










cross-link to one side of the DNA and Rpb2 to
the other; and in the case of Rpb5, the cross-
links are located about 5 to 15 base pairs down-
stream of the active site (46).

Jaws position downstream DNA. Rpb5,
and regions of Rpb1 and Rpb9 on the opposite
side of the Rpb1-Rpb2 cleft, form “jaws” that
appear to grip the DNA (Fig. 4). Both the upper
and lower jaw may be mobile, opening and
closing on the DNA. Mobility within Rpb5 is
suggested by comparison with the x-ray crystal
structure of the subunit alone (47). There was a
nearly perfect fit of the subunit structure to the
corresponding region of the pol II electron den-
sity map (Fig. 2A), except for a change in
relative orientation of the NH2- and COOH-
terminal domains, and a conformational change
of a loop in the COOH-terminal domain (Fig.
4B). The solvent-exposed, NH2-terminal do-
main (residues 1 to 142) has apparently moved
by as much as 5 Å in the direction of DNA in
the pol II cleft, relative to the position in Rpb5
alone, with the COOH-terminal domain (resi-
dues 143 to 215) held fixed against the body of
Rpb1 (Fig. 4B). The observed position of the
NH2-terminal domain in pol II is defined by
crystal contacts.

Residues in the Rpb5 loops facing the
DNA are conserved (Fig. 4C). Two prolines
that are strictly conserved present their side
chains to the DNA with a spacing and relative
orientation appropriate for contacting the
DNA backbone. Proline residues have been
seen to interact with backbone ribose moi-
eties of DNA in other crystal structures (48,
49). Such nonspecific van der Waals interac-
tions might favor a particular rotational set-
ting of the DNA, without greatly impeding
the helical screw rotation required to propel
the DNA toward the active site and to unwind
it for transcription.

Other conserved residues of Rpb5 are lo-
cated in the linker between the NH2- and
COOH-terminal domains and in the NH2-
terminal helix (Fig. 4C). Since the linker is
not involved in subunit-subunit interactions,
conserved residues might ensure a directed
movement of the NH2-terminal domain. Con-
served residues in the NH2-terminal helix
form a positive charge cluster that is too far
from DNA to contact it directly, but might
attract it through long-range interactions.

Rpb5 is likely to play a role in transcrip-
tional activation (50). The NH2-terminal do-

main of Rpb5 binds to the transactivation
domain of the hepatitis B virus X protein
(51). Another Rpb5-interacting protein inter-
feres with transactivation (52). Some activa-
tors might function by enhancing jaw-DNA
interaction, thereby stabilizing transcription
initiation or elongation complexes.

The upper jaw, formed by regions of
Rpb1 and Rpb9, corresponds with a domain
previously shown to be mobile by 2D crys-
tallography (53). Rpb9 is composed of two
zinc-binding domains separated by a 15-res-
idue linker. A stretch of the linker adds a b
strand to a sheet in the Rpb1 region of the
jaw. Rpb9 therefore buttresses Rpb1, possi-
bly constraining mobility of the jaw and
strengthening its grip on DNA. Mutations in
Rpb9 alter the locations of transcription start
sites (54–56), which might be explained by a
diminished grip on the DNA, or alternatively,
by direct Rpb9-DNA interaction before entry
of the DNA into the Rpb1-Rpb2 cleft.

A clamp retains DNA. A second mobile
element of pol II, previously revealed by low-
resolution structures and referred to as a
“hinged” domain, was suggested to clamp nu-
cleic acids in the cleft (29). This element, here

Fig. 4. Jaws. (A) Stereoview of structural ele-
ments constituting the jaws (left) and the lo-
cation of these elements within pol II (right).
(B) Mobility of the larger, NH2-terminal domain
of Rpb5. Backbone models of free Rpb5 [gray
(47)] and Rpb5 in pol II (pink) are shown with
their smaller, COOH-terminal domains super-
imposed. (C) Conservation of amino acid resi-
dues of Rpb5.
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termed the “clamp,” comprises NH2-terminal
regions of Rpb1 and Rpb6 and the COOH-
terminal region of Rpb2 (Fig. 5). All three
polypeptides enter at the base of the clamp near
the active site, allowing a degree of conforma-
tional freedom but not unrestricted movement
of the clamp. Within the Rpb6 region, 17 out of
42 residues are negatively charged, forming a
cluster near the bottom of the clamp. This re-
gion of Rpb6 is also phosphorylated by casein
kinase II, suggesting a regulatory role (57).

The clamp forms one side of the Rpb1-
Rpb2 cleft, where it may interact with the DNA
(and the DNA-RNA hybrid, see below) from
the active site to about 15 residues downstream.
This DNA region corresponds with a double-
stranded DNA binding site, 3 to 12 residues
downstream of the active site, defined by bio-
chemical analysis of E. coli RNA polymerase
(58–60). This binding site was referred to as a
“sliding clamp” because of its importance for
the great stability of a transcribing complex and
processivity of transcription (60). Closure of the
clamp over the DNA could account for this
stability. Such a movement of the NH2-terminal
region of the largest subunit was inferred from
cross-linking studies of the E. coli enzyme (58).
Although the clamp is seen here in an open
conformation, it is involved in crystal contacts
and the observed position is likely determined
by the crystal lattice. The electron density in
this region is of lower quality than elsewhere in
the map, and the three zinc peaks associated
with the region have the lowest heights (Zn6-8,
Table 1), also consistent with mobility of the
clamp.

DNA-RNA hybrid binding site, RNA
binding site. Transcribing polymerases have
been shown to harbor an unwound region of
DNA, or “bubble,” within which is centered a
DNA-RNA hybrid of 8 or 9 base pairs, with
the 39 or growing end of the RNA at the
active site (Fig. 6A) (60). Linear extension of
duplex DNA placed in our crystallographic
model, to accommodate the DNA-RNA hy-
brid, is impossible because of an element
from Rpb2 blocking the path (Figs. 3, 4, and
6). This blocking element corresponds with a
“wall” of density previously noted in the
structure of bacterial RNA polymerase (43).
Because of the wall, and because the active
site lies well beneath the level of the down-
stream DNA, the DNA-RNA hybrid must be
tilted relative to the axis of the downstream
DNA (dashed line in Fig. 6C). The exact ori-
entation of the hybrid remains to be determined.

At the upstream end of the DNA-RNA hy-
brid (59 end of the RNA, remote from the active
site), the strands must separate. Biochemical
studies show that the RNA strand enters a
binding site on the protein, extending from
about 10 to 20 nucleotides upstream of the
active site (61). There are two prominent
grooves in the pol II structure exiting the hybrid
binding site, each of which could accommodate

one, but not two, nucleic acid strands. One
groove winds around the base of the clamp
(Fig. 7, groove 1). The other is between the

lower part of the wall and Rpb1, and continues
downward between Rpb1 and Rpb11 (Fig. 7,
groove 2). We favor groove 1 as the RNA

Fig. 5. Clamp. Structural elements constituting the clamp and their location in pol II are shown. The
COOH-terminal region of Rpb2 and the NH2-terminal region of Rpb1 bind one and two zinc ions,
respectively (blue spheres). The NH2-terminal tail region of Rpb6 extends from its main body (at
the bottom in the front view) into the clamp. The direction of movement of the clamp revealed by
comparison with electron crystal structures (29) is indicated (double-headed red arrow).

Fig. 6. Topology of the polymerizing complex, and location of Rpb4 and Rpb7. (A) Nucleic acid
configuration in polymerizing (top) and backtracking (bottom) complexes. (B) Structural features of
functional significance and their location with respect to the nucleic acids. A surface representation of
pol II is shown as viewed from the top in Fig. 3. To the surface representation has been added the
DNA-RNA hybrid, modeled as nine base pairs of canonical A-DNA (DNA template strand, blue; RNA,
red), positioned such that the growing (39) end of the RNA is adjacent to the active site metal and
clashes with the protein are avoided. The exact orientation of the hybrid remains to be determined. The
nontemplate strand of the DNA within the transcription bubble, single-stranded RNA and the upstream
DNA duplex are not shown. (C) Cutaway view with schematic of DNA (blue) and with the helical axis
of the DNA-RNA hybrid indicated (dashed white line). An opening in the floor of the cleft that binds
nucleic acid exposes the DNA-RNA hybrid (pore 1) to the inverted funnel-shaped cavity below. The
plane of section is indicated by a line in (B), and the direction of view perpendicular to this plane (side)
is as in Fig. 3. (D) Surface representation as in (B), with direction of view as in (C). The molecular
envelope of pol II determined by electron microscopy of 2D crystals at 16 Å resolution is indicated
(yellow line), as is the location of subunits Rpb4 and Rpb7 (arrow, Rpb4/7), determined by difference
2D crystallography (25).
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binding site for three reasons. First, the length
and location of the groove are appropriate for
binding a region of RNA 10 to 20 nucleotides
from the active site, in agreement with bio-
chemical studies. Second, the RNA path would
lead back toward the downstream DNA, ending
in close proximity to the NH2-terminal region
of Rpb1 (defined by a zinc site). This path
would accord with the reported cross-linking of
RNA about 20 nucleotides upstream of the
active site to the NH2-terminal region of the
largest subunit of E. coli RNA polymerase (58–
60). Finally, RNA in the groove at the base of
the clamp could explain the great stability of
transcribing complexes. The affinity of the
polymerase for the DNA template is coupled to
the presence of an RNA transcript (60). We
speculate that closure of the clamp over DNA,
assuring its retention in a transcribing complex,
would enlarge the groove at the base of the
clamp, and subsequent binding of RNA in the
groove would prevent the clamp from reopen-
ing. RNA would act as a lock on the closed
conformation of the clamp.

Mobility of the clamp may also be modulat-
ed by interactions with other pol II subunits and
transcription factors, for example, Rpb4 and
Rpb7. Although these two small subunits were
absent from the form of pol II analyzed here,
their approximate location is known from elec-
tron microscopy of 2D crystals (25). A surface
representation of the crystallographic backbone
model corresponds closely with the molecular
envelope from 2D crystals (Fig. 6D). On this
basis, Rpb4 and Rpb7 occupy a crevice in the
surface between the lower jaw and the clamp
(Fig. 6D). Interaction with either of these
mobile elements or with downstream DNA
could underlie the requirement for Rpb4 and
Rpb7 for the initiation of transcription (22).

A funnel for substrate entry, back-
tracking, and elongation factor access. The
floor of the Rpb1-Rpb2 cleft, which supports
duplex DNA and the DNA-RNA hybrid, is
very thin and perforated, exposing the nucleic
acids to the space below. The perforation is
bisected by the helix that forms a bridge
between Rpb1 and Rpb2, creating two pores,
one of which lies beneath the active site (pore
1) and the other, beneath the downstream
DNA (pore 2). Both pores are about 12 Å in
diameter and lie at the apex of an inverted
funnel-shaped cavity, which increases to
about 30 Å in diameter at the opposite side of
pol II (Fig. 7, bottom). As the Rpb1-Rpb2
cleft is occupied by duplex DNA and the
DNA-RNA hybrid during transcription, nu-
cleotides may be unable to enter above the
active site and may instead gain access from
below, through the funnel and pore 1, as
previously suggested for both pol II and bac-
terial RNA polymerase (29, 43).

The funnel and pore 1 may play similar
roles in other aspects of transcription. Bacterial
and eukaryotic RNA polymerases oscillate be-
tween forward (polymerization) and backward
(backtracking) movement during transcription
(Fig. 6A) (60). Backtracking is important for
proofreading and for traversing obstacles such
as DNA damage, bound proteins, or natural
pause sites in the DNA. During backtracking,
the polymerase and associated transcription
bubble move backward along both the DNA
and the RNA. The region engaged in the DNA-
RNA hybrid retreats like a zipper, releasing the
39 end of the RNA in single-stranded form, and
incorporating single-stranded RNA on the 59
side of the transcription bubble into the hybrid
(Fig. 6A). As mentioned above for access of
nucleotides to the active site during polymer-

ization, duplex DNA and hybrid in the Rpb1-
Rpb2 cleft may block release of the 39 end of
the RNA into the cleft during backtracking.
Rather, as suggested for entry of nucleotides,
the 39 end of the RNA may exit through the
funnel and pore 1.

Backtracking beyond a certain point can
result in an arrested complex, unable to re-
verse direction, to restore the 39 end of the
RNA to the active site, and to resume tran-
scription (60). We speculate that when a cer-
tain length of RNA has been extruded by
backtracking, it may interact with a site in the
funnel and be trapped, preventing reversal
and recovery. For recovery from arrest,
cleavage of the RNA is required to generate a
new 39 end at the active site (60). This cleav-
age is achieved with the help of transcript
cleavage factors (62, 63). The funnel and
pore 1 may provide access for such factors,
for example, TFIIS. A small zinc-binding do-
main of TFIIS has an extended b hairpin at
one end with two conserved residues that
come near the active site of pol II and that are
critical for RNA cleavage (15, 16, 64–66).
Also included are tryptophan and arginine
side chains involved in nucleic acid binding
(67, 68). Modeling shows that this domain,
only 20 Å in diameter, can be accommodated
in pore 1 with the two conserved b hairpin
residues reaching the active site, while still
leaving room for an extruded strand of RNA.

Comparison with bacterial RNA poly-
merase. Most information about core bacte-
rial RNA polymerase structure comes from
x-ray diffraction studies of the a2 homodimer
from E. coli (69) and the a2bb9 polymerase
from Thermus aquaticus (43). Regions of
sequence similarity have been noted between
a, Rpb3, and Rpb11 (69), between b and

Fig. 7. Possible RNA exit grooves and funnel beneath the active site.
The model of Fig. 6B is shown in two perpendicular directions of view
(side, back), and also viewed from the opposite side (bottom). To the
side and back views have been added dashed lines corresponding to
about 10 nucleotides of RNA, lying in well-defined grooves leading

away from the hybrid-binding region (groove 1, red; groove 2, or-
ange). The nontemplate strand of the DNA within the transcription
bubble and the upstream DNA duplex are not shown. To the bottom
view has been added a solid line indicating the rim of the funnel-
shaped cavity.
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Rpb2 (70), and between b9 and Rpb1 (71).
The crystallographic pol II model contains a
conserved core of secondary structural ele-
ments similar to those in the bacterial en-
zyme, surrounded by divergent elements and
eukaryote-specific subunits. Conserved ele-
ments are located in the vicinity of the DNA-
RNA hybrid binding site, the adjacent down-
stream DNA binding site, and the sides of the
funnel. Consistent with the conservation of
these structural elements, similar modes of
interaction with nucleic acids in the vicinity
of the active site have been proposed for
the eukaryotic and bacterial enzymes (72).
The pore beneath the active site is con-
served, and the bacterial enzyme may con-
tain a clamp as well (73). On the other
hand, the jaws, which include eukaryote-
specific subunits and a domain of Rpb1, are
found only in pol II, possibly reflecting
their interaction with the eukaryote-specific
transcription initiation factor TFIIE, as re-
vealed by 2D crystallography (26 ). The
occurrence of jaws in pol II, but not in the
bacterial enzyme, presumably accounts for
the nuclease protection of about 20 base
pairs of downstream DNA by pol II, com-

pared with only about 13 base pairs by the
bacterial enzyme (45, 60).

A more detailed comparison is possible, at
present, for the a2 dimer and its counterpart in
pol II, the Rpb3-Rpb11 heterodimer. The a2

dimer nucleates assembly of bacterial polymer-
ase, binding b to form a subcomplex, which
then binds b9 to form a complete core enzyme
(74). Similarly, the Rpb3-Rpb11 heterodimer
binds Rpb2 to form a subcomplex (75). The
location of the heterodimer in pol II is similar to
that of a2 in the bacterial enzyme, and the
domain conserved between Rpb3, Rpb11, and
a exhibits an identical fold (motif of a helices
and b sheets forming the lower half of the
subcomplex in Fig. 8). The conserved domain
represents almost the entirety of Rpb11 and is
responsible for Rpb3-Rpb11 interaction (or
dimerization in the case of a). The noncon-
served domain of Rpb3 (upper half of the sub-
complex in Fig. 8) interacts with the eukaryote-
specific subunits Rpb10 and Rpb12. Contact of
Rpb10 with Rpb3 is consistent with biochemi-
cal evidence for a stable Rpb3-Rpb11-Rpb10
subcomplex (76). Rpb12 binds through a tail,
which adds a b strand to a sheet in the noncon-
served region of Rpb3. Rpb12 also interacts

with Rpb2 through its zinc-binding module.
Consistent with this, Rpb12 has been shown to
contact the second largest subunit in RNA poly-
merase I, and this interaction requires an intact
zinc-binding motif (77). Moreover, a muta-
tion in the COOH-terminal region of Rpb12
impairs assembly of RNA polymerase III
(77). Thus, Rpb12 appears to play an essen-
tial role in the assembly or maintenance of all
eukaryotic RNA polymerases by bridging be-
tween the Rpb3-Rpb11-Rpb10 subcomplex
(or its homologs in polymerases I and III)
and the second largest subunit.

Transcription pathway. The crystallo-
graphic model of pol II also gives insight into
the transcription pathway and the still larger
multiprotein complexes involved. The pathway
begins with the formation of a TFIIB–TFIID–
promoter DNA complex and its interaction with
pol II, followed by entry of TFIIE, and finally
TFIIH, whose helicase activities melt DNA
around the start site of transcription. The initial
interaction of pol II with the promoter must be
with essentially straight, duplex DNA. The pol
II model, however, requires a considerable dis-
tortion for binding at the active site, which can
only occur upon melting. The transition from an
initial complex to a transcribing complex will
therefore be accompanied by structural changes
and movement of the DNA. Transcription
begins with the repeated synthesis and release
of short RNAs (“abortive cycling”), until a
barrier at about 10 nucleotides is traversed,
and chain elongation ensues. On reaching a
transcript size of about 20 nucleotides, the
full stability of a transcribing complex is
attained. The barrier at 10 nucleotides corre-
sponds to the point at which the 59 end of the
growing transcript must disengage from the
template DNA and enter the proposed groove
for RNA in the model. The transcript size
needed for full stability corresponds with the
length of RNA needed to fill the groove.

The interpretation along these lines may
be extended and evaluated by the solution of
pol II cocrystal structures, with the use of the
pol II model for molecular replacement. Co-
crystals with TFIIB and TFIIE (78) should
reveal the trajectory of DNA in the initial pol
II–promoter complex. Cocrystals containing
pol II in the act of transcription (79) will
show the locations of nucleic acids in an
elongation complex. Cocrystals with TFIIS
(80) may indicate the proposed exit pathway
for RNA through a pore beneath the active
site during backtracking. Other cocrystals
may be sought to investigate the mechanism
of transcriptional regulation by the multipro-
tein Mediator complex and associated activa-
tor and repressor proteins (4).
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Windows Through the Dusty
Disks Surrounding the Youngest
Low-Mass Protostellar Objects

J. Cernicharo,1* A. Noriega-Crespo,2 D. Cesarsky,3 B. Lefloch,1,4

E. González-Alfonso,1 F. Najarro,1 E. Dartois,5 S. Cabrit6

The formation and evolution of young low-mass stars are characterized by
important processes of mass loss and accretion occurring in the innermost
regions of their placentary circumstellar disks. Because of the large obscuration
of these disks at optical and infrared wavelengths in the early protostellar stages
(class 0 sources), they were previously detected only at radio wavelengths using
interferometric techniques. We have detected with the Infrared Space Obser-
vatory the mid-infrared (mid-IR) emission associated with the class 0 protostar
VLA1 in the HH1-HH2 region located in the Orion nebula. The emission arises
in three wavelength windows (at 5.3, 6.6, and 7.5 micrometers) where the
absorption due to ices and silicates has a local minimum that exposes the
central part of the young protostellar system to mid-IR investigations. The
mid-IR emission arises from a central source with a diameter of 4 astronomical
units at an averaged temperature of ;700 K, deeply embedded in a dense region
with a visual extinction of 80 to 100 magnitudes.

Our lack of knowledge of star formation pro-
cesses led to an empirical classification of the
evolutionary phases of low-mass protostars
into four classes: 0, I, II, and III. These

describe the amount of material available for
accretion versus the mass of the central ob-
ject, providing the evolutionary status of the
system (1–3). Class 0 objects are the young-

est protostars; they are surrounded by large
and dusty envelopes that feed the central
objects and their protoplanetary disks. These
sources undergo violent ejection of matter
related to accretion processes. The shock-
waves created when the protostellar ejecta
collides with the surrounding gas produce the
Herbig-Haro (HH) jets observed at optical
wavelengths. These jets seem to drive the
bipolar molecular outflows (4–6) detected
around protostars and represent a second
mass loss–driven phenomenon taking place
during the earliest evolutionary stages of the
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