnetosome biomineralization and chain formation in magnetotactic bacteria are two pro-
cesses that are highly controlled at the cellular level in order to form cellular magnetic dipoles.
However, even if the magnetosome chains are well characterized, controversial results about
the microstructure of magnetosomes were obtained and its possible influence in the formation
of the magnetic dipole is to be specified. For the first time, the microstructure of intracellular
magnetosomes was investigated using high-resolution synchrotron X-ray diffraction. Signifi-
cant differences in the lattice parameter were found between intracellular magnetosomes
from cultured magnetotactic bacteria and isolated ones. Through comparison with abiotic
control materials of similar size, we show that this difference can be associated with different
oxidation states and that the biogenic nanomagnetite is stoichiometric, i.e. structurally pure
whereas isolated magnetosomes are slightly oxidized. The hierarchical structuring of the mag-
netosome chain thus starts with the formation of structurally pure magnetite nanoparticles
that in turn might influence the magnetic property of the magnetosome chains.
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1. INTRODUCTION

Biomineralized nanoparticles are as diverse as the func-
tions they fulfil in the multiple organisms in which they
are formed [1]. The organisms control the synthesis
and organization of hybrid materials to achieve higher
functional properties [2]. In magnetotactic bacteria,
one of the simplest biomineralizing organisms, the
genetic blueprint information is translated into complex
inorganic and cellular structures, i.e. the magnetosomes
[3,4]. Prokaryotes have developed a genetic apparatus
enabling them to synthesize monodisperse crystals of
magnetite (Fe3O4) for effective magnetic orientation
[5,6]. Control of crystal size via physico-chemical [7] or
genetic [8] means, the associated magnetic properties
[9,10] together with the tuning of the magnetic
properties, thanks to the addition of given metallic
ions [11,12], have attracted a multi-disciplinary interest
to the magnetosomes, specifically using them for
bio- and nanotechnological applications [13,14].

The magnetosomes are assembled into a linear chain,
representing a first level of structural hierarchy at the
sub-micrometer scale [15,16]. Moreover, the biominera-
lization of the intracellular magnetite is controlled to
dimensions within the stable single-magnetic-domain
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size range, representing the second level of hierarchical
structuring at the nanometre-scale. In such a configur-
ation, the total magnetic dipole moment is the sum of
the moments of individual particles, thereby generating
an optimized configuration for function and appli-
cations [5,13,17,18]. However, long-standing debates
concerning the structural perfection of magnetosomes
at the ångström level and the possible presence of
maghemite (a-Fe2O3) still remain [19–22]. Specifically,
the limited precision of electron diffraction with respect
to lattice parameter determination prevented detailed
quantitative comparison between different biogenic
magnetites and abiotic magnetites. However, as shown
for biogenic aragonite [23] and calcite [24,25]—when
compared with analogous abiotic crystals—anisotropic
lattice distortions could be revealed by high-resolution
X-ray diffraction (XRD), justifying the need for precise
characterization of the microstructure of biogenic mag-
netite. High-resolution powder XRD was thus used to
measure lattice parameters of nano-sized biogenic mag-
netite at the BESSY II synchrotron [26]. Whole cells of
Magnetospirillum gryphiswaldense (strain MSR-1),
Magnetospirillum magneticum (strain AMB-1) and
DmamGFDC, a deletion mutant of M. gryphiswaldense
with altered crystallite size [8], as well as isolated and
detergent-treated MSR-1 magnetosomes [27] were
measured. Abiotic reference magnetite and maghemite
were used for comparison.
This journal is q 2011 The Royal Society
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2. MATERIAL AND METHODS

2.1. Biological and inorganic samples

M. gryphiswaldense (MSR-1) [28] and M. magneticum
(AMB-1) [29] cells were used throughout the exper-
iments. AMB-1 and MSR-1 strains were chosen
because they are the most widely used model organisms
of magnetotactic bacteria, partly because they have
been sequenced and their genetic systems have been
established [4]. DmamGFDC was provided by
D. Schüler (LMU Munich, Microbiology department)
and was used to determine if size effects on lattice par-
ameter are present. All strains were cultured in the
rubber cap-sealed culture tubes under microaerobic
conditions in MSR-1 standard media [27]. Bacterial
growth was determined by measuring the optical den-
sity (OD) at 565 nm (Shimadzu UV-1201V
spectrophotometer). The magnetic orientation of cells
was determined by optical measurements (Cmag) [30].
The tubes were inoculated with 1 ml of a respective pre-
culture (OD � 0.4; Cmag � 0.8) and incubated at 288C
and 100 r.p.m. for 24 h.

Magnetosome isolation and treatment were realized
as described in literature [27]. Isolated magnetosomes
with membrane are denoted as MAG þMM and
without membrane, after sodium dodecyl sulphate
(SDS) treatment, as MAG2MM. The synthetic magne-
tite (MGT) and maghemite (MGH) samples were
provided by the German Federal Institute for Materials
Research and Testing (BAM).
2.2. Transmission electron microscopy

About 1 ml of the cell suspension was used for grid pre-
paration. The probes were centrifuged at 14 000 r.p.m
for 5 min and resuspended in 100 ml of medium. A Cu
grid with an amorphous carbon support film was depos-
ited on a drop of the preparation and let for about
10 min for adsorption. The grids were subsequently
removed, washed with deionized water and dried with
filter paper. Transmission electron micrographs were
acquired on a Zeiss EM Omega 912� at an acceleration
voltage of 120 kV. Particle dimensions were analysed
using standard analytical software for processing digital
electron microscope images (IMAGEJ) as described in the
literature [31]. Briefly, a watershed segmentation was
applied when enough contrast was given, and the par-
ticles were approximated by ellipses. However, when
no clear segmentation could be obtained, the particles
were measured manually, with two axes. As the average
crystallite size of the sample matters for size effects in
XRD, about 900 particles (about 30 cells) were counted
to determine the average size. The composition of the
materials was determined by energy dispersive X-ray
spectroscopy (EDX) on a transmission electron micro-
scope from Zeiss LIBRA 200 operated at 200 kV
equipped with an EDX detector from Thermo Fisher
operated with the ‘System 6’ software.

Electron tomography was performed on the same Zeiss
LIBRA 200 microscope. For this purpose gold marker
Copper grids were employed. A tilt series from 2768 to
768 with 18 steps was obtained. The reconstruction was
J. R. Soc. Interface (2011)
performed with IMOD (http://bio3d.colorado.edu/
imod/) and the visualization with VG Studio MAX 1.2.
2.3. Synchrotron X-ray diffraction

XRD measurements were performed at the m-spot beam-
line at the BESSY II synchrotron radiation facility
(Helmholtz-Zentrum Berlin (HZB), Germany) [26], in
transmission geometry, with an energy of 15 keV (l¼
0.82656 Å), defined by a silicon (111) double-crystal
monochromator and a beam size of 30 mm. Two-
dimensional scattering patterns were collected using a
MarMosaic 225 charge-coupled device-based area detector
(Rayonix, USA). Prior to the measurements, the cells
were centrifugedat 48C(8000 r.p.m, 10 min).The resulting
pellets were carefully washed (three times) with Millipore
water in order to remove any buffer traces from the
medium. Concentrated cell suspensions were then depos-
ited on ultra-thin Kapton foil (7 mm thick) and let to
dry. The Kapton foil, which exhibits a weak scattering
background, had been clamped to a specially designed
multiple sample holder, providing a flat separate
window for each sample suspension. For the calibration
of the sample to detector distance, indispensable for
high-accuracy lattice parameter measurements, each
sample was mixed prior to drying with 5 per cent of a-
quartz (NIST, standard Reference Material 1878a) as an
internal quantitative XRD standard. Each sample was
measured at three different positions on the sample
holder window to ensure good statistics and reproducibil-
ity of the measurements. For each two-dimensional
diffraction pattern, beam centre and tilt corrections
were performed using Fit2D (http://www.esrf.eu/com-
puting/scientific/FIT2D/) and refined by a home-
developed beam-centre determination routine. The two-
dimensional pattern was integrated to a one-dimensional
diffractogram (Intensity versus q, q ¼ 4p sin (u)/l, where
l is the wavelength and 2u corresponds to the scattering
angle) followed by calibration to the (101) peak position
of the a-quartz (q101 ¼ 18.7910 nm21). After baseline
correction, a pseudo-Voigt function was used for fitting
to determine peak positions.

Lattice parameters were calculated based on the
assumption of a cubic space lattice (a ¼ b ¼ c; a ¼

b ¼ g ¼ 908; a ¼ dhkl/(h2 þ k2 þ l2)1/2) for all diffrac-
tion peaks with considerable intensity greater than 20
counts and well-defined peak shapes. An average lattice
parameter was calculated from the obtained values for
each sample and the error of the lattice parameter
was calculated as standard deviation, as shown later
in table 1 and figure 3. Particle sizes were estimated
from the peak width after correcting for instrumental
broadening effects. Approximating the Bragg peaks by
Gaussian profiles, the peak broadening Wtot (full
width at half maximum in q-space) can be written as
follows [26]:

Wtot �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

cs þW 2
0 þ q

Dl

l

� �2
s

; ð2:1Þ

where Wcs corresponds to the crystal size related broad-
ening and W0 depends on the instrumental set-up
(beam divergence, detector point spread function and
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Figure 1. TEM micrographs and particle size distribution of magnetite particles in magnetotactic bacteria: (a) MSR-1, (b)
DmamGFDC and (c) AMB-1 cell (scale bar, 500 nm). (d) and (e) show, respectively, isolated magnetosomes from MSR-1
with membrane, as highlighted in the inset (scale bar, 50 nm) and without membrane (scale bar, 50 nm). Both samples were
stained with uranyl acetate prior measurement.
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distance). The finite wavelength spread Dl/l leads to a
q-dependent instrumental broadening. Additional
q-dependent contributions owing to possible microstrain
fluctuations were not observed and could hence be neg-
lected. If a polycrystalline sample comprising sufficiently
large crystals is considered (suchas theusedNIST standard
and the synthetic magnetite and maghemite), the sample-
related peak broadening is almost zero and a regression
analysis of the q-dependent broadening allows for deter-
mining both, W0 and Dl/l. The synthetic magnetite
sample was used to determine the instrumental broaden-
ing, as no differences in Wtotbetween the a-NIST powder
and the synthetic magnetite were observed. The obtained
values of 0.10266 nm21 and 0.00167, for W0 and Dl/l,
respectively, are in good agreement with the beamline
performance for a sample to detector distance of approxi-
mately 140 mm, a 30 mm beam-defining pinhole and the
energy resolution of the Si (111) monochromator. Finally,
J. R. Soc. Interface (2011)
the particle size (PS) was estimated from Wcs using
Scherrer’s equation:

PS � 2p
WCS

: ð2:2Þ
3. RESULTS AND DISCUSSION

Typical transmission electron microscopy (TEM)
images of the different strains of magnetotactic bacteria
and the associated crystal size distribution are shown in
figure 1. A two-dimensional diffraction pattern with the
corresponding one-dimensional diffractogram obtained
for the AMB-1 sample is shown in figure 2a. One-
dimensional diffractograms of all samples are shown in
figure 2b with an enlargement in figure 2c of the most
intense (311) and (101) reflections of, respectively,

http://rsif.royalsocietypublishing.org/
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Figure 2. (a) Two-dimensional and one-dimensional XRD pattern of the biogenic AMB-1 sample with NIST standard. Only the
peaks used for data analysis are indexed. (b) Integrated one-dimensional X-ray diffractograms for all measured samples. All
indexed diffraction peaks correspond to magnetite (or maghemite), while the remaining diffraction peaks belong to the
a-quartz standard peaks. The (311) MGT (MGH) and (101) a-quartz peak are highlighted (boxes). (c) Enlargement of the
(101) a-quartz diffraction peak and of the (311) diffraction peak of MGT. Depicted are MGT in whole cells of strains AMB-1
(green), MSR-1 (red) and DmamGFDC (blue), isolated (turquoise) and treated (rose) magnetosomes, and reference synthetic
MGT (black) and MGH (brown).
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magnetite/maghemite and a-quartz, the latter being
used as internal standard (supporting info). For all
samples, the diffraction patterns could be indexed
according to magnetite (respectively, maghemite),
cubic unit cell (space group Fd3m). The lattice par-
ameter, a, was calculated by fitting the angular
positions of the measured Bragg peaks. The a-values,
extracted from individual diffraction peak positions, as
well as the averaged lattice parameter aa are summar-
ized in table 1 and figure 3.
3.1. Lattice parameters

Our measurements reveal that the measured lattice par-
ameters are similar for the bacterial samples (aa MSR-1 ¼

8.3968+ 0.0009 Å; aa AMB ¼ 8.3958+ 0.0007 Å and
aa DmamGFDC ¼ 8.3965+ 0.0013 Å) and comparable
with the literature value of stoichiometric MGT (a ¼
8.3969+ 0.0008 Å) [32]. In contrast, the magnetosomes
isolated from the bacteria, but still protected by
their membrane, exhibited a smaller lattice parameter
(aa MAGþ MM ¼ 8.3875+ 0.0009 Å), which is com-
parable to that of our reference synthetic MGT
(aa MGT ¼ 8.3907+ 0.0009 Å). Finally, the treated
magnetosomes, also lacking the magnetosome mem-
brane, presented an even smaller lattice parameter
J. R. Soc. Interface (2011)
(aa MAG2 MM¼ 8.3687+0.0014 Å), representing an inter-
mediate step to MGH (aa MGH¼ 8.3470+0.0010 Å).
3.2. Origin of the different lattice parameters

Typical explanations for such lattice parameter variations
include the surface stress effect in nanoparticles [33],
changes in composition [34] or the presence of intracrystal-
line proteins in ceramic crystallites [24]. The lattice
parameter of the investigated biogenic magnetite did not
show any dependence on crystallite size. Indeed, correct-
ing the diffraction data for instrumental broadening and
using Scherreŕs equation to calculate the size from cor-
rected peak broadening [26], particle dimensions of 44,
44 and 31 nm were determined for MSR-1, AMB-1 and
DmamGFDC, respectively (table 1), being in good agree-
ment with TEM measurements (figure 1 and table 1) and
literature values [4]. Moreover, only particles smaller than
20 nmtypically exhibit a significant surface stress effect on
the lattice parameters [33].

Protein inclusions in the mineral could also be excluded
as magnetosome and biomacromolecules have similar
dimensions. Moreover, only surface-bound proteins and
no protein inclusions within the mineral were evidenced
in magnetosomes [35]. Hence, only variations in the com-
position of the samples, such as chemical impurities and

http://rsif.royalsocietypublishing.org/


Table 1. Lattice parameter a determined for each diffraction peak, averaged lattice parameter aa, particle size, PS, determined
by XRD and by TEM (maximum of the distribution) for each sample. Difference in magnetosome dimensions between
particles in the bacteria and isolated ones are due to the isolation process.

sample (220) (311) (400) (422) (511) (440) aa (Å)
standard
devation (Å) PSXRD (nm) PSTEM (nm)

MSR-1 8.3983 8.3981 8.3979 8.3975 8.3971 8.3968 8.3968 0.0009 44 40
8.3958 8.3971 8.3968 8.3975 8.3963 8.3957
8.3975 8.3967 8.3960 8.3962 8.3954 8.3953

AMB 8.3969 8.3972 — 8.3966 8.3957 8.3956 8.3958 0.0007 44 45
8.3949 8.3959 8.3956 8.3958 8.3951 8.3948
8.3948 8.3965 8.3965 8.3963 8.3955 8.3953

DmamGFDC 8.3960 8.3973 8.3955 8.3967 8.3954 8.3957 8.3965 0.0013 31 25
— 8.3957 — — 8.3965 8.3942
8.3979 8.3987 8.3973 8.3974 — 8.3968

MAG þMM 8.3886 8.3892 8.3889 8.3888 8.3884 8.3881 8.3875 0.0009 33 35
8.3868 8.3876 8.3872 8.3872 8.3868 8.3867
8.3868 8.3874 8.3871 8.3870 8.3867 8.3866

MAG2MM 8.3673 8.3679 8.3676 8.3675 8.3672 8.3671 8.3687 0.0014 33 35
8.3701 8.3706 8.3702 8.3699 8.3696 8.3694
— — — — — —

MGT 8.3916 8.3921 8.3915 8.3912 8.3911 8.3911 8.3907 0.0009 — 300–700
8.3896 8.3903 8.3904 8.3892 8.3894 8.3890
8.3910 8.3921 8.3913 8.3905 8.3907 8.3904

MGH 8.3458 8.3467 8.3466 8.3459 8.3464 8.3453 8.3470 0.0010 — 100–200
8.3467 8.3475 8.3475 8.3467 8.3472 8.3460
8.3478 8.3486 8.3486 8.3478 8.3481 8.3469
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Figure 3. Calculated lattice parameters with standard devi-
ations for biotic and abiotic samples for different magnetite
and maghemite diffraction peaks. Same colours and samples
as in figure 2.

Table 2. Chemical composition of the biotic and abiotic
magnetite sample determined by EDX measurements.

biogenic magnetite abiotic magnetite

element concentration (at%) element concentration (at%)

O 56.8+ 0.5 O 57.6+ 0.5
Fe 41.4+ 0.2 Fe 41.7+ 0.2
Si 0.5+ 0.1 Si 0.3+ 0.1
Ti 0.1+ 0.05 Mn 0.2+ 0.05
Cl 0.1+ 0.05
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stoichiometry, could explain the observed differences in
lattice parameters. As the biogenic samples were all
grown in the same media, no change of chemical compo-
sition in terms of impurities were expected between the
different biogenic samples, even after magnetosome iso-
lation. However, the composition of the samples was
investigated to compare the biogenic and the abiotic
sample. Based on EDX measurements (table 2), a poten-
tial effect of chemical impurities on lattice parameters
J. R. Soc. Interface (2011)
could be excluded, as the biogenic and abiotic samples
exhibited similar compositions. A total amount of impuri-
ties of 0.7 at% (Ti, Si, Cl) in the biogenic and 0.5 at% (Si,
Mn) in the abiotic sample were measured. It is unclear if
the impurities could really be incorporated in the mineral,
or would originate from outlying grid contamination
owing to sample preparation. However, even when consid-
ering that the impurities were incorporated in the mineral,
the observed differences in lattice parameter would not be
obtained. Indeed, while Mn and Ti-doping increase the
spinel lattice [34], Si doping [36] decreases it, the later
case being relevant in our observations here. In
both cases, the impurity amount in the samples is too
small to explain the observed shifts. For the Si
substitution, a substitution degree of x ¼ 0.09 in Fe(32x)-

SixO4—equivalent to an Si amount of approximately 4
at%—would be necessary to induce a lattice parameter
decrease of 2 � 1023 Å [36], as observed here
between the biogenic and abiotic samples. So to sum up,

http://rsif.royalsocietypublishing.org/
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0.6983z 2 0.3961z2, R2 ¼ 0.998) of the experimental data of Dunlop & Özdemir [37]. The biogenic magnetite samples thereby
exhibit Ms ¼ 4.03 mB whereas the abiotic has a calculated saturation moment of 3.86 mB.
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only stoichiometric effects can explain the observed
difference.

Oxidation of magnetite tomaghemite easily takes place
at low temperatures by solid-state reaction via intermedi-
ate z-oxidation state [37]:

FeIII½FeIIFeIII�O4 ! FeIII½FeII
ð1�zÞFeIII

ð1þ2z=3Þ½ �z=3�O4

! FeIII½FeIII
5=3½ �1=3�O4: ð3:1Þ

While the inverse spinel structure and the face-
centred cubic unit cell are conserved, maghemitization
results in a lattice parameter decrease [37]. This
reduction is induced by the creation of vacancies in the
iron lattice and the change in Goldschmidt radius from
0.83 to 0.67 Å, as Fe(II) is oxidized to Fe(III) [37].
The lattice parameter of the bacterial magnetite fits
perfectly with stoichiometric magnetite [32], whereas
that of the reference sample reveals slight oxidation
(figure 4). This result is not surprising since Fe(II) can
easily be oxidized to Fe(III) under environmental con-
ditions. With a lattice parameter of aa MGT ¼ 8.3907 Å,
and a third-order polynomial (best) fit of the literature
experimental a(z) plot [37] (figure 3), an oxidation
state of z ¼ 0.21 can be estimated for the reference
abiotic magnetite that in our opinion depicted the
equilibrium state of magnetite nanoparticles under
atmospheric conditions.
3.3. Implications for magnetite formation in
magnetotactic bacteria

The synthesis of magnetite typically requires physico-
chemical conditions that are basic and reductive
J. R. Soc. Interface (2011)
(the thermodynamic stability domain for MGT is
centred around pH � 10 and Eh � 20.5 V) [4]. These
conditions should be encountered within the magneto-
some organelles in order to form the structurally pure
magnetite we measured. However, the physico-chemical
conditions are different in the growth medium (pH �
7 and Eh � 0 V). The bacteria thus most probably
play an active role in synthesizing and stabilizing their
magnetic inclusions. This is confirmed by the fact
that the bacterial protection is no longer guaranteed
for isolated magnetosomes. In this case, the lattice par-
ameter decreases to a value similar to that of the
reference magnetite, clearly evidencing that isolated
magnetosomes start to oxidize. A further dramatic
lattice parameter decreases owing to oxidation is
induced by hot SDS, which destroys the protective
magnetosome membrane and leads to an even more
pronounced oxidation.

3.4. Putative role of stoichiometric magnetite in
bacteria

Stoichiometric magnetite is ferrimagnetic with the
highest magnetic moment (ca 4 mB) when compared
with other iron oxide [37]. Maghemitization diminishes
the resulting saturation moment to a value of ca 3 mB

for maghemite [37]. By fitting the literature experimen-
tal saturation moment Ms(z) [37] with a second-order
polynomial function (best fit), a saturation moment of
3.86 mB is obtained for the reference abiotic magnetite
(z ¼ 0.21, figure 3). This corresponds to a loss of
saturation moment of 4.1 per cent compared with
stoichiometric magnetite formed by the bacteria. We,
therefore, speculate that magnetotactic bacteria might

http://rsif.royalsocietypublishing.org/
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Figure 5. Overview of the different levels of hierarchy encoun-
tered in magnetotactic bacteria with respect to their length
scale. Level 1: electron tomography reconstruction of a
MSR-1 magnetosome chain of about 1 mm length. Level 2:
TEM image of an isolated MSR-1 magnetosome, the width
of the image represents 50 nm. Level 3: two-dimensional dif-
fractogram of whole cells AMB-1, the lattice parameter is
optimized at a sub-nanometre scale. This final new level was
identified in this study.
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optimize their functionality at the ångström level
by facing the challenging task of synthesizing and
maintaining the structure of stoichiometric magnetite.
4. CONCLUSION

We have studied the structure of magnetite nanoparti-
cles from biogenic and abiotic origin by high-resolution
XRD. We measured a significant difference in lattice
parameter between the biological and the synthetic
materials and between isolated and non-treated bio-
logical materials. We could show that this difference
was associated with different oxidation state and parti-
cularly that the original and non-treated biogenic
nanomagnetite is stoichiometric, i.e. structurally pure.
We hypothesized that this can only be performed if the
bacteria actively generate optimal physico-chemical con-
ditions within their organelles. The cells are able to
biomineralize stoichiometric magnetite at room tempera-
ture, whereas stoichiometric inorganic nanomagnetite is
unstable when not protected from oxidation. Moreover,
the difference observed between the biological and
synthetic samples at room temperature of only 0.067
per cent in the lattice parameter depicts a change of
4.1 per cent in the respective magnetic moment.
We thus speculated that the exceptional magnetic
properties of the magnetotactic bacteria arose not only
J. R. Soc. Interface (2011)
from the successive hierarchical level of magnetosome
dimension and organization into chains but also from
the atomic structure of the magnetic biological material
(figure 5). This hierarchical structuring is a striking
example of nature’s ability of structure–function optim-
ization. In addition, the difference in lattice parameter
measured between isolated and non-treated biological
materials might help explain controversial results of
bulk magnetic studies that found anomalous behaviour
for bacterial magnetosomes. We think that it would be
of interest to apply such high-resolution XRD technique
to study the magnetosomes doped with metals other
than iron and other further genetic modification of
the magnetosomes that might impact the biomine-
ralization process. We believe that the study of the
structural perfection of unique nanometre-scaled biologi-
cal materials and the underlying mechanisms of their
synthesis will aid in the design of advanced magnetic
materials conceptually inspired by the natural system.
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2007 Intracellular magnetite biomineralization in bacteria
proceeds by a distinct pathway involving membrane-
bound Ferritin and an Iron(ii) species. Angew. Chem.
Int. Ed. 46, 8495–8499. (doi:10.1002/anie.200700927)

20 Frankel, R. B., Papaefthymiou, G. C., Blakemore, R. P. &
O’Brien, W. 1983 Fe3O4 Precipitation in magnetotactic
bacteria. Biochim. Biophys. Acta 763, 147–159. (doi:10.
1016/0167-4889(83)90038-1)

21 Mann, S., Frankel, R. B. & Blakemore, R. P. 1984 Struc-
ture, morphology and crystal growth of bacterial
magnetite. Nature 310, 405–407. (doi:10.1038/310405a0)

22 Matsuda, T., Endo, J., Osakabe, N., Tonomura, A. & Arii, T.
1983 Morphology and structure of biogenic magnetite par-
ticles. Nature 302, 411–412. (doi:10.1038/302411a0)

23 Pokroy, B., Quintana, J. P., Caspi, E. N., Berner, A. &
Zolotoyabko, E. 2004 Anisotropic lattice distortions in
J. R. Soc. Interface (2011)
biogenic aragonite. Nat. Mater. 3, 900–902. (doi:10.
1038/nmat1263)

24 Pokroy, B., Fitch, A. N., Marin, F., Kapon, M., Adir, N. &
Zolotoyabko, E. 2006 Anisotropic lattice distortions in
biogenic calcite induced by intra-crystalline organic mol-
ecules. J. Struct. Biol. 155, 96–103. (doi:10.1016/j.jsb.
2006.03.008)

25 Pokroy, B., Fitch, A. N. & Zolotoyabko, E. 2006 The micro-
structure of biogenic calcite: a view by high-resolution
synchrotron powder diffraction. Adv. Mater. 18,
2363–2368. (doi:10.1002/adma.200600714)

26 Paris, O., Li, C. H., Siegel, S., Weseloh, G., Emmerling, F.,
Riesemeier, H., Erko, A. & Fratzl, P. 2007 A new exper-
imental station for simultaneous X-ray microbeam
scanning for small- and wide-angle scattering and fluor-
escence at BESSY II. J. Appl. Cryst. 40, S466–S470.
(doi:10.1107/S0021889806045444)
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