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are generally too slow for iteratively searching through large 
sequence databases such as UniProt or NCBI’s nonredundant 
(nr) database. Here we present HMM-HMM–based lightning-
fast iterative sequence search (HHblits), which extends HHsearch 
to enable fast, iterative sequence searches. The profile-profile 
alignment prefilter of HHblits reduces the number of full HMM-
HMM alignments from many millions to a few thousand, making 
it faster than PSI-BLAST but still as sensitive as HHsearch 
(Supplementary Fig. 1).

For iterative searches, HHblits needs a database of HMMs that 
covers the entire sequence space. We devised a very fast method, 
kClust (M. Hauser, C.E. Mayer and J.S., unpublished data), for 
clustering large sequence databases down to 20–30% maximum 
pairwise sequence identity while requiring almost full-length 
alignability (>80% coverage of longer sequences). This strict 
coverage criterion enriches for orthologous sequences with the 
same domain architecture7: of the UniProt20 clusters containing 
more than two Swiss-Prot sequences with enzyme commission 
numbers, 98.4% had all four enzyme commission digits conserved 
(Supplementary Fig. 2). kClust is sufficiently fast (~1,000 times 
faster than BLAST) to allow for regular reclustering of the updated 
UniProt and nr databases. UniProt20 (the version from July 2011) 
contained 15 million sequences in 2.6 million HMMs, with an 
average of 5.5 sequences per cluster.

HHblits first converts the query sequence (or MSA) to an 
HMM. This is conventionally done by adding pseudocounts of 
amino acids that are physicochemically similar to the amino acid 
in the query. In contrast, HHblits calculates pseudocounts that 
depend on the local sequence context (that is, the 13 positions 
around each residue). This method had improved the sensitivity  
and alignment quality of the resulting profile considerably8. 
HHblits then searches the HMM database and adds the sequences 
from HMMs below a defined expected value (E value) threshold 
to the query MSA, from which the HMM for the next search 
iteration is built (Fig. 1a and Supplementary Fig. 3). For speed 
and sensitivity, the prefilter is crucial. The key idea was to imple-
ment profile-profile comparison as a sequence-to-profile com-
parison by discretizing the vectors of 20 amino acid probabilities 
in each HMM column into an alphabet of 219 letters. Each letter 
represents a typical profile column (Supplementary Fig. 4). We 
approximate the database HMMs by sequences over this extended 
alphabet, ignoring the insertion and deletion probabilities of the 
HMMs (Supplementary Fig. 5). Before prefiltering, we calcu-
late the score of each query HMM column with each of the 219  
letters, which results in a 219-row extended sequence profile.  
The prefiltering consists of two steps (Supplementary Fig. 3):  
(i) a very fast gapless local alignment between the extended query 
profile and the extended database sequences and (ii) a gapped 
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Sequence-based protein function and structure prediction 
depends crucially on sequence-search sensitivity and accuracy 
of the resulting sequence alignments. We present an open-
source, general-purpose tool that represents both query 
and database sequences by profile hidden Markov models 
(HMMs): ‘HMM-HMM–based lightning-fast iterative sequence 
search’ (HHblits; http://toolkit.genzentrum.lmu.de/hhblits/). 
Compared to the sequence-search tool PSI-BLAST, HHblits is 
faster owing to its discretized-profile prefilter, has 50–100% 
higher sensitivity and generates more accurate alignments.

Building protein multiple-sequence alignments (MSAs) by 
iterative sequence searches is of fundamental importance in 
computational biology, as MSAs are a key intermediate step in 
the sequence-based prediction of evolutionarily conserved proper
ties, such as tertiary structure, functional sites or interaction 
interfaces. Sequence profiles and profile hidden Markov models 
(HMMs) are condensed representations of MSAs that specify for 
each sequence position the probability of observing each of the 
20 amino acids in evolutionarily related proteins. PSI-BLAST1, 
the most widely used iterative search tool, progressively refines a 
query sequence profile by adding statistically significant sequence 
matches to the profile for the next search iteration. The tools 
SAM2K (ref. 2) and HMMER3 (ref. 3) use profile HMMs for 
better sensitivity.

Profile-profile and HMM-HMM alignment are the most sensi-
tive classes of sequence-search methods. They are the methods 
of choice for identifying and aligning templates for three-
dimensional homology modeling4. Our HMM-HMM alignment 
method HHsearch5 is used by many of the best protein structure 
prediction servers, among which is HHpred6, the top-ranked 
server for template-based protein structure prediction in last 
year’s Critical Assessment of Techniques for Protein Structure 
Prediction exercise (http://predictioncenter.org/casp9/groups_
analysis.cgi?type=server&tbm=on/). However, these methods 
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local alignment. For step ii, we modified the code from previous 
work9. Each of the two steps allows 1–5% of the sequences to pass.  
We implemented both filters with streaming SIMD extension 3 
(SSE3) instructions, which are available on all modern Intel and 
Advanced Micro Devices (AMD) central processing units and 
process 16 single-byte operations per core and clock cycle9. The 
database HMMs whose extended sequences passed the prefil-
ter are aligned to the query HMM, and E values are calculated. 
Statistically significant matches are realigned with a local maximum  
accuracy algorithm10.

A single search iteration with HHblits version 2.2.17 through 
UniProt20 (2.6 million clusters and 15 million sequences) for 
100 randomly selected query sequences took a median 31 s and 
an average 1 min 13 s on a single Xeon 2.9 GHz core (Fig. 1b and 
Supplementary Data 1). For a single search iteration through 
UniProt (15 million sequences), PSI-BLAST needed 1 min 7 s  
(median) and 1 min 26 s (average) and HMMER3 needed  
2 min 57 s (median) and 5 min 8 s (average). Additional itera-
tions took roughly the same amount of time as the first itera-
tion (Supplementary Fig. 6), and therefore overall, HHblits was 

about twice (15%) as fast as PSI-BLAST and was 6× (median) 
and 4× (average) faster than HMMER3.

We compared the sensitivity of HHblits to that of PSI-BLAST 
and HMMER3 in detecting homologous proteins (to rank 
true positive, homologous pairs above false positive, unrelated 
pairs) (Fig. 1c). We performed an all-against-all comparison 
of 5,287 representative domain sequences from the Structural 
Classification of Proteins (SCOP) database11. After one itera-
tion, HHblits detected 107% more true positive pairs than PSI-
BLAST and 53% more than HMMER3 at 1% false discovery rate, 
and after three iterations, the improvement was 147% over PSI-
BLAST and 69% over HMMER3. We obtained similar values in 
a receiver operating curve 5 (ROC5) analysis (Online Methods 
and Supplementary Fig. 7). Furthermore, HHblits reported more 
reliable E values than PSI-BLAST (Supplementary Fig. 8).

To assess the quality of the pairwise alignments (Fig. 1d), we 
randomly selected from each SCOP superfamily up to ten pairs 
of domains with <30% sequence identity and a TM-align (Online 
Methods) structural similarity score of >0.6 (Supplementary 
Data 2). For each method, we built MSAs for the queries using 
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Figure 1 | Workflow and benchmark comparison. 
(a) HHblits can iteratively search for 
homologous sequences in large databases 
such as UniProt. The HHblits database is a 
clustered version in which each set of full-
length alignable sequences is represented by 
an HMM. Sequences from matched HMMs with a 
statistically significant E value are added to the 
query MSA, from which a new HMM is calculated 
for the next search iteration. A prefilter reduces 
the number of full HMM-HMM alignments by 
~2,500-fold. (b) Median run times for searches 
with 100 test sequences through the UniProt 
or UniProt20 database (the inset shows the 
test sequence length distribution). (c) True 
positive pairs (same SCOP fold) compared to 
false positive pairs (different SCOP fold) for one 
and three search iterations in an all-against-all 
comparison. FDR, false discovery rate. (d) Mean 
fraction of correctly aligned residue pairs out 
of all structurally alignable pairs (sensitivity) 
compared to the fraction of correctly aligned 
pairs out of all the aligned pairs (precision). 
The parameter mact controls the alignment 
greediness (Supplementary Fig. 10).
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Figure 2 | Structure predictions for Pfam families and the modeling of human Pip49 (also known as FAM69B). (a) Families to which only HHblits and 
both HHblits and HMMER3 assigned a structural template below a given E value. (b) Homology model of human Pip49 kinase domain (blue) with the 
inserted EF hand (green). (c) Catalytic center showing the conserved residues (red) for protein kinase activity. (d) EF hand insertion with the conserved 
residues (magenta) for the predicted Ca2+-dependent activation.
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two search iterations through UniProt and aligned the resulting 
query MSAs with their corresponding templates. We determined  
correctly aligned residues through comparison with the structural 
alignments. Compared to PSI-BLAST and HMMER3, HHblits 
sensitivity per residue using default parameters (mact 0.5) was 12 
and 2 percentage points higher and the precision per residue was 
15 and 10 percentage points higher, respectively (Fig. 1d). The 
higher precision of HHblits alignments explains its robustness 
against homologous overextension (tested on a benchmark with 
multidomain proteins; Supplementary Fig. 9), which is the main 
cause of corrupted PSI-BLAST alignments12.

As another measure of MSA quality, we sought to improve the 
accuracy of PSIPRED13 secondary structure prediction by running 
PSIPRED on MSAs generated by HHblits. Although PSIPRED 
had been trained on PSI-BLAST MSAs, HHblits MSAs improved 
the Q3 score (fraction of correctly predicted secondary struc-
ture states) for proteins from the PDBselect 2007 dataset (Online 
Methods) from 80.4% to 81.3% and the secondary structure seg-
ment overlap (SOV) score from 77.5% to 78.6% (Supplementary 
Table 1). These results, obtained without training a large param-
eter set, are among the best achieved at present14.

A potential drawback of HHblits is the requirement that its 
databases consist of MSAs and their HMMs instead of single 
sequences. Although we will regularly update standard HHblits 
databases such as UniProt20, nr20, PDB, SCOP and Pfam, cus-
tomized databases, for example databases representing an organ-
ism’s proteome, will need to be built specifically for HHblits.

To show the utility of HHblits, we predicted structures for Pfam 
families15 for which no template is known and also for which no 
template is known for any family from its Pfam clan (Fig. 2a). 
We jumpstarted two HHblits iterations through UniProt20 with 
the Pfam seed alignment and then searched the PDB70 database 
(ftp://toolkit.genzentrum.lmu.de/HHblits/databases/). HHblits 
assigned templates to 620 families with E < 10−3, only 226 of which 
HMMER3 detected (41 families were found only by HMMER3 
and not HHblits) (Supplementary Table 2).

As an example of these results, we describe the predictions for 
Pip49-C, the C-terminal part of the pancreatitis induced protein 
49, a Pfam domain of unknown structure and function with a 
predicted N-terminal transmembrane helix. The 100 best HHblits 
matches in PDB70 were with protein kinases (best E value of 2 × 
10−20), even though the Pfam MSA is missing 70 N-terminal resi-
dues from the kinase domain. An HHblits search started with full-
length human Pip49 (also known as FAM69B) (with two iterations 
through UniProt20 and one iteration through PDB70) detected 
many protein kinase domains, and, notably, a tandem Ca2+-binding  
EF hand (E value = 0.09) inserted in the kinase domain. Based 
on our homology models (Fig. 2b–d and Supplementary Data 3)  

and the conservation of key residues, we predict that Pip49 and 
its paralog FAM69A are membrane-bound protein kinases in the 
lumen of the endoplasmic reticulum that are activated by Ca2+ 
through structural rearrangement of their EF hand.

In conclusion, HHblits is an open-source, robust, general- 
purpose, iterative protein sequence search tool that is faster, con-
siderably more sensitive and produces alignments of much better 
quality than PSI-BLAST. HHblits has the potential to improve 
many downstream analysis and prediction methods, such as a 
de novo protein structure prediction method requiring large and 
accurate MSAs16.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
HHblits server usage in a nutshell. The HHblits server (http://
hhblits.genzentrum.lmu.de/ or http://toolkit.genzentrum.lmu.de/
hhblits/) takes as input a single sequence or an MSA and itera-
tively searches through the selected HMM databases (UniProt20, 
nr20, PDB, SCOP and Pfam) for a specified number of iterations. 
Two or more iterations only make sense when a database cover-
ing the entire sequence space (such as UniProt20 or the nr20) is 
selected. A larger number of search iterations increases the sen-
sitivity of the alignment but also increases the risk of alignment 
corruption, for example, through homologous overextension12. 
Owing to this trade-off, we recommend between one and four 
iterations. For optimum reliability it is advisable to first identify 
domains in the query sequence by performing a single HHblits 
iteration through the PDB70 database and then to cut the query 
sequence along domain boundaries into shorter segments, which 
are less prone to alignment corruption.

When the “realign with MAC” box is checked in HHblits, it 
calculates the more accurate maximum accuracy (MAC) HMM-
HMM alignments after the Viterbi HMM-HMM comparisons. 
However, the Viterbi alignments are better suited for the cal-
culation of scores, E values and probabilities, and, therefore, 
the results are a combination of Viterbi scores and E values and 
MAC alignments. The MAC threshold parameter ‘mact’ con-
trols the alignment greediness during MAC realignment. At a 
mact value of 0.35, segments that have an average probability 
of being correct of below 35% will be omitted. A mact value of 
0.01 will generate quasi-global MAC alignments for use in, for 
example, homology modeling, while still using the local Viterbi 
alignment for the scoring. When searching with single domains, 
a mact value of 0.2 can be sufficient; otherwise, higher mact 
values (for example, 0.5) are recommended. The MSA built by 
HHblits can be inspected and extracted under the “show align-
ment” tab on the results page. An MSA of consensus sequences 
of matched HMMs can be viewed with a Jalview applet on the 
results page, for example to check for alignment corruption. For 
more information, see the HHblits server help pages and the 
HHblits user guide.

HHblits command line usage in a nutshell. HHblits is available 
as source code and as executable RPM and DPKG packages for 
most Linux 64 bit platforms, MAC OS X and Berkeley Software 
Distribution (BSD) Unix at http://hhblits.genzentrum.lmu.de/. 
The command “$ hhblits -i query.fasta -d /databases/UniProt20 -n  
2 -mact 0.01 -oa3m query_msa.a3m” will run two search 
iterations through the UniProt20 database, starting from the 
input sequence (or MSA) in query.fasta. The mact value 0.01  
generates quasi-global alignments. The human-readable output 
is written to query.hhr by default (this option can be changed 
using -o <file>), whereas the resulting MSA is written to query_
msa.a3m in a3m format. This format can be transformed to 
other formats using reformat.pl. Custom databases (such as 
for a single genome) can be built by generating MSAs for each 
protein sequence using, for example, two HHblits iterations, 
adding secondary structure with the Perl script addss.pl and 
building the HHblits database files using create_db.pl and create 
cs_db.pl. For more information see the user guide in the HHblits 
package at http://hhblits.genzentrum.lmu.de/ or http://toolkit.
genzentrum.lmu.de/hhblits/.

Fast sequence clustering with kClust. We developed kClust to 
cluster large sequence databases for use with HHblits in a fraction 
of the time that would be necessary using BLAST and down to 
much lower sequence identities (20–30%) than is possible with 
CD-HIT17. kClust achieves its high speed and sensitivity with 
two new algorithms. First, a fast prefilter sums the similarity 
scores of all similar 6-mers between sequences Q and T. The 
score threshold is set stringently such that only ~4 × 10−6 × LQLT 
chance matches occur between sequences of lengths LQ and LT . 
Thus, the time to compare two sequences is reduced in com-
parison to classic dynamic programming approaches by a factor 
of ~2.5 × 105. A more sensitive comparison is performed in the 
second step using dynamic programming on the set of similar 
4-mers between Q and T. Here the threshold is set such that 
chance matches occur with a probability of ~2 × 10−3 per 4-mer 
pair. This allows us to achieve a speedup relative to the SSEARCH 
implementation of classic Smith-Waterman dynamic program-
ming by a factor ~30. kClust binaries and scripts for automati-
cally generating MSAs from clusters are available at ftp://toolkit.
genzentrum.lmu.de/kClust/.

Discretized profile-column alphabet. We discretized profile 
columns into an alphabet of 219 states (the number of printable 
ASCII characters), where each letter represents a typical profile 
column. This allows us to approximate any sequence profile by 
a sequence over this 219-letter extended alphabet. To compare 
two profiles, we first calculate the score Sik of each query profile 
column i with each of the 219 letters k

S q a p a f aik i k
a

=
=
∑log ( ) ( )/ ( )2

1

20

where qi(a) denotes the query profile at position i, pk(a) is the 
profile column represented by the letter k∈{1,…,219} and f(a) 
is the background frequency of residue a. We thus obtain a  
219-row extended sequence profile, which can be aligned to 
extended sequences representing the other profile using fast, 
standard dynamic programming techniques. We generated the 
219-letter alphabet using the same method that was previously 
used for learning an optimal set of sequence context profiles8, but 
here we set the window size from 13 to 1 residue. We also set the 
window weights wj to 100 to obtain a hard clustering. We initial-
ized the 219 states randomly and maximized the likelihood that 
the 10 million training sequence profile columns were generated 
by the 219 profile columns. The best of several trials was used. 
The 10 million profile columns were randomly sampled from the 
MSAs in our clustered nonredundant database.

Pre-filtering. In the two prefilter steps, the extended query 
sequence profile is aligned to the extended database sequences. 
The first step calculates the score of the largest ungapped align-
ment. To pass this filter, the score has to be larger than 2.5 + 
log2(LQLT) bits, where LQ and LT are the lengths of the query pro-
file and database sequence, respectively. The log term is a standard 
length correction. The second step calculates a Smith-Waterman 
alignment with affine gap penalties (gap open: 5 bits, gap extend: 
1 bit). From the bit score S, an approximate E value is calculated: 
E = Ndb LQLT × 2−S, where Ndb is the number of sequences per 
HMMs in the database, and sequences pass if their E value is 

np
g

©
 2

01
2 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://hhblits.genzentrum.lmu.de/
http://hhblits.genzentrum.lmu.de/
http://toolkit.genzentrum.lmu.de/hhblits/
http://toolkit.genzentrum.lmu.de/hhblits/
http://hhblits.genzentrum.lmu.de/
http://hhblits.genzentrum.lmu.de/
http://toolkit.genzentrum.lmu.de/hhblits/
http://toolkit.genzentrum.lmu.de/hhblits/
ftp://toolkit.genzentrum.lmu.de/kClust/
ftp://toolkit.genzentrum.lmu.de/kClust/


nature methodsdoi:10.1038/nmeth.1818

below the prefilter threshold (Epre) = 1,000. Each filter step leads 
to a 10- to 100-fold reduction of database sequences.

Both filters were implemented with SSE3 instructions that 
process 16 single bytes in parallel on 128-bit SIMD units present 
on each central processing unit (CPU) core. Each byte holds the 
score in units of 1/4 bits plus an offset of 50, which allows us to 
represent a score range between −12.5 and +51.5 bits. The algo-
rithms were programmed such that the scores will saturate at 255 
on overflow. Because any score larger than 51 bits will always pass 
the filter, this range is sufficient for prefiltering. The first step 
processes four or five cells of the dynamic programming matrix 
per CPU clock cycle, and the second step processes ~1.3 cells 
per clock cycle. The clustered UniProt database (version from 
07/2011) contains 2.6 million sequences of average length 320 
cells, and therefore the first prefilter search with a query profile 
of length 300 through UniProt takes about 300 × 320 × 2.6 × 106 /  
(4.5 × 2.9 GHz) = 18 s, which is about 25% of the average time 
needed for the entire HHblits search.

For sequences that pass the two prefilters, we calculate local 
alignments using SSE3 instructions to restrict the resulting HMM-
HMM alignment to the region likely to contain the true alignments. 
For back-tracing, we need to prevent the score from saturating. 
Therefore, each score is held in 2 bytes in this step (again, in units 
of 1/4 bits), which yields a score range of −12.5 bits to +16,371.5 
bits. Up to ten suboptimal alignments are extracted by masking all 
cells at a distance of <150 residues from the previously extracted 
alignments until the prefilter E value is above the Epre value.

Viterbi alignment and E value calculation. To speed up the  
time-consuming HMM-HMM alignment steps, all cells with 
a distance of >200 residues to all alignments identified in the 
previous step are masked out. An HMM-HMM alignment is 
performed on the active cells using the Viterbi algorithm from 
HHsearch. The Viterbi algorithm determines the alignment with 
the maximum score. Even though it does not yield the most accu-
rate alignments (see the maximum accuracy alignment section 
below), it yields reliable scores for ranking and P value calcula-
tion. From the Viterbi score S, a P value is calculated using an 
extreme value distribution: P = 1 − exp(−exp(–λ (S − µ))). The 
extreme value distribution parameters µ and λ are estimated from 
the four features LQ, LT, NQ

eff and NT
eff using two standard two-

layer neural networks with four hidden nodes each. Here NQ
eff 

and NT
eff are the numbers of effective sequences in the query and 

template HMMs, respectively (defined in ref. 5). The Viterbi E 
value is calculated from the P value using E = Ndb P (Epre/Ndb)α, 
where α = 0.4 + 0.02 × (NT

eff − 1) × (1 − 0.1 × (NQ
ff − 1)). The term 

(Epre/Ndb)α is an empirical correction for the correlation between 
the prefiltering and Viterbi scores (α = 0: perfect correlation,  
α = 1: no correlation). The three coefficients for α were optimized 
to yield accurate E values (Supplementary Fig. 8).

Further speedups. Viterbi alignments are performed in the order 
of decreasing prefilter E values. We stop the time-consuming 
HMM-HMM comparisons when very few homologs are likely 
to have been observed among the last 200 HMM-HMM align-
ments. A coarse estimate for the probability of a match to be a true 
homolog is 1/(1 + E) for a Viterbi E value of E. We average 1/(1 + E)  
over the last 200 processed Viterbi alignments and skip all further 
database HMMs when this average drops below 0.01.

Maximum accuracy alignment. Whereas the Viterbi algorithm 
calculates the alignment with the best score, the maximum accu-
racy alignment (proposed in ref. 18) yields the global alignment 
with the maximum possible accuracy as defined by the sum of 
probabilities for each residue pair to be correctly aligned 

P i ji j ( ) max( , ) aligned to  alignment →∈∑

We extended this algorithm to local HMM-HMM comparison10, 
which produces the local alignment that maximizes the sum of 
probabilities for each residue pair to be correctly aligned minus 
the mact penalty 

P i ji j ( ) max( , ) aligned to  mactalignment −( ) →∈∑

With the mact parameter, the alignment greediness can be con-
trolled from nearly global, long, greedy alignments (mact near 0) 
to very precise and short alignments (mact near 1). To speed up 
the MAC alignment, cells at a city block distance of >200 from 
the optimal and all suboptimal Viterbi HMM-HMM alignments 
are masked.

Adding sequences from significant matches to the query HMM. 
Sequences from all HMMs below the Viterbi E value inclusion 
threshold (with a default value of 10−3) are read from the align-
ment files of the clustered database and aligned to the query MSA 
according to the HMM-HMM maximum accuracy alignment. 
The query HMM is calculated from the query MSA.

Parameter optimization. We optimized the parameters (filter 
thresholds, gap costs, amino acid and transition pseudocount 
strengths and E value inclusion threshold) on an optimization 
set that had no member from the same fold as the sequences in the 
test set (see the sensitivity benchmarks section below). We varied 
the parameters in discrete steps one after another, performed an 
all-against-all search on the optimization set and tried to maxi-
mize the mean ROC5 value (see below). For the prefilter settings, 
we chose the best trade off between efficiency and sensitivity.

Sensitivity benchmarks. We filtered the sequences from SCOP 
1.73 (ref. 11) to a maximum pairwise sequence identity of 20%. We 
assigned every fifth fold to the optimization set (1,329 sequences 
in 215 folds) and the other folds to the test set (5,287 sequences 
in 862 folds; Supplementary Data 4). SCOP is a hierarchically 
ordered database of protein domain sequences with known struc-
ture. We considered domains from the same fold as true positive, 
homologous pairs and domains from different folds as false posi-
tive, nonhomologous pairs. Exceptions to this were members of 
Rossman-like folds (c.2–c.5, c.27, c.28, c.30 and c.31) and the 
four- to eight-bladed β-propellers (b.66–b.70), which are probably 
related and which we treated as ‘unknown’. To prevent a few large 
folds from dominating the benchmark4, we weighed each hit with 
the value of one over the number of members in the query SCOP 
fold (‘fold-weighted true positives and false positives’). All but the 
last search iteration were performed against the UniProt database. 
The final iteration of PSI-BLAST and HMMER3 searches were 
performed against all UniProt and SCOP sequences. For HHblits, 
the final iteration was performed against the UniProt20/SCOP 
database, a UniProt20 database to which SCOP test sequences 
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had been added as singleton clusters: each SCOP sequence from 
the test set was either mapped to its UniProt20 cluster containing 
the test sequence or was added as a singleton cluster to UniProt20/
SCOP if no matching cluster was found. All pairs of domains were 
ranked by E value for each of the tools, and the number of true 
positives versus false positives below a given E value were plotted. 
The ROC5 plots in Supplementary Figures 7d and 9b assess how 
well a method ranks the matched proteins within each search. 
These plots show the fraction of queries with ROC5 scores above 
the threshold on the x axis. The ROC5 score is the area under the 
true positive versus false positive ROC curve up to the fifth false 
positive divided by the area under the optimal ROC curve.

Sensitivity benchmark for multidomain proteins. Because 
multi-domain protein sequences present particular challenges, 
such as homologous overextension12, to iterative sequence search 
methods, we tested our tools on a benchmark set of multi-domain 
proteins. For each of the 5,287 sequences in our test set, we 
searched for a sequence in the nonredundant database that had 
a BLAST match to the SCOP sequence with an E value <10−40, 
sequence coverage >95% sequence identity >60% and whose 
full-length sequence contained at least 100 additional residues. 
These criteria resulted in 2,343 multidomain proteins. For all 
extracted multi-domain proteins, we proceeded as described in 
the previous paragraph (two iterations through UniProt and one 
iteration through UniProt or UniProt/SCOP, respectively). We 
counted true positive and false positive pairs only if the align-
ment covered at least 50 residues of the SCOP domain in the 
nonredundant query sequence.

Alignment quality. To assess the accuracy of the pairwise align-
ments (Fig. 1d), we chose 4,128 query-template pairs by randomly 
selecting from each SCOP superfamily up to ten pairs with <30% 
sequence identity and a structural similarity TM-align19 score >0.6  
(Supplementary Data 2). For each method, we built MSAs for the 
queries using two search iterations through UniProt and aligned 
the resulting query MSAs with their corresponding templates. 
For HHblits, we selected the template HMMs from the clustered 
UniProt20 that contained the SCOP template sequence (using the 
same procedure as described in section Sensitivity benchmarks). 
We determined correctly aligned residues by comparison with 
structural alignments from TM align19.

Improving PSIPRED secondary structure prediction. We 
compared the accuracy of the secondary structure prediction of 
PSIPRED13 using the PSIPRED procedure to generate sequence 
profiles (three iterations of PSI-BLAST on a filtered database), with 
the accuracy of PSIPRED run on profiles built from MSAs gener-
ated by HHblits. As a test set, we used PDBselect 2007 (ref. 20),  
which contains 3,649 sequences ranging from 30 to 1,040 amino 
acids in length. We built MSAs for each sequence using two and 

three iterations of PSI-BLAST on the nr database filtered with pfilt 
from the PSIPRED package and using one, two and three itera-
tions of HHblits through UniProt20. HHblits alignments with 
a diversity around 7.0 were generated by applying hhfilter from 
the HHblits package with the option ‘-neff 7’. For all MSAs, we 
performed the PSIPRED procedure with the default parameters 
and calculated the Q3 and SOV scores based on the known 
DSSP sequences (mapping E and B to strand, H, G and I to helix,  
and S, T and C to coil states).

Fold prediction for Pfam. For nearly half of all Pfam families in 
version 24.0 (5,716 out of 11,913), no structure is known, and the 
structures of any of the remotely related families in their Pfam 
clan are also unknown. We generated MSAs for these 5,716 Pfam 
families by using their seed alignments as input and perform-
ing two iterations with HHblits through the UniProt20 database. 
The PDB70 database of HHpred was searched with the resulting 
MSAs. For HMMER3, we scanned the PDB70 sequence database 
with the full HMMER3 models provided by Pfam.

Pip49/FAM69B modeling. We built an MSA for human Pip49/
FAM69B (UniProt identifier Q5VUD6) by running two iterations 
of HHblits through the clustered UniProt database and adding the 
secondary structure prediction from PSIPRED to this MSA using 
the script addss.pl from the HHblits package (Supplementary 
Data 5). To identify structural homologs, the PDB database was 
scanned by HHblits with this MSA with a mact value of 0.2. From 
the list of PDB matches, we chose as templates a protein kinase 
with bound ATP (PDB identifier 1RDQ) and a Ca2+-bound EF 
hand (PDB identifier 3C1V). We used the corresponding HHblits 
alignments to create a homology model with MODELLER21 
(Supplementary Data 3). Although many protein kinases con-
tain EF hands downstream of their kinase domains15, Pip49 is 
the first one known in which an EF hand is inserted in the kinase 
domain, directly after the small N-terminal β sheet. We validated 
the presence of the EF hand insertion by building an MSA with 
two iterations of HHblits starting from the presumed inserted 
sequence and then searching the PDB70 database. This yielded 
highly significant matches with EF hands (best E value = 4 × 
10−5). The previously reported transmembrane helix from residue 
position 31 to 51 could be confirmed by HMMTOP, MEMSAT-
SVM and Phobius. The kinase domain is framed by two short 
domains with highly conserved cysteines that are likely to form 
disulfide bonds, which suggests that it resides in the lumen of the 
endoplasmic reticulum.

17.	 Li, W. & Godzik, A. Bioinformatics 22, 1658–1659 (2006).
18.	 Holmes, I. & Durbin, R. J. Comput. Biol. 5, 493–504 (1998).
19.	 Zhang, Y. & Skolnick, J. Nucleic Acids Res. 33, 2302–2309 (2005).
20.	 Griep, S. & Hobohm, U. Nucleic Acids Res. 38, D318–D319 (2009).
21.	 Sali, A. & Blundell, T.L. J. Mol. Biol. 234, 779–815 (1993).
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